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A Sequential Pressure-Based Algorithm for Data-Driven

Leakage Identification and Model-Based Localization in
Water Distribution Networks
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Abstract: Leakages in water distribution networks (WDNs) are estimated to globally cost 39 billion USD/year and cause water and revenue
losses, infrastructure degradation, and other cascading effects. Their impacts can be prevented and mitigated with prompt identification and
accurate leak localization. In this work, we propose the leakage identification and localization algorithm (LILA), a pressure-based algorithm
for data-driven leakage identification and model-based localization in WDNSs. First, LILA identifies potential leakages via semisupervised
linear regression of pairwise sensor pressure data and provides the location of their nearest sensors. Second, LILA locates leaky pipes relying
on an initial set of candidate pipes and a simulation-based optimization framework with iterative linear and mixed-integer linear program-
ming. LILA is tested on data from the L-Town network devised for the Battle of Leakage Detection and Isolation Methods. Results show that
LILA can identify all leakages included in the data set and locate them within a maximum distance of 374 m from their real location. Abrupt
leakages are identified immediately or within 2 h, while more time is required to raise alarms on incipient leakages. DOI: 10.1061/(ASCE)
WR.1943-5452.0001535. © 2022 American Society of Civil Engineers.

Author keywords: BattLeDIM; Leakage detection; Water distribution networks (WDN); Change point detection; Successive linear

approximation.

Introduction

Water losses represent one of the major consequences of infra-
structure failures in water distribution networks (WDNs) (Arregui
et al. 2018). Updated estimations of water losses estimate that the
global volume of nonrevenue water (NRW), or the difference
between the water supplied in WDNs and the volume billed to
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customers, exceeds 120 billionm?/year, with an associated eco-
nomic cost of about USD 39 billion/year (Liemberger and Marin
2006). In a well-maintained WDN, background leakages and pipe
bursts cause small losses on the order of 3%—7% of the total water
supplied (Beuken et al. 2008). On the other hand, up to 35% of
the potable water supply is lost as NRW in poorly maintained
WDNSs, even in developed countries (Levinas et al. 2021), and
more than 50% is lost in systems in developing countries (Puust
et al. 2010). Beyond water and revenue loss, pressure drops due to
pipe bursts and the development of background leakages that
remain hidden for a long time lead to contaminant intrusion
and damage to property (Mansour-Rezaei et al. 2013). Managing
NRW can yield multiple benefits, including increased operational
revenues, decreased energy needs, overall improved water serv-
ices, increased customer satisfaction, and reduced environmental
impact, in addition to direct mitigation of the environmental and
financial impact of water losses on water resources and utility
operators (Wyatt et al. 2016).

Among the different strategies that utilities can adopt for NRW
management, the detection of physical leaks represents a priority
that has been studied in the literature for over 50 years (Puust et al.
2010). Detecting a leak in a WDN is a nontrivial problem because
pressurized pipes are underground, and WDNs can branch out to
form large network systems; thus, they are not easy to access for
monitoring and diagnostics. Moreover, variations in water demand,
seasonal trends, and measurement noise make leak detection more
challenging (Sophocleous et al. 2019). Following a few early stud-
ies that focused primarily on identifying the potential factors caus-
ing leakages in WDNs (e.g., Morris 1967), the state-of-the-art
literature is now rich with methods that deal with different facets
of leak management. Studies have been classified by Puust et al.
(2010) as methods for (1) leakage assessment, i.e., the estimation
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of water losses usually performed via a water balance (AWWA
2008), (2) leakage detection, i.e., the identification and localiza-
tion of water leaks in a WDN (e.g., Levinas et al. 2021; Covas
and Ramos 2010; Perez et al. 2009), and (3) leakage control,
i.e., passive or active policies and actions to control leakages
(e.g., Misiunas et al. 2005, 2006).

The ongoing digital transformation of the water industry, along
with the development of distributed sensor networks and improved
real-time communication, is fostering the development of a
new generation of sensor-based and online, data-driven leakage de-
tection methods that process data stored in a supervisory control
and data acquisition (SCADA) system (Sarni et al. 2019;
Makropoulos and Savic 2019). Acoustic devices (Stephens et al.
2018), infrared photography (Atef et al. 2016), induced pressure
waves (Zeng et al. 2021), and in-pipe robots (Kazeminasab et al.
2021), for instance, have recently been tested to pinpoint the pres-
ence of leaks in a pipe or a previously defined network area. Util-
ities can apply on-site equipment-based methods to identify the
exact position of a leak at higher resolution than computer-based
models and fix it. Computer-based models, however, are not as in-
vasive as equipment-based methods and can effectively narrow
down the search area before the utility sends out a crew to localize
and fix leaks. The two tasks that computer-based models need to
achieve are, first, to identify the presence of a leak in the system
and, second, to report the approximate location of the leak. Leak
identification relies on the analysis of physical measurements, in-
cluding pipe pressure and flow rates, water level in tanks, and water
demand, to identify the time step when the leak occurred. Methods
for leakage identification or localization usually combine hydraulic
modeling with optimization techniques, e.g., genetic algorithms and
search space reduction (Sophocleous et al. 2019; Vftkovsky et al.
2000; Steffelbauer et al. 2022), or data-driven algorithms based
on high temporal resolution pressure or flow data (i.e., subhourly),
e.g., k-nearest neighbors algorithms (Levinas et al. 2021), convolu-
tion neural networks (Fang et al. 2019; Guo et al. 2021; Bohorquez
et al. 2020), Bayesian classifiers (Soldevila et al. 2017), and long
short-term memory (LSTM) neural networks (Wang et al. 2020).

While several leak identification and localization methods have
been demonstrated on various data sets in the literature, few appli-
cations have reached a level of maturity needed for practical im-
plementation by water utilities (Sophocleous et al. 2019). Those
methods that rely on high temporal resolution sensor data require
reliable equipment for network monitoring and data communication.
In addition, model-based methods also require a well-calibrated
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hydraulic model of the WDN and computational power to run sim-
ulations. Furthermore, most studies do not comparatively analyze
and benchmark different methods and were conducted using private
commercial data sets. These research and practice gaps have moti-
vated the recent creation of a benchmark data set for leakage diag-
nosis in WDNSs (Vrachimis et al. 2018) and the organization of the
Battle of the Leakage Detection and Isolation Methods (BattLeDIM)
(Vrachimis et al. 2020a). The BattLeDIM is an international com-
petition organized for comparing the performance of leakage detec-
tion and localization methods on a common data set, with criteria
based on time to detection (TTD) and location accuracy.

In this paper we present a pressure-based leakage identification
and localization algorithm (LILA), formulated in its initial version
for application to the BattLeDIM competition (Daniel et al. 2020).
LILA is a hybrid algorithm that integrates a data-driven method for
analyzing pressure data gathered with sensors distributed in a WDN
and a leak localization method that relies on a calibrated hydraulic
model of the WDN. The two modules operate sequentially. The first
module performs leakage identification in a model-free fashion,
i.e., without relying on a calibrated WDN hydraulic model. Leak-
age identification relies on pairwise comparison of pressure data
observed at sensor nodes in the WDN and retrieved online from
the SCADA system. The second module in LILA performs model-
based leakage localization using a calibrated hydraulic model of
the WDN and an optimization-simulation framework based on
successive linear approximation (SLA) (Berglund et al. 2017).

The rest of the paper is organized as follows. In the “Methods”
section, we introduce LILA and its modules for leakage identifica-
tion and leakage localization. The L-Town WDN used as a case
study to test LILA is presented in the section “Experimental
Settings” along with the metrics for performance assessment and
other experimental settings. In the “Results” section, we report
and discuss the numerical results. Finally, we summarize the main
conclusions and final remarks for further research in the last section.

