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1 Introduction

Precise measurements of the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle pro-
vide a strict test of the Standard Model (SM) and allow for indirect new physics
searches in the quark sector up to very high mass scales. The CP violating phase
v = arg[-V, Vi /V..Vi], where Vi is the relevant CKM matrix element, is the only
angle of the unitarity triangle that can be determined using solely measurements of tree-
level B-meson decays [1-8] with negligible theoretical uncertainty [9], assuming no sizeable
new physics effects are present at tree level [10]. Deviations between direct measurements
of v and the value derived from global CKM fits, which assume validity of the SM and
hence unitarity of the CKM matrix, would be a clear indication of physics beyond the
SM. Furthermore, comparisons between the value of v measured using decays of differ-
ent B-meson species provide sensitivity to possible new physics effects at tree level given
the different decay topologies involved. The world average for direct measurements of
v = (66.273%)° [11] is dominated by LHCb results. The experimental uncertainty on =y is
larger than that obtained from global CKM fits, v = (65.6752)° [12] using a frequentist
framework, and v = (65.8 + 2.2)° [13] with a Bayesian approach. Closing this sensitivity
gap is a key physics goal of the LHCb experiment and the comparison between the direct
and indirect determinations of v is an important test of the SM.
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Figure 1. Leading-order Feynman diagrams for B~ — Dh~ decays with a (left) favoured b — ¢
and (right) suppressed b — u quark transition.

The CKM angle ~ is measured in decays which are sensitive to interference be-
tween favoured b — ¢ and suppressed b — u quark transition amplitudes that are pro-
portional to V, and V,, respectively.! The ratio of these two amplitudes is given by
Asup [Apay =1 Bei‘sBiV, where the + or — sign indicates whether the initial state contains
a b- or b-quark, rp is the ratio of the amplitude magnitudes, and dp their CP-conserving
strong-phase difference. This interference effect is typically measured in B-meson decays
such as B*¥ — Dh*, where D is an admixture of the D and D flavour states, and h™
is either a charged kaon or pion. Figure 1 shows the leading-order Feynman diagrams for
the favoured and suppressed processes. Interference effects, providing sensitivity to -, only
occur when the D meson decays to a final state, f, accessible to both D® and D° mesons.
Neglecting mixing in the neutral charm system, the decay rate for a B¥ — Dh* decay is
given by

[(B* = Dh*) o [rpe™ P +rpel08E) |2 = v2 442 4 9k prkprprp cos(dp+p£7), (1.1)

where 7p and 6p are the magnitude ratio and strong-phase difference between the D° — f
and D° — f amplitudes. For D decays to CP eigenstates, e.g. D — K1TK~, these values
are rp = 1 and dp = 0. The coherence factors of B and D decays, kg and kp, are
equal to unity for two-body decays, and account for a dilution of the interference term due
to incoherence (strong phase variation) between contributing intermediate resonances in
multibody decays. The hadronic parameters, rg, g, p, dp, are specific to each B decay
and subsequent D decay, respectively. However, the CP-violating weak phase difference
between BT and B~ amplitudes, ~, is shared by all such decays.

Equation (1.1) has at least five unknown parameters, even more if the coherence factors
are not set to unity, hence they cannot be determined using a single pair of B* decay
rates. This is overcome by combining the results from many different D-decay modes to
overconstrain the parameters of the B-meson decay, provided that the corresponding rp,
ép and kp parameters are constrained by other measurements. In past combinations these
parameters have been taken as external inputs using dedicated charm-meson measurements.
The large B-meson samples now constrain v and dp so precisely that 55 ™ the strong phase
difference between D K~ and D’ —K 7t decays, can be measured with similar
precision as v and dp, a factor of about two better than the previous world average [11].

LCharge conjugation is implied throughout unless stated otherwise.



This improved precision on 55” can then be used to improve knowledge of charm mixing
as described below.

The mass eigenstates of the neutral charm mesons can be written as
|D12) = p| D) & ¢| D), where p and ¢ are complex parameters such that [p|? + |¢|? = 1.
The Dy (Ds) state corresponds to the + (—) sign and is approximately CP even (odd)
in the chosen convention. The mixing of charm flavour states can be described by two
dimensionless parameters, x = (m; — mg)/I’ and y = (I'y — ') /2T, where m; (T';) is the
mass (width) of the appropriate D mass state, and T' their average decay width.? Effects
of CP violation in D° and D decays to a common final state, f, can be seen in mixing if
lq/p| # 1, or in the interference between mixing and decay if ¢ = arg(q/p) # 0, 7.2 Study
of the charm mixing parameters is of high interest in its own right, because the flavour-
changing neutral currents responsible for the mixing transition do not occur at tree-level
in the SM, and thus can be significantly affected by contributions from new heavy parti-
cles. The world averages for z = (4.09734%) x 1073 and y = (6.1570:3%) x 1073 [11] are
dominated by LHCb results.

