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A study of Λ0
b baryon decays to the DpK− final state is presented based on a proton-proton

collision data sample corresponding to an integrated luminosity of 9 fb−1 collected with the LHCb
detector. Two Λ0

b decays are considered, Λ0
b → DpK− with D → K−πþ and D → Kþπ−, where D

represents a superposition of D0 and D̄0 states. The latter process is expected to be suppressed relative to
the former, and is observed for the first time. The ratio of branching fractions of the two decays is measured,
and the CP asymmetry of the suppressed mode, which is sensitive to the Cabibbo-Kobayashi-Maskawa
angle γ, is also reported.
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I. INTRODUCTION

Few studies of beauty-baryon decays to final states
involving a single open-charm meson exist, but they
are nonetheless promising for measurements of CP
violation [1–3]. A measurement of a set of branching
fraction ratios of Λ0

b and Ξb decays to final states
including a D meson yielded the first observation of
the singly Cabibbo-suppressed Λ0

b → ½K−πþ�DpK− decay
[4], where D represents a D0 or D̄0 meson.1 This was
followed by a study of the resonant structure of Λ0

b →
D0pπ− decays [5]. This paper reports the results of a study
of Λ0

b → DpK− decays with the objectives of observing
for the first time the Λ0

b → DpK− decay with D → Kþπ−,
denoted as Λ0

b → ½Kþπ−�DpK− and measuring its CP
asymmetry. This decay is expected to be suppressed
relative to the Λ0

b → ½K−πþ�DpK− decay. An estimate
of the ratio of branching fractions between the favoured
and suppressed modes is obtained by considering the
relevant Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements [6]
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The Λ0
b → ½K−πþ�DpK− (Λ0

b → ½Kþπ−�DpK−) decay with
same (opposite) sign kaons are referred to as the favored
(suppressed) decay throughout this paper. The suppressed
decay is of particular interest since its decay amplitude
receives contributions from b → c and b → u amplitudes
of similar magnitude, given the CKM suppression
between the two D decays. The interference between
these two amplitudes, which depends upon the CKM
angle γ, is expected to be large [7,8], but the different
strong phases associated with the various configurations
of polarization states for the Λ0

b, proton, and intermediate
resonances complicate determination of γ.
The analysis is based on proton-proton (pp) collision

data collected with the LHCb detector at
ffiffiffi
s

p ¼ 7, 8, and
13 TeV, corresponding to a total integrated luminosity of
9 fb−1. The suppressed Λ0

b → ½Kþπ−�DpK− decay is
observed for the first time. In addition the ratio of branching
fractions of the favored and suppressed decays, R, and the
CP asymmetry in the suppressed mode, A, which is
expected to be sensitive to the CKM angle γ, are measured
where

R ¼ BðΛ0
b → ½K−πþ�DpK−Þ

BðΛ0
b → ½Kþπ−�DpK−Þ ;

including both flavors, and

A ¼ BðΛ0
b → ½Kþπ−�DpK−Þ − BðΛ̄0

b → ½K−πþ�Dp̄KþÞ
BðΛ0

b → ½Kþπ−�DpK−Þ þ BðΛ̄0
b → ½K−πþ�Dp̄KþÞ

:

ð2Þ

Sensitivity to CP violation requires interference between
amplitudes involving intermediate D0 and D̄0 mesons.
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This interference is anticipated to be amplified in regions
of the phase space involving Λ0

b → DX contributions,
where X labels excited Λ states. Therefore, the ratio of
branching fractions and the CP asymmetry in the sup-
pressed mode are measured separately in the full phase
space and in a restricted phase-space region which
involves Λ0

b → DX decays, where an enhanced sensitivity
to γ is expected.

