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5. Conclusion

 

1. Introduction

The geospatial world has been increasingly embracing real-time location data. The need for creating smart cities
for an improved quality of life has driven the development of IoT (Internet of Things) devices to be deployed in
both public infrastructures and smart homes for collecting in real-time information about equipment operations
and movement of humans and goods (Li et al. 2020). This way, more informed and timely decisions can be
made. For instance, the surveillance cameras on transportation networks could help monitor real-time traffic
information for better route planning of commuters. Similarly, devices deployed at airports and other public sites
could help improve public safety by using machines to automatically scan and detect abnormal situations from
streaming videos in real-time.

Mobile devices, such as mobile phones and GPS-enabled vehicles, have also become a powerful source of real-
time geospatial data. In 2020, there are over 5 billion mobile phones being used; 50% of internet traffic comes
from mobile devices (Ceci 2021). Each mobile device, as it moves, will generate real-time location and
trajectory information that can be used to construct daily activity and mobility patterns of individuals. Using
such information, business owners can measure and forecast economic activities through, for instance, an
aggregation of customers’ visitations to retail stores, the duration of their visits, and the kinds of products that
customers are interested in. These datasets could also become important resources for demographic profiling, as
patterns of use of mobile phones could be highly correlated with one’s socioeconomic status (Blumenstock et al.
2015).

Environmental monitoring and prediction constantly produce real-time geospatial data from sensors and
simulations/forecasting. Distributed sensor observation networks, such as the IOOS (Integrated Ocean Observing
System), collect data at a very high time frequency. These real-time observational data, depicting the sea surface
temperature, wind speed, direction, and water salinity are important inputs for numerical simulation models for
weather forecasting and prediction of natural disasters, such as hurricanes (Li et al. 2016). The USGS (US
Geological Survey) has also deployed over 850,000 stations which continuously collect surface-water data,
including stream levels, stream water, as well as water quality. These are key parameters for predicting flooding
events and monitoring water quality for smart water use and treatment, and disaster preparation (Nawyn et al.
2017).

The amount of widely available real-time GIS data and the need for leveraging these data in time-critical
applications require new paradigms for real-time geospatial computing and programming. In traditional big data
applications, high scalability is often the goal for a high-performance computing (HPC) platform. This means
that they need the platform to be able to process large amounts of data that a single computer is not capable of
handling due to limitations in memory capacity , hard drives, and/or CPUs (Central Processing Units). In such a
scenario, distributed computing is often the solution. Distributed computing relies on distributed computers to
tackle a big data problem collectively. Typically, a big data task is partitioned into multiple subtasks, with each
computing node responsible for processing a subset of the data. The results from multiple computing nodes will
then be collected and aggregated to get the final output. This is also known as a map-reduce mechanism (Li et al.
2014).

Real-time GIS applications, besides high scalability, also require the computing platform to have high throughput
and low latency, which is the ability to leverage many computing resources to handle incoming stream
throughput and achieve real-time processing of the streaming data. Besides computing platforms, new analytical
methods are also desired to extract critical and useful patterns from massive amounts of data. GeoAI or
Geospatial Artificial Intelligence, which applies and extends novel machine learning models, such as
Convolutional Neural Network (CNN), has become an exciting data-driven paradigm for processing big data and
achieving accurate pattern recognition (Li 2020). Its integration with a high throughput computing platform will
further empower and improve the real-time capabilities of a GIS system. In addition, visualization is also a
critical component in a GIS application to enable visual analytics and to communicate key information to
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decision makers and the general public. Therefore, enabling real-time visualization of big data through new ways
of analytics will further enhance the usability of a real-time GIS application.

The next sections describe fundamentals of real-time GIS and a computing framework for real-time geospatial
processing. Emerging and popular tools to support real-time programming and computing are also introduced.

 

2. Fundamentals in Real-time GIS and Streaming Data Processing

We use the term geostreaming to describe data and computing characteristics of real-time geospatial information.
Accordingly, a geostream is “a data stream from spatio-temporal data. It is defined by three parts: (1) it is a data
stream, (2) it has spatial information, and (3) it has temporal information” (Brandt and Grawunder 2018). In
general, a data stream is a continuous ordered data sequence, similar to live audio/video streams, but it often
requires more powerful information management and computing paradigms. A data streaming framework
assumes that geostream data arrive continuously, are unbounded (endless), and may be out of order. A stream
processing algorithm never sees a complete copy of the input stream and can be categorized as an online
algorithm (Karp 1992). Large and frequent geostreams are often produced and consumed in a distributed
computing environment in which data production, management, publishing, receiving, and processing are
decoupled as geographically and computationally distributed services.

