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Abstract

In this paper, a novel random forest (RF)-based multifidelity machine learning (ML)
algorithm to predict the high-fidelity Reynolds-averaged Navier-Stokes (RANS) flow field is
proposed. The RF ML algorithm is used to increase the fidelity of a low-fidelity potential flow
field. Three cases are studied, the first two consist of a flow past a backward-facing step, and
the third, a subsonic flow around an airfoil. In the first case, the data is generated using ten
different inlet velocities, in the second using six different step heights, and in the third using
20 different airfoil shapes parameterized using B-spline curves. Input parameters to RF are
case dependent. For the first case, the x and y cell-center locations and the corresponding x
and y potential flow velocities, along with the specified inlet velocity, are used. For the second,
the cell-center values are nondimensionalized using the step height, and the step height is
used in place of the inlet velocity. The remaining two input features used are the same as in
the previous case. For the third case, the potential flow stream function and velocity potential
along with the B-spline control point values are used as input variables. The outputs of
the RF algorithm are the same for all the cases and include the RANS velocities, pressures,
and turbulent viscosities. The results in this study are compared to those generated using
the tensorFlowFoam (TFF) and from directly solving the RANS equations. To quantify the
errors, the absolute error and relative Lo norm error metrics are used. The results show that
for the first two cases, RF consistently has two to 30 times lower relative Lo norm compared
to TFF, with the only exception being the turbulent viscosities for the second case. For the
third case, RF is better at predicting the pressure and skin friction coefficients for the RAE
2822 airfoil compared to the NACA 0012 airfoil. The relative Lo norm error is 1.67 and 1.19

times lower for the pressure and skin friction coefficients, respectively.
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Nomenclature

e Angle of attack, (deg)

fur RF-based flow field prediction

v Kinematic viscosity, (m?/s)

vt Turbulent eddy viscosity, (m?/s)

10) Velocity potential

P Stream function

poo  Free-stream density, (kg/m?)

Tw  Wall shear stress, (Pa)

fur High-fidelity flow field variables

furp  Low-fidelity flow field variables

u Velocity vector, (m/s)

X Sample points of the design variables
X Design variables used to make RF-based flow field prediction
c Chord length, (-)

Cyq  Drag coefficient, (-)
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Drag force, (N)

Number of design variables

Lift force, (N)

Pitching moment, (Nm)

Number of data samples

Free-stream Mach number

Number of training design samples

Number of testing design samples

Number of samples

Number of subsets

Number of high-fidelity flow field parameters
Number of low-fidelity flow field parameters
Static pressure, (Pa)

RANS pressure in the grid cell-center, (Pa)
Free-stream pressure, (Pa)

Reynolds number based on chord length,
— Usc
Reynolds number based on step height,

— UinletH
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Potential flow x coordinate velocity in the grid cell-center, (m/s)



ur  RANS x coordinate velocity in the grid cell-center, (m/s)
Us  Free-stream velocity, (m/s)

Uiniet Domain inlet velocity, (m/s)

v,  Potential flow y coordinate velocity in the grid cell-center, (m/s)
v, RANS y coordinate velocity in the grid cell-center, (m/s)
xz.  x coordinate of the grid cell-center, (m)

xrar, Boundary layer reattachment length, (m)

y+  Non-dimensionalized first layer cell thickness

Ye y coordinate of the grid cell-center, (m)

Xq B-spline control points for NACA 0012

H Step height, (m)

h Baseline step height, (m)

X x coordinate of the domain, (m)

y y coordinate of the domain, (m)

d.c.  Drag counts, ACy; = 0.0001

l.c. Lift counts, AC; = 0.01

1 Introduction

Increasing computational power and decreasing computational cost have led to the widespread
development and use of three very important areas of aerospace engineering, namely, compu-
tational fluid dynamics (CFD), machine learning (ML), and aerodynamic design optimization
(ADO). While these three fields were initially developed separately, there has been an increasing
effort to couple the three systems together to find optimum designs [1-5], perform uncertainty
analysis [6-9], and solve inverse problems [10-12].

Traditional ADO methods rely heavily on expensive high-fidelity simulations to calculate both

the cost function and constraint values [13-16]. Furthermore, these methods require multiple and



repetitive high-fidelity model evaluations during the iterative design process. When combined
with a large number of design variables, these methods result in problems that can be difficult to
solve in a reasonable time period.

Several surrogate modeling techniques have been introduced to overcome these challenges
[17-22]. These surrogate modeling techniques can be broadly classified as either data-fit methods
[23, 24] or multifidelity methods [25]. In data-fit methods, a response surface is fitted through the
evaluated single-fidelity model responses at sampled points in the design space. Kriging [26-28],
polynomial chaos expansions [29], and support vector regression [30] are examples of data-fit
methods. Multifidelity methods [25], on the other hand, use information from multiple levels
of fidelities to make accurate high-fidelity predictions. Low-fidelity data samples can be used
to provide information on the trends to a relatively small number of high-fidelity data samples,
increasing the overall predictive capabilities of these surrogate models. Cokriging [31, 32] and
manifold mapping [33] are examples of multifidelity surrogate modeling methods.

The use of ML to augment Reynolds-averaged Navier-Stokes (RANS) CFD models, increasing
their fidelity, have recently become popular [34-37]. The simplest method involves tuning the
turbulence parameters by minimizing a cost function, such as the mean squared error (MSE) of
velocity or temperature at a selected location [38-42]. Either a Kriging [38] or a neural network
(NN) [39] surrogate model was used to find the relationship between the turbulence parameters
and the cost function. Variables selected in the cost function showed prediction improvements,
while other variables showed a decrease in accuracy [38, 39]. In another method, Singh et
al. [34, 35] developed a data-driven technique referred to as field inversion ML to construct a
deficiency (f) term from high-fidelity large eddy simulation (LES) data. This term was then
multiplied to either the production or destruction terms in one of the two additional transport
equations of a two-equation RANS model. Either NN [43] or Kriging [26] were used to construct
a functional form of 8 from a set of nondimensional flow features. This approach enhanced
the fidelity of the two-equation RANS model [34, 35]. A physics-informed ML framework was
developed by Wang et al. [36] and Wu et al. [37]. Several mean flow features were used as
inputs into a random forest (RF) [44, 45] ML algorithm with outputs being the discrepancy of
the Reynolds stresses between the RANS model and direct numerical simulations (DNS). This
discrepancy term was then embedded into the RANS model and the resulting RANS model
showed significant improvements in field predictions. While the methods are promising, they

involve solving the RANS equations every time a prediction is needed to be made. In addition,



training these ML models requires data to be generated from either LES or DNS, both of which
are computationally impractical to solve for many problems.

