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Abstract
For a moduli space M of stable sheaves over a K3 surface X , we propose a series
of conjectural identities in the Chow rings CH�(M × X�), � ≥ 1, generalizing the
classic Beauville–Voisin identity for a K3 surface. We emphasize consequences of
the conjecture for the structure of the tautological subring R�(M) ⊂ CH�(M). The
conjecture places all tautological classes in the lowest piece of a natural filtration
emerging on CH�(M), which we also discuss. We prove the proposed identities when
M is the Hilbert scheme of points on a K3 surface.

Mathematics Subject Classification 14C25 · 14C15 · 14J42 · 14J60 · 14C05 · 14D20

1 Introduction

Understanding the Chow ring of irreducible holomorphic symplectic varieties is a
problem of considerable interest. In the case of a smooth projective K3 surface X , an
essential role in approaching the cycle structure is played by a distinguished zero-cycle
cX , first noted and studied in [4]. The cycle cX has degree one and is the Chow class
of any point lying on a rational curve in X . The intersection of any two divisors is a
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multiple of cX , while the second Chern class of the tangent bundle satisfies

c2(T X) = 24 cX .

In higher dimensions, it is natural to considermoduli spaces of stable sheaves on K3
surfaces. For a smooth projective K3 surface X , we let v ∈ H �(X , Z) be a primitive
Mukai vector, and let M be the moduli space of stable sheaves over X with Mukai
vector v, relative to a v-generic polarization.We note nevertheless that all statements in
this text apply more broadly to moduli spaces of Bridgeland-stable sheaf complexes
with respect to a v-generic stability condition σ . The moduli space M is a smooth
projective irreducible holomorphic symplectic variety (cf. [9], Section 10.2 and the
essential references therein) of dimension

dimM = m = 〈v, v〉 + 2,

admitting a quasi-universal sheaf

F → M × X .

To keep the exposition simple we assume in fact thatM is a fine moduli space, so F is
a universal object. The restriction is not essential, as we later explain. We denote the
two projections by π : M × X → M and ρ : M × X → X .

In parallel with the K3 geometry, there is a distinguished zero-cycle

cM ∈ CH0(M)

of degree one: this is the class of any stable sheaf F such that

c2(F) = k cX in CH0(X), (1)

where k is the degree of the second Chern class specified by the Mukai vector v.
Sheaves satisfying (1) exist inM (cf. [19]), and have the same Chow class as shown in
[16], following a conjecture of [21]. In analogy with the surface situation, one expects
([21,23]) that the special cycle corresponds to the largest rational equivalence orbit of
points onM. The intersection-theoretic properties of cM are not understood as well as
those of its counterpart cX in the two-dimensional context.

We study the geometry of the universal sheaf and of the special cycles cX and cM
in two strands:

(i) We single out the tautological subring R�(M) ⊂ CH�(M), generated by the
classes

π�

(
M(ci (F)) · ρ�β

)
,
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withM anymonomial in the Chern classes ofF , and β any class in the Beauville–
Voisin subring

R�(X) = CH2(X) + CH1(X) + Z cX ⊂ CH�(X).

(ii) We emphasize the rank zero virtual sheaf

F = F − ρ�F, with F ∈ M such that [F] = cM ∈ CH0(M).

Intuitively, the second Chern class of F reflects to some extent the variation of
rational equivalence classes across points in M, relative to the special class.

These two strands come together naturally within the framework of the following,
which is the main conjecture of the paper.

Conjecture 1 Let α ∈ R�(M) be a tautological class of codimension d. Consider the
product M× X�, where d + � > dimM. Let F i denote the pullback to M× X� of the
virtual universal sheaf on M and the i th factor of X. Then for every i1, . . . , i� ≥ 0,

α · chi1(F1) · · · chi� (F�) = 0 ∈ CH�(M × X�). (2)

The Künneth components alongM of the Chern classes ci (F) onM× X have positive
cohomological degrees for i > 0. Since M has no odd cohomology (in particular
b1(M) = 0), the products (2) are homologically trivial for dimension reasons due to
the inequality d + � > dimM.

Conjecture 1 yields a rich collection of interesting Chow identities and we highlight
some of them now. In caseM = X , viewed trivially as the Hilbert scheme of one point
on itself, we have

F = I, where I = I	 − IX×c on X × X ,

with c ∈ X a point of Chow class cX . Therefore

ch2(F) = ch2(I) = −	,

where we have set

	 = 	 − X × cX in CH2(X × X).

Thus when M = X , for the tautological class α = 1, the identity

ch2(F1) · ch2(F2) · ch2(F3) = 0 in CH2(X × X3)

predicted under (2) takes the form

	01 · 	02 · 	03 = 0 in CH2(X × X3), (3)
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while the K -theoretic identity

I01 · I02 · I03 = 0 in K (X × X3) (4)

also holds. Here the index 0 is used to keep track of the first distinguished factor X
in the quadruple product X4, and 	0i and I0i indicate pullbacks from the 0th and i th
factors.

Pushing forward to the product of the last three factors, equation (3) is easily seen
to be equivalent to the fundamental Beauville–Voisin identity [4]

	 − 	c + 	c,c = 0 in CH2(X × X × X). (5)

Here c again denotes a fixed point of Chow class cX ; 	 is the small diagonal of points
(x, x, x); 	c consists of triples of the form (x, x, c), (c, x, x), (x, c, x); 	c,c is the
set of triples of the form (c, c, x), (c, x, c), (x, c, c) for x ∈ X .

If we now take α = D, a divisor class on X , the vanishing

α · ch2(F1) · ch2(F2) = 0 in CH1(X × X2)

predicted by Conjecture 1 becomes

D(0) · 	01 · 	02 = 0 in CH1(X × X2), (6)

(with the divisor D pulled back from the 0th factor) which is known to hold. Indeed,
any divisor class D on X is a linear combination of classes of rational curves on X ,
and the cycles 	01, 	02 restrict to zero for every point on a rational curve in the 0th
factor X . The spreading principle (cf. [24, Theorem 3.1], see also Remark 2 in Sect. 2
below) implies (6). We also note the trivial identity

c(0)
X · 	01 = 0 in CH0(X × X). (7)

Returning now to the case of a general moduli space M, we see that for α = 1, the
expected vanishing

ch2(F1) · ch2(F2) · · · ch2(Fm+1) = 0 in CHm(M × Xm+1) (8)

predicted by Conjecture 1 is the natural generalization of the Beauville–Voisin funda-
mental identity (5) in the triple product of a K3 surface. The beautiful identity

F1 · F2 · · ·Fm+1 = 0 in K (M × Xm+1) (9)

is also predicted by Conjecture 1.
For tautological classes α ∈ R�(M) of positive codimension, the series of identities

predicted by Conjecture 1 should be viewed as generalizing (6) and (7) from the K3
context to a general moduli setup.
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The identities of Conjecture 1 lead in turn to a large collection of conjectural Chow
vanishings in the self-products M × M × · · · × M. We set

	 = 	 − M × cM in CHm(M × M),

and observe

Theorem 1 The system of identities (2) of Conjecture 1 is equivalent to the vanishing

α · 	01 · · ·	0,� = 0 in CH�(M × M�). (10)

for any tautological class α ∈ R�(M) of codimension d and integer � satisfying

d + � > dimM.

