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1 Introduction

Heavy-flavour states with b quarks are characterised by a relatively long lifetime and a
large number of decay channels, and allow for highly sensitive studies of charge and parity
(CP ) symmetry violation and quantum-loop induced amplitudes. In the B+

c meson, a b
quark is accompanied by a charm quark, c, forming a system where decays of both the
beauty and the charm quark, as well as weak annihilation processes, contribute to the
decay amplitude [1].

Transition amplitudes between up-type quarks and down-type quarks are described by
the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [2, 3]. Figure 1 illustrates
the CKM-favoured, but colour-suppressed B+

c → D+
s D

0 decay (unless specified otherwise,
charge conjugation is implied throughout this article) and the CKM-suppressed, but colour-
favoured B+

c → D+
s D

0 decay, which are expected to have similar amplitudes. This may
result in a large, O(1), CP asymmetry for final states that are common between D0 and
D0 decays. Consequently decays of B+

c mesons to two charm mesons, B+
c → D+

(s)
( )
D 0,

have been proposed to measure the angle γ ≡ arg(−VudV ∗ub/VcdV ∗cb) [4–7], one of the key
parameters of the CKM matrix. Presently, the most precise determinations of γ come from
measurements of the CP asymmetry in B+→

( )
D 0K+ decays [8, 9].

Predicted branching fractions of B+
c decays to two charm mesons [10–14] are listed

in table 1. Final-state interactions may result in an enhancement of B+
c → D+ ( )

D 0 de-
cay rates [15]. Moreover, contributions from physics beyond the Standard Model could
potentially affect fully hadronic B decays [16–18].

This article describes a search for sixteen B+
c → D

(∗)+
(s)

( )
D (∗)0 decay channels, using

proton-proton (pp) collision data collected by the LHCb experiment, corresponding to an
integrated luminosity of 9 fb−1, of which 1 fb−1 was recorded at a centre-of-mass energy
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Figure 1. Diagrams for the (left) CKM-favoured, colour-suppressed B+
c → D+

s D
0 and (right)

CKM-suppressed, colour-favoured B+
c → D+

s D
0 decays.

Channel Ref. [11] Ref. [12] Ref. [13] Ref. [14]

B+
c → D+

s D
0 2.3± 0.5 4.8 1.7 2.1

B+
c → D+

s D
0 3.0± 0.5 6.6 2.5 7.4

B+
c → D+D0 32± 7 53 32 33

B+
c → D+D0 0.10± 0.02 0.32 0.11 0.31

B+
c → D∗+D0 12± 3 49 17 9

B+
c → D∗+D0 0.09± 0.02 0.40 0.38 0.44

Table 1. Predicted branching fractions of B+
c decays to two charm mesons, in units of 10−6.

√
s = 7TeV, 2 fb−1 at

√
s = 8TeV and 6 fb−1 at

√
s = 13TeV. The data taken at 7 and

8TeV are referred to as Run 1, and the data taken at 13TeV as Run 2. The Run 1 data
has previously been analysed and no evidence of B+

c → D
(∗)+
(s)

( )
D (∗)0 decays was found [19].

Charm mesons are reconstructed in the D0→ K−π+, D0→ K−π+π−π+,
D+→ K−π+π+, D+

s → K+K−π+, and D∗+→ D0π+ decay modes. In the decay
B+
c → D∗+

( )
D 0, at least one of the neutral charm mesons is required to decay as

D0→ K−π+. Partially reconstructed B+
c decays, which involve one or two excited charm

mesons producing a photon or a neutral pion in their decay, are also included in the
search. These decays manifest themselves as relatively narrow structures in the mass
distributions of the reconstructed final states below the B+

c mass.
The branching fractions, B, of B+

c decays to fully reconstructed final states are mea-
sured relative to high-yield B+→ D

(∗)+
(s) D0 normalisation modes,

R(D(∗)+
(s)

( )
D 0) ≡

fc

fu

B(B+
c → D

(∗)+
(s)

( )
D 0)