Instead of solving the governing equations each time, some researchers [3, 4, 46] have attempted
to directly predict the quantities of interest. Zhang et al. [46] tried to predict pressure coefficients
on airfoils of different shapes at multiple Mach numbers, Reynolds numbers, and angle of attack,
using both NN [47] and convolutional NN [43]. Li et al. [4] used gradient-enhanced Kriging
with partial least squares [20] to predict the drag, lift, and pitching moment coefficients of
different airfoils at varying flow conditions. Bouhlel et al. [3] performed a similar study, but used
gradient-enhanced NN [48] to predict the drag, lift, and pitching moment coefficient for an airfoil.
While good prediction capabilities of these algorithms were shown, the major drawback of these
methods is that they require a large number of sample points to train the algorithms, typically on
the order of 10% to 10°. The data generated in these studies [3, 4] was acquired by running a large
number of CFD simulations for multiple different airfoil shapes and flow conditions to calculate
the force coefficients. The number of CFD simulations performed, therefore, corresponds to the
number of sample points required to train the ML algorithms, thereby making it challenging to
be used for various optimum design and uncertainty quantification problems.

Maulik et al. [49] developed a framework, called tensorFlowFoam! (TFF), to predict the
turbulent viscosity in fluid flow obtained from data generated using several different RANS
turbulence models. Their work considers the flow past a backward-facing step for different
inlet conditions and geometries. Specifically, in the first case, they train the NN using data
generated with ten different inlet velocities, and in the second case, the training data is generated
using six different step heights. The NN is then tested on two unseen inlet velocities and step
heights, respectively. To predict the flow field for the unseen cases, they solve the continuity and
momentum equations in RANS and use the turbulent viscosity predicted by the NN instead of
solving additional closure equations. This reduced the simulation cost by a factor of five [49].
The major benefit of using such a method is the total number of CFD simulations required to
generate all the data in order to train the NN is relatively small. This is because Maulik et al.
[49] used data from each cell-center from each CFD simulation to train the NN, and each CFD
simulation contained approximately 10° grid cells.

In this work, a novel multifidelity ML algorithm using RF [44, 45] is proposed and demon-

strated on three different cases. The framework is motivated by the TFF framework developed
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by Maulik et al. [49, 50], and uses data from both a high-fidelity RANS model and a low-fidelity
potential flow model. The proposed framework predicts the velocity and pressure fields in
addition to the turbulent viscosity field predicted using TFF. The proposed method, therefore,
eliminates the need for solving the continuity and momentum equations required by TFF, further
reducing the amount of time required to make a high-fidelity flow prediction. Furthermore, the
proposed method uses the RF [45] in place of NN [43]. The first two cases in this paper are the
same as those used by Maulik et al. [49] and the proposed RF framework is compared to TFF
as well as to the RANS CFD simulations. The third case consists of flow over an airfoil at a
Mach number of 0.3 and an angle of attack of ten degrees. In this case, results from RF are only
compared to those from RANS simulations.

The next section describes the proposed method to predict the flow field using the multifidelity
RF ML algorithm. In the following section, the results of applying the proposed method to three
cases are described and compared against TFF prediction and direct RANS solutions. Lastly,

the conclusion and future work are presented.

2 Methods

This section outlines the methods used to construct the multifidelity RF-based flow field prediction
framework. The section begins with an outline of the workflow of the framework, followed by
descriptions of the sampling plan, the high- and low-fidelity flow field modeling, the RF algorithm,

the validation metric used, and, lastly, the RF-based flow field prediction.

2.1 Workflow

Figure 1 shows a flowchart of the proposed multifidelity RF-based flow field prediction framework.
This framework consists of two parts, the offline part (Fig. 1(a)) and the online part (Fig. 1(b)).
The offline part consists of training and validating the RF, while the online part is used to
make high-fidelity flow field prediction using the trained RF, given the low-fidelity flow field
and the design parameters. The process for the offline part starts by sampling the design space
X € R™ %4 first. Here, my, denotes the total number of training design samples, while d is the
number of design parameters. The low- (fip € R”*™) and high-fidelity models (fpp € R™*"™h)
are run for the sampled designs to generate the data required to train and validate the RF. n;

and nj are the number of low- and high-fidelity flow field parameters, respectively, while m
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Figure 1: A flowchart of the multifidelity random forest-based flow field prediction framework: (a)
training and validating the random forest, and (b) random forest-based flow field prediction.

denotes the total number of data samples. In order to tune the hyperparameters of the RF,
90% of the data is used to train the RF, while 10% is used to validate them. The accuracy of
the RF algorithm is measured using the MSE. Once all the hyperparameters are tuned, the
RF is retrained with the combined training and validation data and is ready to be used in the
online part. In the online part, the low-fidelity model is run on previous unsampled design
parameters x € R™*? where m; is the number of testing design samples. The data from this
low-fidelity model is then used as inputs to the trained RF to make high-fidelity RF-based flow

field predictions f'HF € R™Mm*nh,

2.2 Sampling plan

Sampling is the process of selecting discrete samples in the design space [51]. It is an iteration-
based process in which the design parameters are randomly drawn from probability distributions
assigned to the parameters. For the first two demonstration cases in this work, the full factorial
sampling (FFS) [51] plan is used to generate the design parameters, while the Latin Hypercube
sampling (LHS) [52] plan is used for the same in the third case. For these sampled design
parameters, both high-fidelity RANS CFD simulations and low-fidelity potential flow simulations
are performed to generate the required flow field to train, validate, and make predictions using

the RF framework.

