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Abstract

In this paper, a novel random forest (RF)-based multifidelity machine learning (ML)

algorithm to predict the high-fidelity Reynolds-averaged Navier-Stokes (RANS) flow field is

proposed. The RF ML algorithm is used to increase the fidelity of a low-fidelity potential flow

field. Three cases are studied, the first two consist of a flow past a backward-facing step, and

the third, a subsonic flow around an airfoil. In the first case, the data is generated using ten

di�erent inlet velocities, in the second using six di�erent step heights, and in the third using

20 di�erent airfoil shapes parameterized using B-spline curves. Input parameters to RF are

case dependent. For the first case, the x and y cell-center locations and the corresponding x

and y potential flow velocities, along with the specified inlet velocity, are used. For the second,

the cell-center values are nondimensionalized using the step height, and the step height is

used in place of the inlet velocity. The remaining two input features used are the same as in

the previous case. For the third case, the potential flow stream function and velocity potential

along with the B-spline control point values are used as input variables. The outputs of

the RF algorithm are the same for all the cases and include the RANS velocities, pressures,

and turbulent viscosities. The results in this study are compared to those generated using

the tensorFlowFoam (TFF) and from directly solving the RANS equations. To quantify the

errors, the absolute error and relative L2 norm error metrics are used. The results show that

for the first two cases, RF consistently has two to 30 times lower relative L2 norm compared

to TFF, with the only exception being the turbulent viscosities for the second case. For the

third case, RF is better at predicting the pressure and skin friction coe�cients for the RAE

2822 airfoil compared to the NACA 0012 airfoil. The relative L2 norm error is 1.67 and 1.19

times lower for the pressure and skin friction coe�cients, respectively.
�Corresponding author (leifur@purdue.edu)



Keywords: Flow field prediction, random forest, machine learning, multifidelity modeling,

surrogate modeling.

Nomenclature

– Angle of attack, (deg)

f̂HF RF-based flow field prediction

‹ Kinematic viscosity, (m2/s)

‹t Turbulent eddy viscosity, (m2/s)

„ Velocity potential

Â Stream function

flŒ Free-stream density, (kg/m3)

·w Wall shear stress, (Pa)

fHF High-fidelity flow field variables

fLF Low-fidelity flow field variables

u Velocity vector, (m/s)

X Sample points of the design variables

x Design variables used to make RF-based flow field prediction

c Chord length, (-)

Cd Drag coe�cient, (-)

= D
1
2 flŒU2

Œc

Cf Skin friction coe�cient, (-)

= ·w
1
2 flŒU2

Œ

Cl Lift coe�cient, (-)

= L
1
2 flŒU2

Œc
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Cm Pitching moment coe�cient, (-)

= M
1
2 flŒU2

Œc2

Cp Pressure coe�cient, (-)

= p≠pŒ
1
2 flŒU2

Œ

D Drag force, (N)

d Number of design variables

L Lift force, (N)

M Pitching moment, (Nm)

m Number of data samples

MŒ Free-stream Mach number

mtr Number of training design samples

mt Number of testing design samples

N Number of samples

n Number of subsets

nh Number of high-fidelity flow field parameters

nl Number of low-fidelity flow field parameters

p Static pressure, (Pa)

pr RANS pressure in the grid cell-center, (Pa)

pŒ Free-stream pressure, (Pa)

ReŒ Reynolds number based on chord length,

= UŒc
‹

ReH Reynolds number based on step height,

= UinletH

‹

up Potential flow x coordinate velocity in the grid cell-center, (m/s)
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ur RANS x coordinate velocity in the grid cell-center, (m/s)

UŒ Free-stream velocity, (m/s)

Uinlet Domain inlet velocity, (m/s)

vp Potential flow y coordinate velocity in the grid cell-center, (m/s)

vr RANS y coordinate velocity in the grid cell-center, (m/s)

xc x coordinate of the grid cell-center, (m)

xRAL Boundary layer reattachment length, (m)

y+ Non-dimensionalized first layer cell thickness

yc y coordinate of the grid cell-center, (m)

x0 B-spline control points for NACA 0012

H Step height, (m)

h Baseline step height, (m)

x x coordinate of the domain, (m)

y y coordinate of the domain, (m)

d.c. Drag counts, �Cd = 0.0001

l.c. Lift counts, �Cl = 0.01

1 Introduction

Increasing computational power and decreasing computational cost have led to the widespread

development and use of three very important areas of aerospace engineering, namely, compu-

tational fluid dynamics (CFD), machine learning (ML), and aerodynamic design optimization

(ADO). While these three fields were initially developed separately, there has been an increasing

e�ort to couple the three systems together to find optimum designs [1–5], perform uncertainty

analysis [6–9], and solve inverse problems [10–12].

Traditional ADO methods rely heavily on expensive high-fidelity simulations to calculate both

the cost function and constraint values [13–16]. Furthermore, these methods require multiple and

4



repetitive high-fidelity model evaluations during the iterative design process. When combined

with a large number of design variables, these methods result in problems that can be di�cult to

solve in a reasonable time period.

Several surrogate modeling techniques have been introduced to overcome these challenges

[17–22]. These surrogate modeling techniques can be broadly classified as either data-fit methods

[23, 24] or multifidelity methods [25]. In data-fit methods, a response surface is fitted through the

evaluated single-fidelity model responses at sampled points in the design space. Kriging [26–28],

polynomial chaos expansions [29], and support vector regression [30] are examples of data-fit

methods. Multifidelity methods [25], on the other hand, use information from multiple levels

of fidelities to make accurate high-fidelity predictions. Low-fidelity data samples can be used

to provide information on the trends to a relatively small number of high-fidelity data samples,

increasing the overall predictive capabilities of these surrogate models. Cokriging [31, 32] and

manifold mapping [33] are examples of multifidelity surrogate modeling methods.