A data streaming framework is often based on an asynchronous event processing model in which an incoming
data stream is discretized as messages, and data producers and consumers interact through a messaging system
using message queues (e.g., RabbitMQ) or a publish-subscribe (pubsub) model. Each message has a sequence
identifier for ordering. A producer pushes messages to a data stream management system (DSMS). Upon
message arrival at the DSMS, an event is created to notify data consumers. A consumer who listens or subscribes
to the message via message types or topics then programs an event handler to ingest the message data. 
Compared to a messaging system in which a message is queued, fetched by a consumer, and removed in a
specified order (e.g., first-in-first-out (FIFO) or priority-based), a pubsub model allows a message to be
subscribed by multiple consumers and guarantees that every consumer receives a copy of each subscribed
messages. Modern data streaming frameworks (e.g., Apache Kafka, Apache Storm, and Apache Flink) often
support both message queue-based messaging systems and the pubsub model.

A fundamental question for a data streaming system is how to store and manage unbounded data streams. Data
stream management system (DSMS) capabilities can be built into general databases and data warehouses as
database extensions (Brandt and Grawunder 2018); DSMSs that are created from scratch are rare. DSMS
extensions are broadly available for popular databases, e.g., Oracle Streams, MongoDB Change Streams, and
Cassandra Streaming. Database implementation of stream support is centered around the topic of Change Data
Capture (CDC), which is a design pattern for how to store, extract, transform, and retrieve incremental data
(a.k.a., data change) from incoming data streams. Using timestamp, versioning, or row state are common
techniques for CDC. For geostream management, spatial indexing, partitioning, and query algorithms focus on
handling the impact of data updates on indexing, access, and query performance and accuracy (Bruns et
al. 2020). For example, for frequent updates from data streams, updating the index structure, for example K-
d tree or quadtree, results in a tradeoff between index update timeliness (and thus a performance penalty from
frequently computing indexes) and query accuracy (which is affected by stale indexes resulting from less
frequent update). CDC for geostreams may use a spatiotemporal data cube to capture and store raw data.

After a partition of geostream data is stored and registered in real-time, it is dispatched for processing by
consumers. It is particularly important for a processing function to perform at a speed that matches the flow rate
of a continuous data stream because processing logics (i.e., requiring on-the-fly synchronous processing) are
often more complex than indexing and storage of stream data (i.e., could be done asynchronously). Parallel
processing is thus necessary for geostream data hosted in large databases, data warehouses, and cloud-based data
lakes. Scalable data stream processing shares a common pattern with big data analytics models
(e.g., mapreduce): a processing algorithm takes a subset of input data (data blocks or messages) and computes a
partial output. A mapreduce function maps a local function, i.e., map, to partitioned data blocks, takes a sequence
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of key-value pairs as output, and calls reduce functions for various filtering, sorting, routing, and aggregation
functions, and finally computes a global result or increment.

3. A Computational Framework for Real-time Geospatial Processing

Figure 1 demonstrates a streaming data processing framework that has integrated advanced data analytics
capabilities of GeoAI. This framework achieves real-time processing in three phases: sense, reason, and act.
“Sense” means data capture and ingestion. A key challenge in handling real-time data from multiple sources, i.e.,
surveillance cameras, mobile devices, social media platforms, and IoT devices, is a system’s ability to ingest data
that arrive as streams of events. Addressing this challenge requires a system that possesses high performance,
scalability, low latency, and fault-tolerance capabilities. Apache Kafka is a popular choice to build real-time
applications because of the strengths mentioned above (Narkhede et al. 2017).

 

Figure 1. A computational framework for GeoAI empowered streaming data processing (modified from Haddad
2019). Source: authors.

 

Real-time sensing using Kafka achieves real-time event data ingestion and integration through a distributed
computing framework with a highly efficient publish-subscribe messaging mechanism. A Kafka system is
composed of servers and clients. A server is a compute node in a cluster responsible for publishing (writing)
streaming data into the distributed file system. In Kafka, multiple servers can publish/write the event data in
parallel into distributed files or database systems. Its fault-tolerance capability ensures that when a server fails,
other servers will pick up the failed server’s task and continuously process the data without loss. A client of
Kafka works independently from the servers. It subscribes/reads streams of events for further processing. A
streaming application can contain multiple Kafka clients to conduct the data read and processing, in parallel. So,
the clients themselves can also be distributed and built upon microservices. The communication between a Kafka
server and client is through a high-performance TCP (Transmission Control Protocol). The message hub is used
for delivering the client services as microservices. Such a service-oriented solution makes Kafka highly flexible,
deployable on both cloud and raw distributed systems.