2.3 Flow field modeling

This section details the high- and low-fidelity models use to model the flow field for the demon-

stration cases used in this study.



2.3.1 Low-fidelity flow field modeling

In this study, the low-fidelity model used is the potential flow model [53]. Potential flow equations
assume that the flow is both inviscid and irrotational [54]. For the flow to be irrotational, the

vorticity needs to be zero everywhere and is given by the curl of the velocity [54]

Vxu=0, (1)

where u is velocity vector of the flow. Considering the vector identity [54]

V x(Vg) =0, (2)

where ¢ is a scalar function, combining (1) and (2) leads to

u=Ve, (3)

where ¢ now is defined as the velocity potential [54]. Since the flow in the demonstration cases is

incompressible, the conservation of mass is given by divergence of the velocity [53]

V-u=0. (4)

Using (3) in (4) gives
V- (Vg)=0 ()
A¢p = 0. (6)

In any two dimensional incompressible flow, a stream function v [54] can be defined such that it
satisfies [54]
A = 0. (7)

Equations (6) and (7) imply that any two dimensional potential flow problem has a velocity

potential and a stream function that satisfy Laplace’s equations [54].



2.3.2 High-fidelity flow field modeling

The Spalart-Allmaras [55] turbulence model is used in this work. The additional transport
equation is introduced as a way to model the Reynolds stresses, which are a byproduct of
performing Reynolds averaging on the Navier-Stokes equations, leading to the infamous closure
problem in turbulence [56]. The Boussinesq eddy viscosity assumption [57] is used to correlate the
Reynolds stresses and the turbulent viscosity, ;. A transport equation to model this turbulent
viscosity is solved in addition to the Reynolds averaged continuity and momentum equations and

is given by [55]

ov ~_ 1 e .
5 +u- Vv =Cupll — fio] ST+ E{V (v + 2)VD] + Cya| Vi |*}
. 2 ®
- [Cwlfw - b21 ftQ] ( ) + fuAU?,
where
3 ~
_ 5 X _Yae_ X
Vt—l/fvlval 3+03 X = I/ S 2d2fv27fv2 1+va1’
1/6
14 CS,4 7
fw=19 #5+ 8, g =1+ Cua(r® —r),r = Sn;?d?’S: 20505,

W2
fu= Ctlgtt%p( Co AUQ [d* + g dQ])

1({0u; Ou; C 14+ Chpo
= — 2 QZ L= — d 7 wl = 71)1
fra = Cizexp( — Crax?), AR t—

o =2/3,Cp = 0.1355, Cpa = 0.622, k = 0.41, Cy2 = 0.3,

ng — 2, Cvl — 7.1,0151 — 1,Ct2 . 2,01}3 — 1.1,Ct4 — 2,

v is the turbulent viscosity like variable [55], S and € are the strain-rate tensor and the vorticity
tensor, respectively, d is the distance from the closest surface, and AU? is the peak velocity

difference [58].

2.4 Random forest

Random forest [44, 45] is an ensemble ML method [59] which can be used for both classification
and regression tasks by constructing a multitude of decision trees [60]. Both decision trees [60]

and random forests [45] involve stratifying or segmenting the output predictor space into simple
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regions. For a new observation, the mean or mode value of training observations to which the
new observation belongs is used as its predicted value. A set of splitting rules is used to segment
the predictor space and this can be summarized using a tree, hence the name decision trees [61].

Figure 2 shows a schematic of a random forest with two decision trees. Each decision tree
consists of a root node, followed by several intermediate nodes or decision nodes, and terminates
on the leaf or terminal nodes. The root node of a decision tree represents the entire training
dataset and it is used to further divide this dataset into two or more smaller datasets. This is
done by iterating over each individual input feature as well as over a splitting criterion such as a
mean or mode of the input feature value. The combination which results in the lowest weighted
MSE over all the subsets, n, is used as the criterion to split the data at the root node. The MSE
is given by

N <’“> 7(k) (i) 2
split k=1 N(k)nh ’

where ny, is the number of output predicted variables, N*) is the number of samples in the
k" subset created after splitting at the root node, f}(f% ; represent the high-fidelity CFD field
prediction for the j** field variable and the i* sample in the subset, and fl({’%) ;s the mean of the

CFD field predictions for the j™ field variable in the k*" subset, and is given by

*
A( ZN HF 7
fHF,j —N® (10)

The intermediate nodes following the root node perform the same task as the root node,
but with data from a given subset. The intermediate node essentially splits the subset from
the previous intermediate node or root node into a smaller subset. This process continues with
smaller and smaller subsets until the leaf node is reached. Various hyperparameters can be set
to decide whether a leaf node is reached. These include the minimum number of samples in a
subset required to split it and the maximum tree depth. The leaf node returns the predicted
value from the decision tree.

Some of the main advantages of decision trees include interpretability, the ability to handle
large amounts of data, and ease of use [61]. This makes it attractive to use for various ML tasks.
However, its drawbacks include high sensitivity to the training dataset, and over-fitting [61].
Random forest overcomes these problems by averaging the outputs from multiple decision trees,

which is set using the number of trees hyperparameter, and in order to construct each individual
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Figure 2: A schematic of a random forest with two decision trees.

decision tree, data from the training dataset is randomly selected with replacement and fed into

the decision tree.

2.5 Validation

In this work, 90% of the data is used to train the RF, and 10% is used to validate its accuracy.
The training and validation set accuracy is measured using the mean MSE, and is averaged over

all the output predictions, and is given by

SN (Fih s~ Fih)?

=
Nny, '

(11)

where ny, is the number of high-fidelity flow field variables, m is the total number of data samples,
N C m is the number samples in either the training or validation data sets, fl(f% j and f}(f% j
represent the high-fidelity RF and CFD field prediction, respectively, of the j** field variable and

the " sample.