The mixing parameters, x and y, can be determined using the ratio of wrong-sign (WS),
D° - K*x~, and right-sign (RS), D —K 7, time-dependent decay rates. This ratio is

Ri(t)zRiJr@y’i( )+W+(‘y/i)2 (t)Z, (1.2)

t
T 4 T

up to second order in the mixing parameters, where ¢ is the decay time, 7 is the D° meson
lifetime, and the + (—) signs correspond to the decay-rate ratio for a flavour-tagged
D° (DY) initial state.* The parameter R =1r%(1+ Ap) is the ratio of suppressed-to-
favoured decay rates, modulated by the direct CP asymmetry, Ap, between D° and
DY WS decays. The parameters z'* = — |¢/p|™ [:L’ cos(657™ + ¢) + ysin(08™ + (b)} and
Yyt =— |q/p\il [y cos(657™ £ ¢) — xsin(68™ £ <Z>)} encode the mixing. Since 657 is close
to m and ¢ is almost zero [11], it follows that R*(t) is mostly sensitive to the parameter y
through the term linear in decay time and mixing parameters, and currently the precision
on y is limited by the precision with which 55” is known. Consequently, a simultaneous
combination using both beauty and charm observables from LHCb is performed for the
first time, improving the precision on y (z) by about 50% (2%).

A further motivation for the simultaneous combination of both beauty and charm mea-
surements is that non-negligible effects due to charm-meson mixing give rise to additional
terms in eq. (1.1). Incorporating the effect of D-meson mixing, up to first order in = and

2Natural units, with ¢ = A = 1, are used throughout.

3The Wolfenstein parametrisation and the convention that CP|D®) = |D°) is used.

4Tt should be noted that there are multiple conventions in the literature for the strong phase 657,
depending on whether the discussion involves the CKM angle « or charm mixing. The convention in which
0p —  in the SU(3) limit is used, which is shifted by = with respect to the convention employed by the
HFLAV Charm group.



y, means the decay rate of eq. (1.1) becomes [14]

F(BjE — Dhi) x rQD + r% + 2kpkprprecos(dp + 0p £7)
-« {(1 +15)kprp cos(dp) + (1 +13)kprp cos(dp £ ’y)} y

+a {(1 —r%)kprp sin(dp) — (1 —rH)kpresin(dp ify)] x, (1.3)

where the a coefficient accounts for the non-uniform decay-time acceptance of the LHCb
detector. For cases where 75 > , y, such as the B¥ — DK™ decay, the effect of D mixing
is small. However, for decays like B¥ — Dr*, where r5 ~ z, y, the effect is significant [14].
Studies of this combination, which includes both B* — DK* and B* — Dz® modes,
suggest that not accounting for the effect of D-meson mixing results in a bias on ~ of
approximately 1.8°; and an ever larger bias for the hadronic parameters, rgii and 5§§i,
of the B¥ — Dr* system. Thus an unbiased determination of v, x and y requires the

simultaneous combination produced in this article.

This article presents results for the weak phase v and charm mixing and CP violation
parameters x, y, |¢/p| and ¢, as well as for several additional amplitude ratios and strong
phases, using data collected at the LHCb experiment during the first two runs of the LHC.
The statistical procedure is identical to that described in ref. [15] and follows a frequentist
treatment which is described in detail in ref. [16] and briefly recapped in section 3. The
results have additionally been cross-checked using Bayesian inference, which finds very
similar values. The results presented here supersede previous LHCb combinations [15-18].

The full list of LHCb measurements that are used as inputs to the combination is
provided in table 1. In the beauty sector this includes decay-rate ratios and charge asym-
metries of B* — Dh*, B* — D*h* B* — DK** B* — Dh*ntn~, B - DK™
BY - D¥rt BY - DFK®* and B? - DFK*rtn~ decays, where D* is an admixture
of D*0 and D*0 flavour states. In the charm sector this includes time-dependent measure-
ments of D° — hth™, D — K*r= DY — K*rFxtn~ and D° — KlrTn~ decays.
There are seven new or updated measurements from beauty-meson decays since the last
combination, including LHCb Run 2 updates from the highly sensitive B* — Dh* with
D — KJhth™ [19] and D — h*th™ [20] decays. The eight inputs from LHCb charm
analyses are included in the combination for the first time.

Additional external constraints are summarised in table 2; these are used predomi-
nantly to provide auxiliary information on the hadronic parameters and coherence fac-
tors in multibody B and D decays. In the case of quasi-CP-eigenstate decays, such as
D — nmta 7wt r—, the coherence factor is determined by the fraction of CP-even content in
the final-state amplitude, F* = (kp +1)/2. In the case of the B — DTn* B — DTK*
and BY — DT K *7t 7~ modes, the weak phases measured through the time-dependent CP
asymmetry are (y+25) and (y—20s), induced via interference between B?s) mixing and de-
cay. Therefore, in order to obtain sensitivity to v, external constraints from the world aver-
ages of § = arg[-V_,V; /V,, V] and ¢s = =25, = —2arg[-V,,V}; / V., V] [11] are included.