Following the sensing phase, stream data reasoning (Figure 1) often employs real-time data analytics as a stream
processing component for improving understanding of the data, through operations such as data parsing,
filtering, aggregation, and enrichment. Apache Spark Streaming is a popular tool to process massive amounts of
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streaming data (Nabi 2016). Spark Streaming extends Apache Spark, a batch data processing framework, and it
delivers real-time data processing capability. A Spark stream is created by connecting to a data streaming system,
such as Kafka, by subscribing to a topic with a specified stream pulling interval, i.e., the heartbeat interval in
Kafka and the batch interval in Spark Streaming. Stream partitions are then organized into Resilient Distributed
Datasets (RDDs) in Spark as basic data blocks. These RDDs can be processed using window operations, which
are designed specifically for stream data processing. For instance, a sliding window, specified by its window
length and sliding interval, can be created to prepare traffic time series training data for deep learning-based
traffic prediction. Data in a sliding window can be split into the past (samples) and the future (labels). Different
sliding intervals would create training data of different temporal resolutions, e.g., timesteps with a minute, hour,
or day interval. The processed results can be saved into a more permanent storage, such as a data lake or a
relational database, or be pushed to a dashboard for real-time visualization. Various geospatial Spark solutions
exist, e.g., GeoMesa for vector processing, GeoTrellis for raster processing, and Apache Sedona, SparkGIS, and
LocationSpark for general geospatial indexing, partitioning, storage, and querying. They can be refactored for
geostream processing using Spark Streaming. Spatial interdependence is often handled by associating spatial
locality in spatial data indexing and partitioning and making it available in the map or reduce function (Liu et al.
2010).

One exciting facet of the real-time data processing framework is its integration with cutting-edge GeoAI models.
New advances in GeoAI, such as the integration of spatial principles (i.e., Tobler’s First Law of Geography) with
novel deep learning models, have shed new light on spatial data analytics (Li et al. 2021). Because of proven
better accuracy in model prediction than traditional analytical models, GeoAI can make the entire data
processing and reasoning process more intelligent (Hsu et al. 2021). However, although real-time streaming data
provide a rich data source for a GeoAI model to meet its appetite for data, the model training remains a time-
consuming process and often cannot meet the real-time requirement. However, using a pre-trained model in a
prediction scenario where real-time data are collected can be fast. Real-time prediction, such as vehicle geometry
detection by smart cameras at road intersections, only uses a trained GeoAI model, its prediction speed can be
magnitudes faster than training the model.

To leverage the strengths of a GeoAI model’s high predictability and to achieve real-time performance, a new
model training-prediction paradigm can be enabled into the streaming data processing framework (Figure 1).
First, the model can be pre-trained and calibrated using historical data stored in the data lake, and streaming data
will be used to fine-tune the model in real-time leveraging the high-performance computing resources that Spark
offers. Since training is often much slower than the flow rate of geostreams, stream data may first be sampled to
select representative data points. Second, the trained model can be integrated into Spark or other parallel
computing engines for real-time analytics and prediction. It can also be stored and updated efficiently using edge
computing. To further improve the model’s prediction speed, pruning techniques can be applied to reduce
unnecessary branches without affecting prediction accuracy. 

Finally, analytical results become important information to increase situational awareness and for decision
makers to reach informed decisions. This is the acting phase in Figure 1. Reasoning results  can be visualized in
a real-time dashboard to detect anomalies from the streaming data, such as occurrences of disasters or extreme
weather, unusual movement of pedestrians, or possible malfunction of a city’s smart devices.

Such a real-time geospatial system illustrated in Figure 1 will yield more accurate and rapid prediction and
analytics, therefore, supporting timely decisions to improve system efficiency and reduce potential damage/cost
(Li et al. 2020). A user-end visualization environment may directly subscribe to geostreams by topics and pull
stream data for charting and mapping using JavaScript-based GIS libraries within a web browser. A geostream
can also be constantly pushed to a web browser via a WebSocket.