2.6 Multifidelity random forest-based flow field prediction

Once the RF is trained and validated, it can then be used to increase the fidelity of the low-fidelity
potential flow field. To perform a high-fidelity RANS field prediction, the potential flow field
values, as well as the design variables, x, are fed into the trained RF and the corresponding RANS

field can be reconstructed for the design x. To measure the accuracy of the field predicted by
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RF, both the absolute and the relative Ly norm errors are measured at different locations in the
domain. The choice of these locations is case dependant and is discussed in their corresponding

sections. The absolute error is given by

Labsj = | furj — farl, (12)

where fHF,j and fyr ; are the high-fidelity RF and CFD flow field prediction for a given variable

of interest j. The relative Lo norm is given by

||fHFj — fur 4|2
Lo yer i = : —. 13
2,7"6 5] HfHFJH2 ( )

The main benefit of using this method is the reduction in the cost associated in various
engineering problems, such as aerodynamic shape optimization, uncertainty quantification and
propagation, as well as global sensitivity analysis. Such problems typically need multiple and
repetitive high-fidelity physics-based simulation evaluations. This methodology replaces these
high-fidelity simulations with the RF model. This is done by feeding in the values of the design
variables along with the low-fidelity flow field variables to the trained RF model for a new
design x, to make high-fidelity flow field predictions. This field can then be used to calculate
the quantities of interest for the engineering application. Both the low-fidelity simulation cost
and RF prediction time are significantly lower than the high-fidelity simulation cost, thereby

significantly reducing the computational time involved in solving such problems.

3 Numerical Examples

This section presents the results of the multifidelity RF-based flow field prediction framework
demonstrated on three different cases. The first two cases consider steady flow past a backward-
facing step and the third a steady subsonic flow around an airfoil at ten degrees angle of attack.
The results for the first two cases are compared to the TFF framework and all the cases are

compared to the RANS CFD simulations.

3.1 Casel

In this case, the flow past a backward facing step is simulated. The step height, H = 1.0h, where

h is the baseline step height of 12.7 mm, is used and the Reynolds number based on this step
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height is defined as Rey = UjnietH/v, where Ujpet is the freestream velocity at the inlet to the
domain, H is the step height, and v is the kinematic viscosity. The Reyp for this case varies

between 34,000 and 41, 500, based on the selected U, values.

3.1.1 Problem definition

The objective of this case is to replace the high-fidelity RANS simulations with the multifidelity
RF ML algorithm that predicts the RANS flow field, namely, velocity (u, and v,), pressure
(pr) and turbulent viscosity (1), in the domain. The inputs to the random forest are the
cell-center locations of the grid elements, given by the horizontal, x., and vertical, y., positions,
the horizontal and vertical velocities at these cell-center locations from the low-fidelity potential
flow solver, given by u, and v, respectively, and the inlet velocity inlet boundary condition
value, Ujpier- The RF for this case is trained with data from ten CFD simulations with Ut
varying from 40 m/s to 49 m/s in increments of 1 m/s, that is using the FFS plan. The RF is
then tested on two unseen inlet speeds, Ujper, of 44.2 m/s and 48.5 m/s. The results are finally
compared to those from RANS CFD simulations and TFF. Note that the choice of training and

testing data is the same as those used by Maulik et al. [49].

3.1.2 CFD setup and validation

In this work, the flow past a backward-facing step is simulated for the first two cases. Figure 3
shows the domain of the geometry used in this study. The step height, h, is fixed at 12.7 mm
and the remaining domain is scaled as per the dimensions given in Fig. 3. The inlet velocity to

the domain is set to a value of 44.2 m/s. The step height and inlet velocity values are set in

Symmetry No-slip wall
Vglouty Pressure
inlet 8h
outlet
Symmetry _-h
No-slip wall
I I i
20h 110h 50h
x=0

Figure 3: Domain and boundary conditions of the backward facing step.
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accordance with experimental data from David and Seegmiller [62], in order to validate the CFD
setup.

To generate the mesh, the blockMesh in OpenFOAM version 5.0 [63] is used and is shown in
Fig. 4. Near the upper and lower walls, as well as the step, the mesh is refined to ensure that the
first cell thickness is less than a y* value of one. A grid independent study is then performed
and the results are shown in Table 1.

To simulate both the high- and low-fidelity flow, OpenFOAM version 5.0 [63] is used. In
particular, the potentialflowFoam solver is used to simulate the low-fidelity potential flow field
and the simpleFoam solver to simulate the high-fidelity Spalart-Allmaras [55] RANS turbulence
model flow field. The boundary conditions set are shown in Fig. 3. The viscosity (v) of the
fluid used has a value of 1.56 x 107° m?/s and the outlet has a zero pressure gradient value.
The wall boundary conditions are shown in Fig. 3. The Linear-Upwind Stabilised Transport
[63] scheme is used to handle the convective fluxes. The convergence criteria set is pressure and
velocity residuals fall to a value below 10~ for the RANS simulations. The simulation time as
well as the reattachment length (rrar) of boundary layer downstream of the step is given in
Table 1. Refining the mesh moves the reattachment length from the CFD simulations closer to

the experimental value. From Table 1, mesh L1 is used in this study.

Figure 4: Mesh generated for the backward facing step.

Table 1: Grid convergence study for the backward facing step.