Here the first factor of M is labeled by 0, and α is pulled back from this factor.

Theorem 1 is immediately seen to have a few interesting consequences. At one end,
if we take α ∈ R�(M) to be a tautological zero-cycle of degree a, and pick � = 1, we
obtain the vanishing

α · 	01 = 0 in CH0(M × M).

Pushing forward to the second factor of M, this gives

α = a cM,

and allows us to conclude

Corollary 1 Assuming Conjecture 1 holds, the tautological ring R�(M) has rank one
in dimension zero:

R0(M) = Q · cM.

At the other end, taking α = 1 yields the vanishing

	01 · · ·	0,m+1 = 0 in CHm(M × Mm+1). (11)

It is easy to see that the pushforward of this product cycle, via the projection M ×
Mm+1 → Mm+1 forgetting the first factor, is the modified diagonal cycle studied
in [20]. Conjecture 1 recovers in this case the vanishing of the modified diagonal
conjectured in [20].

Corollary 2 Assuming Conjecture 1 holds, the modified diagonal cycle


m+1(M, cM) = 	 − 	c + 	c,c − · · · + 	c,c,...,c

vanishes in CHm(Mm+1).
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It is natural to consider, for every codimension 0 ≤ d ≤ m, the increasing filtration

S0 ⊂ S1 ⊂ . . . Si ⊂ . . . ⊂ CHd(M),

given by

Si (CHd(M)) = {α with α · 	01 · · · 	0,m−d+i+1 = 0 ⊂ CH�(M × Mm−d+i+1)}.

Here α is pulled back to the product from the first factor. While the filtration does
terminate (see [25], Corollary 1.6 and Proposition 2.2), the conjectured vanishing (11)
would further establish

Sd(CHd(M)) = {α with α · 	01 · · · 	0,m+1 = 0 ⊂ CH�(M × Mm+1)} = CHd(M).

Aspects of the S• filtration are discussed below inSect. 4.Weonly notice here fleetingly
that

S0(CHd(M)) = {α with α · 	01 · · · 	0,m−d+1 = 0 ⊂ CH�(M × Mm−d+1)}.

Thus for every d, Conjecture 1 and Theorem 1 would place all codimension d tauto-
logical classes in S0(CHd(M)). It is also known (cf. [21]) that M admits Lagrangian
constant-cycle subvarieties for the special cycle cM. We explain later, in Remark 2
of Sect. 2, that the spreading principle places these subvarieties in S0(CHn(M)), for
n = m/2.We further conjecture there that Chow classes of Lagrangian constant-cycle
subvarieties are in fact tautological.

As evidence for Conjecture 1, we show:

Theorem 2 Let X bea smoothprojective K3 surface.Conjecture 1holds forM = X [n],
the Hilbert scheme of n points on X.

A richer version of Theorem 1 is proven in Sect. 2 as Theorem 1∗. Sect. 2 also
discusses the tautological subring of the Chow ring in a broader context, for the
products M× X�, � ≥ 0. This leads to generalizations of Conjecture 1 and Theorem
2 to the setting of a product M × X� which are needed in the inductive argument of
Sect. 3.

Theorem 2 is argued in Sect. 3 inductively on the number of points, using the
geometry of the nested Hilbert scheme. The inductive technique, introduced in [6],
is well understood in the context of universality arguments for series of intersection-
theoretic invariants on the Hilbert scheme of a surface. In Theorem 2, we pursue
nevertheless Chow identities in a large range of codimensions. Beyond the standard
elements of the [6] mechanism, we accordingly make strong use of the overhaul, on
the level of Chow groups, of the Nakajima-Lehn commutator identities previously
known to hold in cohomology. This overhaul was recently completed in [13]. Finally,
the base case of the induction beautifully comes down to the three fundamental K3
identities (3), (6) and (7).

Together, Theorems 1 and 2 establish unconditionally a hierarchy ofChow identities
involving the full tautological ring of the Hilbert scheme of a K3 surface, for all
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codimensions. In this hierarchy, the “codimension-zero” identity given by Corollary 2
is the vanishing of the modified diagonal cycle first established in [25] (conditional on
the forthcoming [28]),which is thus placed in a vaster framework. The top codimension
case is the assertion that the special cycle spans the tautological ring in dimension zero.

In Sect. 4 we discuss the S• filtration on all Chow groups introduced above. For
zero-cycles, we compare it to the filtrations on CH0(M) studied in [21,23]. In higher
dimensions, the placement of constant-cycle subvarieties within the filtration is inves-
tigated.

In the context of the tautological ring (see Definition 2) of the product M × X�, it
is natural to formulate the stronger

Conjecture 2 The restriction of the cycle class map to the tautological subring,

τ : R�(M × X�) → H�(M × X�),

is injective.

This statement follows the line of conjectures on the injectivity of the cycle class map
on suitable subrings of Chow initiated in [2,26]. It completely subsumes Conjecture 1,
our main object in this paper. Indeed the identities (2) are among tautological classes
and hold in homology. The advantage of Conjecture 1 (and the equivalent statement
given in Theorem 1) is that it proposes a concrete set of relations in the Chow ring,
and is thus easier to come to grips with than the elusive Conjecture 2.

Finally, the interesting problem of understanding corrections of the identities (2)
in a relative setting over the moduli space of polarized K3 surfaces is left for future
exploration.

Addendum. We note that in hindsight Theorem 2 may also be argued from the
results of the contemporaneous paper [17], which also relies on the Nakajima-Lehn
identities established in [13]. As shown in [17], the main operator h which gives the
Chow decomposition on X [n] is a derivation, and its action on the universal Chern
character is explicitly determined. Together, these two ingredients can be shown to
yield the vanishing of the product cycles of Conjecture 1 in the Hilbert scheme case.

The S• filtration discussed here was also recently studied in [22]. For zero-cycles,
[22] shows that it agrees with the filtration introduced in [21], while only one inclusion
is pointed out in the present article (cf. Lemma 3). We thank Charles Vial for a useful
correspondence on this topic.

2 Tautological rings and product cycles

2.1 Tautological rings

Let X be a smooth projective K3 surface, v ∈ H �(X , Z) a primitive Mukai vector,
and letM be the moduli space of stable sheaves with Mukai vector v on X relative to a
v-generic polarization. To ease the exposition, we make the nonrestrictive assumption
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that M admits a universal family

F → M × X .