Methods

LILA is composed of two sequential steps (Fig. 1). In the leakage
identification step, a time series of raw pressure sensor data is proc-
essed to identify potential leakages in a WDN without requiring a
hydraulic model of the network. When a potential leak is identified,
the start time is detected and the sensor closest to the occurring leak,
hereafter called the most affected sensor (MAS), is pinpointed.
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Fig. 1. Flowchart of LILA, two-step method for leakage identification and localization.
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Second, knowledge about the MAS and the leak start time is em-
ployed for leakage localization, utilizing a hydraulic model of the
WDN. In this step, the specific pipe where the leakage occurs is
identified and the magnitude of the leak is determined.

The leakage identification step is designed to raise an alarm
about the presence of a potential leak. After calibration of a linear
regression model on pressure data from different sensors distributed
in the WDN, the model can analyze new data in an online fashion
without any restriction on the time resolution of the data. The ob-
served pressure data are then compared to the model output, and
the model reconstruction error (MRE) is further analyzed for the
detection of change points. An alarm is raised when a change
point is detected. Moreover, the identification model provides
localization information at a coarse level by estimating the MAS.
The leakage localization step relies on a well-calibrated hydraulic
simulation model of the WDN to determine the most approximate
leakage location and magnitude. An optimization-simulation model
is implemented to minimize the absolute difference between ob-
served and simulated pressure, where the solution corresponds
to the pipe that caused a discrepancy between observed and simu-
lated pressure values (Berglund et al. 2017).

Note that the information transferred from the leakage identifi-
cation to the leakage localization step, i.e., the start time of the iden-
tified leak and the corresponding MAS, provides a starting condition
to facilitate the search of the leakage localization process. In prin-
ciple, each step could be performed detached from the other. How-
ever, the synergies of timely identification and precise localization
of leakages emerge from their combination, as implemented in
LILA. The two steps of leakage identification and leakage localiza-
tion are described in detail as follows.

Leakage Identification

LI-1: Linear Regression

The leakage identification step originates from the principle of
energy conservation at node pairs i and j based on the Bernoulli
equation (Walski et al. 2003)

P, v} P v
Zi+;+2—g+zhloss,i:Zj+7+zq+zhloss.j (1)

where Z = geodetic height; P = pressure; v = velocity; /., = head
losses; v = fluid specific weight; and g = gravitational constant. The
meaning of each variable in Eq. (1) and the following ones is also
reported in the notation section. The head losses /., account for
both pipe friction losses Ag;cion and minor losses /.- These can
be estimated according to Walski et al. (2003) as

Z hloss.i - Z tiiction,i + Z hminor,i = Z(k,{lr + k;)")Qi (2)

PEF;
where p € F; = all pipes p included in flow path F; to node i;
k{," = frictional loss coefficient; k}/ = minor loss coefficient; and
0, = volumetric flow rate in pipe p.

When considering regular demand patterns throughout the net-
work, as in Cominola et al. (2018), i.e., Q;~Q,, Vp € F;, and,
thus, v; ~v,, the flow in each pipe p € F; and the pressure P;
in the current node i have a quadratic dependency [see relation
in Eq. (1) considering sensors i and pipe p], such that

Pi~—Q;. VY peF, (3)

While Eq. (3) holds true, it can be applied to Eq. (2) in the form
of linear regression, yielding
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S i = Sk + k0L = ST (K + k4P = KD, + KL Py
PEF; PEF;
(4)

where kg and k; = regression coefficients relating to losses in each
pipe; and kg,,- and k},_’i = summarized coefficients.
Irregular (e.g., nonrecurrent) demand patterns can be regarded

separately if their flow pattern is known. In this case, Eq. (4)
extends to

Z Tiogs,i = E + api + Z kqi0F (5)

deDp

where d € D, = all demands d from the set of irregular demands
Dyg; and k,; = partial loss coefficient for flow in pipe p in path to
node i from Eq. (2) with regard to particular flow Q, caused by
demand d. Moreover, the kinetic energy term from Eq. (1) can
be estimated according to Eq. (3), introducing additional regression
constants k%y,- and kj;

v; 07 0 1
= L — . P
29 2g i -A,2 kE,l + kE,l i (6)

Combining Egs. (1), (5), and (6) yields

N o
Zik Kk Pk Ky s+ Pt > kaiQG
deD g

P. -
J
:z,+7+kgj+kgjpj+k9,’j+k;,jpj+d§p:kd,jgg (7)
€Dr

and rearranging into
L 10 1
vt ke +ky;

» :AZji+Ak%~ji+Ak0 j kp,
R TR

2V
Tkt k,

p.i

4 ZdED,R Akd,intzz

1, 10 I (8)
5T kg Kk,

enables the formulation of the linear regression model of the pres-
sure signals from two sensor nodes P; and P, including irregular
demand D;p as additional regression variables. The regression
coefficients k?l-, kjl-i, and k;-li can be estimated as

0 0
B AZj + Akg ; + Ak

; T ©)
5t kg;+ k.,

Ji

1 0 7
3t kEJ' + Kk,

Ltk

JU

(10)

and

d
Ji

Aky
Lk ky

Hence, we can reformulate Eq. (8) in a simplified fashion fitting
to the linear regression problem

Pi= k) + Pk + Y k0% (12)
deDg
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During model calibration, regression coefficients k%, kj;, and k¢;

are estimated using a least-squares method (Montgomery 2020) on
a manually selected time period where no leaks have occurred.

LI-2: Reconstruction Error Analysis

When comparing the time series of the node pressure estimated
with the linear regression model P; formulated in Eq. (12) with
the observed pressure values P; by analyzing their difference [com-
pare Eq. (13)], additional occurring flows, i.e., leakages, contribute
to an increase of the model error. They can be regarded in Eq. (12)
as part of additional demand in the WDN. This yields the following
definition of the MRE:

MREﬂ == Pi _Pi = P,‘ - <k(j)l +P]k}l + Z kd,in‘21>
deD

= ki ;i0} (13)
leL

where L denotes all leakages. Under the assumptions that no leak-
ages are present in the network and that measurement noise is white
noise, MRE is expected to be normally distributed with a mean
value of 0 for all time steps 7,,1cak- Its expectation value E(-) will
be E[MREji(tnoleak)] =0.

The pressure drop AP = P(tie.) — P(ty01eax) caused at a certain
location in the WDN by a leakage can be calculated as the difference
of the pressure value observed at that location in the two time steps
before (#,,1cac) and after (7., ) the leak start. Considering a leakage
[, occurring at a location with corresponding MAS s, the pressure
drop at s due to the leakage will be greater in magnitude than for all
other sensor locations. Because the pressure drop is negative in sign,
the following relation is obtained:

AP <AP, Vi#s (14)

When combining Eqgs. (13) and (14) and choosing s = j, the
effect of the leakage /; will cause exclusively positive trends in
the MRE,;, such that E[MRE;(f;. )] > 0, Vi # s, thereby ena-
bling identification of the MAS

s(t) = argmax; (Zsign(MREj,-(t))> (15)

Furthermore, let the vector MRE; be represented by the MRE
for the combination of node s with all nodes i; then the magnitude
of that vector may be calculated with the Frobenius-norm || - ||z
(cf. Golub and Van Loan 2013). Finally, the detection of a single
new leak occurring in the WDN, along with its starting time, may
be accomplished by applying change point detection (Step LI-3) to
the time series ||MRE,(7)]| . After a leak is definitively identified
and becomes distinct, the model may be recalibrated to be reset for
new leakage identification.

Multiple simultaneous leaks will also be reflected in the time
series ||[MRE,(7)|| in an aggregated form [compare Eq. (13)].
However, disaggregation into individual leaks is not straightfor-
ward in the current implementation of LILA. Thus, for a more pre-
cise analysis of each individual leak within the overall aggregated
error, we manually selected, for each leak, an individual combina-
tion of nodes that revealed the leak signal in the most distinct
fashion.