II. DETECTOR AND SIMULATION

The LHCb detector [9,10] is a single-arm forward
spectrometer covering the pseudorapidity range
2 < η < 5, designed for the study of particles containing
b or c quarks. The detector includes a high-precision
tracking system consisting of a silicon-strip vertex detec-
tor surrounding the pp interaction region [11], a large-
area silicon-strip detector located upstream of a dipole
magnet with a bending power of about 4 Tm, and three
stations of silicon-strip detectors and straw drift tubes
[12,13] placed downstream of the magnet. The tracking
system provides a measurement of the momentum, p, of
charged particles with a relative uncertainty that varies
from 0.5% at low momentum to 1.0% at 200 GeV=c.
The minimum distance of a track to a primary pp
collision vertex (PV), the impact parameter (IP), is
measured with a resolution of ð15þ 29=pTÞμm, where
pT is the component of the momentum transverse to the
beam, in GeV=c. Different types of charged hadrons are
distinguished using information from two ring-imaging
Cherenkov detectors [14]. Hadrons are identified by a
calorimeter system consisting of scintillating-pad
and preshower detectors, an electromagnetic and a
hadronic calorimeter. The online event selection is per-
formed by a trigger [15], which consists of a hardware
stage, based on information from the calorimeter, fol-
lowed by a software stage, which applies a full event
reconstruction.
Simulation is required to model the effects of the detector

acceptance and the imposed selection requirements. In the
simulation, pp collisions are generated using Pythia [16]
with a specific LHCb configuration [17]. Decays of
unstable particles are described by EvtGen [18], in which
final-state radiation is generated using Photos [19]. The
interaction of the generated particles with the detector, and
its response, are implemented using the Geant4 toolkit [20]
as described in Ref. [21].
The particle identification (PID) response in the simu-

lated samples is corrected using control samples of Λþ
c →

pK−πþ decays in LHCb data, taking into account its
correlation with the kinematic properties of each track
and with the event multiplicity. To parametrize the PID
response, an unbinned method is employed, where the
probability density functions (PDFs) are modeled using
kernel density estimation [22].

III. RECONSTRUCTION AND SELECTION
OF CANDIDATES

Neutral D meson candidates are reconstructed by com-
bining kaon and pion candidates having opposite charge.
To form Λ0

b candidates, the neutral D meson candidates are
combined with proton and kaon candidates having opposite
charge. EachΛ0

b candidate is associated to the PV for which
the value of χ2IP is minimized, where χ2IP is the difference
between the vertex χ2 of a given PV with and without the
Λ0
b candidate included in the PV fit. The tracks forming the

Λ0
b candidate are required to have good fit quality and to be

well separated from any PV in the event. The invariant
masses of the Λ0

b candidate, MðDpK−Þ, and of the D
candidate, MðKπÞ, are required to be in the intervals from
5200 to 7000 MeV=c2 and 1850 to 1880 MeV=c2, respec-
tively. Candidates with MðKπÞ in a wider mass range from
1765 to 1965 MeV=c2 are retained to quantify the back-
ground contribution from charmless b -hadron decays. A
kinematic fit is performed in which MðKπÞ is constrained
to the known D0 mass [6] and the Λ0

b candidate’s trajectory
is required to point back to the associated PV [23]. To
improve the resolution of the squared invariant masses
M2ðDpÞ,M2ðDK−Þ andM2ðpK−Þ, the fit is repeated when
calculating these variables, with the additional constraint
that the invariant mass of theDpK− combination is equal to
the known Λ0

b mass [6] and is applied when calculating
these variables. Inclusion of the mass constraint improves
the resolution on the two-body masses by 50% or more,
depending upon position in the three-body phase space.
Background from Λ0

b → Λþ
c h− decays, with Λþ

c →
ph−hþ where h is a charged kaon or pion, is vetoed by
requiring that the invariant mass of any ph−hþ combination
differs from the known Λþ

c mass [6] by more than
20 MeV=c2. To suppress the contribution of events from
charmless Λ0

b → ph−hþh− decays, the decay-time signifi-
cance of the D meson candidates with respect to the Λ0

b
vertex is required to be larger than 2.5. The decay-time
significance of the D candidate is defined as the measured
decay time divided by its uncertainty.
To suppress combinatorial background, a boosted deci-