If this is not the case,weuse instead the universalChern character chF ∈ CH�(M×X)

discussed in [11,12] to define the tautological ring, as well as to formulate the identities
(2) ofConjecture 1.The construction inSection3of [11] andSection3.1 of [12] follows
the original explanation of [15], Appendix A.5. Specifically, a universal sheaf can be
glued together over P × X , where P → M is a suitable projective bundle over M.
After appropriate twisting, the universal Chern character (but not the sheaf) is seen to
descend as a rational class to the product M× X . When available, the universal sheaf
is defined up to tensoring by line bundles fromM. If a universal sheaf is not available,
the universal Chern character is correspondingly (cf. [11], Section 3) defined up to
multiplication by the Chern character of a line bundle over the moduli space. We now
recall from the introduction:

Definition 1 The tautological ring

R�(M) ⊂ CH�(M)

is the subring of Chow generated by the following classes

• π�(M(ci (F))), M any monomial in the Chern classes of F ;
• π� (M(ci (F)) · ρ�D) , D ∈ CH1(X), M any monomial in the Chern classes of
F ;

• π� (M(ci (F)) · ρ�cX ) , M any monomial in the Chern classes of F .

Thus R�(M) is generated by all classes of the form

π�(M(ci (F)) · ρ�β),

for an arbitrary monomial M in the Chern classes of F , and β ∈ R�(X) any class in
the Beauville–Voisin ring

R�(X) = Z cX + CH1(X) + CH2(X) ⊂ CH�(X).

As we repeatedly consider Chern characters, we will work throughout with Q coeffi-
cients.

It is useful to extend Definition 1 to the arbitrary products

M × Xk, for k ≥ 0.

For 1 ≤ s ≤ k, let ρs : M × Xk → X be the map to the factor indexed by s, with the
accompanying projection ρs : M × Xk → M × X . Denote by

Fs = ρ�
sF

the universal sheaf on M × Xk pulled back from M × X via the sth projection.
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Definition 2 The tautological system of rings R�(M × Xk) ⊂ CH�(M × Xk), k ≥ 0
is the smallest system of Q-algebras satisfying the following three properties:

(i) R�(M×Xk) contains the Chern classes ci (Fs), 1 ≤ s ≤ k, as well as the classes
ρ∗
s D, for D ∈ CH1(X).

(ii) The system is closedunder pushforward via the natural projectionsπ : M×Xn →
M × Xk forgetting factors of X , where n ≥ k.

(iii) The system is closed under pushforward via the natural inclusions ι : M× Xn →
M × Xk for n ≤ k through diagonal embeddings of factors of X or embeddings
using the special cycle cX .

Concretely, thismeans that for each k ≥ 1, the subring R�(M×Xk) ⊂ CH�(M×Xk)

is generated by the following classes:

• the pullbacks π�α from M to the product M × Xk , where α ∈ CH�(M) is tauto-
logical in the sense of Definition 1.

• the Chern classes ci (Fs), 1 ≤ s ≤ k;
• the pullback classes ρ�

s D, ρ�
s cX , 1 ≤ s ≤ k ;

• the diagonal classes ρ�
rs	, 1 ≤ r , s ≤ k.

It is indeed straightforward to check that each of the classes above is in R�(M×Xk),

and that any polynomial in these classes satisfies the three properties in Definition 2.
Thus they generate R�(M × Xk).

We will further let

R∗(Xk) ⊂ CH�(X
k)

be the Beauville–Voisin subring generated by the pullback classes ρ�
s D, ρ�

s cX , 1 ≤
s ≤ k, and the diagonal classes ρ�

rs	, 1 ≤ r , s ≤ k.

Remark 1 It is interesting to examine the independence of R�(M) of the modular
interpretation of the holomorphic symplectic manifold M. Suppose

M = Mv 
 Mv′,

where Mv′ is a moduli space of stable sheaves with Mukai vector v′ relative to a
polarization H ′ over a K3 surface X ′. There is a derived (anti-)equivalence [3]


 : Db(X) 
 Db(X ′)

with kernel E ∈ Db(X × X ′) inducing the isomorphism


 : Mv → Mv′ .

LetF → Mv ×X , F ′ → Mv′ ×X ′ be the universal objects. Considering the extended
equivalence induced by E ,


M : Db(Mv × X) 
 Db(Mv × X ′),
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and using the identification 
, we have, up to tensoring by a line bundle from M,


M(F) = F ′ on M × X ′.

For k ≥ 1, let now π : M × Xk → M, π ′ : M × (X ′)k → M be the projections, and
let

ζ = π ′
�

(
chi1F ′

1 · · · chikF ′
k · β ′) , β ∈ R�((X

′)k),

be a class on M tautological in the sense of v′. As

chF ′ = ch
M(F) = (π × idX ′)� (chF · ch E · td X) ,

it is standard to write ζ as a linear combination of terms of type

π�

(
ch j1F1 · · · ch jkFk · β

)
, β ∈ CH�(X

k). (12)

If in each summand we had β ∈ R�(Xk), the class ζ would be tautological in the
sense of v as well. It is well known now by a theorem of Huybrechts (cf. [8]) that the
equivalence 
 preserves the Beauville–Voisin ring on the Chow level. If in turn, for
any k ≥ 2, the derived equivalence


k : Db(Xk) → Db((X ′)k) with kernel E�k → (X × X ′)k

sent R∗(Xk) to R�((X ′)k) on the Chow level, then the classes β occurring in (12)
would indeed be tautological. Relatedly, this raises the interesting question whether
tautological ring invariance holds for any pair of derived-equivalent moduli spaces
of sheaves over K3 surfaces. This would be a natural generalization of Huybrechts’s
theorem in dimension two. It would be worthwhile to investigate this circle of ideas
further.

2.2 Examples of tautological classes

2.2.1 Divisors

It is well-known (cf. [14,15,18,29]) that the determinant line bundle homomorphism

�v : v⊥ → NS(M)

is an isomorphism for 〈v, v〉 > 0, and is in all cases surjective. Here

v⊥ ⊂ H �
alg(X , Z)
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denotes the orthogonal complement of the Mukai vector v in the algebraic Mukai
lattice

H �
alg(X , Z) = H0(X , Z) ⊕ NS(X) ⊕ H4(X , Z)

equipped with the Mukai pairing

〈(r , c, s), (r ′, c′, s′)〉 = cc′ − rs′ − sr ′ ∈ Z.

Divisors onM are thus tautological, making Definition 1 independent of the choice of
universal family/universal Chern character.

2.2.2 Chern classes of the tangent bundle

We have

ch (TM) = 2 − ch Ext•π (F , F) = 2 − π�(chF∨ · chF · ρ�td X),

therefore the Chern classes ci (TM) are tautological.

2.2.3 The special cycle cM

Weshownow that the distinguished zero-cycle cM is tautological. Consider the product
M × M × X , equipped with the universal sheaves E, F which correspond to the two
copies ofM, and are pulled back to the product. Let π : M×M× X → M×M be the
projection. We form the natural relative Ext complex (shifted for convenience),

W(E,F) = Ext•π (E, F)[1] on M × M.

