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Abstract— Predicting workload using physiological sen-
sors has taken on a diffuse set of methods in recent years.
However, the majority of these methods train models on
small datasets, with small numbers of channel locations
on the brain, limiting a model’s ability to transfer across
participants, tasks, or experimental sessions. In this paper,
we introduce a new method of modeling a large, cross-
participant and cross-session set of high density func-
tional near infrared spectroscopy (fNIRS) data by using
an approach grounded in cognitive load theory and em-
ploying a Bi-Directional Gated Recurrent Unit (BiGRU) in-
corporating attention mechanism and self-supervised label
augmentation (SLA). We show that our proposed CNN-
BiGRU-SLA model can learn and classify different levels
of working memory load (WML) and visual processing load
(VPL) across participants. Importantly, we leverage a multi-
label classification scheme, where our models are trained
to predict simultaneously occurring levels of WML and
VPL. We evaluate our model using leave-one-participant-
out (LOOCV) as well as 10-fold cross validation. Using
LOOCV, for binary classification (off/on), we reached an
F1-score of 0.9179 for WML and 0.8907 for VPL across 22
participants (each participant did 2 sessions). For multi-
level (off, low, high) classification, we reached an F1-score
of 0.7972 for WML and 0.7968 for VPL. Using 10-fold cross
validation, for multi-level classification, we reached an F1-
score of 0.7742 for WML and 0.7741 for VPL.

Index Terms— Cognitive Load, Working Memory Load,
Workload, Classification, Deep Learning, fNIRS, self-
supervision

I. INTRODUCTION

IT is known in Human Computer Interaction (HCI) that
optimum human performance can be achieved with systems
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that help users to maintain an ideal level of workload (WL).
Too little WL can result in low productivity, boredom and
complacency, while too much WL can result in human error,
shedding of tasks, and frustration [1]–[4]. A plethora of recent
research has used real-time behavioral [5] and physiologi-
cal [6], [7] measures to make real-time predictions of WL with
a common goal of building adaptive systems that can regulate
users’ workload. These adaptive systems would benefit not
only from information about a user’s overall workload, but
by information gleaned from taking a more fine-grained view
of workload by differentiating between the load on one’s
perceptual resources and the load on one’s working memory
resources. This way, an adaptive system could change the
modality by which support is presented (visual channel), based
on information about the auditory or visual perceptual load
of the person. A person who has a dangerously high level of
working memory load (WML) while staring at a radar monitor
could be assisted through his or her auditory channel (by
hearing information), while a person who has a high WML
with very low current visual channel demands may benefit
best by the assistance provided on his/her monitor, through
that ‘available’ visual channel.

Despite the large body of literature devoted to the topics
of WL, it has proven difficult to build robust and intelligent
systems capable of predicting WL outside of tightly controlled
laboratory experiments [8]. Differences in theoretical ground-
ing of WL lead to differences not only in WL manipulations
in experimental paradigms, but also competing evidence as
to which measures, both behavioral and physiological, are
most effective at measuring WL [7], [9]. Recently, increas-
ingly effective strides have been made in the prediction and
modulation of WL levels in tasks by using both behavioral [10]
and, more recently, physiological and psychophysiological [1],
[2], [6] measures. Even though these achievements have eluci-
dated some of the underlying challenges with classifying and
predicting WL, we still lack a clear picture of what an ideal
approach to creating more accurate predictions might be [7].

Although many early successes were achieved using ma-
chine learning on brain data [11], several notable challenges
have arisen, which significantly limit the impacts of these early
successes [9]. In particular, earlier work trained models per
individual, on very small datasets, leading to model overfitting
and inflated accuracy rates. When these models were tested on
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new participants, or even on the same participant during a dif-
ferent measurement session, the model performance degraded
significantly [9], [12], [13]. The performance degradation
may be in part due to the assumptions made by traditional
machine learning models about the structure of the underlying
data. Whereas traditional machine learning models assume
that all training data samples are independent and identically
distributed (i.i.d.), data obtained from brain measurements
does not exhibit these characteristics.

To address the aforementioned challenges, the research
outlined in this paper involves the creation and testing of
advanced deep learning approaches that are well suited to
pair with high-density Functional Near Infrared Spectroscopy
(fNIRS) data, where the measurement channels are spatially
and temporally intertwined. As shown in Fig. 1, high-density
fNIRS devices can capture the temporal and spatial neural
correlates of the target states of interest, making the resulting
data well suited as input into deep learning models. Deep
learning-based approaches have been successfully used in
the video analysis domain to consider the inter-dependencies
among the spatial and temporal relations within the data.

Our approach enables us to go beyond the classification
of general WL, which Hart and Staveland [14] describe as
“the perceived relationship between the amount of mental
processing capability or resources and the amount required
by the task”. Our approach can delineate between different
levels of working memory load as well as concurrently occur-
ring visual perceptual load, using a multi-label classification
schema. The vast majority of research to date has shown
success at predicting overall levels of WL, which correlate
with overall task difficulty. It is less common to further delin-
eate WL into more specific sub-components of WL, such as
working memory load and visual perceptual load. This added
knowledge could be used to better inform adaptive systems
on how to adapt in order to support users during human-
computer interaction. For example, a technology user who is
experiencing high working memory load can be assisted by
an adaptive system, which may choose to assist via visual
(e.g., computer display) or auditory (e.g., speakers) channels
depending on the additional knowledge about the person’s
visual perceptual load. For example, a pilot whose helmet is
embedded with neurophysiological sensors could be assisted
in real-time while he/she flies the aircraft. If the pilot becomes
overwhelmed by a complex task, we may predict that his/her
working memory load is very high. To support and help the
over-taxed pilot, we may provide real-time decision support
information. In that case, we could choose the modality of the
information that we present (through a visual cockpit display
versus through an auditory channel into the pilots headphones)
based on the pilot’s current visual perceptual load.

Compared to the images and videos in the datasets com-
monly used by the computer vision community, fNIRS data
has much more limited spatial resolution and a lower signal-to-
noise-ratio (SNR). For example, the high density fNIRS used
in these data collections is the Hitachi ETG4000, which can
measure up to 52 channel locations. Convolutional layers will
eliminate the spatial information and enhance the semantic
information [15]. As a result, the classification model to be

Fig. 1: The probe configuration for the fNIRS data. Red, blue
and yellow circles represent sources, detectors and mask locations
(Sec. IV-F), respectively. Green squares are the fNIRS channels.

developed cannot be too deep, and it can run into problems
with overfitting. In order to extract semantically rich features
with a limited number of convolutional layers, we introduce
self-supervised learning into the classification scheme with
newly proposed transformations, which are well-suited for
fNIRS data. Self-supervised learning has the ability to extract
semantic features based on the spatial context of images. It was
first studied in unsupervised learning [16], where annotated or
labeled data is not used. Instead, the input data is projected
to a latent space, where similar semantic features are close
to each other. The basic idea behind self-supervised learning
is defining a pre-task and generating corresponding artificial
labels. Then, the model is trained with artificial labels in a
supervised manner to solve the pre-task. One of the simplest,
yet effective pre-tasks is predicting a transformation, such as
rotation, colorization or patch context [17], self-supervised
using a discriminative loss on transformations. This type of
loss may help the model to learn a better representation. For
semi-supervised learning [18], [19], on the other hand, the
common set up is based on learning the original task and
pretask with two classifiers. Lee et al. [20] introduced self-
supervised label augmentation (SLA), which learns a joint
distribution of supervised and self-supervised signals.