B(B+→ D
(∗)+
(s) D0)

=
N(B+

c → D
(∗)+
(s)

( )
D 0)

ε(B+
c → D

(∗)+
(s)

( )
D 0)

ε(B+→ D
(∗)+
(s) D0)

N(B+→ D
(∗)+
(s) D0)

,

(1.1)
where fc/fu is the ratio of the B+

c to B+ fragmentation fraction, N denotes the
measured B+

(c) yields, and ε represents the detection efficiencies. The value of
fc/(fu + fd) · B(B+

c → J/ψµ+νµ) has been measured at centre-of-mass energies of 7 and
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13TeV [20]. Under the assumption of equal production from hadronisation of B+ and B0,
fu = fd, the value of fc/fu is found to be 0.73% at

√
s = 7TeV and 0.76% at

√
s = 13TeV

with relative uncertainties of approximately 25%, dominated by the uncertainty on the
predicted value of B(B+

c → J/ψµ+νµ), for which no measurements are available. Earlier
measurements of fc/fu at 7 and 8TeV using fully reconstructed B+

c decays found compat-
ible values [21, 22].

The invariant-mass distributions of partially reconstructed B+
c → D∗+(s)

( )
D 0 and

B+
c → D+

(s)
( )
D ∗0 decays overlap. Their branching fractions are measured separately by

treating the contribution as arising entirely from each decay:

R′+(D+
(s)

( )
D 0) ≡

fc

fu

B(B+
c → D∗+(s)

( )
D 0)

B(B+→ D+
(s)D

0)

=
N(B+

c → D∗+(s)
( )
D 0)

ε(B+
c → D∗+(s)

( )
D 0)B(D∗+(s)→ D+

(s)X
0)

ε(B+→ D+
(s)D

0)
N(B+→ D+

(s)D
0)
, (1.2)

R′0(D+
(s)

( )
D 0) ≡

fc

fu

B(B+
c → D+

(s)
( )
D ∗0)

B(B+→ D+
(s)D

0)

=
N(B+

c → D+
(s)

( )
D ∗0)

ε(B+
c → D+

(s)
( )
D ∗0)

ε(B+→ D+
(s)D

0)
N(B+→ D+

(s)D
0)
, (1.3)

where X0 represents a neutral pion or a photon. Decays of B+
c → D∗+

( )
D ∗0 with a fully

reconstructed D∗+→ D0π+ decay, and one missing neutral pion or photon from the
( )
D ∗0

meson decay, results in measurements of

R′(D∗+
( )
D 0) ≡

fc

fu

B(B+
c → D∗+

( )
D ∗0)

B(B+→ D∗+D0)

= N(B+
c → D∗+

( )
D ∗0)

ε(B+
c → D∗+

( )
D ∗0)

ε(B+→ D∗+D0)
N(B+→ D∗+D0)

. (1.4)

The B+
c → D∗+s

( )
D ∗0 and B+

c → D∗+
( )
D ∗0 decays can also be observed when both

excited charm mesons decay with either a photon or a neutral pion and neither of the two
neutral particles are reconstructed. In such cases, the ratio R′′ is measured:

R′′(D+
(s)

( )
D 0) ≡

fc

fu

B(B+
c → D∗+(s)

( )
D ∗0)

B(B+→ D+
(s)D

0)

=
N(B+

c → D∗+(s)
( )
D ∗0)

ε(B+
c → D∗+(s)

( )
D ∗0)B(D∗+(s)→ D+

(s)X
0)

ε(B+→ D+
(s)D

0)
N(B+→ D+

(s)D
0)
.