 

4. Real-time Programming in GIS Applications

In this section, we introduce a general geostreaming service and development tool and two real-world
geostreaming applications to illustrate design and programming principles. They each belong to “sense” (Section
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4.1), “reason” (Section 4.2) and “act” (Section 4.3) phases of the real-time data processing framework presented
in Section 3.

4.1 ArcGIS GeoEvent for Geostreaming

ArcGIS, a leading GIS software program, provides the ArcGIS GeoEvent Server as a solution to real-time
event-based geostreaming services. It provides a set of input and output connectors to ingest and publish
geostreams into file systems, web, and industry streaming systems, such as Kafka. Real-time analytics on
ingested geostreams are enabled by a set of filters and processors in the GeoEvent Server. Filters are used
to search and filter spatial features and attributes. Processors are GIS functions that are implemented in
mapreduce fashion to produce output event data. A GeoEvent is then published as a stream service and
consumed by stream layers using ArcGIS JavaScript libraries. GeoEvent stream services support
WebSocket and can be accessed using ArcGIS REST API. Stream clients may consume a stream service
using ArcGIS JavaScript, in which the rendering of stream layers may use all data points or only data
updates, i.e., track-aware layers.

4.2 Real-time Flood Inundation Mapping and Forecasting

At the national scale, a real-time data analytics approach has been developed to provide flood mapping for
emergency management communities (Liu and Sanyal 2020). There are two major data sources: 1) the
high-resolution (3m and 1m) digital elevation model (DEM) provided by USGS 3DEP has multiple
petabytes and the National Hydrography Dataset (NHDPlus) has 2.7 million river features, covering 5
million kilometers of river reaches; and 2) NOAA’s National Water Model (NWM) is a continuous
geostream data source, producing hourly streamflow forecast on the 2.7 million river reaches for the next
18 hours. Figure 2 shows a coherent data-intensive computing framework to handle both big data analytics
and large geostreaming using Spark-based microservices. First, spatial indexing and partitioning are built
for big raster and vector data management. Rasters are stored as tiles in cloud optimized GeoTIFF (COG)
format. Vectors are organized as vector tiles. A raster or vector tile is the basic data block unit. Spark GIS
and hydrologic analysis functions are applied in batch computing to produce a hydrologic terrain at the
corresponding hydraulic property table. Second, real-time NWM data streams at NOAA are ingested and
processed by the Spark Streaming component in this framework to convert streamflow forecast to water
depth and flood topology features, such as inundation extent and depth polygons. Finally, these features are
published as inundation maps, which are registered as online stream services and can be subscribed in a
geovisualization frontend as stream layers using, for example, ArcGIS GeoEvent.

 



7/28/22, 12:08 PM PD-20 - Real-time GIS Programming and Geocomputation | GIS&T Body of Knowledge

https://gistbok.ucgis.org/bok-topics/real-time-gis-programming-and-geocomputation 7/10

Figure 2. A data-intensive computing framework for high-resolution continental flood inundation mapping
and forecasting. The framework (the middle layer) is an abstraction of the lambda microservice
architecture. Source: https://dzone.com/articles/lambda-architecture-with-apache-spark.

 

4.3 Real-time Visualization of Multi-dimensional Climate Data

The world’s climate is changing in real-time. Capturing this change through visualization tools will present
a unique opportunity for scientists and everyday weather watchers to improve their understanding of
climate dynamics and to identify driving factors through the visual aid of some extreme weather events,
such as hurricanes or dust storms. Although many scientific visualization tools have been developed, they
mostly visualize static data on a layer basis (climate data at a certain pressure level). They lack a
mechanism to visualize multi-dimensional, multi-variate, and time-series climate data vividly and
efficiently (Li and Wang 2017). To address this challenge, the team at Arizona State University has
developed PolarGlobe, a real-time climate data visualization tool that visualizes climate data that are
generated from numerical simulation models leveraging advanced computing infrastructure (i.e.,
cyberinfrastructure; Shao and Li 2019) and high-performance rendering. By developing a parallel
visualization algorithm (Wang and Li 2019), PolarGlobe is capable of utilizing client end GPUs (Graphics
Processing Units) to render climate variables simultaneously to achieve high rendering speed. Also,
through a progressive data transmission strategy, big climate data are encoded into a video stream and
transmitted into a visualization client in a very efficient way (Wang et al. 2017). Besides enabling
visualization of real-time vector field data (i.e., atmospheric wind) (Figure 3), PolarGlobe also supports the
visualization of scalar data in regular and irregular grids.