In our proposed approach, we employ and modify a Bidirec-
tional GRU (BiGRU) to apply it to fNIRS data, and introduce a
learning framework, which modifies and adopts SLA providing
a self-supervision signal to multi-branch and joint classifier
schemes. The primary contributions of this paper include the
following: (i) different from prior art, we are able to further
delineate WL into its more specific sub-components, namely
Working Memory Load (WML) and Visual Perceptual Load
(VPL), by using a multi-level multi-label deep learning frame-
work using the spatial and temporal information encapsulated
in fNIRS data; (ii) we employ and compare two classifiers,
namely multi-branch and joint classifiers; (iii) we introduce
an attention mechanism on BiGRU network to process and
weigh the sequential features; (iv) we incorporate and study
the impact of self-supervised label augmentation (SLA) by
introducing a new transformation for the pre-task, which uses
different ordering of the controlled rest and task data, instead
of rotation and permutation, and is more suitable for fNIRS
data, and use this SLA with both multi-branch and joint
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classifiers; (v) we perform not only binary but also multi-level
(off, low, high) classification of WML and VPL; (vi) we per-
form data balancing in terms of different tasks (task-balanced
data) as well as for different labels (label-balanced data) and
compare the performances in detail; (vii) we demonstrate
our approach on a dataset consisting of 44 sessions of data
collection (22 participants completing two identical sessions
on different days) using leave-one-participant-out and 10-fold
cross validation; (viii) we compare our proposed approach with
three types of commonly used classifiers and show that our
method provides the highest performance.

II. RELATED WORK

Predicting WL has been of interest since at least 1908,
when the Yerkes-Dodson Law of arousal suggested that task
performance is optimized when cognitive workload is neither
too high nor too low [21]. Since that time, a dearth of research
has aimed to define, operationalize, and measure the construct.
More recently, large bodies of work have attempted to harness
the power of machine learning techniques to make predictions
of WL in single-trial and real-time settings. In this section,
we i) provide an overview of non-invasive brain measurement
techniques; ii) summarize the progress to date (and challenges
encountered) using feature-based machine learning techniques
on brain data to predict WL; and iii) highlight the more nascent
research applying deep learning techniques to brain data.

A. Non-Invasive Brain Measurement and Utility of fNIRS
Functional magnetic resonance imaging (fMRI) is the most

widely used neuroimaging tool in the neuroscience literature
[22] due to its high level of spatial resolution (3Tesla fMRI
scanners have resolution of 2-3mm voxels [22]) and relatively
high level of temporal resolution (3Tesla fMRI scanners have
temporal resolution of 2-4 sec. [22]). fMRI, however, is limited
as a research modality within the HCI domain, since it is ex-
pensive, restricts participant’s movements and interactions, and
has a high sensitivity to motion artifacts, requiring participants
to lie perfectly still while their brains are being measured.

Researchers in HCI have therefore turned to other devices,
such as electroencephalography (EEG) and functional near
infrared spectroscopy (fNIRS), for conducting experiments in
more ecologically valid settings that may require participant
movement. EEG, which has been actively used as a research
tool for over 100 years, uses electrodes placed on the scalp
to measure the electrical potential caused by neural activation
across the brain’s surface. EEG benefits from high temporal
resolution, but suffers from a poor signal-to-noise ratio and
has low spatial resolution [23]. fNIRS, on the other hand,
operates by the use of near-infrared light, which can penetrate
through scalp and skull to reach the cortical surface of the
brain. Optical fibers are placed on the surface of the head
for illumination, while detection fibers measure the light that
is reflected back from the brain tissue. The change in light
intensity can allow the device to detect concentration changes
in oxy- and deoxy- hemoglobin [24] [25]. A review of the
history of fNIRS is provided in [26]. fNIRS has the benefit
of a higher spatial resolution than EEG, making it possible
to localize specific functional brain regions of activation, as

could be done with the constrictive fMRI device [23]. The
ability to spatially locate specific functional brain regions
of interest enables high-density fNIRS sensors to identify
specific neural correlates of WL and other mental states of
interest. However, fNIRS’ temporal resolution (2-4 seconds)
is relatively slow compared to EEG, especially in the context
of adaptive systems. For this reason, multiple researchers have
explored a hybrid approach whereby they merge EEG and
fNIRS sensors together, with the goal of maximizing both tem-
poral and spatial resolution, and ideally getting complementary
data signals, for fast and precise classification of mental states
in adaptive systems [27], [28]. This work contributes to this
long-term goal, by investigating the suitability of high density
fNIRS for the classification of states that utilize the high spatial
resolution of high density fNIRS, and the ability to measure
specific regions of functional regions of interest in the brain.

B. Workload Classification on Brain Data

Despite a series of incremental successes in researchers’
ability to classify WL, the field has also converged on a
number of challenges that may be hampering the impact of
the successes achieved thus far. Some of these challenges
include needing clear definitions of the mental states be-
ing measured, connecting those states with neurophysiology,
eliminating confounding factors, and providing insight into
machine learning models [9]. At the turn of the last century,
researchers successfully trained neural networks to predict
cognitive workload across participants from EEG data on
a small set of participants [11]. However, these researchers
employed hand selected and heavily pre-processed features
generated from a small dataset. They also recorded a reduced
accuracy when generalizing across participants. Since then,
improvements to datasets, methods, and research designs have
aimed to increase model robustness and prediction general-
ization across participants, tasks, and contexts. Several studies
have opted to perform feature extraction by hand for classify-
ing workload [2], [29], which often requires domain specific
knowledge of the sensor and context. Models such as those
mentioned above require that the brain data be represented by a
feature-set, defined a priori. However, identifying the ‘correct’
features a priori for generating accurate predictions may not
always be realistic.