(1.5)

In total twenty ratios are measured, corresponding to sixteen B+
c branching fractions,

since B+
c decays with a D∗+ in the final state are searched for both in fully reconstructed

D∗+→ D0π+ and in partially reconstructed D∗+→ D+X0 decays.
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2 Detector and simulation

The LHCb detector [23, 24] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region [25], a large-area silicon-strip detector lo-
cated upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes [26, 27] placed downstream of the magnet.
The tracking system provides a measurement of the momentum, p, of charged particles
with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200GeV/c.
The minimum distance of a track to a primary pp collision vertex (PV), the impact pa-
rameter, is measured with a resolution of (15 + 29/pT)µm, where pT is the component of
the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors [28]. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and multiwire proportional
chambers [29]. The online event selection is performed by a trigger [30], which consists of
a hardware stage, based on information from the calorimeter and muon systems, followed
by a software stage, which applies a full event reconstruction.

At the hardware trigger stage, events are required to have a muon with high pT or a
hadron, photon or electron with high transverse energy in the calorimeters. For hadrons,
the transverse energy threshold is 3.5GeV. The software trigger requires a two-, three- or
four-track secondary vertex with a significant displacement from any PV. At least one track
should have pT > 1.7GeV/c and χ2

IP with respect to any PV greater than 16, where χ2
IP is

defined as the difference in the vertex-fit χ2 of a given PV reconstructed with and without
the considered particle. A multivariate algorithm [31, 32] is used for the identification of
secondary vertices consistent with the decay of a b hadron.

Simulation is used to model the effects of the detector acceptance and the imposed
selection requirements, as well as for the training of the multivariate selection of the
B+
c signals, and for establishing the shape of the mass distributions of the signals. The

Pythia [33, 34] package, with a specific LHCb configuration [35], is used to simulate pp
collisions with B+ production. For B+

c production, the Bcvegpy [36] generator is used,
interfaced with the Pythia parton shower and hadronisation model. Decays of unstable
particles are described by EvtGen [37], in which final-state radiation is generated using
Photos [38]. The interaction of the generated particles with the detector, and its response,
are implemented using the Geant4 toolkit [39, 40] as described in ref. [41]. The simulated
B+ production is corrected to match the observed spectrum of B+→ D+

s D
0 decays in

data, using a gradient boosted reweighter (GBR) [42] technique. The weights w(pT, y) are
determined separately for Run 1 and Run 2. Simulated B+

c events are corrected to match
the measured linear dependence of fc/(fu + fd) on pT and y [20]. In addition, correc-
tions using control samples are applied to the simulated events to improve the agreement
with data regarding particle identification (PID) variables, the momentum scale and the
momentum resolution.
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3 Candidate selection

Charm-meson candidates are formed by combining two, three or four tracks that are in-
compatible with originating from any reconstructed PV. The tracks are required to form a
high-quality vertex and the scalar sum of their pT must exceed 1.8GeV/c. To reduce back-
ground from misidentified particles, the pion and kaon candidates must also satisfy loose
criteria on DLLKπ, the ratio of the likelihood between the kaon and pion PID hypotheses.

The reconstructed mass of D0, D+
s and D+ candidates is required to be within

±25MeV/c2 of their known values [43]. For channels with a fully reconstructed
D∗+→ D0π+ meson, the mass difference ∆m between the D∗+ and the D0 candidates
is required to be within ±10MeV/c2 of the known value [43]. If more than one charm-
meson candidate is formed from the same track combination, only the best according to
PID information is selected.

A B+
(c) candidate is formed by combining a D(∗)+

(s) candidate with a
( )
D 0 candidate if the

combination has a pT greater than 4.0GeV/c, forms a good-quality vertex and originates
from a PV. The reconstructed decay time of the charm meson candidates with respect to the
B+

(c) vertex divided by its uncertainty, t/σt, is required to exceed −3 for D+
s and D0 mesons.

This requirement is increased to +3 for the longer-lived D+ meson to eliminate background
from B+→ D0π+π−π+ decays where the negatively charged pion is misidentified as a kaon.
Candidate B+

c decays that are compatible with the combination of a fully reconstructed
B0

(s) → D
(∗)−
(s) π+(π−π+) decay and a charged track are rejected. To eliminate duplicate

tracks, the opening angles between any pair of final-state particles are required to be at
least 0.5 mrad. The invariant-mass resolution of B+

(c) decays is significantly improved by
applying a kinematic fit [44] where the invariant masses of the D0 and the D(∗)+

(s) candidates
are constrained to their known values [43], all particles from the D(∗)+

(s) , D0, and B+
(c) decay

are constrained to originate from their corresponding decay vertex and the B+
(c) candidate

is constrained to originate from the PV with which it has the smallest χ2
IP.