We further fix F0 → X a sheaf parameterized by M, and denote by

W(E, ρ�F0) = Ext•π (E, ρ�F0)[1] on M,

the pullback of W(E, F) under the inclusion M × [F0] ↪→ M × M.

As observed in [16], the complex W plays a role in understanding Chow classes
of points on M, since the middle Chern class of W is the class of the diagonal in the
product M × M. The formula

cm (W(E,F)) = [	] in CHm(M × M) (13)

was established in [11], and is alignedwith earlierworkofBeauville [1] andEllingsrud-
Strømme [7] on representing the diagonal in terms of the universal Chern classes, in
the context of moduli spaces of Gieseker-stable sheaves. By pullback, the diagonal
formula (13) gives

cm
(
W(E, ρ�F0)

) = [F0] in CH0(M), (14)
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and by Grothendieck-Riemann-Roch we have

ch
(
W(E, ρ�F0)

) = −π�

[
ch E∨ · ρ�(ch F0 · (1 + 2cX ))

]
.

In particular, if F ∈ M is any sheaf such that c2(F) ∈ CH0(X) is a multiple of cX ,
then

cM = [F] = cm
(
W(E, ρ�F)

)
(15)

is manifestly tautological.

Remark 2 As shown in [21], there exist Lagrangian constant-cycle subvarieties for the
special cycle cM. For any such irreducible subvariety V ⊂ M of dimension n = m/2,
consider the product V × Mn+1. The cycles

	01, . . . ,	0,n+1 ∈ CHm(V × Mn+1)

restrict to zero on the fibers of the projection V × Mn+1 → V . By Theorem 3.1 of
[24], each of these cycles is supported on the inverse image of a proper closed subset
of V . Since V has dimension n, this “spreading principle” implies the vanishing

[V ] · 	01 · 	02 · · ·	0,n+1 = 0 in CH�(M × Mn+1).

We now conjecture

Conjecture 3 The class of any Lagrangian constant-cycle subvariety for cM is in the
tautological ring R�(M).

2.3 Vanishing of product cycles

We now show that the system of product identities of Conjecture 1 leads in turn to a
large collection of conjectural Chow vanishings in the self-productsM×M×· · ·×M.

Among them is the vanishing of O’Grady’s modified diagonal cycle. Aligned with our
point of view, the modified diagonal cycle is also cast here in product form.

To start, let us single out the complex

W(E,F) = Ext•π (E, F − ρ�F)[1] on M × M, (16)

where F represents the special zero-cycle, [F] = cM, and F , E are the universal
objects on the first and second factors respectively.
We also set

	 = 	 − M × cM = cm (W(E,F)) − cm
(
W(E, ρ�F)

)
in CHm(M × M).

Further, in the context of a productM× M� × X , we let E1, . . . , E�, F be the universal
sheaves corresponding to the last � factors of M, respectively the first distinguished
factor. We label this factor by 0, and show
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Theorem 1∗ For any class α ∈ CH�(M) of codimension d satisfying the inequality

d + � > dimM,

the following three vanishing statements are equivalent.

(i) α · chi1(F1) · · · chi� (F�) = 0 ∈ CH�(M × X�), for all i1, . . . , i� ≥ 0. Here
F s, 1 ≤ s ≤ �, is the normalized universal sheaf pulled back from M and the
sth factor in the product X�.

(ii) α · ci1(W(E1,F)) · ci2(W(E2,F)) · · · · · ci� (W(E�,F)) = 0 ∈ CH�

(
M × M�

)
,

for all i1, . . . , i� > 0. Here the complex W(Es,F), 1 ≤ s ≤ �, is pulled back
from the distinguished factor M and the sth factor in the product M�.

(iii) α · 	01 · · ·	0,� = 0 ∈ CH�

(
M × M�

)
,

In all three cases, the classα is pulled back to the product from the first distinguished
factor M.

Remark 3 Note that (i) is the vanishing predicted by Conjecture 1 in case α is tauto-
logical. Theorem 1 is therefore the equivalence of (i) and (i i i) for α ∈ R�(M) and is
completely subsumed by the statement above. The vanishing of the modified diagonal
cycle, corresponding to α = 1, is thus implied by Conjecture 1.

Proof We show first that (i) implies (i i). To start, we note that for the complex

W(E,F) on M × M,

each Chern class ck
(
W(E,F)

)
for k > 0 is expressible in terms of pure-degree pieces

of the Chern character, and is therefore a sum of products of factors of type

αi j = π�

[
chiE∨ · ch jF · tdX]

and βi j = π�

[
chiE∨ · ch jF

]
.

We consider now the larger product

M × M� × X�

along with a class α ∈ CH�(M) pulled back from the distinguished first factor M,
satisfying

codimα + � > dimM.

We let F1, . . .F� be the universal sheaves pulled back from M × X�, where M is the
distinguished first factor. We also consider the universal sheaves E1, . . . E� on the new
factors of M each paired with a factor of X .

By (i), the vanishing

α · ch j1F1 · · · ch j�F� = 0
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holds in CH�(M × M� × X�), pulled back from M × X�. This trivially implies the
vanishing of the larger product

α · chi1E∨
1 · ch j1F1 · (td X1)

a1 · · · chi�E∨
� · ch j�F� · (td X�)

a� = 0

in CH�(M × M� × X�), for i1, j1, . . . i�, j� ≥ 0. Here the exponents a1, . . . , a� are
either 0 or 1. Pushing forward via the projection M × M� × X� → M × M� gives

Lemma 1 Consider the product M × M� × X and a cycle α on the distinguished
factor M, satisfying codimα + � > dimM. Denote by E1, . . . E�,F the universal
sheaves associated with the last � copies of M, respectively the first one, pulled back
to the productM× M� × X . Let π : M×M� × X → M×M� be the projection. Then

α ·
∏�

k=1
π�

[
chikE∨

k · ch jkF · (td X)ak
] = 0 in CH�(M × M�), (17)

for any ik, jk ≥ 0, and ak taken either 0 or 1.

As observed earlier, each factor cik
(
W(Ek, F)

)
in the products (i i) of Theorem 1∗ is

a sum of terms each containing a factor of type appearing in (17) of the lemma, so the
vanishings (i i) follow.

Notice next that (i i) implies (i i i). Indeed, we have in K -theory,

W(E,F) = W(E,F) + W(E, ρ�F) in K (M × M),

therefore

cm(W(E,F)) =
m∑

i=0

ci (W(E,F)) · cm−i (W(E, ρ�F)),

and

	 = cm(W(E,F)) − cm(W(E, ρ�F)) =
m∑

i=1

ci (W(E,F)) · cm−i (W(E, ρ�F)).

It is thus clear that any term in the expansion of the product 	01 · · · 	0,� contains a
product ci1(W(E1,F)) · ci2(W(E2,F)) · · · · · ci� (W(E�,F)) for some i1, . . . , i� > 0.
Accordingly, the vanishing (i i) implies (i i i).