The use of ML to augment Reynolds-averaged Navier-Stokes (RANS) CFD models, increasing

their fidelity, have recently become popular [34–37]. The simplest method involves tuning the

turbulence parameters by minimizing a cost function, such as the mean squared error (MSE) of

velocity or temperature at a selected location [38–42]. Either a Kriging [38] or a neural network

(NN) [39] surrogate model was used to find the relationship between the turbulence parameters

and the cost function. Variables selected in the cost function showed prediction improvements,

while other variables showed a decrease in accuracy [38, 39]. In another method, Singh et

al. [34, 35] developed a data-driven technique referred to as field inversion ML to construct a

deficiency (—) term from high-fidelity large eddy simulation (LES) data. This term was then

multiplied to either the production or destruction terms in one of the two additional transport

equations of a two-equation RANS model. Either NN [43] or Kriging [26] were used to construct

a functional form of — from a set of nondimensional flow features. This approach enhanced

the fidelity of the two-equation RANS model [34, 35]. A physics-informed ML framework was

developed by Wang et al. [36] and Wu et al. [37]. Several mean flow features were used as

inputs into a random forest (RF) [44, 45] ML algorithm with outputs being the discrepancy of

the Reynolds stresses between the RANS model and direct numerical simulations (DNS). This

discrepancy term was then embedded into the RANS model and the resulting RANS model

showed significant improvements in field predictions. While the methods are promising, they

involve solving the RANS equations every time a prediction is needed to be made. In addition,
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training these ML models requires data to be generated from either LES or DNS, both of which

are computationally impractical to solve for many problems.

Instead of solving the governing equations each time, some researchers [3, 4, 46] have attempted

to directly predict the quantities of interest. Zhang et al. [46] tried to predict pressure coe�cients

on airfoils of di�erent shapes at multiple Mach numbers, Reynolds numbers, and angle of attack,

using both NN [47] and convolutional NN [43]. Li et al. [4] used gradient-enhanced Kriging

with partial least squares [20] to predict the drag, lift, and pitching moment coe�cients of

di�erent airfoils at varying flow conditions. Bouhlel et al. [3] performed a similar study, but used

gradient-enhanced NN [48] to predict the drag, lift, and pitching moment coe�cient for an airfoil.

While good prediction capabilities of these algorithms were shown, the major drawback of these

methods is that they require a large number of sample points to train the algorithms, typically on

the order of 103 to 105. The data generated in these studies [3, 4] was acquired by running a large

number of CFD simulations for multiple di�erent airfoil shapes and flow conditions to calculate

the force coe�cients. The number of CFD simulations performed, therefore, corresponds to the

number of sample points required to train the ML algorithms, thereby making it challenging to

be used for various optimum design and uncertainty quantification problems.

Maulik et al. [49] developed a framework, called tensorFlowFoam1 (TFF), to predict the

turbulent viscosity in fluid flow obtained from data generated using several di�erent RANS

turbulence models. Their work considers the flow past a backward-facing step for di�erent

inlet conditions and geometries. Specifically, in the first case, they train the NN using data

generated with ten di�erent inlet velocities, and in the second case, the training data is generated

using six di�erent step heights. The NN is then tested on two unseen inlet velocities and step

heights, respectively. To predict the flow field for the unseen cases, they solve the continuity and

momentum equations in RANS and use the turbulent viscosity predicted by the NN instead of

solving additional closure equations. This reduced the simulation cost by a factor of five [49].

The major benefit of using such a method is the total number of CFD simulations required to

generate all the data in order to train the NN is relatively small. This is because Maulik et al.

[49] used data from each cell-center from each CFD simulation to train the NN, and each CFD

simulation contained approximately 105 grid cells.

In this work, a novel multifidelity ML algorithm using RF [44, 45] is proposed and demon-

strated on three di�erent cases. The framework is motivated by the TFF framework developed
1https://github.com/argonne-lcf/TensorFlowFoam
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by Maulik et al. [49, 50], and uses data from both a high-fidelity RANS model and a low-fidelity

potential flow model. The proposed framework predicts the velocity and pressure fields in

addition to the turbulent viscosity field predicted using TFF. The proposed method, therefore,

eliminates the need for solving the continuity and momentum equations required by TFF, further

reducing the amount of time required to make a high-fidelity flow prediction. Furthermore, the

proposed method uses the RF [45] in place of NN [43]. The first two cases in this paper are the

same as those used by Maulik et al. [49] and the proposed RF framework is compared to TFF

as well as to the RANS CFD simulations. The third case consists of flow over an airfoil at a

Mach number of 0.3 and an angle of attack of ten degrees. In this case, results from RF are only

compared to those from RANS simulations.

The next section describes the proposed method to predict the flow field using the multifidelity

RF ML algorithm. In the following section, the results of applying the proposed method to three

cases are described and compared against TFF prediction and direct RANS solutions. Lastly,

the conclusion and future work are presented.

2 Methods

This section outlines the methods used to construct the multifidelity RF-based flow field prediction

framework. The section begins with an outline of the workflow of the framework, followed by

descriptions of the sampling plan, the high- and low-fidelity flow field modeling, the RF algorithm,

the validation metric used, and, lastly, the RF-based flow field prediction.

2.1 Workflow

Figure 1 shows a flowchart of the proposed multifidelity RF-based flow field prediction framework.

This framework consists of two parts, the o�ine part (Fig. 1(a)) and the online part (Fig. 1(b)).

The o�ine part consists of training and validating the RF, while the online part is used to

make high-fidelity flow field prediction using the trained RF, given the low-fidelity flow field

and the design parameters. The process for the o�ine part starts by sampling the design space

X œ Rmtr◊d first. Here, mtr denotes the total number of training design samples, while d is the

number of design parameters. The low- (fLF œ Rm◊nl) and high-fidelity models (fHF œ Rm◊nh)

are run for the sampled designs to generate the data required to train and validate the RF. nl

and nh are the number of low- and high-fidelity flow field parameters, respectively, while m
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Figure 1: A flowchart of the multifidelity random forest-based flow field prediction framework: (a)
training and validating the random forest, and (b) random forest-based flow field prediction.

denotes the total number of data samples. In order to tune the hyperparameters of the RF,

90% of the data is used to train the RF, while 10% is used to validate them. The accuracy of

the RF algorithm is measured using the MSE. Once all the hyperparameters are tuned, the

RF is retrained with the combined training and validation data and is ready to be used in the

online part. In the online part, the low-fidelity model is run on previous unsampled design

parameters x œ Rmt◊d, where mt is the number of testing design samples. The data from this

low-fidelity model is then used as inputs to the trained RF to make high-fidelity RF-based flow

field predictions f̂HF œ Rm◊nh .