Mesh No. of cells xzp4; Simulation time*, s
L3 7,620 5.97h 12.5
L2 30,730 6.03h 49.3
L1 123,000 6.06h 343.4
Lo 408,000 6.29h 2,912.5
Exp. [62] - 6.26h -

*Computed on a high-performance cluster with 16 processors.
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3.1.3 Results

The ratio of the turbulent viscosity to kinematic viscosity, termed viscosity ratio, for TFF, RF,
and CFD are shown in Figs. 5(a) and 6(a) for the two selected test cases, respectively, and at
different downstream locations. Figures 5(b) and 6(b) show the corresponding absolute errors
of TFF and RF with respect to the CFD results. Figures 5 and 6 show that the viscosity ratio
trend for both these cases is similar, with RF having a lower absolute error when compared
to TFF. At the midsection of this backward-facing step domain, with midsection referring to
y/H values between 3 and 5, RF has the lowest absolute error and this error is around three
orders of magnitude lower than TFF. In the remaining section of the domain, RF is still better
at predicting the viscosity ratios than TFF, but this error is around four orders of magnitude
higher than the midsection. Table 2 shows the relative Ly norm of the viscosity ratio at various

downstream locations for this case. RF has a lower relative Ly norm compared to TFF. At x/H

—x/H=6
—x/H=10

6L ]
= TFF
T -=RF
=
26
0t

10®  10* 102 10° 102 10*
Absolute error

(b)

Figure 5: Case I viscosity results at different x/H locations for inlet velocity of 44.2 m/s: (a) viscosity
ratio values, and (b) absolute errors.

8,
67
I
=
2,
20 %0 600 0 2 00 4 i
) 10 10% 102 10° 102 10*
wv Absolute error
(a) (b)

Figure 6: Case I viscosity results at different x/H locations for inlet velocity of 48.5 m/s: (a) viscosity
ratio values, and (b) absolute errors.
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Table 2: Case I relative Ly norm of the viscosity ratio.

Model  Uipjet, m/s x/H=1 x/H=4 x/H=6 x/H=10

TFF 44.2 0.082 0.019 0.017 0.016
RF 44.2 0.008 0.007 0.007 0.006
TFF 48.5 0.104 0.020 0.018 0.017
RF 48.5 0.008 0.008 0.008 0.007

= 1, this norm is one order of magnitude lower for RF, while are the remaining locations, it is
approximately half the value when compared to TFF.

Figure 7 shows the velocity ratio and the absolute errors at selected downstream locations
for the test case with an inlet velocity of 44.2 m/s for the different ML algorithms and CFD
simulations. The absolute errors in RF fluctuate significantly from the lower to upper walls, with
this error fluctuating by approximately three orders of magnitude. However, RF outperforms
TFF in predicting velocity ratios. TFF is especially poor at predicting the velocity ratios near
the upper and lower walls as seen in Fig. 7(b). Figure 8 shows similar results for the test case
with Ujpier = 48.5 m/s as seen with Ujper = 44.2 m/s in Fig. 7. Table 3 shows that RF is more
than one order of magnitude better at predicting the velocity ratios for this case when compared
to TFF, given by the relative Lo norm.

RF outperforms TFF in predicting the pressure coefficients on the lower wall of the backward-
facing step. These results are shown in Figs. 9 and 10 for the two test cases selected. The
pressure coefficient profile from RF matches the CFD results well, while small differences can

be seen using TFF. The corresponding relative Ly norms are shown in Table 4, with RF again

8 sl
6 6l
I T
=4+ =4l
2r ol
O— e B B L L L E| 0, - = ez, a SR 4
-0.2 0 02 04 06 038 1 1.2 108 105 10% 10° 102 107 10°
|U|/U ref Absolute error
(a) (b)

Figure 7: Case I velocity results at different x/H locations for inlet velocity of 44.2 m/s: (a) velocity
ratio values, and (b) absolute errors.
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Figure 8: Case I velocity results at different x/H locations for inlet velocity of 48.5 m/s: (a) velocity
ratio values, and (b) absolute errors.

Table 3: Case I relative Ly norm of the velocity ratio.

Model  Uiptet, m/s x/H=1 x/H=4 x/H=6 x/H=10

TFF 44.2 0.086 0.072 0.071 0.066
RF 44.2 0.002 0.002 0.003 0.002
TFF 48.5 0.092 0.080 0.079 0.072
RF 48.5 0.004 0.005 0.006 0.006

having significantly lower values than the comparison method.

Figures 11 and 12 show the skin friction coefficient profile on the lower wall for the different
test cases, respectively. RF again outperforms TFF at capturing this profile as seen by the lower
absolute errors in Figs. 11(b) and 12(b), respectively. This is also shown by the lower relative Lo
norms in Table 4. The skin friction coefficient profile from RF is able to match CFD results well,

with the exception for the case with Ujper = 44.2 m/s and at x/H of 2. It is important to note
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Figure 9: Case I pressure results on bottom wall for inlet velocity of 44.2 m/s: (a) pressure coefficient
values, and (b) absolute errors.
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Figure 10: Case I pressure results on bottom wall for inlet velocity of 48.5 m/s: (a) pressure coefficient
values, and (b) absolute errors.

Table 4: Case I relative L, norm of the pressure and skin friction coefficients on the bottom wall.

Model  Uipjer, m/s  C Cy

TFF 44.2 0.075 1.032

RF 44.2 0.008 0.034

TFF 48.5 0.092 1.049

RF 48.5 0.012 0.031

x1073 0
10 p —CFD 10 ‘ ‘ "~ [oTFH
° o TFF s RF
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Absolute error

-5 . . . 10 10 . . |
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x/H x/H
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Figure 11: Case I skin friction results on bottom wall for inlet velocity of 44.2 m/s: (a) skin friction
coefficient values, and (b) absolute errors.

that the skin friction coefficient values are heavily affected by the turbulent viscosity values near
the wall. In this case, the turbulent viscosity is in the order of magnitude of 10~8 near the walls,
while the maximum turbulent viscosity is in the order of magnitude of 1073, Small changes in
the value of this viscosity near the walls can have a big impact on the skin friction value of the
wall. Therefore, it is crucial for the ML algorithms to accurately predict this viscosity near the

walls of the domain.
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Figure 12: Case I skin friction results on bottom wall for inlet velocity of 48.5 m/s: (a) skin friction
coefficient values, and (b) absolute errors.