To reduce the combinatorial background, while maintaining high efficiency for signal,
a multivariate selection based on a boosted decision tree (BDT) [45, 46] is employed. The
BDT classifier exploits kinematic and PID properties of selected candidates, namely: the
fit quality of the B+

(c) candidate and both charm-meson candidate vertices; the value of χ2
IP

of the B+
(c) candidate; the values of t/σt of the B+

(c) and both charm-meson candidates; the
reconstructed masses of the charm-meson candidates; and the reconstructed masses of the
pairs of opposite-charge tracks from the D+

(s) candidate. In addition, for each charm-meson
candidate, the smallest value of pT and the smallest value of χ2

IP among the decay products,
and the smallest (largest) value of DLLKπ among all kaon (pion) candidates, are included
as input variables for the BDT classifier.

The BDT training is performed separately for the D+
s

( )
D 0, D+ ( )

D 0 and D∗+
( )
D 0

final states, separately for the D0→ K−π+ and D0→ K−π+π−π+ decay channels, and
separately for the Run 1 and Run 2 data samples. For a given D0 final state, the same
classifier is used for both B+

c → D
(∗)+
(s) D0 and B+

c → D
(∗)+
(s) D0 decays. For signal decays,

the BDT classifier is trained using simulated B+
c events, while for background, data in

– 5 –
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Figure 2. Invariant-mass distributions for the selected B+
(c) candidates in the highest BDT samples

for (top left) D+
s D

0, (top right) D+
s D

0, (center left) D+D0, (center right) D+D0, (bottom left)
D∗+D0 and (bottom right) D∗+D0, final states. The overlaid curves correspond to the sum of the
corresponding fit results.

the range 5350 < m(D(∗)+
(s)

( )
D 0) < 6200MeV/c2 are used. For the background sample, the

charm-meson mass windows are increased from ±25MeV/c2 to ±75MeV/c2, to increase the
size of the training sample. The k-fold cross-training technique [47] with k = 5 is used to
avoid biases in the calculation of the BDT output.

The data are divided in increasing order of signal purity into three samples having
low, medium and high BDT output. Most of the sensitivity in this search comes from
the data in the high BDT sample, but including data with lower signal purity increases
the signal efficiency and constrains the shape of the combinatorial background. A small
fraction of the events (≈ 1%) have more than one B+

(c) candidate that satisfies the minimum
BDT requirement. In such cases, one randomly selected candidate is retained per event.
Figure 2 shows the invariant mass distributions of selected B+

(c) candidates in the highest
BDT sample, summed over all D0 final states.

– 6 –



J
H
E
P
1
2
(
2
0
2
1
)
1
1
7

4 Model of the B+
(c) mass distributions

To measure the signal yields, a model of the B+
(c) candidate mass distribution is fitted to

the data in the range 5230 ≤ m(D(∗)+
(s)

( )
D 0) ≤ 6700MeV/c2. The model consists of the

following components, constrained to positive yields: the signals for fully reconstructed
B+ and B+

c decays; the signal for B+
c decays with one missing π0 or photon; the signal

for B+
c decays with two missing π0 or photons; the background from B+→ D0K+K−π+

decays; and the combinatorial background.
Fully reconstructed B+ and B+

c signals are described by the sum of a Gaussian function
and a Crystal Ball (CB) [48] function, extended to have power-law tails on both the low-
mass and the high-mass sides. The CB and Gaussian components share a common peak
position. The tail parameters of the CB and the ratio of the CB and Gaussian widths
and integrals are determined from simulation, accounting for a dependence of both widths
on the BDT output. The ratio of the B+

c and B+ widths is determined from simulation,
while the overall width of the B+ is a free parameter in the fit to data, and is found to be
consistent with the simulation. The peak position of the B+ signal is a free parameter in
the fit to data, and the known mass difference between the B+ and the B+

c meson [43] is
used to constrain the peak position of the B+

c signal.
Genuine B+→ D

(∗)+
(s) D0 decays are forbidden at tree level and consequently have a

negligible yield, but doubly Cabibbo-suppressed (DCS) decays D0→ K−π+(π−π+) result
in crossfeed of B+→ D