2.2 Sampling plan

Sampling is the process of selecting discrete samples in the design space [51]. It is an iteration-

based process in which the design parameters are randomly drawn from probability distributions

assigned to the parameters. For the first two demonstration cases in this work, the full factorial

sampling (FFS) [51] plan is used to generate the design parameters, while the Latin Hypercube

sampling (LHS) [52] plan is used for the same in the third case. For these sampled design

parameters, both high-fidelity RANS CFD simulations and low-fidelity potential flow simulations

are performed to generate the required flow field to train, validate, and make predictions using

the RF framework.

2.3 Flow field modeling

This section details the high- and low-fidelity models use to model the flow field for the demon-

stration cases used in this study.
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2.3.1 Low-fidelity flow field modeling

In this study, the low-fidelity model used is the potential flow model [53]. Potential flow equations

assume that the flow is both inviscid and irrotational [54]. For the flow to be irrotational, the

vorticity needs to be zero everywhere and is given by the curl of the velocity [54]

Ò ◊ u = 0, (1)

where u is velocity vector of the flow. Considering the vector identity [54]

Ò ◊ (Ò„) = 0, (2)

where „ is a scalar function, combining (1) and (2) leads to

u = Ò„, (3)

where „ now is defined as the velocity potential [54]. Since the flow in the demonstration cases is

incompressible, the conservation of mass is given by divergence of the velocity [53]

Ò · u = 0. (4)

Using (3) in (4) gives

Ò · (Ò„) = 0 (5)

or

�„ = 0. (6)

In any two dimensional incompressible flow, a stream function Â [54] can be defined such that it

satisfies [54]

�Â = 0. (7)

Equations (6) and (7) imply that any two dimensional potential flow problem has a velocity

potential and a stream function that satisfy Laplace’s equations [54].
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2.3.2 High-fidelity flow field modeling

The Spalart-Allmaras [55] turbulence model is used in this work. The additional transport

equation is introduced as a way to model the Reynolds stresses, which are a byproduct of

performing Reynolds averaging on the Navier-Stokes equations, leading to the infamous closure

problem in turbulence [56]. The Boussinesq eddy viscosity assumption [57] is used to correlate the

Reynolds stresses and the turbulent viscosity, ‹t. A transport equation to model this turbulent

viscosity is solved in addition to the Reynolds averaged continuity and momentum equations and

is given by [55]

ˆ‹̃

ˆt
+ u · Ò‹̃ = Cb1[1 ≠ ft2]S̃‹̃ + 1

‡
{Ò · [(‹ + ‹̃)Ò‹̃] + Cb2|Ò‹̃|2}

≠
C

Cw1fw ≠ Cb1

Ÿ2
ft2

DA
‹̃

d

B2

+ ft1�U2,
(8)

where

‹t = ‹̃fv1, fv1 = ‰3

‰3 + C3
v1

, ‰ = ‹̃

‹
, S̃ = S + ‹̃

Ÿ2d2
fv2, fv2 = 1 ≠ ‰

1 + ‰fv1

,

fw = g

C
1 + C6

w3

g6 + C6
w3

D1/6

, g = r + Cw2(r6 ≠ r), r = ‹̃

S̃Ÿ2d2
, S =

Ò
2�ij�ij ,

ft1 = Ct1gtexp

A

≠ Ct2
Ê2

t

�U2

#
d2 + g2

t d2

t

$
B

,

ft2 = Ct3exp
!

≠ Ct4‰2
"
, �ij = 1

2

A
ˆui

ˆxj
≠ ˆuj

ˆxi

B

, Cw1 = Cb1

Ÿ2
+ 1 + Cb2

‡
,

‡ = 2/3, Cb1 = 0.1355, Cb2 = 0.622, Ÿ = 0.41, Cw2 = 0.3,

Cw3 = 2, Cv1 = 7.1, Ct1 = 1, Ct2 = 2, Ct3 = 1.1, Ct4 = 2,

‹̃ is the turbulent viscosity like variable [55], S and � are the strain-rate tensor and the vorticity

tensor, respectively, d is the distance from the closest surface, and �U2 is the peak velocity

di�erence [58].

2.4 Random forest

Random forest [44, 45] is an ensemble ML method [59] which can be used for both classification

and regression tasks by constructing a multitude of decision trees [60]. Both decision trees [60]

and random forests [45] involve stratifying or segmenting the output predictor space into simple
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regions. For a new observation, the mean or mode value of training observations to which the

new observation belongs is used as its predicted value. A set of splitting rules is used to segment

the predictor space and this can be summarized using a tree, hence the name decision trees [61].

Figure 2 shows a schematic of a random forest with two decision trees. Each decision tree

consists of a root node, followed by several intermediate nodes or decision nodes, and terminates

on the leaf or terminal nodes. The root node of a decision tree represents the entire training

dataset and it is used to further divide this dataset into two or more smaller datasets. This is

done by iterating over each individual input feature as well as over a splitting criterion such as a

mean or mode of the input feature value. The combination which results in the lowest weighted

MSE over all the subsets, n, is used as the criterion to split the data at the root node. The MSE

is given by

Lsplit =
ÿn

k=1

qN(k)
i=1

qnh
j=1

(f̂ (k)

HF,j ≠ f (i)
HF,j)2

N (k)nh
, (9)

where nh is the number of output predicted variables, N (k) is the number of samples in the

kth subset created after splitting at the root node, f (i)
HF,j represent the high-fidelity CFD field

prediction for the jth field variable and the ith sample in the subset, and f̂ (k)

HF,j is the mean of the

CFD field predictions for the jth field variable in the kth subset, and is given by

f̂ (k)

HF,j =
qN(k)

i=1
f (i)

HF,j

N (k)
. (10)

The intermediate nodes following the root node perform the same task as the root node,

but with data from a given subset. The intermediate node essentially splits the subset from

the previous intermediate node or root node into a smaller subset. This process continues with

smaller and smaller subsets until the leaf node is reached. Various hyperparameters can be set

to decide whether a leaf node is reached. These include the minimum number of samples in a

subset required to split it and the maximum tree depth. The leaf node returns the predicted

value from the decision tree.

Some of the main advantages of decision trees include interpretability, the ability to handle

large amounts of data, and ease of use [61]. This makes it attractive to use for various ML tasks.

However, its drawbacks include high sensitivity to the training dataset, and over-fitting [61].