The viscosity ratio contours for CFD, TFF and RF are shown in Figs. 13, 14, and 15,
respectively. No noticeable differences in these contours plots between the ML algorithms and
CFD can be seen in these figures. The velocity ratio contours similarly do not show any noticeable
difference between the two ML algorithms and CFD as seen in Figs. 16, 17, and 18. The pressure
coefficient contours in Figs. 19, 20, and 21 show that RF is better at predicting pressures than
TFF. Downstream of the step, at around x/H = 2, the pressure coefficients for TFF are higher
than CFD as seen in blue, while at x/H = 10 are lower than CFD as seen in red.

Table 5 list the computational cost involved in Case I. The data accumulation time is the
same for RF and TFF as the same training data is used. RF is faster to train than TFF (which

uses NN) and is also significantly faster at prediction compared to both TFF and CFD.
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Figure 13: Case I CFD viscosity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.
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Figure 15: Case I RF viscosity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.
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Figure 16: Case I CFD velocity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.
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Figure 17: Case I TFF velocity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.
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Figure 19: Case I CFD pressure coefficient contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5
m/s.
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Figure 20: Case I TFF pressure coefficient contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5
m/s.

Figure 21: Case I RF pressure coefficient contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.

Table 5: Case I computational cost.

Model  Ujpiet, m/s Data accumulation, s Training, s Prediction, s

CFD 44.2 - - 474
TFF 44.2 4,740 170 90
RF 44.2 4,740 70 1
CFD 48.5 - - 473
TFF 48.5 4,740 170 79
RF 48.5 4,740 70 1
3.2 Case Il

The flow past a backward-facing step is simulated in this case. However, this case considers
the effect of varying the step height, H, instead of U;,e;- The Reynolds number based on the

step height is defined as Rey = UjpieeH /v, where Ujyer is the freestream velocity at the inlet to
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the domain, H is the step height, and v is the kinematic viscosity. The Rey for this case varies

between 18,000 and 72,000, based on the selected H values.

3.2.1 Problem definition

Similar to Case I, the objective of this case is to replace the high-fidelity RANS simulations
with a RF ML algorithm that predicts the RANS flow field. This case, however, considers the
effect of varying the step height, H, instead of Ujpier. Uinier is fixed to a value of 44.2 m/s. The
inputs to the RF include z./H, y./H, u, and vy, and H. The RF is trained with data from six
different step heights, namely, H= 0.5h, 0.75h, 1.25h, 1.5h, 1.75h, and 2.0h, respectively. This
training dataset is sampled at 0.25h difference apart, except between 0.75h and 1.25h, where the
difference is 0.5h. This trained RF is then tested with step heights 1.0h and 1.9h, respectively.
The results are then compared to those from RANS CFD simulations and TFF. The training
and testing sets are the same as those used by Maulik et al. [49]. The CFD and mesh setup is

similar to Case 1.

3.2.2 Results

Figure 22 shows the viscosity ratio plots for the step height of 1.0h at different downstream
locations. At the midsection, RF has lower absolute errors compared to TFF by approximately
two orders of magnitude. In the remaining sections, TFF has two orders of magnitude lower
errors than RF. For the step height of 1.9h, similar trends can be seen in the midsection as shown
in Fig. 23. In the remaining section, however, the difference in absolute errors between RF and

TFF is lower compared to a step height of 1.0h. However, RF still has higher errors than TFF.

—x/H =1
xH=4 | 8
—x/H=6
—x/H =10
—cFD| | 6
T o TFF T
=4 @ RF 1 BVl
2 L
0k | e i
107 1072 10° 102 104
Absolute error
(b)

Figure 22: Case II viscosity results at different x/H locations for step height of 1.0h: (a) viscosity ratio
values, and (b) absolute errors.
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Figure 23: Case II viscosity results at different x/H locations for a step height of 1.9h: (a) viscosity
ratio values, and (b) absolute errors.

The corresponding relative Ly norm for the viscosity ratios is shown in Table 6. TFF has a lower
relative Lo norm when compared to RF. Between the two step heights, for RF, the step height
of 1.9h has significantly lower relative Ls norm values when compared to 1.0h. This is due to
the lack of training data in the vicinity of 1.0h when compared to 1.9h.

RF is better at predicting the velocity ratios than TFF for both the step heights as seen

in Figs. 24 and 25. This is confirmed by the lower relative Ls norm values shown in Table 7.

Table 6: Case II relative Lo norm of the viscosity ratio.

Model H x/H=1 x/H=4 x/H=6 x/H=10

TFF 1.0h 0.032 0.018 0.017 0.014
RF 1.0h 0.236 0.238 0.234 0.233
TFF 1.9h 0.038 0.014 0.015 0.023
RF 1.9h 0.050 0.051 0.049 0.082
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Figure 24: Case II velocity results at different x/H locations for a step height of 1.0h: (a) velocity ratio
values, and (b) absolute errors.
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Figure 25: Case II velocity ratio at different x/H locations for a step height of 1.9h: (a) velocity ratio
values, and (b) absolute errors.

Table 7: Case II relative Lo norm of the velocity ratio.

Model H x/H=1 x/H=4 x/H=6 x/H=10
TFF 1.0h 0.063 0.055 0.056 0.050
RF 1.0h 0.016 0.010 0.010 0.011
TFF 1.9h 0.065 0.061 0.059 0.056
RF 1.9h  0.002 0.002 0.003 0.002

These results are similar to those in Case I as shown in Figs. 7 and 8. TFF is especially poor at
predicting the velocities in the region between y/H = 7 and the upper wall, as well as between
y/H = 3 and the lower wall.

RF is able to capture the pressure coefficient trend on the lower wall more accurately than
TFF as seen in Figs. 26(a) and 27(a) for step heights of 1.0h and 1.9h, respectively. RF has

about one order of magnitude lower absolute errors compared to TFF as shown in Figs. 26(b)
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Figure 26: Case II pressure results on bottom wall for a step height of 1.0h: (a) pressure coefficient
values, and (b) absolute errors.
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Figure 27: Case II pressure results on bottom wall for a step height of 1.9h: (a) pressure coefficient
values, and (b) absolute errors.

and 27(b). Figures 28 and 29 show that RF and TFF are better at predicting the skin friction
coefficient on the bottom wall for the case with a step height of 1.9h compared to 1.0h. This is

due to the lack of training data in the vicinity of 1.0h, as mentioned above. The corresponding
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Figure 28: Case II skin friction results on bottom wall for a step height of 1.0h: (a) skin friction
coefficient values, and (b) absolute errors.
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Figure 29: Case II skin friction results on bottom wall for a step height of 1.9h: (a) skin friction
coefficient values, and (b) absolute errors.
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relative Ly norms for both the coefficients are shown in Table 8, with RF having significantly
lower values than TFF.