(∗)+
(s) D0 decays in the D(∗)+

(s) D0 final state. An additional source of
crossfeed into the D(∗)+

(s) D0 final state is double misidentification of the pion and kaon in the
Cabibbo-favoured D0→ K−π+(π−π+) decay. The DCS component is constrained in yield
and shape by the large B+→ D

(∗)+
(s) D0 signal, according to the known D0 branching frac-

tions [43]. For the shape of the misidentified component, the width of the B+→ D
(∗)+
(s) D0

peak is scaled by a factor determined from a fit to B+→ D+
s D

0 candidates, and also used
for the B+→ D(∗)+D0 final states. The yield of the misidentified component is a free
parameter in all fits to data.

Models for decays with one or two missing neutral particles from D
(∗)+
(s) and/orD(∗)0 de-

cays are implemented as templates, obtained from kernel fits [49] to reconstructed mass dis-
tributions in simulation. Both longitudinal and transverse polarisations of B+

c → D∗+(s)
( )
D ∗0

decays contribute according to free polarisation fractions with different templates.
The Cabibbo-favoured B+→ D0K+K−π+ decay is a background to the B+→ D+

s D
0

channel, though its yield is strongly reduced by the D+
s mass requirement. This background

is modelled by a single Gaussian function, with the width determined from a sample of sim-
ulated decays and the normalisation determined from the peak in the B+ mass distribution
in the D+

s invariant mass sideband.
The combinatorial background is described by the sum of an exponential function and

a constant, where the parameters are allowed to differ between different D0 decay modes,
but are taken to be the same for all BDT samples of a given B+

c and D0 decay channel.
Studies of the charm-meson invariant-mass sidebands support these assumptions.

An unbinned extended maximum-likelihood fit is used to simultaneously describe the
mass distributions of candidates in different BDT samples and different D0 decay modes.

– 7 –
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Final state D+
s

( )
D 0 D+ ( )

D 0 D∗+
( )
D 0

Run 1 Run 2 Run 1 Run 2 Run 1 Run 2
B+

c signal shape 9.4 3.8 4.8 5.3 2.8 3.9
B+

c production spectrum 3.7 2.4 3.9 2.4 4.2 2.9
B+ production spectrum 0.5 0.9 0.6 1.0 0.6 1.1
Hit resolution parameterisation — 1.5 — 1.2 — 2.2
R simulation sample size 1.2 1.0 1.4 1.1 1.5 1.5
R′(+,0) simulation sample size 1.4 0.9 2.1 1.2 1.1 1.1
R′′ simulation sample size 1.5 0.8 1.7 0.9 — —
B+

c lifetime 1.3 1.4 1.3 1.3 2.1 2.6
PID efficiencies 1.6 1.2 2.8 0.8 2.2 1.4
Multiple B+

(c) candidates 0.4 0.4 0.6 0.5 1.4 1.2
Data-simulation differences 0.1 0.1 0.1 0.1 0.1 0.2
B+→ D0K+K−π+ 0.7 0.5 — — — —
B(D∗+→ D+X0) — — 1.5 1.5 — —
R total 10.4 5.3 7.2 6.6 6.3 6.5
R′(+,0) total 4.6 3.7 5.7 3.8 5.5 5.0
R′′ total 4.6 3.7 5.5 3.7 — —

Table 2. Effective contributions of the systematic uncertainties which are expressed as a relative
uncertainty on the branching fraction ratio, combined over all BDT samples and D0 decay modes,
given in percent.