Random forest overcomes these problems by averaging the outputs from multiple decision trees,

which is set using the number of trees hyperparameter, and in order to construct each individual
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Figure 2: A schematic of a random forest with two decision trees.

decision tree, data from the training dataset is randomly selected with replacement and fed into

the decision tree.

2.5 Validation

In this work, 90% of the data is used to train the RF, and 10% is used to validate its accuracy.

The training and validation set accuracy is measured using the mean MSE, and is averaged over

all the output predictions, and is given by

L =
qN

i=1

qnh
j=1

(f̂ (i)
HF,j ≠ f (i)

HF,j)2

Nnh
, (11)

where nh is the number of high-fidelity flow field variables, m is the total number of data samples,

N µ m is the number samples in either the training or validation data sets, f̂ (i)
HF,j and f (i)

HF,j

represent the high-fidelity RF and CFD field prediction, respectively, of the jth field variable and

the ith sample.

2.6 Multifidelity random forest-based flow field prediction

Once the RF is trained and validated, it can then be used to increase the fidelity of the low-fidelity

potential flow field. To perform a high-fidelity RANS field prediction, the potential flow field

values, as well as the design variables, x, are fed into the trained RF and the corresponding RANS

field can be reconstructed for the design x. To measure the accuracy of the field predicted by
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RF, both the absolute and the relative L2 norm errors are measured at di�erent locations in the

domain. The choice of these locations is case dependant and is discussed in their corresponding

sections. The absolute error is given by

Labs,j = |f̂HF,j ≠ fHF,j |, (12)

where f̂HF,j and fHF,j are the high-fidelity RF and CFD flow field prediction for a given variable

of interest j. The relative L2 norm is given by

L2,rel,j = ||̂fHF,j ≠ fHF,j ||2
||fHF,j ||2

. (13)

The main benefit of using this method is the reduction in the cost associated in various

engineering problems, such as aerodynamic shape optimization, uncertainty quantification and

propagation, as well as global sensitivity analysis. Such problems typically need multiple and

repetitive high-fidelity physics-based simulation evaluations. This methodology replaces these

high-fidelity simulations with the RF model. This is done by feeding in the values of the design

variables along with the low-fidelity flow field variables to the trained RF model for a new

design x, to make high-fidelity flow field predictions. This field can then be used to calculate

the quantities of interest for the engineering application. Both the low-fidelity simulation cost

and RF prediction time are significantly lower than the high-fidelity simulation cost, thereby

significantly reducing the computational time involved in solving such problems.

3 Numerical Examples

This section presents the results of the multifidelity RF-based flow field prediction framework

demonstrated on three di�erent cases. The first two cases consider steady flow past a backward-

facing step and the third a steady subsonic flow around an airfoil at ten degrees angle of attack.

The results for the first two cases are compared to the TFF framework and all the cases are

compared to the RANS CFD simulations.

3.1 Case I

In this case, the flow past a backward facing step is simulated. The step height, H = 1.0h, where

h is the baseline step height of 12.7 mm, is used and the Reynolds number based on this step
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height is defined as ReH = UinletH/‹, where Uinlet is the freestream velocity at the inlet to the

domain, H is the step height, and ‹ is the kinematic viscosity. The ReH for this case varies

between 34, 000 and 41, 500, based on the selected Uinlet values.

3.1.1 Problem definition

The objective of this case is to replace the high-fidelity RANS simulations with the multifidelity

RF ML algorithm that predicts the RANS flow field, namely, velocity (ur and vr), pressure

(pr) and turbulent viscosity (‹t), in the domain. The inputs to the random forest are the

cell-center locations of the grid elements, given by the horizontal, xc, and vertical, yc, positions,

the horizontal and vertical velocities at these cell-center locations from the low-fidelity potential

flow solver, given by up and vp, respectively, and the inlet velocity inlet boundary condition

value, Uinlet. The RF for this case is trained with data from ten CFD simulations with Uinlet

varying from 40 m/s to 49 m/s in increments of 1 m/s, that is using the FFS plan. The RF is

then tested on two unseen inlet speeds, Uinlet, of 44.2 m/s and 48.5 m/s. The results are finally

compared to those from RANS CFD simulations and TFF. Note that the choice of training and

testing data is the same as those used by Maulik et al. [49].

3.1.2 CFD setup and validation

In this work, the flow past a backward-facing step is simulated for the first two cases. Figure 3

shows the domain of the geometry used in this study. The step height, h, is fixed at 12.7 mm

and the remaining domain is scaled as per the dimensions given in Fig. 3. The inlet velocity to

the domain is set to a value of 44.2 m/s. The step height and inlet velocity values are set in

h

8h

50h20h 110h

x = 0

Velocity 
inlet

Pressure 
outlet

No-slip wall

No-slip wall

Symmetry

Symmetry

Figure 3: Domain and boundary conditions of the backward facing step.
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accordance with experimental data from David and Seegmiller [62], in order to validate the CFD

setup.

To generate the mesh, the blockMesh in OpenFOAM version 5.0 [63] is used and is shown in

Fig. 4. Near the upper and lower walls, as well as the step, the mesh is refined to ensure that the

first cell thickness is less than a y+ value of one. A grid independent study is then performed

and the results are shown in Table 1.

To simulate both the high- and low-fidelity flow, OpenFOAM version 5.0 [63] is used. In

particular, the potentialflowFoam solver is used to simulate the low-fidelity potential flow field

and the simpleFoam solver to simulate the high-fidelity Spalart-Allmaras [55] RANS turbulence

model flow field. The boundary conditions set are shown in Fig. 3. The viscosity (‹) of the

fluid used has a value of 1.56 ◊ 10≠5 m2/s and the outlet has a zero pressure gradient value.

The wall boundary conditions are shown in Fig. 3. The Linear-Upwind Stabilised Transport

[63] scheme is used to handle the convective fluxes. The convergence criteria set is pressure and

velocity residuals fall to a value below 10≠6 for the RANS simulations. The simulation time as

well as the reattachment length (xRAL) of boundary layer downstream of the step is given in

Table 1. Refining the mesh moves the reattachment length from the CFD simulations closer to

the experimental value. From Table 1, mesh L1 is used in this study.

Figure 4: Mesh generated for the backward facing step.

Table 1: Grid convergence study for the backward facing step.