B decay D decay Ref. Dataset Status since

Ref. [17]

B* — Dh* D — hth™ [20] Run 1&2 Updated
B* — Dh* D — htr—rtr™  [21] Run 1 As before
B* — Dh* D — hth—7° [22] Run 1 As before
B* — Dh* D — KShTh~ [19] Run 1&2 Updated
B* — Dh* D — KJK*n¥ [23] Run 1&2 Updated
B* — D*h* D — hth~ [20] Run 1&2 Updated
B* — DK** D — hth™ [24] Run 1&2(*) As before
B* - DK** D — htn—rntr™  [24] Run 1&2(*)  As before
B* — Dh*rtr~ D — hth™ [25] Run 1 As before
BY — DK*? D — hth™ [26] Run 1&2(*) Updated
BY — DK*? D — htr—ntr™  [26] Run 1&2(*) New

B’ — DK*0 D — Kintr~ [27] Run 1 As before
BY — D¥r* Dt — K—wntat  [2§] Run 1 As before
BY - DFK* Df — hth—nt [29] Run 1 As before
BY — DFK*ntm~ Df - hth~mt [30] Run 1&2 New

D decay Observable(s) Ref. Dataset Status since

Ref. [17]

D% — hth~ AAcp [31-33] Run 1&2 New

D® — hth~ yop [34] Run 1 New

D® — hth~ AY [35-38] Run 1&2 New

D° — K+r~ (Single Tag) R*, (z/%)2, y'* [39] Run 1 New

D° — K+7r~ (Double Tag) R*, (z/%)2, y'* [40] Run 1&2(*) New

D° — K*rFaty (22 +y?%)/4 [41] Run 1 New

D — Kdntn~ x,y [42] Run 1 New

D — Kdntn~ xop, Yop, Az, Ay [43] Run 1 New

DO — Kgﬂ+7r_ xep, yop, Az, Ay [44] Run 2 New

Table 1. Measurements used in the combination. Inputs from the charm system appear in the lower
part of the table. Those that are new, or that have changed, since the previous combination [17]
are highlighted in bold. Measurements denoted by (*) include only a fraction of the Run 2 sample,
corresponding to data taken in 2015 and 2016. Where multiple references are cited, measured values
are taken from the most recent results, which include information from the others.



Decay Parameters Source Ref. Status since

Ref. [17]
Bt & DK** DK LHCb [24] As before
BY - DK*0 kDR LHCb [45] As before
B0 — DFr# 8 HFLAV [11) Updated
BY — DFK*(nmr)  ¢s HFLAV [11] Updated
D — hth—n0 Ff o, Ft o CLEO-c [46] As before
D—rtr—ntn™ CLEO-c [46] As before
D — Ktn 0 pKrn? §Kmn? kmn® CLEO-c+LHCb+BESIIT  [47-49] Updated
D — K¥nFatp—  pK3m gKsn  Kan CLEO-c+LHCb+BESIII [41, 47-49] Updated
D — K{K*n¥ ngKﬂ, 515319: mggKﬂ CLEO [50] As before
D — K{K*r¥ rggKﬂ LHCb [51] As before

Table 2. Auxiliary inputs used in the combination. Those highlighted in bold have changed since
the previous combination [17].

2 Assumptions

The mathematical formulae relating the input observables to the parameters of interest,
via eq. (1.3), contain a few assumptions. These are detailed below and their impact on
the results has been checked to be negligible at the current precision. In the future, as the
precision on y approaches one degree, many of them will need to be reassessed.

Neutral kaon mixing. The extraction of « from decays where the final state of the D
meson decay contains a neutral kaon is affected by CP violation in K- K° mixing and decay
and by regeneration [52]. For the D — K, g h*h~ final state, a relative shift of approximately
Av/y =~ O(1073) is expected; this has been studied in detail in ref. [52]. Furthermore, the
result of the relevant input analysis includes a small systematic uncertainty to account for
this [19], so these effects are not considered further in this combination. The size of the effect
in D — KJK*77T final states is larger, Ay/y =~ O(ex/rp), where e = (2.107937) x 1073
quantifies CP violation in neutral kaon mixing [12]. However, the impact on ~ is negligible
at present because the sensitivity of the input measurement is relatively low [23].

CP violation in D-meson decays. The effect of CP violation in the direct decay
of DY — K(S)h+h_ is not considered because it is negligible in the SM for the Cabibbo-
favoured (CF) and doubly Cabibbo-suppressed (DCS) amplitudes contributing to that
process. However, the effect of CP violation in the direct decay of D® — K7~ is allowed
for in the charm part of the combination, and is denoted by Ap. A non-zero value of
Ap would cause a small shift in the charge asymmetries measured for D° — K7~ final
states in the beauty system, which is not accounted for in this combination. The impact
on the determination of v is found to be smaller than 0.2°. The difference between the size
of direct CP violation in D° — KK~ and D° — 77~ decays is included as an input



in the charm part of the fit [31]. In the beauty system, this value is used to account for
direct CP violation in D° — h*h~ decays for the most sensitive analyses, where the D
meson is produced in B¥ — Dh* or B* — D*h* decays, under the hypothesis of U-spin
symmetry, Acp(KK) = —Acp(nm) = AAcp/2, where Acp(f) is the CP asymmetry of the
D meson decay to the final state f. Any U-spin breaking effects are negligible given that
ignoring any direct CP violation in D — h™h™ decays only has a small impact, below 0.3°,
on the determination of v. Time-dependent CP violation in charm mixing, which would
add additional terms to eq. (1.3), is also neglected in the beauty system, since its impact
on the determination of +y is smaller than 0.1° [14].