In these fits the background and B+ yields vary independently, but the branching fraction
ratios R, R′(+,0) and R

′′, defined in eqs. (1.1)–(1.5), are constrained to be identical between
the BDT samples and D0 decay modes.

5 Systematic uncertainties

Systematic uncertainties that can be expressed as a relative uncertainty on the branching
fraction ratio are evaluated separately for Run 1 and Run 2, and for each B+

c decay, D0

channel and BDT sample. Their effective contributions in the fit, calculated as a weighted
average over BDT samples and D0 decay modes, are listed in table 2. Where no uncertainty
is given, this corresponds to either the absence of decays with two missing neutral particles
in the D∗+

( )
D 0 channel or the absence of the effect associated with an uncertainty in a

given data-taking period or channel.
The uncertainty on the B+

c signal shape is evaluated by changing the B+
c signal shape

to the sum of two Gaussian functions, and evaluating the median fractional change of
the measured yield in pseudoexperiments performed with a background-only model. Un-
certainties related to the B+

c production spectrum are evaluated by changing the slope
parameters from ref. [20] by their quoted uncertainties. The uncertainty on the pT- and y-
dependent weights used to correct the B+ production spectrum in simulation is estimated

– 8 –



J
H
E
P
1
2
(
2
0
2
1
)
1
1
7

by changing the settings of the GBR algorithm. Hit resolution parameterisation in the
silicon vertex detector affects the χ2

IP distribution. The uncertainty associated with the
parameterisation is therefore evaluated with simulation by varying the minimal value of
the χ2

IP applied to the final-state tracks.
The limited size of the simulation samples results in uncertainties that are uncorrelated

between the BDT samples and D0 decay channels on the efficiency ratios ε(B+
c )/ε(B+).

All other systematic uncertainties are treated as fully correlated. A small uncertainty on
the reconstruction efficiency results from that on the B+

c lifetime [43]. Uncertainties on
the PID efficiencies cancel to first order in the ratio ε(B+

c )/ε(B+) because of the identical
particle content of the final state, and the difference in relative efficiencies with and without
PID corrections is used to estimate the uncertainty from the PID correction procedure. The
requirement to select at most one B+

(c) candidate per event introduces an efficiency that
may not be well reproduced by simulation. Therefore, the fraction of candidates removed
by the requirement of at most one B+

(c) candidate per event is attributed as a systematic
uncertainty. Residual differences appear in the comparison of the distributions of the BDT
output between background-subtracted B+ signal from data and simulation. The effect on
the relative efficiency is evaluated by correcting the simulation to match the distributions
in data. The background from B+→ D0K+K−π+ decays to the B+→ D+

s D
0 signal is

assigned an uncertainty of 100% of its yield, resulting in a fractional uncertainty of less than
1%. The measurements of the branching fraction ratios according to eqs. (1.2) and (1.5)
involve the value of B(D∗+→ D+X0), the uncertainty of which [43] is taken into account.

Other uncertainties, listed below, are instead taken into account by varying the fit
model. Unless specified otherwise, these uncertainties are taken into account by replacing
fixed values of the model parameters by their Gaussian constraints.

The uncertainty on the combinatorial background shape is evaluated by considering a
single exponential function as an alternative to the exponential plus constant model, imple-
mented using the discrete profiling method [50]. The B+ shape uncertainty has a negligible
effect on the B+ yield but, because of its long tails, results in an uncertainty on the back-
ground shape. The effect is evaluated by assigning an uncertainty on the tail parameters
determined from a fit to simulated events. The uncertainty on the α parameters of the
CB function is increased by adding in quadrature the largest observed difference between
data and simulation of this parameter in B+→ D+

s D
0 decays. The fractional uncertainty

on the yield of DCS crossfeed is the sum in quadrature of the fractional uncertainty on the
normalisation yield and on the branching fractions B(D0→ K+π−(π+π−)) [43]. The un-
certainty on the difference between the B+

c and B+ peak positions, 0.5MeV/c2, arises due
to uncertainty on the measured masses [43, 51] and the momentum scale uncertainty [52].
The uncertainty on the ratio of the B+

c to B+ invariant-mass resolution is determined from
the statistical uncertainties of the fits to simulated decays. Statistical uncertainties in the
templates of B+

c → D∗+(s)
( )
D 0 and B+

c → D+
(s)