Another issue is that many models are built per-participant,
resulting in very small datasets that may not accurately rep-
resent the extremely high feature space of the brain data,
and leading to the model overfitting to an individual. Since
collecting training data with brain measurement devices is
costly and time-consuming, researchers have noted the need
to build models across participants [30], and it is becoming
more commonplace to build and evaluate models using ‘leave-
one-participant-out cross-validation’ [25], [31], [32]. Notably,
several studies have demonstrated transfer learning between
participants [33], [34]. Yet, despite these advancements, trans-
fer learning between participants usually results in low clas-
sification accuracy. For example, in the case of [33], the best
performing model between participants only achieved a mean
accuracy of 63%.
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Another challenge for the development of real-time adaptive
systems is that relatively few studies have attempted to predict
the perceptual load modality (audio, visual, etc.) associated
with a participant’s workload, despite this type of information
being very valuable for intelligent adaptive interfaces to act
upon. Some have successfully classified audio and visual
workload conditions across participants [28], but this method
again used hand-crafted features on a small dataset. Another
area that shows promise is experimenting with augmenting
EEG with fNIRS to improve classification generalization [2],
[28], [34]. Increased accuracies in these cases may indicate
that this combination may provide complementary information
to models trained on both measurements. The majority of the
work outlined above does classification on windows of time
that are greater than 30 sec. per instance. In all cases, the
prediction accuracy of cognitive workload decreases as brain
data time windows are shortened [2], [35]. If real-time adaptive
systems are to be developed, models that are able to make
predictions in shorter time windows must be explored.

C. Deep Learning on Neurophysiological Data

In this section, relevant research from the video classifica-
tion domain is described, since fNIRS data is spatio-temporal
in nature just like video data. A common network structure
uses Convolutional Neural Networks (CNNs) to process spatial
information, and then hands over to recurrent units to learn
temporal information. Researchers showed that Long Short
Term Memory (LSTM) networks could robustly classify hu-
man activities, such as running and walking, from videos [36].
With 25 actors in the videos, they showed that LSTMs were
robust to noise, and could generalize across actors. However,
instead of using CNNs to extract features from the videos, they
opted for hand-crafted features using an optical flow algorithm.
Gated Recurrent Unit (GRU) [37] is another type of recurrent
unit that can capture dependencies among different time steps.
Similar to the LSTM unit, the GRU has gating units that
control the information flow inside the unit without having a
separate memory cell. It has a simpler information flow with
less parameters compared to the LSTM unit. We employ GRU
units to build our proposed sequential module, which will be
described in more detail below.

It has been shown that deep convolutional LSTM networks
can perform end-to-end feature extraction of EEG signals with
minimal domain-specific human knowledge required [38].
Appriou et al. [33] showed that convolutional networks out-
performed other machine learning methods for workload clas-
sification from EEG signals. Still, few works have focused on
using CNNs on fNIRS data. In particular, CNNs have been
applied to fNIRS data for gender classification [39], locating
Regions of Interest (ROI) [40], and classification of affect [41].
Researchers have used deep learning to classify fNIRS signals
acquired during different Brain-Computer interfacing cognitive
tasks [42], [43]. Most recently [44], CNNs were used to
classify workload levels from a seven channel fNIRS input.

III. PROPOSED METHOD

Fig. 2: Organization and structure of the collected data.

A. Data Collection
fNIRS data was collected from an experimental protocol in

which participants completed a series of computerized cogni-
tive tasks, which have been used in both clinical and cognitive
psychological fields to invoke distinct types of WL [45],
[46]. 22 participants were recruited from both graduate and
undergraduate university students with median age equal to
22. Each of the 22 subjects participated in data collection for
two sessions, collected 5 weeks apart, as shown in Fig. 2. Each
session contains one run of a randomized block design with
the four cognitive tasks interspersed with resting periods (25
seconds) in between each of the cognitive task blocks. Each
block lasted for 60 seconds. In order to introduce jitter into the
stimulus presentations within blocks, trials within each block
were separated with a variable inner trial interval randomly
selected from a gamma distribution on a per trial basis (k=2
seconds, θ=1.5 seconds).

Participants had normal or corrected to normal vision, and
were seated 60cm away from a 26-inch computer monitor
whose refresh rate was locked to 60Hz. fNIRS data was
collected at a sampling rate of 10Hz using a Hitachi ETG-
4000. As shown in Fig. 1, fNIRS optodes were arranged in a
3x11 array, with a 3cm optode separation distance, fitted into
a cap, and then placed on the forehead of each participant
symmetrically, covering the frontal cortex. The device uses
near infrared light (695nm, 830nm) to measure both oxy-
genated and de-oxygenated hemoglobin levels in the blood
at 52 separate measurement channels on each participant’s
brain. After the probes were placed, each fNIRS channel was
calibrated using the tools provided in the ETG-4000 system
to ensure that they were providing a satisfactory reading.

Cognitive Tasks: The cognitive tasks that participants
completed were administered in a randomized block design
format. They included an emotional working memory (ewm)
task, which was a delayed recall task where participants were
presented with an array of six letters on the screen, and were
asked to memorize the letters in the array. During the delay
period an image was displayed that was either intended to
be neutral and produce no arousal, or an image intended to
elicit high negative valence. The participants were then asked
if a certain letter had appeared in the original array. They
would indicate a “Yes” response by pressing the left arrow key
on the keyboard, and a “No” response by pressing the right
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arrow key. The audio n-back (anb) task involved participants
holding a stream of continually adapting letter values [b, t, q,
v] in their working memory while simultaneously attempting
to recall whether or not a given letter was displayed two
presentations prior. Importantly, information was presented
through a speaker rather than on the screen, and we only
administered 2-back tasks (with the number of items main-
tained, and continually being updated, set to 2). For a detailed
description of the n-back see [47]. When the participants heard
a letter, they would respond by pressing the left arrow key if
their letter matched that of 2 presentations ago. If the letter did
not match, they would press the right arrow key. The reaction
time (rt) task displayed a fixation point in the center of the
screen at the start of each trial. After a variable period of
time for each trial (min=300ms, mean=500ms, max=700ms) a
large “X” stimulus replaced the fixation point in the center of
the screen. The participant’s task was to respond as quickly
as possible by pressing the left arrow key when the fixation
point was replaced with the stimulus. The go-no-go (gng) task
followed the protocol of Herrmann et al. [48], and included a
red rectangle target stimulus that appeared in the center of
the screen and a blue oval distractor stimulus. Participants
were tasked with responding as quickly as possible when they
were presented with the target stimulus by pressing the left
arrow key on the keyboard, and with not responding when
they were presented with the distractor stimulus. The stimulus
appeared on screen for a variable amount of time (1 to 2 sec.);
a variable inter-stimulus interval was presented between trials,
during which a cross fixation point was displayed on the screen
before the subsequent test began.