Strong phases in D — th"‘h_ decays. The input measurements containing
D — thJrh_ final states [19, 27, 43, 44], both in the charm and beauty systems, re-
quire external knowledge of the strong-phase difference between the DY — th*h_ and
D — th*h* amplitudes across the phase space of the D decay. These values are taken
from a combination of CLEO-c and BES-III measurements [53-56] and their uncertainties
propagated to the uncertainties of the input measurements listed in table 1. In this com-
bination, each set of input measurements is treated as statistically independent and thus
a small part of the already sub-dominant systematic uncertainties of these measurements
is being counted twice in the D — K(S]W+7T_ system i.e. the appropriate correlation is not
accounted for. This correlation is non-trivial to compute owing to the different binning
schemes employed by the different input analyses. In any case, the effect on this com-
bination is small since the uncertainty on the strong phases accounts for approximately
0.5° of the uncertainty on -, 40% of the uncertainty on z and 1% of the uncertainty on vy,
and these parameters are nearly uncorrelated. Studies suggest that incorporation of this
correlation will become important only with a three times larger data sample.

Correlations of systematic uncertainties between input measurements. In ad-
dition to the effect of strong phases in D — th+h_ decays, there are various other
potential systematic correlations that are not accounted for. Whilst the individual input
analyses provide both statistical and systematic covariance matrices between the sets of
observables they measure, there are in principle sub-leading systematic correlations be-
tween input analyses which are not accounted for. For example, systematic uncertainties
originating from production and detection asymmetries will be correlated for most time-
integrated measurements and those originating from knowledge of decay-time acceptance
and resolution will be correlated for time-dependent measurements. The impact of ignoring
these small correlations is a marginal underestimation of the uncertainties (assuming the
correlation is positive), but given that the combination is still statistically dominated (3.3°
out of 3.6°) the effect is expected to be negligible.

3 Statistical treatment

The results are obtained using a frequentist treatment, with a likelihood function built
from the product of the probability density functions, f;, of experimental observables fL,



defined as
L(a) = H Fi AP a). (3.1)

Here, ffgbs denotes the measured observables from analysis i, and & is the set of underlying
physics parameters on which they depend. The observables of each input are assumed to
follow a multi-dimensional Gaussian distribution

I 1~ . e

FOAPa) o exp (5 (@) APV (Aia) - A7) ) (32)

where V; is the experimental covariance matrix, including both statistical and systematic
uncertainties and their correlations.

A y%-function is defined as x?(@) = —21In £L(&), with the best-fit point given by the

global minimum of the x? function, x?(&min). The confidence level (CL) for a parameter

at a given value, denoted «g, is determined in the following way. First, for every fixed

/

@, a new minimum of o/ is found, x?(@/;.), and the deviation from the global minimum,

Ax? = x3(@l:) — X*(@min), is computed. Second, an ensemble of pseudoexperiments,

min
AJMC, is generated according to the probability distribution of eq. (3.2), with parameters

—

@ = a’,,. Finally, for each pseudoexperiment the x2-function is minimised once with
the parameter of interest free to vary and once with it at a fixed value «q, to obtain the
difference, (Ax?)MC, from A’JMC, in the same way as Ax? was computed from /T?bs. The
p-value, or 1 — CL, is then defined as the fraction of pseudoexperiments with (Ax?)MC >
Ax?. This method is often referred to as the ji or Plugin method; see ref. [57] for details.
Its coverage is not guaranteed [57] for the full parameter space, but can be evaluated
at various points across the phase space. The coverage of the intervals quoted in this
combination has been computed at several points across the phase space, including at the
global minimum, by generating large samples of pseudoexperiments and computing the
fraction which contains the generated value within a given confidence level. The coverage
of the quoted 68.3% interval for v is (67.3£1.5)%, for x is (68.2+1.5)%, for y is (67.6£1.5)%,
for |q/p| is (66.6 £ 1.5)%, and for ¢ is (67.7£1.5)%. Similar coverage is seen for the 95.4%

intervals and no correction to the quoted intervals is applied.