Finally, it is easy to see that (i i i) implies (i). We start with the vanishing

α · 	01 · · ·	0,� = 0 ∈ CH�

(
M × M�

)
,

pulled back fromM× M� to the larger productM× M� × X�. Trivally, we also have

α · 	01 · · ·	0,� · chi1 (F1) · · · chi� (F�) = 0 ∈ CH�

(
M × M� × X�

)
,
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for any i1, . . . , i� ≥ 0.Here eachFs is pulled back from a factorM× X in the product
M� × X�. Pushing forward under the projection M × M� × X� → M × X� gives

α · chi1 (F1) · · · chi� (F�) = 0 ∈ CH�

(
M × X�

)
,

for any i1, . . . , i� ≥ 0. This concludes the proof of the theorem.

2.4 Extension of Conjecture 1

We end this section by formulating the following natural extension of our main con-
jecture. In the context of the product M × Xk × X�, let us index by {1, . . . , �} the
individual factors in the product X� and by {1̂, . . . , k̂} the factors in the product Xk .

As usual, F t denotes the normalized universal sheaf from the t-th factor.

Conjecture 1∗ For any integers k ≥ 0 and � > 0 consider the product M× Xk × X�

and a tautological class α ∈ Rd(M × Xk) satisfying

d + � > dim(M × Xk).

For any indices i1, . . . , i� ≥ 0, partition � � � = {1, . . . , �}, assignment s : � →
{1̂, . . . , k̂} we have

α ·
∏

t∈�

chit
(F t

) ·
∏

t∈�

chit (O	st ,t
) = 0 in CH�

(
M × Xk × X�

)
.

Observe that Conjecture 1 is a special case of Conjecture 1∗, specifically the case
k = 0 and (necessarily) � = ∅. In K -theory, Conjecture 1∗ predicts the natural
generalization of (9), namely that for any 0 ≤ a ≤ � = dimM+2k+1 and assignment
s : {a + 1, . . . , �} → {1̂, . . . , k̂}, we have:

F1 · F2 · · · · · Fa · O	sa+1,a+1
· O	sa+2,a+2

· · · · · O	s�,�
= 0.

In Sect. 3 we will prove the following, which implies Theorem 2 in the introduction.

Theorem 2∗ Conjecture 1∗ holds whenM = X [n] is the Hilbert scheme of n points on
X.

3 The product identities for M = X [n]

The aim of this section is to prove Theorem 2∗. We let In denote the ideal sheaf of the
universal subscheme

Zn ⊂ X [n] × X
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and set

In := In − ρ∗In,

the rank zero virtual universal sheaf, where In is the ideal sheaf on X of any subscheme
of length n with c2(In) = n cX . We state the theorem explicitly. In the context of the
product X [n]×Xk ×X�, let us index by {1, . . . , �} the individual factors in the product
X� and by {1̂, . . . , k̂} the factors in the product Xk .Further,I(t)

n denotes the normalized
universal sheaf from the t-th factor. We then restate:

Theorem 2∗ For any integers n ≥ 1, � ≥ 1, k ≥ 0, consider the product X [n] × Xk ×
X� and a tautological class α ∈ Rd(X [n] × Xk) satisfying

d + � > 2n + 2k.

For any indices i1, . . . , i� ≥ 0, partition � � � = {1, . . . , �}, assignment s : � →
{1̂, . . . , k̂} we have

α ·
∏

t∈�

chit
(
I(t)
n

)
·
∏

t∈�

chit (O	st ,t
) = 0 in CH�

(
X [n] × Xk × X�

)
.

3.1 Induction preliminaries

We argue inductively on the number of points using the geometry of the nested Hilbert
scheme

X [n,n+1] ⊂ X [n] × X [n+1]

parametrizing pairs (ξ, ξ ′) ∈ X [n] × X [n+1] such that ξ ⊂ ξ ′. The inductive technique
was first used in [6] to relate top intersections on X [n+1] and X [n] × X ; we now recall
its main features. Each point (ξ, ξ ′) ∈ X [n,n+1] corresponds to an exact sequence

0 → Iξ ′ → Iξ → Ox → 0, (18)

leading to projection maps

X [n,n+1]

X [n] X X [n+1]

φ
p

ψ (19)

and globally to an isomorphism

X [n,n+1] ∼= P(In)

of smooth projective varieties.
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An important role for the geometry of X [n,n+1] is played by the hyperplane line
bundle

L = OP(In)(1)

with first Chern class c1(L) = λ. Letting

σ = φ × p : X [n,n+1] → X [n] × X ,

we have (cf. [6])

σ�

(
λi

)
= (−1)i ci (−In). (20)

The following fundamental exact sequence on X [n,n+1] × X relates the universal
ideal sheaves and the exceptional line bundle L:

0 → ψ�
XIn+1 → φ�

XIn → π�L ⊗ σ�
XO	 → 0. (21)

Here (and elsewhere in the paper) we use the notation fX = f × idX ; the map
π : P(In) × X → P(In) is the projection; 	 denotes the diagonal in X × X , pulled
back in (21) via σX : X [n,n+1] × X → X [n] × X × X .

Furthermore, for a vector bundle F → X , let F [n] denote the associated tautological
vector bundle on X [n],

F [n] = π�

(OZn ⊗ ρ�F
)
.

As usual in this text, π and ρ are the projections from X [n] × X to the first and second
factors respectively. The K -theoretic equality

ψ�F [n+1] = φ�F [n] + L · p�F in K (X [n,n+1])

follows from (21). In particular,

L = ψ�O[n+1] − φ�O[n] in K (X [n,n+1]). (22)

The induction in [6] only tracks degrees of top codimension classes on the Hilbert
scheme X [n]. Since our argument involves Chow classes of arbitrary codimension, we
note the following

Lemma 2 Let α be a class in CH�(X [n+1] × Xk). Then

α = 0 ⇐⇒ σ�ψ
�α = σ�(λ · ψ�α) = 0 in CH�(X

[n] × X × Xk).

In the statement of the lemma and also onwards, we abuse notation and denote

ψ = ψ × idXk : X [n,n+1] × Xk → X [n+1] × Xk

σ = σ × idXk : X [n,n+1] × Xk → X [n] × X × Xk,
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Proof We use the description of the Chow groups of

Hilb = �n≥0 X
[n]

in [5], as well as an aspect of Lehn’s formulas in Chow recently established in [13].
Recall first the definition of the Nakajima operators qi , q−i , i > 0. For every i > 0
consider the subscheme

X [n,n+i] = {(I ⊃ I ′) s.t. I/I ′ is supported at a single point x ∈ X} ⊂ X [n] × X [n+i],

with accompanying maps:

X [n,n+i]

X [n] X X [n+i]

φ
p

ψ

This correspondence defines the operators:

q±i : CH�(Hilb) → CH�(Hilb × X),

qi = (ψ × p)� ◦ φ�,

q−i = (φ × p)� ◦ ψ�,

which satisfy the commutation relations in the Heisenberg algebra. By composition
one can form any string operator

qi1 · · · qi� : CH�(Hilb) → CH�(Hilb × X�).