We selected the four cognitive benchmark tasks to elicit
controlled levels of load on participants’ WML and VPL
resources. Both the anb and ewm tasks are carefully designed
to engage participants’ working memory resources, while the
rt and gng tasks do not involve working memory. These
tightly controlled tasks enabled us to build out our models
using two different multi-labeling schemes, where we focus
on each benchmark task’s expected load on participants WML
and VPL, as shown in Table I. More specifically, in the first
labeling scheme, fNIRS data collected during these tasks are
given multi-class label values of 0 (off), 1 (low) or 2 (high)
across all two relevant WL sub-components, namely WML
and VPL for modeling. We also explore a simpler binary
classification, where we combine the labels of 1 (low) and
2 (high) into a single ‘on’ (1/on) class.

Task WML-VPL
rt 0-1

gng 0-1
ewm 1-2
anb 2-0

(a) Multi-level multi-labeling
scheme

Task WML-VPL
rt 0-1

gng 0-1
ewm 1-1
anb 1-0

(b) Binary-level multi-labeling
scheme

TABLE I: Labeling schemes of fNIRS data

B. Data Preprocessing
We employ a bandpass filter followed by Z-score normaliza-

tion to remove noise artifacts from fNIRS data. More specif-
ically, the density data, captured through the Hitachi ETG-
4000, is first converted into the rate of change of oxy (∆HbO)
and de-oxy hemoglobin (∆Hb) values using modified Beer-
Lambert Law [49]. These values are then band-pass filtered
with low and high frequency values of 0.01Hz and 0.5Hz, re-
spectively. Then, each channel of data for each participant was
normalized by using Z-score normalization [50] independently
for each run of experiments. We treat the fNIRS data like video
data, preserving the relative locations of fNIRS channels on
the head, which measure data over time. The layout of the 52
fNIRS channels is shown in Fig. 3. In order to preserve the
channel layout without omitting any data, and have a suitable
size matrix for our neural network encoders, we insert zeros
at locations shown in Fig. 3. Thus, our data matrix is 6× 22
at each time step.

Fig. 3: Spatial arrangement of fNIRS channels.

C. Classification Model
As mentioned above, a Gated Recurrent Unit (GRU) [37]

can capture dependencies among different time steps. In our
proposed approach, we employ and modify a Bidirectional
GRU (BiGRU) to apply it to fNIRS data. BiGRU consists
of two GRU units, taking the input sequence in forward
and backward directions. BiGRU provides better performance
compared to unidirectional (regular) GRU [37]. The overall
architecture of our classification model is shown in Fig. 4a.
The sequence of data (denoted by M) is first encoded by a
CNN, and then the extracted features are sent to a BiGRU.
The attention mechanism from Seq2Seq [51], [52] is applied
to provide a weighted sequential hidden feature. We consider
two types of classifiers: multi-branch classifier and joint clas-
sifier. We introduce the self-supervision signal to these two
classifier schemes jointly by using the self-supervised label
augmentation (SLA) method [20]. All of these steps will be
described in more detail below.

For the multi-label classification task, the data has been
annotated with multiple labels. For our fNIRS data, there are
two labels for every sample, each label indicating the level of
WML or VPL as shown in Table I . The model needs to predict
the activation level for the WML and VPL. In fully-supervised
learning, one can formulate the multi-branch objective LMB

based on cross-entropy as:

LMB(M, ywml, yvpl;θ, µ, ν) =LCE(σ(f(M;θ);µ), ywml)

+LCE(σ(f(M;θ);ν), yvpl)
(1)

where f(·;θ) represents CNN-BiGRU attention model with
parameters θ; M is the sequential input matrix; ywml and
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yvpl are the congnitive level for WML and VPL respectively;
and µ and ν are the parameters of the two classifiers σ(·;µ)
and σ(·;ν).

(a)

(b)

(c)

Fig. 4: (a) Architecture of our classification model, where M is
the input sequential data. The upper part represents the CNN-BiGRU
with attention model. The lower part includes two classifier schemes
we considered: multi-branch classifier and joint classifier. (b) The
structure of the CNN encoder. (c) Gated Recurrent Unit (GRU).Unlike multi-branch classifier, the joint classifier uses a
single classifier σ(·; ξ), which predicts a joint probability
covering all the combinations of the multi-labeling scheme. In
our case, Table I contains three different combinations for both
binary and multi-class labeling schemes. In fully-supervised
learning, one can describe the joint objective LJ based on

cross-entropy as:

LJ(M, (ywml, yvpl);θ, ξ) =

LCE(σ(f(M;θ); ξ), (ywml, yvpl)) (2)

1) CNN encoder: We propose a three-layer CNN structure
to encode the spatial information at each time step t. Given
the input data M = {...,M t−1,M t,M t+1, ...}, where M t ∈
R2×H×W (where H is 6, W is 22, and 2 corresponds to
Oxy and Deoxy channels), the encoder outputs a sequence
of embedding vectors e = {..., et−1, et, et+1, ...}, where

et = CNN(M t). (3)

In other words, the output et ∈ RE is the embedding vector
of M t, which is the fNIRS data at time step t. In this paper,
we set E as 16. The detailed structure of the CNN encoder
is shown in Fig. 4b. Every convolution layer has the same
Conv→Relu→Batch Normalization structure. Conv1, conv2
and conv3 have 32, 64 and 16 filters, respectively.

2) BiGRU Attention Module: We use BiGRU to process
the temporal information. As mentioned above, the BiGRU
consists of a forward and backward GRU unit. The GRU unit
is similar to LSTM, but is more concise and involves less
parameters [37]. The structure of the GRU unit is shown in
Fig. 4c. It can be represented as follows:

rt = σ(wiret + bir + whrht−1 + bhr)

zt = σ(wizet + biz + whzht−1 + bhz)

nt = tanh(winet + bin + rt � (whnht−1 + bhn))

ht = (1− zt)� nt + zt � ht−1,

(4)

where et denotes the embedding features from the CNN
encoder and is the input of the GRU unit at time t; w and
b are the weight and bias of the fully connected (FC) layers
inside the GRU, respectively; σ is the sigmoid function and
� represents element-wise multiplication. All the previous
information is saved in the hidden state ht−1. Reset gate rt
controls how much ht−1 is ignored in new state nt. Update
gate zt controls the weight of the new state and previous
hidden state when outputting the current hidden state ht. We
use

→
ht and

←
ht to represent the hidden state calculated from

forward sequence and backward sequence, respectively. The
hidden state of BiGRU can be represented as:

ht = {
→
ht,
←
ht}. (5)

Moreover, we apply a self-attention mechanism to weigh
the sequential features. Self-attention allows calculating a
weighted mapping between ht and {hs|s = 1, ..., T}, where
T is the length of input sequence, ht and hs are the Query
and Key to guide the weighted Value. In self-attention, Key
and Value share the same value. hT is the last hidden state.
hs is the sequence of all hidden states at each time step. Self-
attention can be written as:

ŝ =
T∑

s=1

ashs, where

as = β
exp(score(hT ,hs))∑T

s′=1 exp(score(hT ,h′s))
and

score(hT ,hs) = hT
Ths.