LI-3: Change Point Detection

The last task of leakage identification is the detection of variations
in the MRE time series induced by a leak flow; therefore, this rep-
resents a change point detection problem. Change point detection
problems have been widely studied in the literature, and there is a
multitude of statistical methods available. For a comprehensive
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review we refer the reader to Aminikhanghahi and Cook (2017).
As explained in the previous section, we expect the MRE to be
unbiased and normally distributed for the network state without
leaks. With the start of a leak event, the error mean will either
abruptly or gradually shift away from zero, depending on the nature
of the leak. Successful change point detection aims to flag these
instances as early as possible, while at the same time avoiding false
alarms. In LILA, we apply the widely used Cusum algorithm
(Montgomery 2020), known from statistical process monitoring,
to automatically detect changes in the MRE.

The Cusum algorithm is a method to detect changes in the prob-
ability distribution of an univariate signal. It accumulates the dis-
tance C; of the target variable x from its mean p,, corrected by a
slack value K, which is chosen based on the change of mean that is
to be detected. Often K is selected based on the estimated standard
deviation o} of the target variable multiplied by a parameter §
[cf. Eq. (16)]. A change point is flagged once C; exceeds a prede-
fined threshold H = 7 x o,. In general, the algorithm comes in two
forms for detecting positive and negative changes from the mean.
For our application, we use the formulation to detect changes in the
positive direction because leaks will manifest themselves as posi-
tive values in the MRE (cf. section LI-2: Reconstruction Error
Analysis)

CH =max[0.x; — (o + K) + Ci;]  with Cj =0

and K:gajc (16)
To evaluate the general suitability of the Cusum method for the
leak identification problem, we created artificial error trajectories
by adding different levels of white noise to given ground truth leak
trajectories. This allowed us to confirm the algorithm’s ability to
robustly flag the leaks and to select the hyperparameters in a rea-
sonable range (cf. Appendix). Moreover, we can derive some useful
intuitions. Naturally, the change point method performs better for
higher ratios of leak magnitude to signal noise. This reflects the fact
that a smaller model error and better signal quality enable earlier
leak detection. The same holds for the temporal development of the
leak, as abrupt bursts are easier to detect than slow transients.

Leakage Localization

The leakage localization step has three subcomponents, including
water demand calibration, pressure difference analysis to identify
the pipes with the highest influence on the pressure sensors, and the
application of the SLA method developed by Berglund et al. (2017)
to quantify the approximate leakage magnitude and localize the
leak in the WDN. The three steps shown in Fig. 1 work sequentially
to, first, partially calibrate the hydraulic model using demand data.
Second, a pressure difference analysis is conducted to define the
order of the pipes that affect each pressure sensor of the water net-
work and report them as leak candidates. Third, the application of
SLA aims at finding the magnitude of a leak from the candidates
that could be producing the discrepancy between nonleak and leak
pressure values. A detailed explanation of each leak localization
component is presented in what follows.

LL-1: Water Demand Calibration

Water demand calibration aims at matching the simulated and the
observed demand to replicate real conditions with the hydraulic
model (Walski 2017). LILA requires a demand-calibrated model
to replicate the demand and the pressure measured values reported
by the sensors. To calibrate the demand patterns and base demand
in the WDN hydraulic model, we use automatic meter reading
(AMR) data available for the simulation period. The new calibrated
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demand patterns do not distinguish the type of user, e.g., residential
or commercial, and overwrite the original demand patterns of the
network with the new patterns obtained by normalizing the con-
sumption reported by the AMR data, as shown in Eq. (17):

E :NAMR
Nrs 2 4

=1 Nawr
—— TAMR 17
np Nog (17)

where np = average of new demand pattern; d = demand reported at
time step # by AMR node j; Ny = number of AMR nodes; and
Nr7s =number of time steps. Hence, the output of this procedure is a
hydraulic model with a period of simulation similar to that reported
by AMR data and with simulated demand approximately matching
the measured demand. Then the new base demand is calculated as
follows:

deas
bdnew = bdorig X dmeds (18)

where bd,,, = new base demand of nonzero consumption nodes of
network; bd,;, = original base demand of WDN hydraulic model;

dgm = mean of simulated demand calculated with new demand pat-

terns; and d,,., = mean of measured demand reported by
AMR nodes.

LL-2: Pressure Difference Analysis

A subset of pipes is identified for each MAS and considered as
candidates to be evaluated by the SLA method described sub-
sequently in LL-3. The pressure difference analysis evaluates the
effect on sensors of a fixed-size leak inserted at each pipe of the
network by comparing pressure values with and without the leak.
Based on the anomalies between the leak and nonleak nodal pres-
sure values modeled with hydraulic simulation, in Step LL-2 we
define a pressure difference matrix (PDM), where each element
e; j is calculated as follows:

Nrs
Cij = pfeak,;,» - piloLeak,‘,‘ (19)
t=1

where e; ; represents the cumulative error between pressure with
(Preax) and without a leak (p . cax) from the sensor located at node
i after a fixed-size leak is inserted on pipe j; Preak and Profeak are
obtained with hydraulic simulation, implemented in LILA using
the Water Network Tool for Resilience (WNTR) Python package
(Klise et al. 2018); and N is the number of hydraulic time steps of
the hydraulic model. The fixed leak used in this study corresponds
to a flow of approximately 5% of the network’s average flow, based
on assumptions made in previously conducted research (Berglund
et al. 2017; Kabaasha et al. 2020). This fixed-size leak corresponds
to a flow rate of a background leak in the water network. The PDM
is calculated once for the entire process, and its purpose is only to
select the pipes affecting the most for each pressure sensor regard-
less of the number of simultaneous leaks. In the case of a significant
mismatch between the estimated and the actual leak size, Step LL-3
described in what follows updates the final estimated leak magni-
tude. The simulation duration corresponds to the extended period
of simulation (EPS) of the WDN hydraulic model, and pressure
values are sampled at the end of the EPS to account for seasonality
effects. The dimensions of the PDM are the number of pressure
sensors as rows and the number of network pipes as columns.
To identify the pipes that produce the highest effect on each pres-
sure sensor after the fixed leak is inserted, we sort each row of PDM
in descending order. We then include these pipes as candidate pipes
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for mathematical programming optimization to find the true leak
location, described in the following section.

LL-3: Successive Linear Approximation

In the SLA step we formulate a simulation-optimization problem.
The objective function, which is minimized, represents the absolute
difference between observed and measured node pressure values,
accounting for the effect of a leak on a set of candidate pipes. The
leak magnitude is the decision variable. This procedure uses an iter-
ative approach, and the magnitude of the leak is updated at each
iteration while minimizing the error in pressure. The mathematical
formulation of the minimization problem is presented in Eq. (20),
followed by the definition of each term and the constraint on the
decision variable. This formulation was adapted from the formu-
lation provided by Berglund et al. (2017) as follows:

n'LmH [Amxn][xnxl] - [bnxl]H

o Pleak; — PnoLeak;
mxn —
aj

A

a; = Qj/ Pea,
b= Pobs; — PnoLeak;
such that x > 0 (20)

Each element in matrix A is the pressure response coefficient at
pressure sensor i € {1, ..., n} for a leak with coefficient a; simu-
lated at pipe j € {1, ..., m}. Leak coefficient a; represents the re-
lationship between the volumetric flow rate O and the pressure p
with the presence of a leak. a; is initially assumed to be 1.0 to
represent 1 m of pressure drop in the presence of a leak when using
SI units and is updated in each step of the optimization. « is the
pressure exponent and is assumed to be 0.5 (Crowl and Louvar
2001); pieak, 1s the simulated pressure in the presence of a leak
retrieved from sensor i; pyoreq, 18 the simulated pressure without
a leak; b is the independent term calculated as the difference
between observed (p,p,,) (€.g., from SCADA) and simulated pres-
sure (PpoLeak, ) both at pressure sensor i; and x is the vector of leak
coefficients obtained after optimization for the n candidate pipes
using the m pressure sensors. In this work, we simulate a leak
in a pipe by splitting the pipe and adding a leak on an additional
temporary node located at the middle of the split pipe, as explained
in the WNTR documentation (Klise et al. 2018). The number of
candidate pipes included in the SLA analysis and selected from
the LL-2 step depends on the characteristics of the hydraulic net-
work and the layout of sensors. The method presented here can be
applied for different hydraulic networks if the number of pressure
sensors and the sampling times, as explained in what follows, pre-
vent undetermined conditions when solving the expression Ax = b.