Any class 
 ∈ CH�(X�) then defines an endomorphism of CH�(Hilb) via

qi1 · · · qi� (
) = π1∗(qi1 · · · qi� · π∗
2 (
)),

where π1, π2 : Hilb × X� → Hilb, X� are the standard projections.
Themain theoremof [5] establishes that all Chowclasses of theHilbert scheme arise

from Chow classes of symmetric products X� through the Nakajima correspondences.
To state this precisely, let the vacuum vector v be the generator of CH�(X [0]) 
 Q.

Then
CH�(Hilb) =

⊕

n1≥...≥n�>0

∈CH�(X�)sym

Q · qn1 · · · qn�
(
) · v, (23)

where CH�(X�)sym ⊂ CH�(X�) denotes the subring of classes invariant under
transpositions (i j) for which ni = n j . The isomorphism (23) is induced by a cor-
respondence whose transpose gives the inverse map. It follows that for each n,

⊕

n1+···+n�=n
n1≥...≥n�>0

q−n1 · · · q−n�
: CH�(X

[n]) −→
⊕

n1+···+n�=n
n1≥...≥n�>0

CH�(X
�)
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is injective.
The Chow groups of the products Hilb × Xk, k > 0, admit a parallel description,

since the inverse of the isomorphism (23) is induced by the transpose correspondence.
We thus have

CH�(Hilb × Xk) =
⊕

n1≥...≥n�>0

∈CH�(X�+k )sym

Q · qn1 · · · qnl (
) · v. (24)

(Here CH�(X�+k)sym ⊂ CH�(X�+k) is the subring of classes invariant under trans-
positions on the first � factors for which ni = n j .) Correspondingly, for every n and
k, the map

⊕

n1+···+n�=n
n1≥...≥n�>0

q−n1 · · · q−n�
: CH�(X

[n] × Xk) −→
⊕

n1+···+n�=n
n1≥...≥n�>0

CH�(X
�+k)

is injective.
For a class α ∈ CH�(X [n+1] × Xk) we thus have, relevant to the lemma:

q−i (α) = 0 for all i > 0 �⇒ α = 0.

Assume now that σ�ψ
�α = σ�(λ · ψ�α) = 0. We note right away that

σ�ψ
� = q−1 : CH�

(
X [n+1] × Xk

)
→ CH�

(
X [n] × X × Xk

)
.

Furthermore, recall from [10, Definition 3.8] that the boundary operator

δ : CH�(X
[n]) → CH�(X

[n])

represents multiplication by the divisor class c1(O[n]) on X [n]. Since via (22) we have

λ = ψ�c1(O[n+1]) − φ�c1(O[n]),

the operation of pulling back via ψ, intersecting with the hyperplane λ, and pushing
forward by σ , is the commutator q(1)

−1 of q−1 with the boundary δ,

σ�(λ · ψ�) = [δ, q−1] = q
(1)
−1 : CH�(X

[n+1] × Xk) → CH�(X
[n] × X × Xk).

It is known that the operators q−1 and q
(1)
−1 generate all Nakajima lowering operators

on the level of Chow, as explained in [13]. To be precise (cf. [13] equation (1.12) in
Theorem 1.7), we have

[q(1)
−1, q−i ] = i 	�(q−i−1).
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The left and right side are homomorphismsCH�(Hilb×Xk) → CH�(Hilb×X2×Xk)

where the last k factors of X are inert for the Chow action. Thus

q−1(α) = q
(1)
−1(α) = 0 �⇒ q−i (α) = 0 for all i > 0 �⇒ α = 0.

This ends the proof of the lemma.

3.2 Proof of Theorem 2∗

We now complete the inductive argument giving the theorem.

3.2.1 The base case n = 1

The proof of Theorem 2∗ follows in this case from the three identities stated in the
introduction,

	01 · 	02 · 	03 = 0 in CH2(X × X3) (25)

D(0) · 	01 · 	02 = 0 in CH1(X × X2), (26)

c(0)
X · 	01 = 0 in CH0(X × X), (27)

of which the first one is the Beauville–Voisin identity.

We have X [1] = X and the universal ideal sheaf is

I1 = I	 on X × X .

A tautological class α ∈ Rd(X × Xk) is a polynomial in pullbacks of diagonals,
divisors, and special cycles cX from various factors of the product Xk+1. Thus α is
necessarily a linear combination of subvarieties of Xk+1 of type

c(1)
X ×· · ·×c(a)

X ×D(a+1)
1 ×· · ·×D(a+b)

b ×X (a+b+1) ×· · ·×X (a+b+c) ⊂ Xk+1 (28)

where the embedding in Xk+1 is by diagonals (and up to ordering of the factors). Here
a + b + c ≤ k + 1 and

dim α = b + 2c.

We now assume α is of the form (28). Indexing the first copy of X by 0, we have

I(t)
1 = −O	0,t

in K -theory. We seek to establish the vanishing

α ·
∏

t∈�

chit
(
O	0,t

)
·
∏

t∈�

chit (O	st ,t
) = 0 in CH�

(
X × Xk × X�

)
,
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whenever � > dim α. Here t runs through {1, . . . , �} and � � � = {1, . . . , �}. The
Chern character degrees it are arbitrary.

Noting now that in X × X we have

ch(O	) = 	 − 2 cX × cX

and the cycle cX × cX is a rational multiple of 	
2
(cf. [4]), it is enough to show the

vanishing

α ·
∏

t∈�

	0,t ·
∏

t∈�

	st ,t = 0 in CH�

(
X × Xk × X�

)
, (29)

whenever � > dim α = b+ 2c. Since α is of the form (28), this inequality guarantees
that a factor of cX receives a matching normalized diagonal, or a factor of D receives
two matching normalized diagonals, or a factor of X receives three matching normal-
ized diagonals. (Here "matching" means that the normalized diagonal shares an index
with the class in question.) The fundamental identities (25), (26), (27) therefore ensure
that the product (29) vanishes. ��

3.2.2 The induction step

Let α ∈ Rd(X [n+1] × Xk). We want to show that for every � satisfying

� > dim α,

and any indices i1, . . . , i� ≥ 0, the class

γ := α ·
∏

t∈�

chit (I
(t)
n+1) ·

∏

t∈�

chit (O	st ,t
) = 0 in CH�(X

[n+1] × Xk × X�). (30)

According to Lemma 2 it suffices to show

σ�ψ
�γ = σ�(λ · ψ�γ ) = 0 in CH�(X

[n] × Xk+1 × X�).