(6)
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ŝ is the re-scaled attention output, which includes the semantic
information from the input sequence, and it is the input of the
classifier for the final classification. β = 1√

T
is a scaling factor.

3) Self-Supervised Label Augmentation: In this section,
we will first review the self-supervised label augmentation
(SLA) [20], and then introduce our learning framework, which
modifies and adopts SLA providing a self-supervision signal
to multi-branch and joint classifier schemes.

SLA is an effective method to learn a single joint label
with respect to primary- and pre-tasks. It uses a joint dis-
tribution to combine supervised and self-supervised signals
together. More specifically, the supervised signal comes from
the ground truth labels of inputs, and self-supervised signal
comes from the transformations applied on the inputs. SLA
lets the model learn a joint distribution of semantic labels
and transformations, and finally expends the original semantic
labels. For example, let’s assume that a primary classification
task has C classes, and a pre-task applies N transformations.
Then, using the SLA method, the joint probability distribution
on all possible combinations has C × N labels. Rotation,
patches and color shift are common techniques to generate
pre-task labels in self-supervision. Lee et al. [20] use rotation
(4 transformations) and color permutation (6 transformations)
to generate pre-task labels. In our case, this task is not as
straightforward as applying these transformations directly to
fNIRS data. Rotation and permutation of the data change the
spatial arrangement of the channel locations, and was shown
to degrade performance in an emotion classification task [41].
Instead, we apply a different transformation. As mentioned
above, during fNIRS data collection, there is a controlled
rest before every task. We sampled both the controlled rest
data and task data, and concatenated them along the time
axis in different orders as shown in Fig. 5. In other words,
MSLA ∈ {(CR||TASK), (TASK||CR)}, where (||) de-
notes the concatenation operation. Thus, the pre-task in our
case is to classify the order of the input sequence (cr-first or
task-first, thus 2 transformations).

Fig. 5: Input augmented data MSLA utilizing order based augmen-
tation. j is the pre-task label.

One can modify Eq. (1) to multi-branch SLA objective with
self-supervision, LMB SLA, as follows:

LMB SLA(MSLA, ywml, yvpl;θ, µ, ν) =

LCE(σ(f(MSLA;θ);µ), (ywml, j))

+ LCE(σ(f(MSLA;θ);ν), (yvpl, j)), (7)

where
j =

{
1, r > 0.5
0, otherwise

(8)

j represents the pre-task label, and r is a random value
sampled from a uniform distribution (r ∼ unif(0, 1)). j ∈
{0, 1} where 0 and 1 represent the labels for (CR||TASK)
and (TASK||CR), respectively.

Similarly, Eq. (2) can be rewritten to represent the
joint learning scheme SLA objective with self-supervision,
LJ−SLA, as:

LJ−SLA(MSLA, (ywml, yvpl);θ, ξ)

=LCE(σ(f(MSLA;θ); ξ), (ywml, yvpl, j)). (9)

IV. EXPERIMENTS

In the following, we refer to multi-branch classifier with
full-supervision (Eq. (1)) as MB, joint classifier with full-
supervision (Eq. (2)) as J, multi-branch classifier with SLA
(Eq. (7)) as MB SLA, and the joint classifier with SLA
(Eq. (9)) as J SLA. We performed “leave-one-participant-
out” and 10-fold cross validation to evaluate the cross-subject
performance. For 10-fold cross validation, 2 or 3 subjects
were separated aside for testing in each fold. Since there
are 22 subjects, 2 subjects were separated for testing in 8
folds, and 3 subjects were separated for testing for 2 folds.
We have trained and tested on two label schemes shown in
Table I. More specifically, for the multi-level case, we used
three levels y ∈ {0, 1, 2} (corresponding to off, low and
high, respectively) to represent the WML and VPL. For the
binary case, we used two levels y ∈ {0, 1} (corresponding
to off and on, respectively). The comparison of multi-branch
(MB) and joint classifiers (J) without SLA is presented in
Sec. IV-B. The evaluation of these classifiers with SLA is
presented in Sec. IV-C. When evaluating the performance of
SLA, a single inference P (y|MSLA, j) is run N times and
the self-supervision scores are aggregated. In our experiments,
we applied 2 order transformations as described above. Thus,
P (y|MSLA) = P (y|MSLA, j = 0) + P (y|MSLA, j = 1).

A. Setup
The duration of each task type varies in length with all

tasks lasting longer than 60 seconds. When sampling the
data, we use different sliding window step sizes in order to
obtain balanced data such that different tasks have the same
amount of data samples. The upper bound of the step size is
set as 25 frames. Each sample has a duration of 50 frames
(corresponding to 5 seconds). Each of the 22 participants
joined two sessions. We obtained 6,641 samples from session
1 and 6,284 samples from session 2, resulting in a total of
12,925 samples.

The input of the fully-supervised models contains only task
data, while self-supervised models use control rest and task
data with different order transformations. Thus, the lengths of
the inputs of the fully-supervised and self-supervised models
are 50 frames and 100 frames, respectively.

We use cross-entropy as the loss function, and employ
Adam optimizer with a learning rate of 1e-4 and weight decay
of 2e-5. The embedding dimension of CNN encoder is set to
be 16, and the hidden state dimension of BiGRU is 8. We
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monitor the evaluation loss, and if the loss does not decrease
for 5 epochs, training is stopped. Unlike the fNIRS work
in [53], which uses different hyperparameters for different sub-
jects/folds, we use the same set of hyperparameters (learning
rate, number of layers and filters etc.) for different folds.

Initially, we performed the experiments by taking the same
number of samples from each task. It should be noted that,
depending on what type of load each task incurs (WML
and/or VPL), the label balance is not always guaranteed when
task balancing is applied. For instance, under the binary-
level multi-labeling scheme (Table I(b)), WML has balanced
label data while VPL does not (more tasks elicit VPL with
more samples of ‘1’). Similarly, for multi-level multi-labeling
scheme (Table I(a)), both WML and VPL do not have balanced
data when the same number of samples are taken from
each task (WML will have more samples of ‘0’ and VPL
will have more samples of ‘1’). After presenting the results
in Sections IV-B and IV-C with this way of sampling, we
also perform label balancing and present its results and a
comparison with task-balanced data in Sec. IV-D.