Mesh No. of cells xRAL Simulation timeú, s
L3 7,620 5.97h 12.5
L2 30,730 6.03h 49.3
L1 123,000 6.06h 343.4
L0 408,000 6.29h 2,912.5

Exp. [62] - 6.26h -
úComputed on a high-performance cluster with 16 processors.
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3.1.3 Results

The ratio of the turbulent viscosity to kinematic viscosity, termed viscosity ratio, for TFF, RF,

and CFD are shown in Figs. 5(a) and 6(a) for the two selected test cases, respectively, and at

di�erent downstream locations. Figures 5(b) and 6(b) show the corresponding absolute errors

of TFF and RF with respect to the CFD results. Figures 5 and 6 show that the viscosity ratio

trend for both these cases is similar, with RF having a lower absolute error when compared

to TFF. At the midsection of this backward-facing step domain, with midsection referring to

y/H values between 3 and 5, RF has the lowest absolute error and this error is around three

orders of magnitude lower than TFF. In the remaining section of the domain, RF is still better

at predicting the viscosity ratios than TFF, but this error is around four orders of magnitude

higher than the midsection. Table 2 shows the relative L2 norm of the viscosity ratio at various

downstream locations for this case. RF has a lower relative L2 norm compared to TFF. At x/H
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Figure 5: Case I viscosity results at di�erent x/H locations for inlet velocity of 44.2 m/s: (a) viscosity
ratio values, and (b) absolute errors.
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Figure 6: Case I viscosity results at di�erent x/H locations for inlet velocity of 48.5 m/s: (a) viscosity
ratio values, and (b) absolute errors.

16



Table 2: Case I relative L2 norm of the viscosity ratio.

Model Uinlet, m/s x/H = 1 x/H = 4 x/H = 6 x/H = 10
TFF 44.2 0.082 0.019 0.017 0.016
RF 44.2 0.008 0.007 0.007 0.006

TFF 48.5 0.104 0.020 0.018 0.017
RF 48.5 0.008 0.008 0.008 0.007

= 1, this norm is one order of magnitude lower for RF, while are the remaining locations, it is

approximately half the value when compared to TFF.

Figure 7 shows the velocity ratio and the absolute errors at selected downstream locations

for the test case with an inlet velocity of 44.2 m/s for the di�erent ML algorithms and CFD

simulations. The absolute errors in RF fluctuate significantly from the lower to upper walls, with

this error fluctuating by approximately three orders of magnitude. However, RF outperforms

TFF in predicting velocity ratios. TFF is especially poor at predicting the velocity ratios near

the upper and lower walls as seen in Fig. 7(b). Figure 8 shows similar results for the test case

with Uinlet = 48.5 m/s as seen with Uinlet = 44.2 m/s in Fig. 7. Table 3 shows that RF is more

than one order of magnitude better at predicting the velocity ratios for this case when compared

to TFF, given by the relative L2 norm.

RF outperforms TFF in predicting the pressure coe�cients on the lower wall of the backward-

facing step. These results are shown in Figs. 9 and 10 for the two test cases selected. The

pressure coe�cient profile from RF matches the CFD results well, while small di�erences can

be seen using TFF. The corresponding relative L2 norms are shown in Table 4, with RF again
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Figure 7: Case I velocity results at di�erent x/H locations for inlet velocity of 44.2 m/s: (a) velocity
ratio values, and (b) absolute errors.
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Figure 8: Case I velocity results at di�erent x/H locations for inlet velocity of 48.5 m/s: (a) velocity
ratio values, and (b) absolute errors.

Table 3: Case I relative L2 norm of the velocity ratio.

Model Uinlet, m/s x/H = 1 x/H = 4 x/H = 6 x/H = 10
TFF 44.2 0.086 0.072 0.071 0.066
RF 44.2 0.002 0.002 0.003 0.002

TFF 48.5 0.092 0.080 0.079 0.072
RF 48.5 0.004 0.005 0.006 0.006

having significantly lower values than the comparison method.

Figures 11 and 12 show the skin friction coe�cient profile on the lower wall for the di�erent

test cases, respectively. RF again outperforms TFF at capturing this profile as seen by the lower

absolute errors in Figs. 11(b) and 12(b), respectively. This is also shown by the lower relative L2

norms in Table 4. The skin friction coe�cient profile from RF is able to match CFD results well,

with the exception for the case with Uinlet = 44.2 m/s and at x/H of 2. It is important to note
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Figure 9: Case I pressure results on bottom wall for inlet velocity of 44.2 m/s: (a) pressure coe�cient
values, and (b) absolute errors.
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Figure 10: Case I pressure results on bottom wall for inlet velocity of 48.5 m/s: (a) pressure coe�cient
values, and (b) absolute errors.

Table 4: Case I relative L2 norm of the pressure and skin friction coe�cients on the bottom wall.

Model Uinlet, m/s Cp Cf

TFF 44.2 0.075 1.032
RF 44.2 0.008 0.034

TFF 48.5 0.092 1.049
RF 48.5 0.012 0.031
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Figure 11: Case I skin friction results on bottom wall for inlet velocity of 44.2 m/s: (a) skin friction
coe�cient values, and (b) absolute errors.

that the skin friction coe�cient values are heavily a�ected by the turbulent viscosity values near

the wall. In this case, the turbulent viscosity is in the order of magnitude of 10≠8 near the walls,

while the maximum turbulent viscosity is in the order of magnitude of 10≠3. Small changes in

the value of this viscosity near the walls can have a big impact on the skin friction value of the

wall. Therefore, it is crucial for the ML algorithms to accurately predict this viscosity near the

walls of the domain.

19



0 10 20 30

x/H

-5

0

5

10

C
f

10
-3

CFD

TFF

RF

(a)

0 10 20 30

x/H

10
-8

10
-6

10
-4

10
-2

10
0

A
b
s
o
lu

te
 e

rr
o
r

TFF

RF

(b)

Figure 12: Case I skin friction results on bottom wall for inlet velocity of 48.5 m/s: (a) skin friction
coe�cient values, and (b) absolute errors.

The viscosity ratio contours for CFD, TFF and RF are shown in Figs. 13, 14, and 15,

respectively. No noticeable di�erences in these contours plots between the ML algorithms and

CFD can be seen in these figures. The velocity ratio contours similarly do not show any noticeable

di�erence between the two ML algorithms and CFD as seen in Figs. 16, 17, and 18. The pressure

coe�cient contours in Figs. 19, 20, and 21 show that RF is better at predicting pressures than

TFF. Downstream of the step, at around x/H = 2, the pressure coe�cients for TFF are higher

than CFD as seen in blue, while at x/H = 10 are lower than CFD as seen in red.