To start, note that as a tautological class, α is a polynomial in classes

β j ,	s,s′ , D
(s), c(s)

X , andchi (I(s)
n+1),

with β j ∈ R�(X [n+1]) and s, s′ ∈ {1̂, . . . , k̂}. Recalling the exact sequence (21),

0 → ψ�
XIn+1 → φ�

XIn → π�L ⊗ σ�
XO	 → 0 on X [n,n+1] × X

it follows that the pullback ψ�α is of the form

ψ�α =
d∑

j=0

αd− j · λ j ∈ CH�(X
[n,n+1] × Xk), (31)
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where

αd− j ∈ Rd− j (X [n] × Xk+1)

are pulled back under σ × idXk : X [n,n+1] × Xk → X [n] × Xk+1. (Here we suppressed
the pullback from the notation.)

Furthermore, the fundamental exact sequence (21) gives immediately the K -
theoretic equality

I(t)
n+1 = I(t)

n − L · O	0,t
− (L − 1) · O

c(t)
X

in K (X [n,n+1] × X�).

Here 0 denotes the factor of X which X [n,n+1] maps to under p : X [n,n+1] → X ; we
suppressed the pullbacks from the notation; as usual t indexes the factors in X�.

Thus the class ψ�γ ∈ CH�(X [n,n+1] × Xk × X�) is a linear combination of terms
of the form

ψ�α ·
∏

t∈�1

chit (I
(t)
n ) ·

∏

t∈�2

chit (L⊗O	0,t
) ·

∏

t∈�3

chit ((L−1)⊗O
c(t)
X

) ·
∏

t∈�

chit (O	st ,t
)

(32)
Here �1 � �2 � �3 � � = {1, . . . , �}, the indexing set for factors in the product X�,

andψ�α is the codimension d class given by (31). The expression (32) is a polynomial
in λ with coefficients pulled back from R�(X [n] × Xk+1 × X�). Noting now that

ch((L − 1) ⊗ O
c(t)
X

) = λ · p(λ) · c(t)
X for p ∈ Q[λ],

we conclude from (32) that the classes ψ�γ, λ · ψ�γ ∈ CH�(X [n,n+1] × Xk × X�)

are linear combinations of terms of type

α̃ ·
∏

t∈�1

chit (I
(t)
n ) ·

∏

t∈�2

chit (O	0,t
) ·

∏

t∈�3

c(t)
X ·

∏

t∈�

chit (O	st ,t
),

where the quadruple product is now pulled back from R�(X [n] × Xk+1 × X�). The
class α̃ is a polynomial in λ with coefficients in R�(X [n] × Xk+1), and

codim α̃ ≥ d + ω, where ω = |�3|.

Correspondingly, since powers of λ push forward to tautological classes (cf. (20)), the
pushforwards σ�ψ

�γ and σ�(λ · ψ�γ ) are linear combinations of terms of the form

β ·
∏

t∈�1

chit (I
(t)
n ) ·

∏

t∈�2

chit (O	0,t
) ·

∏

t∈�3

c(t)
X ·

∏

t∈�

chit (O	st ,t
),

for β ∈ R�(X [n] × Xk+1) satisfying

d ′ := codimβ ≥ d + ω.
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Setting �′ = � − ω and omitting the X factors which carry a class cX , we note that
the product

β ·
∏

t∈�1

chit (I
(t)
n ) ·

∏

t∈�2

chit (O	0,t
) ·

∏

t∈�

chit (O	st ,t
) = 0 ∈ R�(X

[n] × Xk+1 × X�′
)

by the induction hypothesis, since d ′ + �′ ≥ d + � > 2n + 2k + 2. ��

4 The Chow filtration

In this section we examine the filtration on CH�(M) proposed in the introduction. The
filtration is natural to the product point of view of this paper. Within its framework,
all dimensions are treated uniformly. For a fixed codimension d and 0 ≤ i ≤ d we set

Si (CHd(M)) = {α with α · 	01 · · · 	0,m−d+i+1 = 0 ⊂ CH�(M × Mm−d+i+1)}.
(33)

Here α is pulled back to the product from the first factor. We have

S0 ⊂ S1 ⊂ S2 ⊂ . . . .

On general grounds (cf. Corollary 1.6 and Proposition 2.2 in [25]), the filtration ter-
minates eventually. A precise bound is predicted by the conjectural vanishing (11),

	01 · · ·	0,m+1 = 0 in CHm(M × Mm+1),

which is the codimension zero case of Conjecture 1. This identity would ensure that
Sd(CHd(M)) = CHd(M). As we will see immediately however, for certain cases
(e.g., dimension zero) one can establish the expected termination threshold directly.

Theorem 1∗ is a useful tool for analyzing S•: for a class α ∈ CH�(M), it asserts

α · 	01 · · ·	0,� = 0 ∈ CH�

(
M × M�

)
⇐⇒

α · chi1(F1) · · · chi� (F�) = 0 ∈ CH�(M × X�), for all i1, . . . , i� ≥ 0.

4.1 The filtration for zero-cycles.

We examine the filtration first for zero-cycles, when d = m. In this case we simply
have

Si (CH0(M)) = {α with α · 	01 · · · 	0, i+1 = 0 ⊂ CH�(M × Mi+1)}. (34)

For a cycle η ∈ CH�(M), we use the notation

η�� = p�
1η · p�

2η · · · p�
�η ∈ CH∗(M�),
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where p j : M� → M, 1 ≤ j ≤ �, is the projection on the j th factor. By definition
then, for a point class [F] with F ∈ M, we have

[F] ∈ Si (CH0(M)) ⇐⇒ ([F] − cM)�(i+1) = 0 ∈ CH0(Mi+1).

For a zero-cycle α ∈ CH0(M), the vanishings

α · chi1(F1) · · · chi� (F�) = 0 ∈ CH�(M × X�) for i1, . . . , i� ≥ 0

hold trivially unless

i1 = i2 = · · · = i� = 2.

In the latter case, we can equivalently replace the secondChern character by the second
Chern class. We conclude that for the zero-cycle α = [F], Theorem 1∗ asserts the
equivalence

([F]−cM)�(i+1) =0 ∈ CH0(Mi+1) ⇐⇒ (c2(F)−kcX )�(i+1) =0 ∈ CH0(X
i+1),

where

k =
∫

X
c2(F) ∈ Z

is the degree of the second Chern class for sheaves with Mukai vector v = v(F). Thus

[F] ∈ Si (CH0(M)) ⇐⇒ (c2(F) − kcX )�(i+1) = 0 ∈ CH0(X
i+1). (35)

4.2 Comparison with theVoisin and Shen-Yin-Zhao filtrations on CH0(M)

The filtration S• is closely related to the following two filtrations previously studied
in the context of zero-cycles on M. For the rest of the paper we set

m = dimM = 2n.

Following [23], we let

SVi = subgroup of CH0(M) generated by point classes [F], F ∈ M, (36)

with dim OF ≥ n − i .

Here OF denotes the rational equivalence orbit of a point F ∈ M,

OF = {E ∈ M | [E] = [F] in CH0(M)} ,
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a countable union of subvarieties of M. The dimension of the orbit is the largest
occurring dimension among these subvarieties.