4 Results

The combination uses a total of 151 input observables to determine 52 free parameters, and
the goodness of fit is found to be 84%, evaluated using the best-fit x2 and cross-checked
with pseudoexperiments. The resulting confidence intervals for each parameter of interest,
except for externally constrained nuisance parameters, are provided in table 3. The corre-
lation matrix of the parameters in table 3 is given in appendix A, tables 7, 8 and 9. The p-
value (or 1—CL) distribution as a function of v is shown in figure 2 for the total combination
and for subsets in which the input observables are split by the species of the initial B me-
son. The corresponding confidence intervals are provided in table 4. Significant differences
between initial state B mesons could be an indication of new physics entering at tree-level,
as the decay topologies for charged and neutral initial states are different. Figure 2 shows a
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Figure 2. One dimensional 1 — CL profiles for v from the combination using inputs from BY (light
blue), B (orange), Bt mesons (red) and all species together (dark blue).
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Figure 3. Two-dimensional profile likelihood contours for (left) the charm mixing parameters z
and y, and (right) the ¢ and |q¢/p| parameters. The blue contours show the current charm world
average from ref. [11]; the brown contours show the result of this combination. Contours are drawn
out from 1 (68.3%) to 5 standard deviations.

moderate tension, 2.2 standard deviations (o), between the charged and neutral B states.
The uncertainties in the B® and BY modes are considerably larger than in the dominant B
modes. The sensitivity of the B and BY modes is expected to improve by approximately
a factor of 2 with the analysis of B — DK*7~ with D — KJh*h™ and BY — DFK®
decays using the full LHCb data sample. Table 5 presents the confidence intervals for v
as determined from inputs of time-dependent methods and time-integrated methods only.
Two-dimensional profile likelihood contours in the (z,y) and (|¢/p|, ¢) planes are shown in
figure 3. The significant improvement, of a factor of two, in the precision to y demonstrates
the advantage of this combination over the current world average in the charm system.



Ouantity Value 68.3% CL 95.4% CL
Uncertainty Interval Uncertainty Interval
~[°] 65.4 i 61.2,69.2] s [56.7,72.9]
rOiE* 0.0984 Ho-o0at [0.0958,0.1011] 0058 (0.0932, 0.1040]
SDE* ) 127.6 s [123.4,131.6] s [118.4,135.4]
ror* 0.00480  FO000%0 [0.00424, 0.00550] oo [0.0037, 0.0065]
§0T [°) 288 i 273, 302] +26 [257,314]
rOiRE 0.099 oo [0.080,0.115] +0.030 [0.061,0.129]
SDLRE 0] 310 2 [287,322] i [239,330]
roy 0.0095 oo 0.0034, 0.0180] ooy 00006, 0.026]
som ) 139 +22 53, 161] 32 [10,171]
rOi= 0.106 o (0.087,0.123] oo 0.066,0.137]
SDE 1] 35 +20 20, 55] o [7,92]
PRI 0.250 Mo 0.226,0.273)] o0 [0.198,0.294]
S0 197 o [187.7,207] p [179,221]
o 0.310 +0.098 [0.218, 0.408] +020 [0.10,0.51]
552? K+ 10) 356 e 338, 375] e [317, 395]
rgf Kt 0.460 +0.081 [0.376,0.541] +0.18 [0.29,0.62]
o Tl 345 +13 333, 358] +26 320, 371]
Dy 0.030 oo [0.018,0.044] +0.056 0.002,0.066]
So5 ™ ] 30 +2 [—7,56] e [—51,75]
e 0.079 o0 [0.045,0.107] +0.050 0.000, 0.129]*
rOpntns 0.067 By 0.038,0.092] +0.040 0.000, 0.107]*
 [%] 0.400 o052 [0.347,0.452] o0 [0.29,0.50]
y (%] 0.630 oo [0.600, 0.663] +0.069 0.572,0.699]
riT 0.05867 000013 [0.05852,0.05882] +o.00051 0.05837,0.05898]
SB[ 190.0 +12 [185.9,194.2] T8e [181.7,198.6]
p 3K 0.6150 ~ +0-0056 [0.6096,0.6206] o [0.604,0.626]
SR o) 17 13 [3,30] +26 (13, 43]
P 0.82 +0.10 [0.72,0.92] +£0.20 [0.62,1.02]
K8 0.05560 00002 005502, 0.05619] oo [0.0544, 0.0568]
637 154 e [138, 169] 2 [121,183]
B3 0.480 +0.064 [0.416, 0.544] +0.13 [0.35,0.60]
la/p| 0.997 +0.016 0.981,1.013)] +0.033 [0.964,1.030]
o [°] 2.4 +1.2 [—3.6,—1.2] +2.5 [~4.9,0.1]
Aadiy, —0.00152  40.00029  [—0.00181,—0.00123]  +0.00058  [~0.00210, —0.00094]

Table 3. Confidence intervals and central values for each of the parameters of interest. Entries
marked with an asterisk show where the scan has hit a physical boundary at the lower limit.

~10 -



68.3% CL 95.4% CL

Species  Value [°]
Uncertainty  Interval = Uncertainty  Interval

Bt 61.7 s 56.9, 66.1] 15e 52.2,70.3]
BY 82.0 T8l [73.2,90.1] e 64, 99]
B? 79 iy 55, 100] AT [32,130]

Table 4. Confidence intervals and best-fit values for v when splitting the combination inputs by
initial B meson species.