Figure 3. A PolarGlobe visualization interface for atmospheric wind. The real-time data (November 10th,
2021) are from the Global Forecast System (GFS) of NOAA (National Oceanic and Atmospheric
Administration). Source: authors.

 

5. Conclusion

This entry introduces a computing platform that enables streaming data processing and GeoAI enabled real-time
data analytics. Such a high-performance computing platform achieves high throughput, low latency, high

https://dzone.com/articles/lambda-architecture-with-apache-spark
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scalability, and fault tolerance in handling continuous streaming data from diverse sources. In support of time
critical applications, several challenges need to be further addressed. First, the data receiver (i.e., Apache Kafka)
needs to integrate intelligent mechanisms to filter noisy data on the fly to improve the quality of input data and
reliability of analytical results. Second, new techniques are needed to allow GeoAI models to dynamically adjust
the weights of historical data and real-time data used in training the model to meet different application needs,
i.e., long-term trend analysis vs. near-term, more instant decision making. Third, traditional computing platforms
center on distributed computing leveraging multiple CPUs (Central Processing Units). However, for GeoAI
models training, GPUs (Graphics Processing Units) remain the more desirable resources to ensure high speed
processing. Hence, enabling GPU accelerated computing for GeoAI model training and prediction in a real-time
data processing framework would be an important research direction.
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Illustrate how Apache Kafka achieves real-time processing of streaming data
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Instructional Assessment Questions: 

1. What are the benefits of and challenges to integrating GeoAI based data analytics into a real-time
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4. How does visual analytics help with spatial decision making?

Additional Resources: 

1. Gao, S., Li, L., Li, W., Janowicz, K., & Zhang, Y. (2017). Constructing gazetteers from volunteered big
geo-data based on Hadoop. Computers, Environment and Urban Systems, 61, 172-186.

2. Li, W., Song, M., Zhou, B., Cao, K., & Gao, S. (2015). Performance improvement techniques for
geospatial web services in a cyberinfrastructure environment–A case study with a disaster management
portal. Computers, Environment and Urban Systems, 54, 314-325.

3. Shao, H., Li, W., Kang, W., & Rey, S. J. (2020). When spatial analytics meets cyberinfrastructure: an
interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of
Geovisualization and Spatial Analysis, 4(2), 1-16.

4. Arundel, S. T., & Li, W. (2021). The Evolution of Geospatial Reasoning, Analytics, and Modeling. The
Geographic Information Science & Technology Body of Knowledge (3rd Quarter 2021 Edition), John P.



7/28/22, 12:08 PM PD-20 - Real-time GIS Programming and Geocomputation | GIS&T Body of Knowledge

https://gistbok.ucgis.org/bok-topics/real-time-gis-programming-and-geocomputation 10/10

Wilson (Ed.). DOI: 10.22224/gistbok/2021.3.4.

Related Topics:
The Evolution of Geospatial Reasoning, Analytics, and Modeling
Artificial Intelligence Approaches
Big Data Visualization
Problems of Large Spatial Databases

Keywords:

real-time GIS
Geo AI
artificial intelligence
streaming data
big data
visualization

Copyright © 2022 by

ucgis <gistbok@ucgis.org>

© 2016-2021 UCGIS  Privacy Policy and Terms of Use

ISSN 2577-2848 (online)

https://gistbok.ucgis.org/bok-topics/evolution-geospatial-reasoning-analytics-and-modeling
https://gistbok.ucgis.org/bok-topics/artificial-intelligence-approaches
https://gistbok.ucgis.org/bok-topics/big-data-visualization
https://gistbok.ucgis.org/bok-topics/problems-large-spatial-databases
https://gistbok.ucgis.org/topic-keywords/real-time-gis
https://gistbok.ucgis.org/topic-keywords/geo-ai
https://gistbok.ucgis.org/topic-keywords/artificial-intelligence
https://gistbok.ucgis.org/topic-keywords/streaming-data
https://gistbok.ucgis.org/topic-keywords/big-data
https://gistbok.ucgis.org/topic-keywords/visualization
https://gistbok.ucgis.org/bok-basic-page/editorial-information#copyright-info
mailto:gistbok@ucgis.org
https://www.ucgis.org/privacy-policy
https://gistbok.ucgis.org/bok-basic-page/editorial-information