B. Comparison between Fully-Supervised Multi-Branch
and Joint Classifiers

While the MB classifier learns two independent distribu-
tions, ρwml and ρvpl, J learns a single joint distribution
ρ(wml,vpl). For J, we calculate the accuracy (from the joint
estimate) for the Working Memory Load (WML) as follows:∑C

y (TP + TN |vpl = y)∑C
y (TP + TN + FP + FN |vpl = y)

. (10)

Similarly, the accuracy of Visual Perception load (VPL) is
calculated by: ∑C

y (TP + TN |wml = y)∑C
y (TP + TN + FP + FN |wml = y)

, (11)

where C is the number of cognitive load levels. The results
of multi-level and binary-level classification are summarized
in Table II. As can be seen, with the binary-level multi-
labeling scheme, MB and J have similar performance. MB
has a slightly higher accuracy (0.8956) for WML, while J
has a higher accuracy (0.8352) on VPL. With multi-level
multi-labeling scheme, MB provided higher accuracy for both
WML and VPL with average accuracy values of 0.757 and
0.767, respectively. The confusion matrices for this experiment
are shown in Table III. As can be seen, MB and J have
similar confusion matrices. For both WML and VPL, “off”
is misclassified as “on” more often compared to “on” being
classified as “off”. With VPL, the classification accuracy for
“off” is lower than “on”, and this can be explained by the fact
that there are more samples for “on” data, since we took equal
number of samples from each task as explained above.

With the multi-level multi-labeling scheme, the task be-
comes more difficult, since it is not a binary decision anymore,
and the levels of WML and VPL are also decided. From the
confusion matrix of WML, we can see that, the most common
error is “low” being misclassified as “high”. As for the VPL,

Classifier WML VPL
MB 0.8956 0.8129
Joint (J) 0.8935 0.8352
MB-SLA 0.8949 0.9038
J-SLA 0.8966 0.8837

(a) Binary-level Multi-label Scheme

Classifier WML VPL
MB 0.7575 0.7670
Joint (J) 0.7569 0.7569
MB-SLA 0.8065 0.7912
J-SLA 0.8221 0.8221

(b) Multi-level Multi-label Scheme

TABLE II: Average accuracy of leave-one-participant-out cross
validation across 22 participants for binary and multi-level labeling
schemes. MB and J represent multi-branch and joint classifiers with
full-supervision, respectively, while MB-SLA and J-SLA refer to
classifiers incorporating SLA.

WML VPL
P:off P:on P:off P:on

MB T:off 0.86 0.14 0.67 0.33
T:on 0.06 0.94 0.14 0.86

J T:off 0.83 0.17 0.68 0.32
T:on 0.05 0.95 0.11 0.89

(a) Binary-level

WML VPL
P:off P:low P:high P:off P:low P:high

MB
T:off 0.92 0.06 0.01 0.72 0.11 0.17
T:low 0.11 0.46 0.43 0.01 0.93 0.05
T:high 0.12 0.16 0.71 0.42 0.11 0.48

J
T:off 0.92 0.06 0.01 0.75 0.07 0.17
T:low 0.12 0.42 0.47 0.01 0.92 0.06
T:high 0.07 0.17 0.75 0.47 0.12 0.42

(b) Multi-level

TABLE III: Confusion matrix of leave-one-participant-out cross
validation over 22 participants, 2 sessions each (44 data collection
sessions total), with MB and J on binary- and multi-level multi-label
schemes with fully supervision.

the most common error is “high” being miss-predicted as
“off”. Again, for WML there are not as many samples of
“low” and “high” as that of “off”. For VPL, there are not
as many samples of “high” and “off” as that of “low” due to
the task-balancing based sampling described above.

C. Comparison between Self-Supervised Multi-Branch
and Joint Classifiers

We experimentally verified that our proposed MB-SLA and
J-SLA both improve the performance for both multi-level and
binary-level multi-labeling schemes. The results for the binary-
level multi-labeling scheme are summarized in Table II(a). The
self-supervised versions increase the accuracy for VPL (from
0.81 and 0.83 to 0.9 and 0.88). The results of multi-level multi-
labeling scheme are shown in Table II(b). J-SLA provides
the highest accuracy for both WML (0.82) and VPL (0.82),
and increases the performance compared to fully supervised
versions (from 0.7569 to 0.8221). The confusion matrices for
the self-supervised case are shown in Table IV. The self-
supervised models display similar confusion patterns as fully-
supervised models, but with improvements on performance.
The SLA method shows general improvements for all tasks,
especially for the cases, where data for different classes were
not balanced as explained above. For instance, for binary level,
the data for WML is balanced while the data for VPL is not.
The accuracy for “off” class (0.67) was lower than the “on”
class (0.86) for VPL with MB, and it is improved to 0.79 and
0.94, respectively, with MB-SLA. Similarly, for multi-level,
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the accuracy for “high” class (0.48), for VPL with MB, is
improved to 0.58 with MB-SLA. The accuracy for “off” class
(0.72), for VPL with MB, is improved to 0.85 with MB-SLA.
Similar patterns are observed going from J to J-SLA.

WML VPL
P:off P:on P:off P:on

MB-SLA T:off 0.84 0.16 0.79 0.21
T:on 0.05 0.95 0.06 0.94

J-SLA T:off 0.87 0.13 0.72 0.28
T:on 0.07 0.93 0.06 0.94

(a) Binary-level
WML VPL

P:off P:low P:high P:off P:low P:high

MB-SLA
T:off 0.87 0.10 0.03 0.85 0.03 0.12
T:low 0.14 0.63 0.23 0.01 0.86 0.12
T:high 0.03 0.12 0.85 0.25 0.17 0.58

J-SLA
T:off 0.96 0.03 0.01 0.83 0.04 0.14
T:low 0.18 0.54 0.28 0.01 0.96 0.03
T:high 0.04 0.14 0.83 0.28 0.18 0.54

(b) Multi-level
TABLE IV: Confusion matrix of leave-one-participant-out cross
validation over 22 participants, 2 sessions each (44 data collection
sessions total), with MB-SLA and J-SLA on binary- and multi-level
multi-labeling schemes.

WML VPL
P:off P:on P:off P:on

TB T:off 0.84 0.16 0.79 0.21
T:on 0.05 0.95 0.06 0.94

LB T:off 0.87 0.13 0.91 0.09
T:on 0.04 0.96 0.13 0.87

(a) Binary-level
WML VPL

P:off P:low P:high P:off P:low P:high

TB
T:off 0.87 0.10 0.03 0.85 0.03 0.12
T:low 0.14 0.63 0.23 0.01 0.86 0.12
T:high 0.03 0.12 0.85 0.25 0.17 0.58

LB
T:off 0.87 0.11 0.02 0.85 0.03 0.12
T:low 0.09 0.68 0.23 0.02 0.87 0.12
T:high 0.03 0.12 0.85 0.24 0.09 0.67

(b) Multi-level
TABLE V: Confusion matrix of MB-SLA model with task-balanced
(TB) and label-balanced (LB) data for both binary and multi-class
labeling schemes.