sion tree (BDT) algorithm using adaptive boosting [24] is
employed as implemented in the TMVA toolkit [25].
To train the BDT classifier, one for the full and another
for the restricted phase space, a sample of simulated Λ0

b →
½K−πþ�DpK− decays is used as a proxy for signal and
candidates in the Λ0

b mass sidebands with mass in the
intervals from 5300 to 5400 MeV=c2 and from 5900 to
6000 MeV=c2 are used to represent combinatorial back-
ground. The variables that enter the BDT selection are the
quality of the kinematic fit, the quality of the Λ0

b and D
vertices and their decay-time significances, PID variables,
and the pT of the final-state particles. The optimization
criterion used to determine the choice of BDT working
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point is the maximum expected statistical significance of
the suppressed signal, Nsig=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsig þ Nbkg

p
, where Nsig

and Nbkg are the expected numbers of signal and back-
ground candidates in the mass interval from 5600 to
5640 MeV=c2. The expected number of suppressed signal
decays is determined by dividing the observed yield in the
favored decay by the Cabibbo suppression factor defined in
Eq. (1) using values for the CKM matrix elements taken
from [26]. In 0.1% of events multiple Λ0

b candidates are
reconstructed. All the candidates are retained.

IV. DETERMINATION OF SIGNAL YIELDS

The mass distributions for the DpK− candidates in the
favored and suppressed data samples in the full phase space
are shown in Fig. 1. The number of signal candidates is
obtained by an extended unbinned maximum-likelihood fit
to the MðDpK−Þ mass distributions using the RooFit
package [27]. The favored and suppressed samples are
fitted simultaneously. The PDF used for the favored sample
is made of two components to model Λ0

b → DpK− and
Ξ0
b → DpK− signals, a background from misidentified

Λ0
b → Dpπ− decays, and a partially reconstructed back-

ground from Λ0
b → D�pK− decays where D�0 → D0γ or

D�0 → D0π0 and the γ or π0 particle is not reconstructed.
Additional components are required to describe the back-
ground due to partially reconstructed Λ0

b → D�pπ− decays,
with D�0 → D0γ or D�0 → D0π0 and having the pion from
the Λ0

b decay misidentified as a kaon, partially recon-
structed Ξ0

b → D�pK− decays, which peak in the signal
region, and from combinatorial background. The PDF
used to fit the suppressed sample is the same, except that
it does not include contributions from the Ξ0

b → Dð�ÞpK−

and Λ0
b → Dð�Þpπ− decays, which are expected to be

negligible.

The parametrized shape of each component is taken from
a fit to simulated decays after all selections are applied. The
signal and partially reconstructed background are each
modeled by the sum of two crystal ball (CB) functions [28],
where the parameters governing the shape of the tails are
fixed to their values in fits to simulated samples. The
background from misidentified Λ0

b → Dpπ− decays is
parametrized by the sum of a Gaussian and a CB function.
In the restricted phase-space region, M2ðpK−Þ<
5GeV2=c4, the same functional forms are used, except
that the partially reconstructed background is parametrized
by the sum of a bifurcated Gaussian and a CB function. The
combinatorial background is described by an exponential
function. The slope of the combinatorial background is
allowed to vary independently in the favored and sup-
pressed samples. The widths of each peaking component
are multiplied by a common free parameter in order to
account for the difference between the invariant-mass
resolution observed in data and simulation. The mass of
the Λ0

b baryon is a free parameter, while the mass difference
between Ξ0

b and Λ0
b baryons is fixed to its known value [6].

The yields of each component are allowed to vary inde-
pendently in the favored and suppressed samples.
The projection of the fit to the invariant-mass distribution

MðDpK−Þ in the favored and suppressed data samples in
the full phase space is shown in Fig. 1. The Λ0

b yields are
given in Table I. Figure 2 shows the invariant-mass
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FIG. 1. Distributions of the invariant mass for selected (left)Λ0
b → ½K−πþ�DpK− and (right) Λ0

b → ½Kþπ−�DpK− candidates in the full
phase space (black points) corresponding to the favored and suppressed decays, respectively. The total fit model, as described in the text,
is indicated by the solid blue line, and individual components are indicated.