For improved performance, the application of SLA requires the
start time of each leak, the MAS, and a list of the next most affected
pressure sensors from the leakage identification step selected based
on the signal strength reported from the sensors surrounding the
MAS. SLA relies on the iterative application of linear programming
(LP) and mixed integer linear programming (MILP) to solve the
minimization problem shown in Eq. (20). LP and MILP use the
L1 normalization procedure to determine the magnitude of a leak
from the list of candidate pipes by minimizing the absolute differ-
ence between the simulated pressure under normal circumstances
and the pressure after a leak is inserted at each candidate pipe. The
localization step uses the start time of each event to insert a leak on
each candidate pipe and sample the resulting pressure from the
most affected pressure sensors. We sample pressure at several
sampling times based on the following routine: first, a leak with
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a coefficient (a) equal to 1.0 is inserted at the pipe connected to the
MAS (Berglund et al. 2017). Second, the sampling times are de-
fined as those where the simulated pressure without the leak is
higher than the pressure with the leak, and the pressure values with
the leak are close to the observed (i.e., measured) pressure values.
This sampling time analysis aims to include more data points to
compare observed and simulated pressure where the only discrep-
ancy is due to the presence of a leak. Based on the sampled values,
SLA solves an inverse problem of the form Ax = b, where the de-
cision variable x represents the leak coefficients of each candidate
pipe. The variable x is also referred to as the leak magnitude for
given flow rate and pressure conditions. The initial optimization
step uses LP to solve the Ax = b expression, and the results are
used to constrain the solution space for subsequent optimization
steps, which apply the iterative LP and iterative MILP procedures.
The output of the LL-3 subcomponent is the approximate leakage
magnitude and the corresponding ID of the pipe that most likely
contains the leak. When more than one magnitude is reported as
greater than zero, the process selects the pipe with the highest im-
pact on the MAS based on the pressure difference analysis (LL-2).
The presence of more than one solution may be caused by other
existing leaks, error in the model, or noise in pressure data.

Experimental Settings

Case Study

In this work, we apply LILA to the L-Town network and the
data set provided by the organizing committee of BattLeDIM
(Vrachimis et al. 2020a), a worldwide competition carried out in
2020 to assess and compare the results of various leak identification
and localization methods submitted by participants. The L-Town
network (Fig. 2) is a WDN based on an actual network located
in Cyprus. It consists of 785 nodes, 905 pipes with a total length
of 42 km, 1 pump, and 3 valves. The L-Town WDN is divided into
three district metered areas (DMAs). DMAs A and B are directly
connected to two water sources, 1.€., reservoirs, whereas DMA C is
connected to a tank that is filled up during night hours by a pump.
L-Town is monitored through SCADA equipment, including flow
rate meters at the exit of each reservoir, water level sensor of the

@ Pressure sensor

T Tank

s Reservoir

Fig. 2. Overview of L-town water distribution network, with high-
lighted pressure sensor locations.
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tank, a set of 33 pressure sensors across the network, and a set of 82
AMR devices connected at the user level within DMA C.

Data from pressure sensors, AMR nodes, and flow meters lo-
cated at the reservoirs and pump are reported by SCADA for
2018 and 2019 with a 5-min temporal resolution. SCADA data
were simulated by the BattleDIM organizers using the WNTR hy-
draulic simulator (Klise et al. 2018). Moreover, noise was imposed
on these data sets by modifying the pipe roughness and diameters to
emulate differences between the hydraulic model and measured
data and by adding white noise representing measurement noise.

The 2018 data were released prior to the competition and in-
cluded pressure data from the 33 sensors, demand data from the
82 AMR meters, the water level of the tank, and the flow rate from
reservoirs and the pump. Ground truth information for 10 leakages
reported in 2018 was available and included the time when each
leak was fixed and the corresponding pipe ID. The 2019 data set
includes time series of the same variables observed in 2018, but no
ground truth data were released prior to the BattLeDIM. Hence,
here we consider ground truth information for the 2019 data set,
which was released a posteriori, only as validation data to assess
the performance of LILA. Over the 2-year period, 33 leaks were
reported in total in L-Town. Besides the 10 reported leakages, 4
additional leaks occurred in 2018, yet they were not reported as
part of the ground truth training data. These four leakages remained
unfixed and, thus, continued in 2019. An additional 19 leakages
started in 2019, summing up to a total of 23 leaks that were relevant
for the evaluation of the BattLeDIM competition. The leaks are of
two types, abrupt and incipient. Abrupt leaks are modeled as pipe
bursts that occur suddenly, reaching their maximum magnitude in-
stantly. Conversely, the magnitude of incipient leaks evolves gradu-
ally over time. A calibrated hydraulic model of the network for a
week of simulation with 5-min hydraulic time steps was also pro-
vided. However, the model and the data have some discrepancies,
as mentioned previously, owing to unknown conditions of the water
system, including the actual status of pipes, roughness coefficients,
and specific noise added to the data set by the BattLeDIM organ-
izers [for more details, see Vrachimis and Eliades (2020)].

Performance Metrics

Leakage detection problems may be regarded as binary classifica-
tion problems where the state with no leak and with leaks, respec-
tively, represent the two classes of interest [cf. e.g., Taormina and
Galelli (2018)]. The accuracy of a binary classifier used for
anomaly detection can be assessed via the following four metrics:
true positive (TP) and false positive (FP) indicating correct and in-
correct classification of an anomalous state, respectively, and false
negative (FN) and true negative (TN) indicating incorrect and cor-
rect classification of a normal state, respectively (Lever et al. 2016).
Yet in the case of leakage detection, it is only partially of interest
whether an individual data instance in time (e.g., the nodal pressure
in a single time step) is classified as normal or anomalous, but
rather the onset of the event that causes all subsequent anomalous
states and its location constitute essential knowledge for the effec-
tive deployment of maintenance staff. To account for this, we assess
LILA with an adapted version of the aforementioned metrics, as
formulated by the BattLeDIM Committee (Vrachimis and Eliades
2020). The adopted definitions of TP, FP, FN, and TN report on the
correct labeling of entire leaks regarding spatial and temporal oc-
currence rather than single instances in time. As such, TP and FN
here denote the number of correct and missed leaks, respectively.
Given the TTD of a leak, defined as the difference between its
detection time 7; and its start time 7,
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TTD = t; — lyuy (21)

a reported leak is here considered TP if its estimated start time falls
within its actual start and end times, 7y, and f.,q (i.e., the maxi-
mum allowed time to detection, TTD,,,,, is positive and lower than
the duration of the leak), and it is located within a maximum al-
lowed pipe distance up,, from its true leak location. FN refers
to a leak that is not detected at all by the method. FP is defined
as a reported leak that is neither identified in time within the true
leak lifespan nor localized within a distance u,,,, from its actual
location. TN is set to zero since it is not applicable in the adapted
formulation of the classification metrics. Because the threshold val-
ues TTD,, and uy,, can be arbitrary, here we also analyze the
sensitivity of the classification performance to varying threshold
values.

Besides analyzing individual TP, FP, and FN metrics, we
also compute the state-of-the-art classification metrics of Recall,
Precision, and F-score. Recall measures the ability of a model
to correctly identify anomalous instances in a data set. Precision
measures the proportion of correctly identified anomalous instan-
ces compared to false alarms. Finally, the F'|-score is formulated as
the weighted harmonic mean of Recall and Precision and varies
between zero (worst performance) and one (best performance)
(Lever et al. 2016)

TP
Recall = ——— 22
T TP N (22)
TP
Precision = — 2
recision TP+ FP (23)

P 2 x Recall x Precision (24)
'™ Recall + Precision

In addition to the aforementioned classification metrics, we
assess LILA by computing, for each leak, its TTD [Eq. (21) and
Taormina et al. (2018)] and the volume of water leaked V. .q from
the start time of the leak 7y, until the time of detection ¢,

»
Vieaked = / Q(T)dT (25)
[Slul’l

Finally, we compute the aggregate economic score S defined by
the BattLeDIM organizers as

S=> pi+cl
i

=S[([* 0srrar) e -min( )] o

to account for the trade-off between the benefits pi, (i.e., NRW re-
duction) a water utility can obtain by the detection i of leakage j
and the costs ¢! for sending out a repair crew when an alarm is
raised. The benefits pi, represent the opportunity cost for water
saved from 7, to f.pq considering leak flow Q; and the cost for water
¢,» Which is set at €0.80/m>. The repair cost ci. relates to the dis-
tance u;; between the location of detection i and the actual position

of leak j at a maximum fee cz of €500 (Vrachimis and Eliades
2020).