Table 5 list the computational cost involved in Case I. The data accumulation time is the

same for RF and TFF as the same training data is used. RF is faster to train than TFF (which

uses NN) and is also significantly faster at prediction compared to both TFF and CFD.

(a) (b)

Figure 13: Case I CFD viscosity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.
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(a) (b)

Figure 14: Case I TFF viscosity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.

(a) (b)

Figure 15: Case I RF viscosity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.

(a) (b)

Figure 16: Case I CFD velocity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.
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(a) (b)

Figure 17: Case I TFF velocity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.

(a) (b)

Figure 18: Case I RF velocity ratio contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.

(a) (b)

Figure 19: Case I CFD pressure coe�cient contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5
m/s.
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(a) (b)

Figure 20: Case I TFF pressure coe�cient contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5
m/s.

(a) (b)

Figure 21: Case I RF pressure coe�cient contours for inlet velocities of: (a) 44.2 m/s, and (b) 48.5 m/s.

Table 5: Case I computational cost.

Model Uinlet, m/s Data accumulation, s Training, s Prediction, s
CFD 44.2 - - 474
TFF 44.2 4,740 170 90
RF 44.2 4,740 70 1

CFD 48.5 - - 473
TFF 48.5 4,740 170 79
RF 48.5 4,740 70 1

3.2 Case II

The flow past a backward-facing step is simulated in this case. However, this case considers

the e�ect of varying the step height, H, instead of Uinlet. The Reynolds number based on the

step height is defined as ReH = UinletH/‹, where Uinlet is the freestream velocity at the inlet to

23



the domain, H is the step height, and ‹ is the kinematic viscosity. The ReH for this case varies

between 18, 000 and 72, 000, based on the selected H values.

3.2.1 Problem definition

Similar to Case I, the objective of this case is to replace the high-fidelity RANS simulations

with a RF ML algorithm that predicts the RANS flow field. This case, however, considers the

e�ect of varying the step height, H, instead of Uinlet. Uinlet is fixed to a value of 44.2 m/s. The

inputs to the RF include xc/H, yc/H, up and vp, and H. The RF is trained with data from six

di�erent step heights, namely, H= 0.5h, 0.75h, 1.25h, 1.5h, 1.75h, and 2.0h, respectively. This

training dataset is sampled at 0.25h di�erence apart, except between 0.75h and 1.25h, where the

di�erence is 0.5h. This trained RF is then tested with step heights 1.0h and 1.9h, respectively.

The results are then compared to those from RANS CFD simulations and TFF. The training

and testing sets are the same as those used by Maulik et al. [49]. The CFD and mesh setup is

similar to Case I.

3.2.2 Results

Figure 22 shows the viscosity ratio plots for the step height of 1.0h at di�erent downstream

locations. At the midsection, RF has lower absolute errors compared to TFF by approximately

two orders of magnitude. In the remaining sections, TFF has two orders of magnitude lower

errors than RF. For the step height of 1.9h, similar trends can be seen in the midsection as shown

in Fig. 23. In the remaining section, however, the di�erence in absolute errors between RF and

TFF is lower compared to a step height of 1.0h. However, RF still has higher errors than TFF.

0 100 200 300 400 500

t
/

0

2

4

6

8

y/
H

x/H = 1
x/H = 4
x/H = 6
x/H = 10

CFD
TFF
RF

(a)

10 -4 10 -2 10 0 10 2 10 4

Absolute error

0

2

4

6

8

y/
H

x/H = 1
x/H = 4
x/H = 6
x/H = 10

TFF
RF

(b)

Figure 22: Case II viscosity results at di�erent x/H locations for step height of 1.0h: (a) viscosity ratio
values, and (b) absolute errors.
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Figure 23: Case II viscosity results at di�erent x/H locations for a step height of 1.9h: (a) viscosity
ratio values, and (b) absolute errors.

The corresponding relative L2 norm for the viscosity ratios is shown in Table 6. TFF has a lower

relative L2 norm when compared to RF. Between the two step heights, for RF, the step height

of 1.9h has significantly lower relative L2 norm values when compared to 1.0h. This is due to

the lack of training data in the vicinity of 1.0h when compared to 1.9h.

RF is better at predicting the velocity ratios than TFF for both the step heights as seen

in Figs. 24 and 25. This is confirmed by the lower relative L2 norm values shown in Table 7.

Table 6: Case II relative L2 norm of the viscosity ratio.

Model H x/H = 1 x/H = 4 x/H = 6 x/H = 10
TFF 1.0h 0.032 0.018 0.017 0.014
RF 1.0h 0.236 0.238 0.234 0.233

TFF 1.9h 0.038 0.014 0.015 0.023
RF 1.9h 0.050 0.051 0.049 0.082
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Figure 24: Case II velocity results at di�erent x/H locations for a step height of 1.0h: (a) velocity ratio
values, and (b) absolute errors.
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Figure 25: Case II velocity ratio at di�erent x/H locations for a step height of 1.9h: (a) velocity ratio
values, and (b) absolute errors.

Table 7: Case II relative L2 norm of the velocity ratio.

Model H x/H = 1 x/H = 4 x/H = 6 x/H = 10
TFF 1.0h 0.063 0.055 0.056 0.050
RF 1.0h 0.016 0.010 0.010 0.011

TFF 1.9h 0.065 0.061 0.059 0.056
RF 1.9h 0.002 0.002 0.003 0.002

These results are similar to those in Case I as shown in Figs. 7 and 8. TFF is especially poor at

predicting the velocities in the region between y/H = 7 and the upper wall, as well as between

y/H = 3 and the lower wall.