TABLE I. Signal Λ0
b yields obtained from fits to the invariant-

mass distributions, MðDpK−Þ, for the favored and suppressed
decay samples in the two phase-space regions.

Phase-space region Λ0
b → ½K−πþ�DpK− Λ0

b → ½Kþπ−�DpK−

Full 1437� 92 241� 22
Restricted 664� 36 84� 14
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distribution MðDpK−Þ in the favored and suppressed data
samples in the restricted phase-space region M2ðpK−Þ <
5 GeV2=c4 with the fit projections overlaid. The signal
yields obtained from this fit are given in Table I. The
invariant-mass distributions MðDpK−Þ and MðDp̄KþÞ,
overlaid with the fit projections, used to calculate the
CP asymmetry of the suppressed decay in the full phase
space and in the restricted phase-space region are shown in
Figs. 3 and 4, respectively.

The resonant structure of the favored and suppressed
decays can be illuminated by considering projections of the
Λ0
b phase space. Figure 5 shows the M2ðpK−Þ versus

M2ðDpÞ distributions of favored and suppressed candidates
in the signal region 5600 < MðDpK−Þ < 5640 MeV=c2.
The signal purity in this region is 76% and 72% for the
favored and suppressed modes, respectively. Despite the

smaller combinatorial background, the signal purity for the
favored decay is comparable to that for the suppressed
decay due to the presence of the background from Ξ0

b →
D�pK− and Λ0

b → Dpπ− decays in the signal region.
Figures 6 and 7 show invariant-mass projections onto
MðpK−Þ, MðDpÞ and MðDK−Þ for selected candidates.
The dominant resonant amplitudes in the favored mode
could generate structures in the MðDpÞ and MðpK−Þ
distributions, corresponding to states having udc and
uds quark content, respectively. The MðDpÞ distribution
shows an increased density of events in the low-MðDpÞ
region with a contribution fromΛcð2860Þþ → D0p decays.
The distribution of MðpK−Þ contains a contribution from
the Λð1520Þ baryon at low-MðpK−Þ and an enhancement
at 2.5≲MðpK−Þ≲ 3.5 GeV=c2, which is the reflection of
the Λcð2860Þþ resonance seen in the MðDpÞ distribution.
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FIG. 2. Distributions of the invariant mass for (left) Λ0
b → ½K−πþ�DpK− and (right) Λ0

b → ½Kþπ−�DpK− candidates, corresponding to
the favored and suppressed decays, respectively, in the restricted phase-space region M2ðpK−Þ < 5 GeV2=c4. The fit, as described in
the text, is overlaid.
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FIG. 3. Distributions of the invariant mass for (left) Λ0
b → ½Kþπ−�DpK− and (right) Λ̄0

b → ½K−πþ�Dp̄Kþ candidates in the full phase
space (black points), corresponding to separation of the suppressed decay sample by Λ0

b flavour. The fit, as described in the text, is
indicated by the solid blue line, and individual components are indicated.
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b → ½K−πþ�Dp̄Kþ candidates in the restricted
phase-space region (black points), where the separation is made according to the Λ0

b flavor. The fit, as described in the text, is indicated
by the solid blue line, and individual components are indicated.
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Different resonant structure is anticipated in the suppressed
sample given the contributions from, and interference
between, the Λ0

b → D0pK− and Λ0
b → D̄0pK− amplitudes.

The MðDK−Þ distribution in the suppressed sample shows
an increased density of events in the low-mass region with a
contribution from resonances decaying to DK− such as
the D�

s1ð2700Þ�.