68.3% CL 95.4% CL
Method Value [°]
Uncertainty  Interval = Uncertainty  Interval
Time-dependent 79 2 [55,100] v (32, 130]
Time-integrated ~ 64.9 a2 [60.4, 68.8] 7 [55.3,72.7]

Table 5. Confidence intervals and best-fit values for v when splitting the combination inputs by
time-dependent and time-integrated methods.

Breakdowns of the contributing components in the combination are shown in figures 4
and 5. These highlight the complementary nature of the input measurements to constrain
both v and the charm mixing parameters. In figure 5 (top left) the dark orange band
shows external constraints from CLEO-c [58] and BES-III [59]. These are required to
constrain 65” when obtaining the “All Charm Modes” contours, but are not used in the
full combination. In the top right and bottom plots the orange bands show the constraints
from D° — h*h~ modes, but these cannot provide bands in (z,y) or (|¢/p|,¢) without
other constraints [60]. Consequently, when these orange bands are produced in the top
right plot (lg/pl, ¢, 757, 68™) are fixed to their best fit values from table 3, while in the
bottom plot (x,y,rg“,ég”) are fixed to their best fit values. In the bottom figure the
red contour is mostly hidden behind the blue; this is because no significant additional
sensitivity to CP violation in the charm system is provided by the inclusion of the beauty
observables in the simultaneous fit.

The value of v = (65.4 735)° determined from this combination is compatible with, but
lower than that of the previous LHCb combination y = (74 72-8)° [17]. This change is driven
by improved treatments of background sources in the major inputs described in refs. [19, 20].
An assessment of the compatibility between this and the previous combination, which
considers the full parameter space and the correlation between the current set of inputs
and the previous set of inputs, finds they are compatible at the level of 2.10. The new
result is in excellent agreement with the global CKM fit results [12, 13].

The charm mixing parameters, x and y, are determined simultaneously with ~ in this
combination for the first time. The precision on z is driven by the recent measurement
described in ref. [44]. The result y = (0.630 T):953)% is more precise than the world average,
y = (0.603 75025)% [11], by approximately a factor of two, driven entirely by the improved
measurement of (55 ™ from the beauty system and the simultaneous averaging methodology

- 11 -



i ; i i ol T =
i, PR BD', D'—hhaidx ‘ e
Qkﬁll | 100 BD, DO—)K;hh LHCb | 4§4 150 LHCb_
W B*—D%h*, D°—hh"” Q%
PR All B*—>Dh" modes w r B
0.15(~ [ Beauty and Charm b
100 — =
01k B 50— | e B*—D°h*, D"—hha'ih3x -
: L B*—Dh’", D0—>K§)hh |
0 B*—DK', D°—hh"”
r 7 0 DR All B*—D°h" modes o
B Beauty and Charm
005 L 1 L 1 L 1 L L 1 L 1 L 1 4
0 50 100 150 o 0 50 100 150 o
v [°] v [°]
J"éz.:)'os W0 B=D'H, D'—hia' I3 o 350F " ‘ .
i [ Z000 B*SDH', D°—K{hh i LHCb
0.04+ 3908 B*—D', D'—h'h"™ — Q&% T 1
| | SEER All B*—D%" modes | <
0.03 I Beauty and Charm 300~ 7
- _ 250 _
0.02 >0 s B'>Dh', D'—>hhr’/h3n
- . | 0000 BoDY% DKk
0.01— _] 0 BYSDKY, D' —hh"”
: 200+ R All B—D°h* modes —
[ h B Beauty and Charm
L | L | L | |
0 50 100 150 o
v [°]
N B"—»DK™, D'—h3n 2 300 BN B'—DK”, D°—>h3w
{001 B'SDK™, D'—KChh % 1002 B'SDK™, D'—K{hh
W B=D°K™, D°—hh™ < % W B°=DK™, D°—hh'™
Bl All B—D’K™ modes | % 250 B All B°—D°K* modes
I Beauty and Charm ) I Beauty and Charm
200
150
. | . . I .
0 50 100 150 o 0 150 o
7 [°] v [°]

Figure 4. Profile likelihood contours for the beauty decay parameters versus -y, showing the
breakdown of sensitivity amongst different sub-combinations of modes. The contours indicate the
68.3% and 95.4% confidence region.

employed in this article. The correlation between (55” and 5gfi is —57%, highlighting
B* — DK™ decays as the source of this improvement.

The beauty part of the combination is cross-checked with an independent framework
using a Bayesian statistical treatment. A flat prior is used for v and the relevant hadronic
parameters and results in a value of v = (65.6 fgjg)o, in agreement with the default fre-
quentist results. Good agreement between the frequentist and Bayesian interpretations is
also seen for the other hadronic parameters. A second cross-check using an independent

fitting framework with frequentist interpretation gives consistent results to better than
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Figure 5. Profile likelihood contours for the charm decay parameters, showing the breakdown
of sensitivity amongst different sub-combinations of modes. The contours indicate the 68.3% and
95.4% confidence region.