RF is able to capture the pressure coe�cient trend on the lower wall more accurately than

TFF as seen in Figs. 26(a) and 27(a) for step heights of 1.0h and 1.9h, respectively. RF has

about one order of magnitude lower absolute errors compared to TFF as shown in Figs. 26(b)
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Figure 26: Case II pressure results on bottom wall for a step height of 1.0h: (a) pressure coe�cient
values, and (b) absolute errors.
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Figure 27: Case II pressure results on bottom wall for a step height of 1.9h: (a) pressure coe�cient
values, and (b) absolute errors.

and 27(b). Figures 28 and 29 show that RF and TFF are better at predicting the skin friction

coe�cient on the bottom wall for the case with a step height of 1.9h compared to 1.0h. This is

due to the lack of training data in the vicinity of 1.0h, as mentioned above. The corresponding
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Figure 28: Case II skin friction results on bottom wall for a step height of 1.0h: (a) skin friction
coe�cient values, and (b) absolute errors.
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Figure 29: Case II skin friction results on bottom wall for a step height of 1.9h: (a) skin friction
coe�cient values, and (b) absolute errors.
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relative L2 norms for both the coe�cients are shown in Table 8, with RF having significantly

lower values than TFF.

Figures. 30, 31, and 32 show the viscosity ratio contours from CFD, TFF and RF, respectively.

For the step height of 1.0h, TFF viscosity ratio contours (Fig. 31(a)) match those from CFD

(Fig. 30(a)) well. While RF under predicts the viscosities in regions between y/H = 7 and the

upper wall, as well as between y/H = 3 and the lower wall, as seen in Fig. 32(a). For the step

height of 1.9h, both TFF and RF are better at predicting the viscosities when compared to a

step height of 1.0h. The velocity ratio contours for the ML algorithms match CFD results well

as seen in Figs. 33, 34, and 35. TFF, however, is poor at predicting the pressure contours as

seen in Figs. 36, 37, and 38.

Table 9 shows the computational cost involved in Case II. Similar to Case I, RF is cheaper

to both train on the given dataset and to predict the flow field, when compared to TFF. RF is

approximately three times cheaper to train than TFF. RF takes about one second to predict the

entire flow field.

Table 8: Case II relative L2 norm of the pressure and skin friction coe�cients on the bottom wall.

Model H Cp Cf

TFF 1.0h 0.155 1.434
RF 1.0h 0.012 0.222

TFF 1.9h 0.102 0.927
RF 1.9h 0.005 0.055

(a) (b)

Figure 30: Case II CFD viscosity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.
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(a) (b)

Figure 31: Case II TFF viscosity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.

(a) (b)

Figure 32: Case II RF viscosity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.

(a) (b)

Figure 33: Case II CFD velocity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.
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(a) (b)

Figure 34: Case II TFF velocity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.

(a) (b)

Figure 35: Case II RF velocity ratio contours for step heights of: (a) 1.0h, and (b) 1.9h.

(a) (b)

Figure 36: Case II CFD pressure coe�cient contours for step heights of: (a) 1.0h, and (b) 1.9h.
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(a) (b)

Figure 37: Case II TFF pressure coe�cient contours for step heights of: (a) 1.0h, and (b) 1.9h.

(a) (b)

Figure 38: Case II RF pressure coe�cient contours for step heights of: (a) 1.0h, and (b) 1.9h.

Table 9: Case II computational cost.

Model H Data accumulation, s Training, s Prediction, s
CFD 1.0h - - 476
TFF 1.0h 2,856 126 77
RF 1.0h 2,856 40 1

CFD 1.9h - - 473
TFF 1.9h 2,856 126 70
RF 1.9h 2,856 40 1

3.3 Case III

In this case, the flow around an airfoil is simulated. The flow is steady, subsonic, and incompress-

ible with a Mach number of 0.3. The angle of attack of the flow is 10 degrees. The Reynolds

number based on the chord length, c, is defined as Rec = UŒc/‹ and has a value of 6◊106, where
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UŒ is the freestream velocity with a magnitude of 51.5 m/s, and ‹ is the kinematic viscosity

with a value of 8.58 ◊ 10≠6 m2/s.

3.3.1 Problem definition

Similar to the previous two cases, the objective of this case is to replace the RANS model with the

RF ML algorithm. The RF algorithm is trained using 20 di�erent airfoil shapes parameterized

using B-spline curves [64] with eight control points. These 20 shapes are generated using the

LHS [52] plan, where the upper and lower bound values are set to (1 ± 25%)x0. x0 is the vector

of B-spline control points corresponding to the NACA 0012 airfoil. The inputs to the RF model

include „, Â, and the eight B-spline control point locations, and the outputs include ur, vr, pr,

and ‹t. This trained RF model is tested on the NACA 0012 airfoil and the RAE 2822 airfoil.

The results are compared to RANS CFD simulations.

3.3.2 CFD setup and validation

To simulate the flow around an airfoil, an O-grid mesh is generated and shown in Fig. 39 using

pyHyp [65]. The y+ value is less than two and the far-field is located 55c from the center of the

airfoil. The mesh and CFD setup is validated with experimental data from [66]. The results

from the grid independence study are shown in Table 10.

Both the high- and low-fidelity flow is simulated using OpenFOAM version 5.0 [63]. po-

tentialFlowFoam is the low-fidelity solver, while simpleFoam is the high-fidelity solver. The

high-fidelity solver simulates the Spalart-Allmaras [55] RANS turbulence model. The far-field of

the domain is set to a pressure far-field boundary condition, while the walls of the airfoil are set

(a) (b)

Figure 39: O-grid for Case III: (a) domain, and (b) near the airfoil.
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Table 10: Grid convergence study for the NACA 0012 airfoil in subsonic flow.

Mesh No. of cells –, deg Cl, l.c. Cd, d.c. Simulation timeú, s
L3 11,286 10.18 109.4 148.6 77
L2 39,402 10.18 109.7 139.2 232
L1 145,236 10.18 109.5 137.0 1,120
L0 557,702 10.18 110.8 135.0 6,016

Exp. [66] - 10.18 108.1 116.5 -
úComputed on a high-performance cluster with 4 processors.

to no-slip. The convergence criteria is set to either of the two; (a) pressure and velocity residuals

fall below 10≠6 or (b) a maximum number of iterations of 10, 000 is met. Table 10 shows the lift

and drag coe�cient values. The RANS model is better at predicting the lift compared to the

drag. From Table 10, mesh L2 is used in this study.