V. CALCULATION OF BRANCHING FRACTION
RATIO AND CP ASYMMETRY

The ratio of branching fractions of the favored and
suppressed decays and the CP asymmetry of the sup-
pressed decay are calculated from the ratio of yields of the
corresponding decays after applying efficiency correction
factors as

R ¼
P

iw
i
FAV=ϵ

i
P

iw
i
SUP=ϵ

i ; ð3Þ

A ¼
P

iw
i
SUP;Λ0

b
=ϵi −

P
iw

i
SUP;Λ̄0

b

=ϵi

P
iw

i
SUP;Λ0

b
=ϵi þP

iw
i
SUP;Λ̄0

b

=ϵi
ð4Þ

where the sum is over the selected candidates. Here wi
FAV

andwi
SUP are the weights obtained using the sPlot technique

[29] for background subtraction of the favored or sup-
pressed samples, respectively, with MðDpK−Þ as the
discriminating variable. The subscripts Λ0

b and Λ̄0
b label

the samples split by flavor and ϵi are the relative efficien-
cies. The efficiency corrections are determined as a
function of the Λ0

b phase-space variables M2ðDpÞ and
M2ðpK−Þ using the simulated Λ0

b → ½K−πþ�DpK− sample
and parameterized by a kernel density estimation technique
[22]. Across the phase space, the relative efficiencies vary
from 0.7 to 1.2, as shown in Fig. 8.

The measured values of R and A in the full phase space
with their statistical and systematic uncertainties are

R ¼ 7.1� 0.8ðstatÞþ0.4
−0.3ðsystÞ;

A ¼ 0.12� 0.09ðstatÞþ0.02
−0.03 ðsystÞ;

and in the restricted phase-space region M2ðpK−Þ <
5 GeV2=c4,

R ¼ 8.6� 1.5ðstatÞþ0.4
−0.3ðsystÞ;

A ¼ 0.01� 0.16ðstatÞþ0.03
−0.02 ðsystÞ:

The data samples in the full and restricted phase-space
region partially overlap and the statistical uncertainties on
the ratios and asymmetries measured in these two regions
are correlated. A positive correlation between the statistical
uncertainties of ρ ¼ 0.33 is estimated, given the number of
events in the two samples and their overlap.

VI. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties on the ratio of branching
fractions of the favored and suppressed decays and the CP
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asymmetry of the suppressed decay are listed in Table II.
For each variation, the determination of R and A is
performed, and the difference with respect to the nominal
result is taken as systematic uncertainty. Where multiple
variations are considered, the largest negative and positive
deviations are taken. For the measurement of R and A,
many systematic effects cancel in the ratios. The total
systematic uncertainties are obtained by summing all the
contributions in quadrature.
To assess systematic uncertainties due to the description

of signal and background contributions in the invariant
mass fit model, alternative parametrizations for theΛ0

b mass
peak, partially reconstructed background components and
combinatorial background are used. The corresponding
systematic uncertainties amount to ð1–5Þ%. The efficiency
corrections are impacted by the limited size of the signal
simulation sample. This is assessed by varying the param-
eters of the kernel density estimation. The corresponding
systematic uncertainties are ð1–3Þ%.
The PID response in data is obtained from calibration

samples [30,31]. The associated systematic uncertainty
includes the kernel width variation and the uncertainty
due to finite sample size of the calibration samples. The
resulting uncertainty is 2% for R, and less than 1% for A.
The hardware-level trigger decision is not perfectly

simulated. The impact of this mismodeling is estimated
by varying the efficiency map according to a correction
obtained from data control samples. The resulting system-
atic uncertainty is at the level of 0.5%.
The background from charmless decays is estimated by

interpolating from the D mass sidebands into the D mass
region after all selection requirements are imposed and
found to be 0.5% and 1% in the favored and suppressed
samples, respectively. These values are taken as uncertain-
ties and propagated to the measurement of R, resulting in an

uncertainty of 1% on R, while the corresponding uncer-
tainty on A is assumed to cancel.