Results

In this section, we present the numerical results obtained for leak-
age identification and localization by LILA on the L-Town data set
introduced in the previous section. We compare the results obtained
by LILA with the benchmark results obtained using an earlier
version of the algorithm (hereafter called BattLeDIM benchmark),
which we submitted for comparative assessment to the BattLeDIM
competition (Daniel et al. 2020). LILA enhances the BattLeDIM
benchmark with regard to both the identification and the localiza-
tion modules. In the leakage identification step, the BattLeDIM
benchmark does not include an automated change point detection
step and relies on an expert-based annotation of the leak start time.
LILA’s identification step adds the automatic Cusum method. Fur-
thermore, three improvements were incorporated in the leak locali-
zation step. First, the full set of pressure signals was considered for
SLA optimization in the BattLeDIM benchmark, which added
noise to the pressure difference. In LILA, only a limited set of sen-
sors around the MAS are considered for each leak analysis. Second,
to avoid the computational burden of analyzing dozens of candidate
pipes, the BattLeDIM benchmark picked up to five candidate pipes
spatially distributed around the MAS. Conversely, LILA uses up to
30 candidate pipes from the PDM for each leak event. This led to
algorithm performance enhancement but also increased substan-
tially the computational time. Third, while the BattLeDIM bench-
mark uses predefined sampling times for SLA, LILA searches for
optimized sampling times for which the differences of observed
data and simulated data including size-one leaks are minimized
to account for time-variant noise. The demand-calibrated hydraulic
model was the same used in the BattLeDIM and LILA versions.

In the following sections, we first present the overall score and
performance assessment of LILA and compare it with the BattLe-
DIM benchmark. We then analyze in detail the results obtained for
the leakage identification and leakage localization steps.

Overall LILA Performance Assessment

The performance metric results obtained for LILA and the
BattLeDIM benchmark considering the threshold values TTD,,,, =
oo (indicating a maximum allowed TTD equal to the leak duration)
and u;,, = 300 m defined in the BattLeDIM (Vrachimis and
Eliades 2020) are reported in Table 1. LILA correctly identified
and located 17 of the 19 leaks that started in 2019. All leaks were
actually correctly identified, but two leaks were located outside of
the search radius u,,,,. This good performance is reflected in a
Recall value of 1.0 and slightly lower Precision and F;-score due to
the inaccurate detection of two leaks. In terms of aggregate score S,
LILA obtained a score of €307,852, outperforming the BattLeDIM
benchmark, which obtained a total score of €191,055. All obtained
classification metrics of LILA show a substantial improvement
compared to the ones reported by the BattLeDIM benchmark. Note
that both the BattLeDIM benchmark solution and the solution

Table 1. Performance metrics for LILA and BattLeDIM benchmark. The performance metrics are calculated using threshold values TTD,,,, equal to leak
duration and u,,,, = 300 m consistently with the settings of the BattLeDIM competition

Algorithm version TP FP FN Recall Precision F-score S (€)

LILA 17 2 1.000 0.895 0.944 307,852
BattLeDIM benchmark 10 8 1 0.909 0.556 0.690 191,055
© ASCE 04022025-7 J. Water Resour. Plann. Manage.
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Fig. 3. F-score sensitivity to changing threshold parameters u,,, and TTD,,, for (a) BattLeDIM benchmark; and (b) LILA with Cusum change
point annotation. The cross marker indicates the results obtained under default settings (Table 1).

obtained with LILA did not consider the four leaks that remained
unfixed in 2018 by the L-Town utility and kept running during
2019 as only the 2019 data set was considered for algorithm testing
in this work.

Sensitivity of LILA Performance to Classification
Threshold Parameters

In addition to the foregoing performance assessment using default
threshold values TTD,,,, = oo and u,,,, = 300 m, we evaluate the
sensitivity of the F|-score in response to changes in these two
threshold parameters. Results are reported in Fig. 3.

The steeper incline of the curves reaching their maximum at
lower u,,, indicates that LILA performs better with respect to
the distance between the estimated and actual leak location. This
is reflected in the lower number of FPs for LILA as more detections
fall within the respective permissible interval of [0, u,,,]. However,
lower values of the F'|-score can be observed for a maximum per-
missible TTD,,,, of 1 h. This can be attributed to the difference in
expert annotation of change points for the BattLeDIM benchmark
compared to the automated Cusum annotation implemented in
LILA. Most importantly, LILA achieves a perfect F;-score of
1.0 for maximum permissible values of TTD,,, = 41 days and
Umax = 374 m. For these or any greater values of the two upper
threshold parameters, LILA is capable of correctly identifying
and localizing all leaks in the data set.

Detailed Assessment of Leakage Identification

Fig. 4 shows four exemplary leakage situations that occurred in the
L-Town network across different time periods during 2019. For
each leak, the signal of the ground truth leak flow Q.. is compared
to the MRE from the corresponding MAS. From this representation
it is apparent that occurring leaks are directly reflected in the MRE
since MRE rises with leak occurrence and diminishes again with
leak repair. For instance, the start of the abrupt Leak 1 at Pipe p523
in Fig. 4(a) is not preceded by other leaks, resulting in low MRE
values before and high values after its occurrence. With the onset of
Leak 2 at Pipe p827, both MRE signals of n506 (closest to Leak 1)
and n726 (closest to Leak 2) show an increase in magnitude com-
pared to the situation with no leaks present, indicating that LILA is
capable of detecting overlapping leaks. Incipient leaks are repre-
sented in the MRE in the same fashion, even reflecting the growth
of the leak, as can be observed in Fig. 4(b). However, with the onset
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of abrupt Leak 6 at Pipe p514 during the growth process of Leak 4
at Pipe p653, the latter is temporarily obscured in this representa-
tion and only becomes visible again at a later stage. Similarly, the
initial appearance of Leak 10 at Pipe p193 in Fig. 4(c) is obscured
by the presence of both Leaks 7 and 8 at Pipes p331 and p142,
respectively. For this and other similar instances, we analyzed indi-
vidual trajectories of MREj; [cf. Eq. (13)] to obtain more precise
start times. The complete set of all individual trajectories that were
used for the subsequent change point detection is displayed in Fig. 5
and listed in Table 2.

A special case, represented in Fig. 4(d), arises in DMA C, where
unknown irregular demand patterns are the cause of large noise in
the MRE, obscuring individual leaks and making their identifica-
tion more difficult. Hence, we chose to display the daily rolling
mean instead of the raw MRE signal for better inspection. None-
theless, LILA is able to identify both leaks occurring in DMA C by
analyzing the raw MRE signal.

Moreover, Fig. 6 shows two exemplary MRE trajectories that
were analyzed for change point detection (LI-3): on the left the
abrupt Leak 1, on the right the incipient Leak 12. For both cases
the signal-to-noise ratio enables a clear visual identification of the
leak’s development. Looking at the daily rolling means facilitates
the visual inspection. It is worth noting that in the presence of either
exemplary leak, further leaks started in different parts of the same
DMA. Yet the trajectories enable making a clear distinction between
overlapping leaks and are therefore well suited for the application of
different change point detection methods. For a more detailed dis-
cussion on the effects of simultaneous leaks, we refer the reader
to the “Discussion” section.