A second filtration was introduced in a general moduli context in [21], in relation
to O’Grady’s [19] classic filtration on CH0(X). We let:

SSY Z
i = subgroup ofCH0(M) generated by point classes [F], F ∈ M,

with c2(F)= Zi +(k−i)cX ∈CH0(X), where Zi is effective of degree i .

(37)

It is known [23] that these two filtrations agree for the Hilbert scheme of points,

SV• (CH0(X
[n])) = SSY Z• (CH0(X

[n])).

In a general setting, for a moduli space M with arbitrary primitive Mukai vector and
generic polarization, it is known [21] that

SSY Z• (CH0(M)) ⊂ SV• (CH0(M)).

We record the following easy lemma, providing a connection with the filtration (34).

Lemma 3 We have SSY Z
i (CH0(M)) ⊂ Si (CH0(M)), where M parametrizes stable

sheaves with an arbitrary primitive Mukai vector v.

Proof The fundamental Beauville–Voisin identity

	01 · 	02 · 	03 = 0 ∈ CH2(X
4)

gives, for any point x ∈ X :

0 = p23�

(
	01 · 	02 · 	03 · p�

1[x]
) = ([x] − cX )�2 ∈ CH0(X

2).

For any collection of points x1, . . . , xi ∈ X we therefore have

([x1] + . . . + [xi ] − icX )�(i+1) = 0 ∈ CH0(X
i+1).

Recall now that SSY Z
i is generated by point classes [F] for F ∈ M satisfying

c2(F) − kcX = [x1] + . . . + [xi ] − icX ∈ CH0(X),

for a collection of points x1, . . . , xi ∈ X . For any such F we thus have

(c2(F) − kcX )�(i+1) = 0 ∈ CH0(X
i+1).

By (35), this means [F] ∈ Si .
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Remark 4 It is known (cf [19,21,27]) that the filtration SSY Z• terminates after n steps,
SSY Z
n = CH0(M). By the lemma, so does the filtration S• on CH0(M), and we have

[F] · 	01 · 	02 · · ·	0,n+1 = 0 ∈ CH�(M × Mn+1), for all F ∈ M. (38)

The subtler inclusion SVi (CH0(M)) ⊂ Si (CH0(M)) connects to properties of the
filtration for higher-dimensional cycles, as we note in the next subsection.

Remark 5 It is useful to single out the subgroup

Ssmall
i (CH0(M)) ⊂ Si (CH0(M))

generated by point classes [F] ∈ Si (CH0(M)), for F ∈ M. Via (35), the equality
SSY Z
i (CH0(M)) = Ssmall

i (CH0(M)) is implied by the following conjectural equiva-
lence noted in [21]: for a degree-zero cycle ξ ∈ CH0(X),

ξ = [x1] + · · · + [xi ] − icX for a collection x1, . . . , xi ∈ X

⇐⇒ ξ�(i+1) = 0 ∈ CH0(X
i+1).

The obvious direction in this equivalence was already used in the lemma to show
SSY Z
i (CH0(M)) ⊂ Ssmall

i (CH0(M)).

4.3 The filtration for higher-dimensional cycles.

Understanding the filtration S• in dimension zero is interestingly tied with properties
of S• for cycles of higher dimension. We propose here the following generalization of
identity (38).

Conjecture 4 Let V ⊂ M be a constant-cycle subvariety. Then

[V ] · 	01 · 	02 · · · 	0,n+1 = 0 ∈ CH�(M × Mn+1). (39)

Here [V ] is pulled back as usual from the first M factor.

The vanishing is conjectured to hold for a product of n + 1 normalized diagonals
regardless of the dimension of the constant-cycle subvariety V . Thus when [V ] ∈
CHm−i (M), the conjecture positions the class of V which has dimension i in the
n − i th piece of its Chow group,

[V ] ∈ Sn−i (CH2n−i (M)).

Thismatches an expectation formulated in [23] (see Proposal (**) of Section 3 therein)
regarding the placement of constant-cycle subvarieties in a hypothetical filtration on
all of CH�(M) which would split the Bloch-Beilinson filtration. Let us now observe

Lemma 4 The vanishing (39) holds if and only if SV• (CH0(M)) ⊂ S•(CH0(M)).
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Proof We assume first that SV• (CH0(M)) ⊂ S•(CH0(M)) and will deduce (39). Let
V = VF be a constant-cycle subvariety for F ∈ M of dimension n − i , so [F] ∈ SVi .

By assumption we have

([F] − cM)�(i+1) = 0 ∈ CH0(Mi+1), (40)

since [F] ∈ Si . We set

	
F = 	 − M × [F] ∈ CHm(M × M),

thus

	 = 	
F + M × ([F] − cM).

The spreading principle gives

[VF ] · 	
F
01 · 	

F
02 · · ·	F

0,n−i+1 = 0 ∈ CH�(M × Mn−i+1). (41)

Expanding, the two identities (40) and (41) now imply that

[VF ] · 	01 · · · 	0,n+1

= [VF ] ·
(
	

F
01 + ([F] − cM)(1)

)
· · ·

(
	

F
0,n+1 + ([F] − cM)(n+1)

)
= 0.

(Here η(i) denotes the pullback of η ∈ CH�(M) from the i th factor to the product
Mn+1.)

Conversely, let us assume identity (39) holds, and let [F] ∈ SVi , for F ∈ M. Let
VF be a constant-cycle subvariety for F of dimension j ≥ n − i . Let D be an ample
divisor on M. We have

[VF ] · D j = a [F] ∈ CH0(M),

for a positive number a. By assumption,

[VF ] · 	01 · 	02 · · ·	0,n+1 · D(1) · D(2) · · · D( j) = 0 ∈ CH0(M × Mn+1).

Pushing this cycle forward to the last n− j +1 factors of the productMn+1 we obtain

a · ([F] − cM)�(n− j+1) = 0 ∈ CH0(Mn− j+1).

As j ≥ n − i, we have n − j + 1 ≤ i + 1, therefore

([F] − cM)�(i+1) = 0 ∈ CH0(Mi+1)

and [F] ∈ Si .
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Remark 6 Let us note that in turn, the inclusion Ssmall• ⊂ SV• is implied by the following
statement: for any point F ∈ M and any constant-cycle subvariety VF of maximal
dimension in the orbit OF , we have

[VF ] · 	01 · 	02 · · ·	0,n �= 0 ∈ CH�(M × Mn). (42)

Indeed, let [F] ∈ Si , therefore ([F] − cM)�(i+1) = 0 ∈ CH0(Mi+1). Let VF be a
maximal constant-cycle subvariety for F . Writing 	0i = 	

F
0i + ([F] − cM)(i) and

expanding the product, we get

[VF ] · 	01 · 	02 · · · 	0,n �= 0 �⇒ [VF ] · 	
F
01 · 	

F
02 · · · 	F

0,n−i �= 0 ∈ CH�(M × Mn−i )

�⇒ dim VF ≥ n − i �⇒ [F] ∈ SVi .
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