3.3.3 Results

Figure 40(a) shows the pressure coe�cient profile for the RF algorithm matches the CFD results

well for the NACA 0012 test case, except at the leading edge. The absolute errors are highest at

the leading edge of the airfoil and decrease to around mid-chord. From the mid-chord to the

trailing edge, the errors are nearly constant, with fluctuations around an order of magnitude seen

in Fig. 40(b). For the RAE 2822 case, RF is able to capture the pressure coe�cient profile well,

again with the exception of the leading edge as shown in Fig. 41(a). For the suction side (SS),

the pressure is nearly constant in-between the leading and trailing edges, while on the pressure

side (PS) decreases to about mid-chord, then increases back again. These trends are observed in

Fig. 41(b). The relative L2 norm for both the airfoils is shown in Table 11. RF has lower errors

for the RAE 2822 airfoil compared to the NACA 0012 airfoil.
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Figure 40: Case III NACA 0012 airfoil pressure results: (a) pressure coe�cient values, and (b) absolute
errors on the suction side and pressure side.
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Figure 41: Case III RAE 2822 airfoil pressure results: (a) pressure coe�cient values, and (b) absolute
errors on the suction side and pressure side.

The skin friction results for the NACA 0012 airfoil are shown in Fig. 42. RF is poor at

predicting the skin friction at the leading edge, whereas, on the remaining surface, it matches the

trends from CFD results. The absolute errors for the PS and SS decrease from the leading edge

to 0.25 chord and then remain nearly constant till the trailing edge. These errors fluctuate by an

order of magnitude from leading to trailing edges. The corresponding results for the RAE 2822

airfoil are shown in Fig. 43. In this case, RF poorly predicts the skin friction at both leading and

trailing edges. On the remaining surface of the airfoil, the skin friction profile from RF matches

the CFD results, with absolute errors shown in 43(b). Similar to the pressure coe�cients, the

skin friction coe�cient has a lower relative L2 norm for the RAE 2822 airfoil than the NACA

0012 airfoil and is shown in Table 11.

Pressure coe�cient contours for the two airfoil cases are shown in Figs. 44 and 45. These

contours from RF match the CFD results better for the NACA 0012 airfoil than for the RAE
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Figure 42: Case III NACA 0012 airfoil skin friction results: (a) skin friction coe�cient values, and (b)
absolute errors on the suction side and pressure side.
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Figure 43: Case III RAE 2822 airfoil skin friction results: (a) skin friction coe�cient values, and (b)
absolute errors on the suction side and pressure side.

Table 11: Case III relative L2 norm of the pressure and skin friction coe�cients on the airfoil.

Airfoil Cp Cf

NACA 0012 0.366 0.781
RAE 2822 0.219 0.654

2822 airfoil. The most noticeable di�erences are seen in Fig. 45 on the PS and around the trailing

edge. The corresponding Mach numbers are shown in Figs. 46 and 47. No noticeable results can

be observed for the NACA 0012 airfoil, while for the RAE 2822 airfoil, small di�erences can be

seen around the PS of the airfoil.

The computational cost involved in the case is shown in Table 12. Similar to the previous

two cases, the RF algorithm takes only a second to predict the entire flow field.

(a) (b)

Figure 44: Case III NACA 0012 pressure coe�cient contours for: (a) CFD, and (b) random forest.
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(a) (b)

Figure 45: Case III RAE 2822 pressure coe�cient contours for: (a) CFD, and (b) random forest.

(a) (b)

Figure 46: Case III NACA 0012 Mach number contours for: (a) CFD, and (b) random forest.

(a) (b)

Figure 47: Case III RAE 2822 Mach number contours for: (a) CFD, and (b) random forest.
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Table 12: Case III computational cost.

Model Airfoil Data accumulation, s Training, s Prediction, s
CFD NACA 0012 - - 230
RF NACA 0012 4,600 50 1

CFD RAE 2822 - - 220
RF RAE 2822 4,600 50 1

4 Conclusion

In this work, a novel multifidelity random forest algorithm is proposed and results on three

cases are shown. The first two include flow past a backward-facing step, and the third, subsonic

flow around an airfoil at ten degrees angle of attack. This framework is compared to the

tensorFlowFoam (TFF) framework for the first two cases, and to RANS CFD simulations for all

the cases. Potential flow is used as the low-fidelity model, while the Spalart-Allmaras RANS

model is used as the high-fidelity model. The inputs to the ML algorithms varied from case to

case, however, the outputs from these algorithms were kept the same. The outputs include the

cell-center velocities, pressures, and turbulent viscosities. The performance of the ML algorithms

were measured using the absolute and relative L2 norm errors at di�erent locations and for

di�erent flow quantities, as well as the computational cost involved in training and predicting

the flow fields using these algorithms.

In the first case, the training data is generated using ten di�erent inlet velocities to the

backward-facing step, while in the second, six di�erent step heights are used. The inputs to the

ML algorithms for the first case include the cell-center locations, the potential flow velocities

at the cell-centers, along with the inlet velocity value. For the second case, the cell-centers are

normalized with the step height, and the step height is used in place of the inlet velocity as

inputs to the ML algorithms. For these two cases, RF outperformed TFF in predicting the

various flow quantities, with the exception of the viscosity ratios for the second case.

For the third case, the velocity potential, the stream function, and eight B-spline control

points are used as inputs to the RF algorithm. The pressure and skin friction coe�cient profile

on the surface of the airfoils from RF matches those from RANS CFD simulations well, with the

exception of the leading edge. The contours of these coe�cients also match the CFD simulations.

However, small di�erences can be seen on the pressure side of the RAE 2822 airfoil.

One major benefit of using RF to make high-fidelity flow field predictions is the number of
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CFD simulations required to generate the data to train the RF algorithm. For cases 1, 2, and 3,

ten, six, and 20 CFD simulations were used to train the RF algorithm. Significant time is saved

during the data generation process which is often the bottleneck in surrogate modeling methods.

The other benefit is the low field prediction cost of RF. Once trained, the RF algorithm takes

about a second to predict the entire flow field. This is useful in engineering problems that require

multiple and repetitive model evaluations.

The biggest limitation of the developed RF algorithm is in choosing the input variables. Each

of the cases shown in this study uses di�erent input variables. The input variables a�ect the

prediction capabilities of the RF algorithm tremendously and it is di�cult to know which input

variables to choose before training the RF algorithm. A thorough investigation of these variables

is needed in order to help improve the RF performance as well as make this framework more

generic to various engineering problems. Currently, only the o�ine part of the framework is

developed. The online part needs to be developed and applied to various problems involving

global sensitivity analysis, uncertainty quantification and propagation, and aerodynamic design

optimization.
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