D. Comparison between Task-balanced and
Label-balanced Data

As mentioned previously, for the above experiments, we
balanced the data based on different tasks, i.e. we used the
same number of data samples from each task. As seen in
Table I, different tasks may incur different levels of cognitive
load (for WML and VPL), and thus task balancing does not
guarantee balancing of the individual labels for the WML and
VPL. For instance, based on Table I (a), for the multi-class
case, labels 0,1 and 2 are not balanced for either WML or
VPL when task balancing is used.

Thus, we performed a new set of experiments by balancing
the number of samples for different labels for binary (on-
off) as well as 3-level (on, low, high) classification tasks. We
present the results in this section, and compare them with the
results of task-balancing. For binary, and multi-level multi-
labeling, we used different sampling steps to reach a balanced

distribution of labels. Since SLA models have provided better
accuracy in the experiments presented in Sec. IV-C, we
performed the new experiments in this section by using the
MB-SLA and J-SLA models, and compared their performance
on task-balanced and label-balanced data. We performed leave-
one-participant-out cross validation across 22 participants, and
used precision, recall, F1-score and accuracy as metrics to
evaluate the performance.

For the binary-level labeling scheme, the labels for WML
and VPL cannot be balanced simultaneously due to task-label
relationship in Table I(b). So, the labels can be balanced
for WML and VPL separately for comparison. As mentioned
above, for the task-balanced data, the ‘on (1)’ and ‘off (0)’
labels were balanced for WML. Thus, in this part, we sampled
the data to balance the labels for VPL, and presented all
the results. For multi-level labeling, the labels are balanced
for both WML and VPL. The performances obtained with
task-balanced and label-balanced data are shown in Tables VI
and VII for binary- and multi-level multi-label classification,
respectively. The WML and VPL label ratios are listed as
rounded, approximate numbers. As seen from Tables VI and
VII, compared to the task-balanced data, higher performance
is achieved with the label-balanced data in terms of precision,
recall and F1 score for both binary- and multi-level classifica-
tion of WML and VPL, and with 3.3% less data.

The confusion matrices obtained with task-balanced and
label-balanced data and with MB-SLA model are shown in
Table V. For binary-level classification of WML, the correct
match ratio is increased, and the mismatch values are de-
creased. For VPL, the detection ratio of class 0 is increased,
while the detection ratio of class 1 is slightly decreased. This
can be explained by the imbalance in data for the task-balanced
case, wherein there is much more data for class 1 (on) than
class 0 (label ratio is 1:3). Thus, model can over-fit to class
1 providing higher accuracy. Label-balancing addresses this,
and provides higher F1-score.

E. Comparison with other classifiers
We have also compared our proposed MB-SLA model with

three types of commonly used machine learning classifiers,
namely linear SVM [54], ANN [53] and CNN [53]. In terms
of the number of parameters, our proposed MB-SLA model
has around 30k trainable parameters, which is about 8x less
than CNN-based model [53] and around 6x less than the
ANN [53]. In this set of experiments, we used 10-fold cross-
validation instead of leave-one-out cross validation [55]. After
preprocessing, which includes bandpass filtering and z-score
normalization, we use the extracted features to train SVM
and ANN. To train the SVM, we used five features, namely
mean, variance, skewness, kurtosis and slope, as noted in [54].
Before training SVM, since the large number of features would
degrade the performance, we selected the channels with top 6
Fisher scores for the HbO and HbR signals. We also used all
five types of features together by selecting the channels with
top-1 and top-2 feature Fisher scores, which are denoted as
all-top1 and all-top2, respectively, in Table VIII.

For training ANN, we used mean, variance, kurtosis, skew-
ness, peak and slope [53] as features. While CNNs can
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Model Data WML Ratio VPL Ratio WML VPL
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

MB-SLA Task-balanced 1:1 1:3 0.8989 0.8954 0.8947 0.8949 0.8757 0.8649 0.8701 0.9038
Label-balanced 1:2 1:1 0.9214 0.9145 0.9179 0.9361 0.8902 0.8911 0.8907 0.8948

J-SLA Task-balanced 1:1 1:3 0.8979 0.8969 0.8966 0.8967 0.8522 0.8305 0.8404 0.8837
Label-balanced 1:2 1:1 0.9150 0.8986 0.9063 0.9279 0.8833 0.8917 0.8865 0.8896

TABLE VI: Leave-one-participant-out performance of binary-level multi-labeling scheme using SLA models. WML and VPL ratio represent
the |’off’|:|’on’|. Pre, Rec, F1 and Acc. are precision, recall, F1-score and Accuracy, respectively.

Model Data WML Ratio VPL Ratio WML VPL
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

MB-SLA Task-balanced 2:1:1 1:2:1 0.7732 0.7836 0.7772 0.8065 0.7547 0.7653 0.7588 0.7912
Label-balanced 1:1:1 1:1:1 0.7984 0.7979 0.7972 0.7994 0.7980 0.7976 0.7968 0.7992

J-SLA Task-balanced 2:1:1 1:2:1 0.7871 0.7745 0.7748 0.8221 0.7871 0.7745 0.7748 0.8221
Label-balanced 1:1:1 1:1:1 0.7796 0.7821 0.7791 0.7841 0.7796 0.7821 0.7791 0.7841

TABLE VII: Leave-one-participant-out performance of multi-level multi-labeling scheme using SLA models. WML and VPL ratios represent
|’off’|:|’low’|:|’high’|. Pre, Rec. F1 and Acc. are precision, recall, F1-score and accuracy, respectively.