1% precision. Finally, the charm sector of the combination was validated by accurately
reproducing the HFLAV results [11].

The relative impact of systematic uncertainties on the input observables is studied,
and found to contribute approximately 1.2° to the result for v, demonstrating that the
uncertainty of this combination is still dominated by the data sample size.

In previous combinations, the experimental input from B° — D¥7r* decays was in-
cluded with an external theoretical prediction of rg(T ™ = 0.0182 + 0.0038 [28]. This
prediction assumes SU(3) symmetry, and was the only input from theory. This exter-
nal input is no longer used, and the combination gives an experimental determination of
rggt ™ = 0.030 fgjg?‘é. This is in agreement with the theory-based prediction and provides
confidence that the assumption of SU(3) symmetry is valid within the current precision.
This change has a negligible impact on the determination of other parameters.

5 Conclusion

A simultaneous combination of LHCb measurements sensitive to the CKM angle v and
charm mixing parameters, along with auxiliary information from other experiments, is
performed for the first time. This includes seven new and updated inputs from B-meson
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decays and eight inputs from D-meson decays. The result,
7y = (65.4135)°,

provides the most precise measurement from a single experiment. The charm mixing
parameters are found to be

x = (0.400 139529 |
y = (0.630 T0030) % ,

which are the most precise determinations to date. In particular, the uncertainty on y is
reduced by a factor of two by using the new procedure described in this paper.
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A Correlation matrix

The global fit correlation matrix between each of the parameters presented in table 3 is
provided in tables 7, 8 and 9. A subset of this matrix, including only the parameters
of greatest interest, is given in table 6. The correlation coefficients for 5 and ¢ are not
included as they are almost all smaller than 0.001, an exception is p(v, ¢s) = —0.009.
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v Ap T 05" x vy la/pl ¢

~ 1.000  — —0.003 0.003 —0.002  0.003 - —
Ap 1.000 —0.016 —0.083 —0.003 —0.083 —0.316 0.295
rKn 1.000  0.295  0.282 —0.095 —0.070 0.015
5Kn 1.000  0.029  0.891 —0.020 0.055
x 1.000  0.013 —0.129 0.083
y 1.000 —0.018 0.040
9/ 1.000 0.554
& 1.000

Table 6. Reduced correlation matrix for the parameters of greater interest. Values smaller than
0.001 are replaced with a — symbol.

~ Tgfi 5§fi ﬁli 5§li Tgiki 6§1Ki TIB);ﬂi 6§;Wi Tgf*i 5§f*i ngﬁo 63[{(*0 ng?Ki
7 1.000 0.490 0.613 —0.051 0.229 0.138 0.331 0.116 0.149 —0.158 —0.012 0.206 —0.111 —0.003
DI 1.000 0.442 —0.048 0.113 0.058 0.174 0.070 0.00 —0.079 0.026 0.098 —0.047 —0.001
gox* 1.000 —0.055 0.236 0.062 0231 0.102 0.156 —0.094 0.054 0.120 —0.052 —0.002
ror 1.000 0.629 —0.006 —0.018 —0.008 —0.011 0.006 —0.003 —0.009 0.004 —
i 1000 0.025 0.085 0034 0052 —0.035 0.011 0.046 —0.022 -
DL 1000 0.764 —0.211 —0.213 —0.022 —0.006 0.020 —0.016 -
JDIK* 1.000 —0.172 —0.164 —0.052 0.001 0.067 —0.035 —
p* 1000 0.895 —0.018 0.004 0.023 —0.011 -
§o5m* 1.000 —0.023 0.010 0.029 —0.013 -
oI 1.000 —0.323 —0.033  0.017 —
soI 1.000 —0.004 0.006  —
D 1.000 —0.139 -
5o 1.000 —
Df K 1.000

Table 7. Correlation matrix of the fit result, part 1 of 3. Values smaller than 0.001 are replaced
with a — symbol.

gD KT DIKERTRT GDEKERTRT  DExt gDFat  DEFnte Drfrta Ko gKn v v la/pl 6
o —0.019 —0.027 —0.144 —0.065 —0.168 0.024 —0.181 —0.003 0.003 —0.002 0.003 — —
r-gfi —0.009 —0.013 —0.071 —0.032 —0.082 —0.006 0.038 —0.079 —0.236 0.011 —0.206 0.003 —0.010
535* —0.012 —0.017 —0.088 —0.040 —0.103 —0.028 0.196 —0.161 —0.573 0.020 —0.510 0.007 —0.029
rgii 0.001 0.007 0.003 0.009 — —0.003 0.084 0.022 —0.005 —0.004 —0.005 —0.004
6g§i —0.004 —0.006 —0.033 —0.015 —0.038 —0.007 0.048 0.048 —0.169 —0.180 —0.004 —0.016
rg;Ki —0.003 —0.004 —0.020 —0.009 —0.023 0.006 —0.046 0.013 0.040 —0.002 0.035 0.002
53;"1 —0.006 —0.009 —0.048 —0.022 —0.055 0.004 —0.034 —0.012 —0.048 — —0.044 — —0.003
ré’;”i —0.002 —0.003 —0.017 —0.008 —0.019 —0.001 0.008 —0.024 —0.053 0.002 —0.045 0.001 —0.002
JB’?;"i —0.003 —0.004 —0.021 —0.010 —0.025 —0.005 0.033 —0.039 —0.112 0.004 —0.097 0.002 —0.005
rgf*i 0.003 0.004 0.023 0.010 0.026 —0.004 0.032 —0.003 -0.006 —0.002 —0.005 — —
535‘* — 0.002 — 0.002 —0.008 0.057 —0.027 —0.102 0.011 —0.091 — —0.004
rg(f"m —0.004 —0.006 —0.030 —0.013 —0.034 0.006 —0.043 0.002 0.011 —0.002 0.010 — —
655(*0 0.002 0.003 0.016 0.007 0.019 —0.005 0.035 —0.007 —0.028 0.002 —0.025 — —0.001
PPIEE 0,034 — - - = — - - - =