Fig. 7 compares the results of expert and Cusum change
point annotation for abrupt [Figs. 7(a and c)] and incipient
[Figs. 7(b and d)] leaks in terms of both TTD [Figs. 7(a and b)]
and Viegeq [Figs. 7(c and d)]. The observation from Fig. 6 as to
which abrupt leaks are detected much faster and more coherently
than incipient leaks generalizes for all leaks and detection methods.
The experts annotated most abrupt leaks on the spot with a maxi-
mum delay of 35 min (cf. Table 2). The LILA algorithm also flags
most leaks immediately after occurrence and annotates all but one
noteworthy exception within a maximum period of 2 h. The leak in
Pipe 280 (leak ID 3), however, has such a challenging signal-to-
noise ratio due to the strong irregular demand patterns in DMA C
(cf. Fig. 5) that it is detected only after around 5 days (116 h). For
incipient leaks, the average expert detection was approximately
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Fig. 4. Time series of MRE compared to ground truth data Q. for four different time windows: (a) overlapping of two abrupt leaks; (b) overlapping
of abrupt leak during evolution of incipient leak; (c) occurrence of abrupt leak and an incipient leak in presence of another fully developed leak; and
(d) evolution of incipient leak in DMA C with large noise caused by irregular demands.

7 days after the leak start, but two incipient leaks were actually
missed by the expert (one annotated too early and one not at
all), which highlights the uncertainty around manual annotations.
The Cusum method, on the other hand, was slower in detecting
incipient leaks with an average delay of around 20 days but anno-
tated all existing leaks reliably. Overall, the defects translate to a
total water savings of 402,562 m> for the expert and 440,338
m?® for the Cusum method over the analyzed period of 1 year com-
pared to no leak detection.

The fact that the experts were consistently faster than the Cusum
method on the leaks they correctly identified is largely attributed to
the asymmetry in information between the methods. The expert
labeling was performed ex-post, in contrast to the online Cusum
method. This implicit assumption of perfect foresight for the
expert-based annotations makes the approach infeasible in practice.
Furthermore, it would be impractical and nonscalable to manually
monitor the system. Therefore, the Cusum method represents the
baseline for an automated online application of the described meth-
odology. However, the application of more advanced methods for
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automated leak detection might hold the potential to further
improve the overall performance of the methodology in practice.

Detailed Assessment of Leakage Localization

The BattLeDIM benchmark only localized ten leaks at a distance
lower than the threshold value u,,, =300 m defined in the
BattLeDIM (Table 3). Additionally, the localization step reports
five leaks at distances greater than 600 m to the true leaking pipe.
The poor performance shown by the initial localization step can be
mainly attributed to the selection of the candidate pipes. As the
SLA procedure assigns a leak to each candidate pipe and evaluates
its effects on the sensors, it is computationally expensive when the
list of candidate pipes contains 30 or more pipes for each event. To
reduce the computational burden, we selected only five or six can-
didate pipes from the PDM in the BattLeDIM benchmark algo-
rithm. The only condition we used to select these small sets of
candidates for each event was that pipes had to be separated from
each other by at least two pipes to ensure differences on the signal
reported by the sensors due to the inserted leaks.

J. Water Resour. Plann. Manage.

J. Water Resour. Plann. Manage., 2022, 148(6): 04022025



0.15
0.13
0.10
0.08
0.05
0.03
0.00

MRE (-)

!

— ID 1: MAS = n506

Jan-01

Feb-15

0.10
0.08
0.05
0.02
0.00
-0.03
-0.05

MRE (-)

—— ID 5: MAS = n644

Fe

b-15

02

>
©
n

0.75
0.50
T 0.25
0.00
-0.25

MRE

ID 9: MAS = n1

b-15

o
[a]
[nd

15

—— ID 13: MAS = n644

-19 30

n
o)
v

—— ID 17: MAS = n288

Dec-31

—

w
o
=

$0.30
W 0.20
2010

w
o
=

—— ID 2: MAS = n726

Jan-01

=<
Q
n
o
ft

—— ID 6: MAS = n332

2
1

Mar-25

Jun-10

0.10
0.07
0.05
0.03
0.00
-0.03

—— 1D 10: MAS = n613

Ma

y-25

Jul-30

0.40

0.00

—— 1D 14: MAS = n296

"

Aug-01

Dec-31

0.03
0.02
0.01
0.01
0.01
0.00
-0.00
-0.01

— D 18: MAS = n429

Oct-02

Dec-31

0.80
0,60
=0.40
£o0.20

0.00

— ID 3: MAS = n4

E

Jan-01

Mar-

0.30

0.25
~0.20
2 010
Z0.05

0.00

—— ID 7: MAS = n410

Apr-15

May-14

3.00
2.00
1.00
0.00
-1.00

MRE (-)

—— ID 11: MAS = n215

Jun-15

Aug-

0.08
0.06
0.04
0.02
0.00
-0.02
-0.04

MRE (-)

—— ID 15: MAS = n163

Se

|w)
o)
0

p-07

24

0.12

0.10
- 0.08
0.05
0.02
0.00
-0.03

MRE (

—— ID 19: MAS = n740

{

-0.05
Oct-02

Dec-

31

MRE (-)

N

__0.02

'
-

w
-4
=

w
o<
=

—

MRE (-

0.12
0.10
0.07
0.05
0.03
0.00
-0.03

— ID 4: MAS = n613

Feb-15

May-20

0.03

0.01
0.00
-0.01
-0.02

— ID 8: MAS = n752

_O'ORp

r-01

Aug-15

0.20
0.15
0.10
0.05
0.00
-0.05

—— ID 12: MAS = n549

Jul-19

"
o)
?
w
o

0.12
0.10
0.08
0.05
0.02
0.00
-0.03

—— ID 16: MAS = n114

-0.05

Oct-02

Dec-31

Downloaded from ascelibrary.org by Andrea Cominola on 03/30/22. Copyright ASCE. For personal use only; all rights reserved.

Fig. 5. Time series of MRE for each individual leak in DMA A on which change point detection was applied thereafter. The legend indicates the leak
ID and its MAS.

Table 2. Performance comparison of leak identification methods (BattLeDIM benchmark versus LILA) applied to leaks in L-Town network in 2019
BattLeDIM benchmark LILA

Leak properties

ID True start Type TTD (HH:mm) Vieakea (M s71) TTD (HH:mm) Vieakea (M s71)
1 2019-01-15 23:00:00 Abrupt 00:00 0.0 00:00 0.0
2 2019-01-24 18:30:00 Abrupt 00:00 0.0 00:00 0.0
3 2019-02-10 13:05:00 Abrupt 00:35 3.0 116:10 603.5
4 2019-03-03 13:10:00 Incipient 166:50 20.2 222:30 47.9
5 2019-03-24 14:15:00 Abrupt 00:05 0.5 02:00 11.1
6 2019-04-02 20:40:00 Abrupt 00:00 0.0 00:10 2.6
7 2019-04-20 10:10:00 Abrupt 00:00 0.0 00:00 0.0
8 2019-05-19 10:40:00 Incipient 320:15 43.9 674:45 4104
9 2019-05-30 21:55:00 Incipient —262:05 28,875.9 1100:30 1,057.2
10 2019-06-12 19:55:00 Abrupt 00:00 0.0 00:00 0.0
11 2019-07-10 08:45:00 Abrupt 00:00 0.0 01:05 5.8
12 2019-07-26 14:40:00 Incipient 129:50 24.1 272:00 221.4
13 2019-08-02 03:00:00 Incipient 400:00 177.4 274:00 57.0
14 2019-08-16 14:00:00 Incipient 65:40 7.2 116:30 40.3
15 2019-09-13 20:05:00 Incipient not detected 12,505.9 974:05 815.4
16 2019-10-03 14:00:00 Incipient 274:00 24.1 748:05 490.0
17 2019-10-09 10:15:00 Incipient 295:45 78.1 387:15 175.4
18 2019-10-25 13:25:00 Abrupt 00:15 33 00:15 33
19 2019-11-20 11:55:00 Incipient 108:05 4.6 44:15 0.3

Note: This table is organized chronologically by the true start time of the leak, also indicating whether a leak occurred abruptly or in an incipient fashion.
The TTD and water volume leaked until detection, V..q, are presented for both the BattLeDIM benchmark and the LILA algorithm.
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Fig. 6. Exemplary MRE trajectories during leakages and their respective annotations by expert and Cusum method. (a) Leak 1 (abrupt); and (b) Leak

12 (incipient).
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Fig. 7. Comparison of expert and Cusum leak annotation: (a, b) time to detection; and (c, d) leaked water volume. Results are reported for abrupt (a, ¢)
and incipient (b, d) leaks. No bars indicate no detection delay or no water loss. The y-axis range in (a) is limited to [0,25] hours for visualization
purposes, but the leak located in pipe p280 was detected by LILA with a delay of 116 h and 10 min (see Table 2).