( )
D ∗0 decays with one missing neutral pion or

photon are accounted for by allowing a small contribution from the other template. The
B+
c → D∗+(s)

( )
D ∗0 signals have contributions from both transverse and longitudinal polar-

isations, which have differently shaped distributions of the reconstructed mass. This is
accounted for by evaluating upper limits both for fully longitudinal and fully transverse
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Figure 3. Invariant-mass distributions for the selected B+ candidates in the highest BDT samples,
in the region near the B+ mass, for (left) D+

s D
0 and (right) D+

s D
0 final states. The overlaid curves

correspond to the sum of the corresponding fit results.

polarisations, and reporting the least stringent upper limit. Including all model uncertain-
ties results in an increase of the upper limits on the branching fraction ratios, discussed in
section 6, of 7% on average.

6 Results and conclusions

To determine the B+
c branching fraction ratios R, R′(+,0) and R

′′, fits to data are performed
separately for the six B+

c final states and for Run 1 and Run 2, while different D0 decay
modes and BDT samples are fit simultaneously. The results of the fits are shown in
figure 2, where the data of the highest BDT samples and the corresponding fit results are
summed over the D0 decay channels and over data-taking periods. Detailed views of the
D+
s

( )
D 0 final states near the B+ mass are shown in figure 3 which validate the model of

the large B+→ D+
s D

0 signal and its crossfeed to the D+
s D

0 final state. The integrals of
the fit results in a ±40MeV/c2 window around the B+ mass differ less then 0.2% from the
candidate counts.

The significance of the B+
c signals are calculated using Wilks’ theorem [53] as

S =
√

2∆ logL, where ∆ logL is the difference in the logarithm of the likelihood between
the signal plus background and background-only hypotheses. Systematic uncertainties are
included in the calculation of the significance through nuisance parameters in a minimised
profile likelihood.

Evidence is found only for the decay B+
c → D+

s D
0 in Run 2 data, with a sig-

nificance of 3.7 standard deviations, and the measured branching fraction ratio is
R(D+

s D
0) = (3.6+1.5+0.3

−1.2−0.2)× 10−4, where the first uncertainty is statistical and the second
is systematic. The quoted significance for this channel is compatible with estimates from
simulated pseudoexperiments.

The values of R, R′(+,0) and R′′ from Run 1 and Run 2 cannot be directly combined
since the value of fc/fu depends on the pp centre-of-mass energy. Therefore, a combined fit
of both the Run 1 and Run 2 data sets is made to the absolute B+

c branching fractions, using
external input for B(B+→ D+

s D
0), B(B+→ D+D0), B(B+→ D∗+D0) [43], and fc/fu [20],

which depends on the theory prediction of B(B+
c → J/ψµ+νµ). Corresponding uncertainties

are included. In this combined fit the excess for B+
c → D+

s D
0 has a significance of 3.4
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Run 2 Run 1
6 fb−1, 13TeV 3 fb−1, 7 and 8TeV

R(D+
s D

0) 0.57 (0.62) 0.45 (0.58)
R′+(D+

s D
0) 0.36 (0.42) 0.45 (0.75)

R′0(D+
s D

0) 0.27 (0.36) 0.64 (0.71)
R′′(D+

s D
0) 0.9 (1.1) 1.1 (1.5)

R(D+
s D

0) 0.22 (0.25) 0.51 (0.62)
R′+(D+

s D
0) 0.59 (0.72) 0.76 (0.89)

R′0(D+
s D

0) 0.49 (0.60) 0.74 (0.88)
R′′(D+

s D
0) 0.9 (1.0) 1.6 (2.3)