BO

Table 8. Correlation matrix of the fit result, part 2 of 3. Values smaller than 0.001 are replaced
with a — symbol.
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F T FREA T FREr o ot ot ctptn— 7ri7r+7r7 T <3
S g S rhe ™ opa " rpk rpI rgT ok @ v la/pl ¢
ES
agof K 1.000 — 0.003 0.001 0.003 — 0.003 — — — — —
pDF Kt 1.000 0.006 0.002 0.005 - 0.005  —  —  — -
B "
F 7r+1r7 v
oo X 1.000  0.009 0.024 -0.003 0.026 — — — — —
Dy 1.000 0485  —0.002 0.012 — — — — —
3B 1000 —0.004 0.030
DIt 1.000  —0.044 0.020 0.074 —0.003 0.066 —  0.004
Dt 1.000 —0.148 —0.531 0.025 —0.473 0.005 —0.026
kT 1.000 0.205 0.282 —0.095 -0.070 0.015
sk 1.000  0.029 0.892 —0.020 0.055
z 1.000  0.013 —0.129 0.083
y 1.000 —0.018  0.040
la/p| 1000 0.554
® 1.000

Table 9. Correlation matrix of the fit result, part 3 of 3. Values smaller than 0.001 are replaced
with a — symbol.
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Measurement x> No. of obs.
B* — Dh* D — h*h'F 2.71 8
B* - Dh*, D — h*nFrtn— 7.36 8
B* — Dh*,D — h*h/F70 7.14 11
B* — Dh*,D — K3hth™ 4.67 6
5 | B » Dht D - KYK*n¥ 7.57 7
S| BY = D'hE, D - hENF 7.31 16
% | B¥* - DK*:,D — BT (ntn™)  3.71 12
3 | B = DK™, D — h*hF(xtn™) 945 12
A1 B DK* D — K¢hth~ 3.26 4
B* - Dht*rtn—, D — h*h/'T 1.34 11
BY - DTK* 5.71 5
BY - DFK*ntr~ 2.88 5
B - DTt 0.00 2
D — K%rtn™ 2011 5.38 2
D — ng+7r_ Run 1 0.77 4
5| D— K2r"n~ Run 2 1.37 4
£ | D K*r* Run 1 1.29 6
g | D— h*th~ AAcp 0.00 2
2| D— KErFatn 3.59 1
O D= hthyep 0.40 1
D — hth™ AY 0.15 1
D — K*7T Run 2 2.23 6
D — K*7%70 D — K*nFnxtn=  0.79 6
42 D rato—gate— 0.03 1
‘S | D—hth " 0.01 2
Z | D— KYK*nF WS 0.60 1
S| D~ KyK*n¥ 3.79 3
g B* - DK** 0.02 1
&; B - DK*0 0.01 1
M| g 0.00 1
B 0.00 1
Total 83.53 151

Table 10. Contributions to the total x? and the number of observables of each input measurement.

B Contribution of each input measurement to the global x?

The contribution of each input measurement to the global x? is shown in table 10.

C Pull distribution of each input observable

The pull of each input observable with respect to the global best fit point is shown in
figures 6-8. The pull is defined as (Aexp — Aft)/0(Aexp), Where Aoy, and Agg are the
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Figure 6. Pulls of the input observables, part 1 of 3.

experimental input value and value at the best-fit point, respectively, and o(Aexp) is the
experimental uncertainty.
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Figure 7. Pulls of the input observables, part 2 of 3.
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Figure 8. Pulls of the input observables, part 3 of 3.
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Figure 9. One dimensional 1 — CL profile for v from all inputs used in the combination.
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Figure 10. Evolution of the LHCb combination result for 7, with the central values and lo
uncertainties in black. This result is the 2021 data point, the value and uncertainty are highlighted
by the dashed blue line and band, respectively.

D Additional figures

Figure 9 shows the p-value distribution as a function of « for the global fit. A summary of
LHCDb ~ combination results as a function of time is given in figure 10.
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