In this work, we present the capability of the enhanced
identification-localization method LILA, which includes the
analysis of all top 30 pipes from the PDM as candidates for each
event in the localization step. Furthermore, for each leak, we
only used the MAS combined with three to five additional sen-
sors to avoid extra noise that might be introduced by sensors not
affected by some spatially distant leaks. Each additional sensor
was selected for each event based on signal strength. Depending
only on the signal and not on topological or geographical con-
ditions, some leaks were analyzed with three and others with up
to five sensors in addition to the MAS. Fig. 8 displays the effect
of this adaption by comparing the BattLeDIM benchmark and
the LILA algorithms.

LILA finds leaks with an average search radius of 149 m. Of
the 19 leaks localized during 2019, 37% was within a 100-m
radius, 53% of leaks had a distance ranging from 100 and 300 m
from the true leaking pipe, and 10% were located outside of the
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maximum allowable distance of 300 m used in the BattLeDIM
competition. There are two events where the localization step
found the exact location, Leaks 8 and 19, whereas Leak 9 was
the event reported by LILA with the maximum distance from
the true location (374 m) (Fig. 9). The localization step does
not differentiate between incipient and abrupt leaks; however,
owing to the multiple sample times to retrieve pressure values,
SLA reports slightly better performance for the incipient leaks
compared to abrupt leaks. While LILA outperforms the BattLe-
DIM benchmark, there are events where the localization step does
not improve the location reported by the BattLeDIM benchmark
because of the noise in the data and the difference between the
detected and the true start time of the leaks. SLA depends on a
well-calibrated pressure model reporting values close enough
to the values reported by SCADA. When there is substantial error
between the measured and simulated pressures, the performance
of the SLA approach is significantly affected.
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Table 3. Performance comparison of localization methodology (BattLeDIM benchmark versus enhanced, selective version LILA) applied to L-Town network

for leaks of 2019. The order of this table follows the organization in Table 2

Leak properties BattLeDIM benchmark LILA
1D True location Detected location Distance (m) Detected location Sensors considered for SLA Distance (m)
1 p523 pll4 166 p498 n506, n105, nl114, n469, n516 54
2 p827 p845 295 p823 n726, n752, n722, n769, n740 203
3 p280 p30 255 p283 nl, n4, n31 124
4 po53 p664 324 po47 n613, n188, n163, n342, n458 93
5 p710 p80 178 p703 n644, n288, n679, n769 221
6 p514 p87 212 p513 n332, n495, n506, n105, n469 51
7 p331 p322 391 p391 n410, n54, n429 103
8 p193 p58 890 p193 n752, n769, n740 0
9 p277 p247 147 p267 nl, n4, n31 374
10 pl42 p644 343 po57 n613, n188, n163, n342, n458 304
11 p680 p737 187 p76 n215, n229 66
12 p586 p204 205 pl135 n549, n516, n188, n519 169
13 p721 pl53 253 p705 n644 294
14 p800 p692 823 pl74 n296, n722, n740, n726, n769 167
15 pl123 Not detected pl127 nl63 n519 n458 76
16 p455 p587 858 p452 nl14, n105, n469, n516, n495 136
17 p762 p79 668 p785 n288, n752, n726, n679, n769 258
18 p426 p425 50 p893 n429, n54, n410, n342, n458 144
19 p879 p885 643 p879 n740, n769, n296, n722, n752, n726 0
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Fig. 8. Distances of identified leaking pipes to true leak location for (a) abrupt; and (b) incipient leaks.

Discussion

The numerical results we obtained by testing LILA on data from
the L-Town WDN case study overall demonstrated its suitability
to perform leakage identification and localization based on pres-
sure data with high temporal resolution. Almost all ground truth
leakages were promptly identified and were localized within an
acceptable distance from the actual location. Yet the following
specific methodological aspects of the leakage identification and
leakage localization phases in LILA require further investigation
to make it of general value and ultimately usable for complex
real-world applications.

First, as mentioned in the “Methods” section, the current version
of the proposed LILA algorithm is not able to automatically iden-
tify leaks that occur in DMAs where unknown, irregular demand
patterns are present (i.e., as in DMA C of the L-Town WDN). When
irregular demand patterns are known, e.g., pump operation in the
L-Town WDN, they may be included in the regression model used
for leakage identification and, hence, pose no problem to the method.
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Yet, unknown irregular demand patterns cannot be easily included in
the model, leading to higher residual error of the regression model
and hindering the analysis of leakages. If LILA were coupled with
a method capable of learning unknown demand patterns from the
available data, it would become suitable for analysis on any WDN,
regardless of the characteristics of its demand patterns.

Another important factor in the successful application of the
identification phase of LILA is the availability of a time period
in the absence of newly occurring leaks or other similar transient
effects for training or calibration purposes. Within this work, we
selected the training period manually based on preliminary data ex-
ploration and visualization to obtain low values of the model
residual for this period. Because the regression model for leakage
identification [Eq. (12)] may have to be recalibrated after the
occurrence of a new leak or due to changing demand, a manual
approach may be impractical for real-world applications. A more
scalable version of LILA would require an automatic selection of an
optimal subset of data for training.
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Fig. 9. True and detected leaks that started in 2019 using LILA. Circled numbers represent event number as shown in Table 3.

Third, unlike the BattLeDIM benchmark, the leakage identifi-
cation phase in LILA incorporates automated change point detec-
tion. We implemented an online change point detection method
(see “Methods” section) to make LILA more suitable for an appli-
cation within a real-world setting, compared to the expert-based
estimation of leak start times of the BattLeDIM version. However,
the numerical results we obtained using the online change point
detection method revealed a significant drawback regarding the
TTD in comparison with the expert-based annotation used in the
BattLeDIM benchmark. It is worth noting that the expert-based an-
notations were made ex-post, rather corresponding to an offline
fashion of change point detection. This consideration opens up
the need for a more systematic analysis to compare the performance
of different offline and online change point detection methods for
the analysis of the residual error produced by the leakage identifi-
cation regression model. While online change point detection may
entail quicker availability of the results, i.e., alarms are raised more
promptly, the application of offline detection methods with a limited
time horizon may also be accurate and lead to timely identification
of leaks. The choice of an optimal change point detection method
should therefore not be limited to either online or offline capabil-
ities, but it is rather the solution of a multicriteria problem that con-
siders the trade-offs between TTD, effort needed for calibration,
ease of implementation, and low susceptibility to false alarms.

Another factor that needs further investigation is the method’s
sensitivity to leaks that occur in temporal and spatial proximity.
The method presented here was able to distinguish between multiple
parallel leaks that occurred in the BattleDIM data sets, but we have no
information about the capabilities or limitations of the method in
identifying parallel leaks for other data sets. Further research can in-
volve experiments that vary spatial and temporal distances between
leaks to explore the method’s boundaries. We expect that the re-
sults will depend on the availability and placement of sensing equip-
ment in the network, which is another interesting subject for further
research.