Figures. 30, 31, and 32 show the viscosity ratio contours from CFD, TFF and RF, respectively.
For the step height of 1.0h, TFF viscosity ratio contours (Fig. 31(a)) match those from CFD
(Fig. 30(a)) well. While RF under predicts the viscosities in regions between y/H = 7 and the
upper wall, as well as between y/H = 3 and the lower wall, as seen in Fig. 32(a). For the step
height of 1.9h, both TFF and RF are better at predicting the viscosities when compared to a
step height of 1.0h. The velocity ratio contours for the ML algorithms match CFD results well
as seen in Figs. 33, 34, and 35. TFF, however, is poor at predicting the pressure contours as
seen in Figs. 36, 37, and 38.

Table 9 shows the computational cost involved in Case II. Similar to Case I, RF is cheaper
to both train on the given dataset and to predict the flow field, when compared to TFF. RF is
approximately three times cheaper to train than TFF. RF takes about one second to predict the

entire flow field.

Table 8: Case II relative Lo norm of the pressure and skin friction coefficients on the bottom wall.

Model H Cp Cy
TFF 1.0h 0.155 1.434
RF 1.0h 0.012 0.222
TFF 1.9h 0.102 0.927
RF 1.9h 0.005 0.055
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Figure 30: Case II CFD viscosity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.
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Figure 32: Case II RF viscosity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.
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Figure 33: Case II CFD velocity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.
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Figure 36: Case II CFD pressure coefficient contours for step heights of: (a) 1.0h, and (b) 1.9h.
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Figure 37: Case II TFF pressure coefficient contours for step heights of: (a) 1.0h, and (b) 1.9h.

y/H

Figure 38: Case II RF pressure coefficient contours for step heights of: (a) 1.0h, and (b) 1.9h.

Table 9: Case II computational cost.

Model H  Data accumulation, s Training, s Prediction, s

CFD 1.0h - - 476
TFF  1.0h 2,856 126 77
RF  1.0h 2,856 40 1
CFD 1.9h - - 473
TFF 1.9h 2,856 126 70
RF  1.9h 2,856 40 1

3.3 Case III

In this case, the flow around an airfoil is simulated. The flow is steady, subsonic, and incompress-
ible with a Mach number of 0.3. The angle of attack of the flow is 10 degrees. The Reynolds

number based on the chord length, ¢, is defined as Re. = Usoc/v and has a value of 6 x 105, where
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Us is the freestream velocity with a magnitude of 51.5 m/s, and v is the kinematic viscosity

with a value of 8.58 x 1076 m?/s.

3.3.1 Problem definition

Similar to the previous two cases, the objective of this case is to replace the RANS model with the
RF ML algorithm. The RF algorithm is trained using 20 different airfoil shapes parameterized
using B-spline curves [64] with eight control points. These 20 shapes are generated using the
LHS [52] plan, where the upper and lower bound values are set to (1 +25%)xg. X is the vector
of B-spline control points corresponding to the NACA 0012 airfoil. The inputs to the RF model
include ¢, 1, and the eight B-spline control point locations, and the outputs include w,, v, p:,
and v4. This trained RF model is tested on the NACA 0012 airfoil and the RAE 2822 airfoil.

The results are compared to RANS CFD simulations.

3.3.2 CFD setup and validation

To simulate the flow around an airfoil, an O-grid mesh is generated and shown in Fig. 39 using
pyHyp [65]. The y™ value is less than two and the far-field is located 55¢ from the center of the
airfoil. The mesh and CFD setup is validated with experimental data from [66]. The results
from the grid independence study are shown in Table 10.

Both the high- and low-fidelity flow is simulated using OpenFOAM version 5.0 [63]. po-
tentialFlowFoam is the low-fidelity solver, while simpleFoam is the high-fidelity solver. The
high-fidelity solver simulates the Spalart-Allmaras [55] RANS turbulence model. The far-field of

the domain is set to a pressure far-field boundary condition, while the walls of the airfoil are set
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Figure 39: O-grid for Case III: (a) domain, and (b) near the airfoil.
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Table 10: Grid convergence study for the NACA 0012 airfoil in subsonic flow.

Mesh No. of cells «, deg Cj, l.c. Cy, d.c. Simulation time*, s

L3 11,286 10.18 109.4 1486 7
L2 39,402 1018  109.7  139.2 232
L1 145,236 10.18  109.5  137.0 1,120
L0 557,702 10.18  110.8  135.0 6,016
Exp. [66] - 10.18 1081 1165 -

*Computed on a high-performance cluster with 4 processors.

to no-slip. The convergence criteria is set to either of the two; (a) pressure and velocity residuals
fall below 107% or (b) a maximum number of iterations of 10,000 is met. Table 10 shows the lift
and drag coefficient values. The RANS model is better at predicting the lift compared to the

drag. From Table 10, mesh L2 is used in this study.