R(D+D0) 3.5 (4.4) 8 (11)
R′+(D+D0) 26 (33) 45 (52)
R′0(D+D0) 11 (12) 16 (20)
R′′(D+D0) 21 (28) 90 (110)
R(D+D0) 2.9 (3.6) 12 (14)
R′+(D+D0) 18 (21) 17 (33)
R′0(D+D0) 6.6 (7.3) 8.2 (9.8)
R′′(D+D0) 17 (20) 82 (94)
R(D∗+D0) 6.9 (8.4) 26 (28)
R′(D∗+D0) 16 (19) 31 (44)
R(D∗+D0) 3.6 (4.4) 8 (13)
R′(D∗+D0) 12 (15) 36 (45)

Table 3. Upper limits on the branching fraction ratios R, R′(+,0) and R′′ of B+
c to B+ decays,

defined in eqs. (1.1)–(1.5), at the 90(95)% C.L. for Run 2 and Run 1 data, in units of 10−3.

standard deviations, or 2.5 standard deviations when considering the probability of the
excess to appear in any of the sixteen final states considered. The corresponding value
of the branching fraction is B(B+

c → D+
s D

0) = (3.5+1.5+0.3
−1.3−0.2 ± 1.0)× 10−4, where the first

uncertainty is statistical, the second systematic and the third due to external input.
Upper limits are reported on the ratio of branching fractions for all decays, calculated

at 90% and 95% confidence level (C.L.) with the frequentist CLs method [54, 55], separately
for Run 1 and Run 2. These limits are listed in table 3. Limits for Run 1 are tighter than
in ref. [19] in particular for R′(+,0) and R′′, mainly because of better constraints on the
shape of the combinatorial background.

Upper limits on the absolute B+
c branching fractions are based on the Run 2 dataset

alone, which has nearly four times the sensitivity of the Run 1 dataset. The upper limits
at 90(95%) C.L. are

B(B+
c → D+

s D
0) < 7.2 (8.4)× 10−4;

B(B+
c → D+

s D
0) < 3.0 (3.7)× 10−4;

B(B+
c → D+D0) < 1.9 (2.5)× 10−4;
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B(B+
c → D+D0) < 1.4 (1.8)× 10−4;

B(B+
c → D∗+s D0) < 5.3 (5.7)× 10−4;

B(B+
c → D+

s D
∗0) < 4.6 (5.6)× 10−4;

B(B+
c → D∗+s D0) < 0.9 (1.0)× 10−3;

B(B+
c → D+

s D
∗0) < 6.6 (8.4)× 10−4;

B(B+
c → D∗+D0) < 3.8 (4.8)× 10−4;

B(B+
c → D∗+D0) < 2.0 (2.4)× 10−4;

B(B+
c → D+D∗0) < 6.5 (8.2)× 10−4;

B(B+
c → D+D∗0) < 3.7 (4.6)× 10−4;

B(B+
c → D∗+s D∗0) < 1.3 (1.5)× 10−3;

B(B+
c → D∗+s D∗0) < 1.3 (1.6)× 10−3;

B(B+
c → D∗+D∗0) < 1.0 (1.3)× 10−3;

B(B+
c → D∗+D∗0) < 7.7 (8.9)× 10−4.

The reported upper limits on B+
c decays with a D∗+ meson in the final state are based on

the analyses of fully reconstructed D∗+→ D0π+ decays, which have a higher sensitivity
than the channels with partially reconstructed D∗+→ D+X0 decays.

In conclusion, this article reports the results of a search for B+
c → D

(∗)+
(s)

( )
D 0 decays,

covering sixteen B+
c decay channels, which include partially reconstructed decays where

one or two neutral pions or photons from the decay of an excited charm meson are not
reconstructed. The results, based on pp collision data corresponding to 9 fb−1 of integrated
luminosity, supersede an earlier LHCb measurement [19] on Run 1 data only. No signal
is observed in any of the channels investigated, consistent with the Standard Model ex-
pectation. An excess with a significance of 3.4 standard deviations is found for the decay
B+
c → D+

s D
0, which is in tension with the theoretical expectation [11–14].
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