Finally, the SLA used in the leakage localization phase relies on
an almost error-free model, where the only disturbance between the
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measured and simulated pressure is due to an unusual event.
However, an error-free model is rarely available. The error induced
by the actual status of the network components and the noise of
the measured data prevent SLA from accurately identifying the
true leaking pipe. To partially address this issue, we modified the
demand patterns and the base demand of the hydraulic model to
improve the match between the simulated and measured data across
the network. However, the new demand patterns do not distinguish
the type of user, residential or commercial, and overwrite the original
demand patterns of the network with the new patterns. Hence, alter-
native ways to mitigate the effect of model errors need further inves-
tigation. Correction of model error can leverage the combination of
identification and localization to provide a reliable set of leaks in
research studies and practical applications (van Thienen 2021).

Conclusions

In this paper we developed and described LILA, a pressure-driven
algorithm for leakage identification and localization in WDNs. We
developed LILA within the scope of the BattleDIM (Vrachimis
et al. 2020a), where we submitted the results from an early version
of the algorithm (Daniel et al. 2020).

LILA includes a sequential two-step procedure composed of a
leakage identification module and a leakage localization module.
The leakage identification module detects the presence of a leak,
estimates its starting time, and pinpoints the pressure sensor that is
most affected by the leak (called MAS in this paper). The leakage
localization module uses the information provided by the identifi-
cation step and a calibrated hydraulic model to estimate the location
of the identified leakages. First, a leak is simulated on a set of can-
didate pipes. Then successive linear approximation is applied to
find the location and magnitude of the leak by minimizing the dif-
ference between measured and simulated pressure values. Com-
pared to its initial version introduced in Daniel et al. (2020), we
refined LILA with the inclusion of more candidate pipes for leakage
localization and by restricting the search using only the MAS for
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each event, which improved the computational burden of the
simulation-optimization method used in leakage localization.

We tested the ability of LILA to solve the challenge of finding a
set of leaks occurring during 2019 in the L-Town WDN, a virtual
representation of a real water network in Cyprus, created for the
BattLeDIM (Vrachimis et al. 2020a). In light of the numerical re-
sults we obtained by assessing the performance of LILA with multi-
ple performance metrics based on leak classification accuracy,
estimation accuracy of the leak start time and location, and an ag-
gregate monetary score, we assert that LILA can accurately identify
and localize leakages occurring in WDNs monitored with a distrib-
uted network of pressure sensors collecting data with high resolu-
tion (5-min temporal resolution in this work). The initial version
of our algorithm presented as part of the BattLeDIM by our Leak-
busters team (Daniel et al. 2020) and used in this paper as a bench-
mark achieved a score of €191,055 and was ranked third by the
BattLeDIM organizers, out of 18 participating teams worldwide.
The improved version presented in this paper with the name “LILA”
achieved a total economic score of €307,852, which outperforms
economically the score of €260,562 obtained by the winning team
of the BattLeDIM (Vrachimis and Eliades 2020). Finally, this en-
hancement in performance comes at a computational cost. While
the BattLeDIM version used 5 candidate pipes selected based on
geographical proximity to the MAS, LILA uses up to 30 candidate
pipes selected based on the pressure difference analysis described in
section LL-2: Pressure Difference Analysis and increased the run-
ning time by over 20 times for each leak.

Detailed results showed that LILA identified all 19 considered
leaks, with an overall F'|-score exceeding 0.94 considering the
threshold values of the BattLeDIM and could obtain an F-score
of 1.0 for maximum permissible distances of uy,, = 374 m.
Abrupt leakages were identified immediately or with little delay,
usually less than 2 h, while up to 20 days were required on average
by automatic change point detection to raise alarms on incipient
leakages. Finally, LILA could localize leaks within an average
distance of 149 m from the true leaking pipe. These results are
promising in terms of moving forward with the development of
leakage detection algorithms capable of exploiting the increasing
amount of online sensor-based information gathered and transmit-
ted by pressure sensors distributed in WDNSs.

T T
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Overall, the contributions and limitations of this work offer sev-
eral opportunities for further research, primarily related to making
LILA of general use and applicability in real-world settings. First,
we acknowledge that the prompt identification of incipient leaks
remains a challenge for many change point detection methods,
so more comparative analyses and investigations would be needed
to improve its identification performance without resulting in an
increase in the FP rate. Second, model-based leakage localization
is sensitive to model errors. While LILA was able to localize leak-
ages with an average distance of 149 m in the case study presented
in this paper, the requirement of an almost error-free pressure-
calibrated model would cause a dramatic decrease in localization
performance with models available in most real-world cases. More-
over, the selection of the candidate pipes can still be, also in the
refined version of LILA, a computationally expensive procedure
because it relies on simulating a leak at every single pipe of the
system and measuring its impact on the pressure sensors installed
across the system. Finally, irregular water demand should be mod-
eled and incorporated into LILA and stress tests with real-time
SCADA data and benchmarking in real-world applications would
make it suitable for use in practice.

More benchmark data sets and testing platforms similar to the
BattLeDIM and structured collaborative work with water utilities
willing to leverage their ongoing digitalization efforts with inte-
grated data-driven analytics would enable further development
and testing of methods like LILA with the ultimate goal of address-
ing the aforementioned open challenges and ultimately making
them suitable and fully reliable for inclusion in utilities’ leakage
management operations.

Appendix. Choice of Hyperparameters for the
Cusum Change Point Detection Method

The Cusum method requires an estimate of the signal standard
deviation, a choice of ¢, and a threshold parameter H = n X o,
which itself is related to the choice of ¢ [cf. Eq. (16)]. To assess
the algorithm’s ability to robustly flag the leaks and to select the
hyperparameters in a reasonable range, we first applied the Cusum
method in a controlled environment. Since leak size correlates with

1000
800
600

400

Average delay in detection (h)

200

Fig. 10. (a) Exemplary transient leak error trajectory for different noise levels (a leak/noise level of 2 corresponds to Gaussian noise with standard
deviation of half the maximum leak magnitude); and (b) overview Cusum-hyperparameter search. The heatmap color indicates the average detection
delay, and numbers represent optimal threshold levels 7. Configurations without optimal threshold levels did not produce a result without false

positives and were therefore neglected.
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pressure drops and therefore with the MRE development, we took
the leak water loss trajectories (ground truth) and added random
noise to get a realistic estimate of the MRE structure [Fig. 10(a)].
We then applied the algorithm for various configurations of § and 7.
The results are displayed in Fig. 10(b).

In practice, the MRE standard deviation can be estimated over
the calibration period with no leak. Moreover, it was empirically
found that a suitable combination of the hyperparameters for the
Cusum method are 6 = 4 and 1 = 3, which is indeed close to the
theoretical results. However, in DMA C, these settings needed to be
adjusted because of the irregular demand patterns’ impact on the
MRE. There, we used a ¢ of 1 and 7 = 300 to account for the strong
patterns in the MRE time series.
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Notation

The following symbols are used in this paper:

A = sensitivity matrix used in Step LL-3;
A = area;
a =leak coefficient;
b =vector of pressure differences;

bd,.,, =new base demand;

bd;, = original base demand;
C = Cusum parameter;
¢ = cost;
D =set of demand patterns;
d = demand;

E(-) = expectation operator;
e = matrix element of PDM;
F =set of all pipes in corresponding flow path;
fr="frictional loss indicator;
g = gravitational constant;
H = Cusum threshold parameter;
h =hydraulic head,;
i, j=node indicators;

K = Cusum correction factor;
k =regression coefficient;
L =set of all leakages in water distribution network;
[ =leak indicator;
m =minor loss indicator;
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N amr =number of automatic meter reading nodes;
Nr7g=number of time steps;
np =vector of new demand patterns;
P = pressure;
p = pipe indicator;
p,» = score from saved nonrevenue water;
Q = volumetric flow rate;
S =economic score;
s =most affected sensor;
t = time;
u =leak location distance measure;
V =volume;
v = velocity;
Z = geodetic height;
(= pressure exponent;
~ = specific weight;
6 =Cusum control parameter;
1= Cusum specific threshold;
v =mean; and
o = standard deviation.
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