3.3.3 Results

Figure 40(a) shows the pressure coefficient profile for the RF algorithm matches the CFD results
well for the NACA 0012 test case, except at the leading edge. The absolute errors are highest at
the leading edge of the airfoil and decrease to around mid-chord. From the mid-chord to the
trailing edge, the errors are nearly constant, with fluctuations around an order of magnitude seen
in Fig. 40(b). For the RAE 2822 case, RF is able to capture the pressure coefficient profile well,
again with the exception of the leading edge as shown in Fig. 41(a). For the suction side (SS),
the pressure is nearly constant in-between the leading and trailing edges, while on the pressure
side (PS) decreases to about mid-chord, then increases back again. These trends are observed in
Fig. 41(b). The relative Ly norm for both the airfoils is shown in Table 11. RF has lower errors

for the RAE 2822 airfoil compared to the NACA 0012 airfoil.
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Figure 40: Case III NACA 0012 airfoil pressure results: (a) pressure coefficient values, and (b) absolute
errors on the suction side and pressure side.
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Figure 41: Case III RAE 2822 airfoil pressure results: (a) pressure coefficient values, and (b) absolute
errors on the suction side and pressure side.

The skin friction results for the NACA 0012 airfoil are shown in Fig. 42. RF is poor at
predicting the skin friction at the leading edge, whereas, on the remaining surface, it matches the
trends from CFD results. The absolute errors for the PS and SS decrease from the leading edge
to 0.25 chord and then remain nearly constant till the trailing edge. These errors fluctuate by an
order of magnitude from leading to trailing edges. The corresponding results for the RAE 2822
airfoil are shown in Fig. 43. In this case, RF poorly predicts the skin friction at both leading and
trailing edges. On the remaining surface of the airfoil, the skin friction profile from RF matches
the CFD results, with absolute errors shown in 43(b). Similar to the pressure coefficients, the
skin friction coefficient has a lower relative Ly norm for the RAE 2822 airfoil than the NACA
0012 airfoil and is shown in Table 11.

Pressure coefficient contours for the two airfoil cases are shown in Figs. 44 and 45. These

contours from RF match the CFD results better for the NACA 0012 airfoil than for the RAE
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Figure 42: Case III NACA 0012 airfoil skin friction results: (a) skin friction coefficient values, and (b)
absolute errors on the suction side and pressure side.
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Figure 43: Case III RAE 2822 airfoil skin friction results: (a) skin friction coefficient values, and (b)
absolute errors on the suction side and pressure side.

Table 11: Case III relative Ly norm of the pressure and skin friction coefficients on the airfoil.

Airfoil Cp Cy
NACA 0012 0.366 0.781
RAE 2822 0.219 0.654

2822 airfoil. The most noticeable differences are seen in Fig. 45 on the PS and around the trailing
edge. The corresponding Mach numbers are shown in Figs. 46 and 47. No noticeable results can
be observed for the NACA 0012 airfoil, while for the RAE 2822 airfoil, small differences can be
seen around the PS of the airfoil.

The computational cost involved in the case is shown in Table 12. Similar to the previous

two cases, the RF algorithm takes only a second to predict the entire flow field.
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Figure 44: Case III NACA 0012 pressure coefficient contours for: (a) CFD, and (b) random forest.
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Figure 45: Case III RAE 2822 pressure coefficient contours for: (a) CFD, and (b) random forest.
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Figure 46: Case III NACA 0012 Mach number contours for: (a) CFD, and (b) random forest.
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Figure 47: Case III RAE 2822 Mach number contours for: (a) CFD, and (b) random forest.
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Table 12: Case III computational cost.

Model Airfoil Data accumulation, s Training, s Prediction, s
CFD NACA 0012 - - 230

RF NACA 0012 4,600 50 1

CFD RAE 2822 - - 220

RF RAE 2822 4,600 50 1

4 Conclusion

In this work, a novel multifidelity random forest algorithm is proposed and results on three
cases are shown. The first two include flow past a backward-facing step, and the third, subsonic
flow around an airfoil at ten degrees angle of attack. This framework is compared to the
tensorFlowFoam (TFF) framework for the first two cases, and to RANS CFD simulations for all
the cases. Potential flow is used as the low-fidelity model, while the Spalart-Allmaras RANS
model is used as the high-fidelity model. The inputs to the ML algorithms varied from case to
case, however, the outputs from these algorithms were kept the same. The outputs include the
cell-center velocities, pressures, and turbulent viscosities. The performance of the ML algorithms
were measured using the absolute and relative Lo norm errors at different locations and for
different flow quantities, as well as the computational cost involved in training and predicting
the flow fields using these algorithms.

In the first case, the training data is generated using ten different inlet velocities to the
backward-facing step, while in the second, six different step heights are used. The inputs to the
ML algorithms for the first case include the cell-center locations, the potential flow velocities
at the cell-centers, along with the inlet velocity value. For the second case, the cell-centers are
normalized with the step height, and the step height is used in place of the inlet velocity as
inputs to the ML algorithms. For these two cases, RF outperformed TFF in predicting the
various flow quantities, with the exception of the viscosity ratios for the second case.

For the third case, the velocity potential, the stream function, and eight B-spline control
points are used as inputs to the RF algorithm. The pressure and skin friction coefficient profile
on the surface of the airfoils from RF matches those from RANS CFD simulations well, with the
exception of the leading edge. The contours of these coefficients also match the CFD simulations.
However, small differences can be seen on the pressure side of the RAE 2822 airfoil.

One major benefit of using RF to make high-fidelity flow field predictions is the number of
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CFD simulations required to generate the data to train the RF algorithm. For cases 1, 2, and 3,
ten, six, and 20 CFD simulations were used to train the RF algorithm. Significant time is saved
during the data generation process which is often the bottleneck in surrogate modeling methods.
The other benefit is the low field prediction cost of RF. Once trained, the RF algorithm takes
about a second to predict the entire flow field. This is useful in engineering problems that require
multiple and repetitive model evaluations.

The biggest limitation of the developed RF algorithm is in choosing the input variables. Each
of the cases shown in this study uses different input variables. The input variables affect the
prediction capabilities of the RF algorithm tremendously and it is difficult to know which input
variables to choose before training the RF algorithm. A thorough investigation of these variables
is needed in order to help improve the RF performance as well as make this framework more
generic to various engineering problems. Currently, only the offline part of the framework is
developed. The online part needs to be developed and applied to various problems involving
global sensitivity analysis, uncertainty quantification and propagation, and aerodynamic design

optimization.
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