Linear SVM WML VPL
FeatureTypes Accu Precision Recall F1 Accu Precision Recall F1

mean 0.6832 0.6814 0.6856 0.6800 0.6852 0.6849 0.6875 0.6823
variance 0.3403 0.5244 0.3383 0.2590 0.3391 0.3336 0.3483 0.2603

skew 0.4159 0.4129 0.4167 0.4115 0.4161 0.4132 0.4169 0.4117
kurtosis 0.3372 0.3354 0.3349 0.3293 0.3368 0.3348 0.3344 0.3278

slope 0.3402 nan 0.3333 nan 0.3402 nan 0.3333 nan
all-top1 0.6649 0.6877 0.6655 0.6618 0.6649 0.6877 0.6654 0.6619
all-top2 0.6597 0.6736 0.6601 0.6490 0.6603 0.6744 0.6607 0.6496

WML VPL
Model Accu Precision Recall F1 Accu Precision Recall F1

ANN2-a 0.3424 0.3373 0.3400 0.2885 0.3408 0.3357 0.3374 0.2838
ANN2-b 0.3387 0.3354 0.3350 0.3224 0.3374 0.3340 0.3330 0.3141
ANN2-c 0.3391 0.3347 0.3370 0.3082 0.3415 0.3368 0.3384 0.3054
CNN1-a 0.7079 0.7090 0.7087 0.7089 0.7195 0.6871 0.6963 0.6906
CNN1-b 0.7232 0.7241 0.7278 0.7256 0.6862 0.7204 0.7298 0.7237

MB-SLA(Ours) 0.7753 0.7741 0.7765 0.7742 0.7730 0.7722 0.7742 0.7741

TABLE VIII: Multi-level classification results of linear SVM [54], ANN [53], CNN [53] and our proposed MB-SLA model with 10-fold
cross validation. For linear SVM, “nan” in slope means that all samples of test splits were classified to a single level.

WML VPL
Model Accu Precision Recall F1 Accu Precision Recall F1

SVM mean feature 0.5934, 0.773 0.582, 0.7808 0.5963, 0.7749 0.5829, 0.7771 0.5947, 0.7757 0.5886, 0.7812 0.6012, 0.7738 0.5865, 0.7781
CNN1-b 0.6363, 0.8101 0.6373, 0.8109 0.6351, 0.8205 0.6371, 0.8141 0.6019, 0.7705 0.6371, 0.8037 0.6513, 0.8083 0.6373, 0.8101
MB-SLA 0.6855, 0.8655 0.6747, 0.8735 0.6872, 0.8658 0.6771, 0.8713 0.6825, 0.8651 0.6759, 0.8635 0.6879, 0.8605 0.6783, 0.8699

TABLE IX: The 95% (p=0.05) confidence interval of multi-level multi-label classification with 10-fold cross validation.

perform both feature extraction and classification, SVM and
ANN focus on single-label classification. Thus, we trained
two separate classifiers for WML and VPL. We used grid
search to find the best hyperparameters (C of linear SVM,
learning rate and batch size of ANN and CNN) for each fold
of the 10-fold cross validation. We report the performance of
traditional machine learning methods and our proposed model
with 10-fold cross validation in Table VIII, where CNN1 and
ANN2 are the best performing models reported in [53]. As
shown in Table VIII, our proposed MB-SLA model provides
the best performance in terms of all four metrics, namely
accuracy, precision, recall and F1-score, and for both WML
and VPL. We also calculated the 95% (p=0.05) confidence
intervals under 10-fold cross-validation for SVM, CNN1 and
our MB-SLA model (since ANN2 model performance was
low on our dataset). The confidence intervals are shown
in Table IX. Again, our proposed MB-SLA model has the
highest interval values compared to linear SVM (using mean
features) and CNN1-b. In addition, we performed permutation
tests under 10-fold cross validation scheme, and trained 1,000
models with randomized labels. We have a total of 8 metrics

to evaluate the performance, and only WML-precision (p =
0.008) and VPL-precision (p=0.001) have p-values larger than
0, indicating that our proposed model is functional.

F. Algorithm Transparency

Deep learning models are hard to interpret in general.
We use a simple yet effective method to investigate the
contributions of different channels by blocking some channels
and recording the performance change. Yellow circles in Fig. 1
represent the mask locations, and for each mask position (0 to
19), the 4 surrounding channels are blocked. The performance
change in terms of F1-scores, for each mask position, is
presented in Fig. 6, which shows that the performance drop is
more significant for mask positions 12, 13, 14, 17 and 18 (posi-
tions under the confidence low-bound of 95%), indicating that
the channels surrounding these positions play more important
roles than others. To visualize these results on the brain, we
use the virtual spatial registration process of Tsuzuki et al. [56]
to register the 52 channel locations onto a stereoscopic human
brain, and obtain the Brodmann area (BA) mappings. This
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mapping showed that the most influential region is BA 10,
followed by BAs 47, 46 and 45. This makes sense since BA
10 is the frontopolar area, which is perhaps the most well
known region being involved in cognitive load and executive
function [57]. BAs 45, 46, 47 are often referred to as “Broca’s
complex” [58]. There is a strong link between Broca’s areas
and the phonological loop, where information is rehearsed
in working memory, with studies of verbal working memory
regularly implicating Broca’s area as a part of the phonological
loop, particularly in the articulatory rehearsal component [59].
This makes sense as the EWM and n-back tasks would
have involved this verbal working memory rehearsal. The
finding that our model gleaned maximum information from
the frontopolar and Broca’s complex is promising to see, as
those regions would ideally be heavily involved in tasks that
involved VPL and WML, which is what our model was trained
to predict. We overlay the most informative mask positions on
these BAs in Fig. 7.

Fig. 6: Horizontal dash lines are the 95% confidence intervals. The
most impactful positions are 12, 13, 14, 17 and 18.

Fig. 7: The overlay of mask positions 12, 13, 14, 17 and 18 on the
Brodmann areas 10, 45, 46 and 47, which are shown in red, dark
blue, green and yellow respectively.

V. DISCUSSION
We have introduced a new method of modeling a large,

cross-participants, cross-session set of high density functional
near-infrared spectroscopy (fNIRS) data. We have proposed
a new model to classify different levels of Working Memory
Load (WML) and Visual Perceptual Load (VPL). In contrast to
existing work, we go beyond classification of general workload
(WL), and can further delineate WL into its specific sub-
components, such as WML and VPL, and their different
levels. Our proposed method is based on Bi-Directional Gated
Recurrent Unit with an attention mechanism. We have also
incorporated the self-supervision signal to the cognitive clas-
sification task by introducing a new transformation, which
uses different ordering of the controlled rest and task data,
and is more suitable for fNIRS data. We have shown that
the spatio-temporal fNIRS data can be used by our model to

make near real-time predictions of WML plus VPL. This is
important as much machine learning work on fNIRS data to
date has been done primarily on single-trial time segments
ranging from roughly 40-60 seconds, and real-time adaptive
systems need to select actions in shorter time periods than that.
We have performed not only binary but also multi-level (off,
low, high) classification of WML and VPL. With those two
pieces of information, an adaptive system can choose not only
whether or not a user needs support, but also what modality
(auditory like through speakers or visually as on a monitor)
to provide that support in. Future work should expand on this
work, and increase the scale of the dataset by involving more
participants and using more cognitive benchmark tasks in these
studies. Cognitive benchmark tasks can include those where
participants complete tasks on the computer that are more
ecologically valid (like browsing the web, having a meeting
over zoom, playing a video game with peers, etc.).
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