Doubly misidentified background, where the kaon and
pion in the favored mode are swapped, leads to a back-
ground that peaks at the Λ0

b mass in the suppressed sample.
This contribution is estimated from simulation to be 0.5%
in the suppressed sample, and this value is assigned as an
uncertainty in R. Furthermore, the impact of Λ0

b → DpK−

decays with subsequent D → K−Kþ or D → π−πþ decays,
when one of theD decay products is misidentified, is found
to be 0.1%.
The asymmetry in Λ0

b and Λ̄0
b production is expected to

influence the measurement of A. The average values were
measured to be ð1.92� 0.35Þ% and ð1.09� 0.29Þ% at 7
and 8 TeV center-of-mass energies, respectively [32]. The
production asymmetry is expected to decrease still further
for a center-of-mass energy of 13 TeV [33,34]. A 1.5%
systematic uncertainty is assigned. Furthermore, the detec-
tion asymmetry of theΛ0

b decay products is also expected to
influence the measurement of A. The asymmetry in
detecting protons versus antiprotons has been studied in
detail [32] and does not exceed 1.5% for various values of
proton momentum. The asymmetry of πþ and π− detection
was studied in Ref. [35] and found to be less than 0.5%.
These values are assigned as systematic uncertainties. Any
influence ofKþ andK− detection asymmetry is expected to
cancel for the Kþ meson from the D meson and the K−

meson from the Λ0
b baryon.

Pseudoexperiments were used to verify that the fit used
to determine the Λ0

b signal yields was unbiased, and no
uncertainty from this source is included.

VII. CONCLUSION

A study of Λ0
b baryon decays to the ½K�π∓�DpK− final

state, where D indicates a superposition of D0 and D̄0, is
reported, using a data sample corresponding to an inte-
grated luminosity of 9 fb−1 collected with the LHCb
detector. The suppressed Λ0

b → ½Kþπ−�DpK− decay is
observed for the first time. The ratio of branching fractions
for the Λ0

b → ½K−πþ�DpK− and Λ0
b → ½Kþπ−�DpK−

decays, and the CP asymmetry, are measured in the full
phase space to be

R ¼ 7.1� 0.8ðstatÞþ0.4
−0.3ðsystÞ;

A ¼ 0.12� 0.09ðstatÞþ0.02
−0.03 ðsystÞ:

In the phase-space regionM2ðpK−Þ < 5 GeV2=c4 the ratio
and CP asymmetry are measured to be

R ¼ 8.6� 1.5ðstatÞþ0.4
−0.3ðsystÞ;

A ¼ 0.01� 0.16ðstatÞþ0.03
−0.02 ðsystÞ:

Within the uncertainties, the ratio of the favored and
suppressed branching fractions is consistent with the

TABLE II. Absolute uncertainties on the ratio of branching
fractions, R, and CP asymmetry, A, related to the sources of
systematic uncertainty studied. The statistical and total systematic
uncertainties are also shown.

R A

Systematic uncertainties

Fit model þ0.37
−0.15

þ0.000
−0.011

Efficiency corrections þ0.21
−0.24

þ0.010
−0.008

PID efficiency þ0.08
−0.16

þ0.001
−0.002

Hardware trigger efficiency �0.03 �0.001
Charmless background �0.08
Double misidentified background �0.005
Single misidentified background �0.001
Λ0
b production asymmetry �0.015

p detection asymmetry �0.015
π detection asymmetry �0.005

Total systematic uncertainty þ0.43
−0.33

þ0.024
−0.026

Statistical uncertainty �0.79 �0.088
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estimate based on the relevant CKM matrix elements. The
measured asymmetry values are consistent with zero, both
in the full phase space and in the region where enhanced
sensitivity to the CKM angle γ is expected. While the
present signal yields are too low to be used to extract γ,
larger samples are expected to be collected by LHCb in the
coming years, and the study of this mode will contribute to
the overall determination of γ.
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lAlso at Università di Siena, Siena, Italy.
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