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Abstract—We present a disconnection tolerant routing proto-
col, Binary State Distance Vector Routing (BSDVR), that can
provide unicast routing on partitioned networks. BSDVR intro-
duces binary state information for distance vector (DV) entries
to compute unicast paths even if the network is partitioned.
We compare BSDVR against the traditional DV routing (TDVR)
in a controlled network. Our experiments confirm that BSDVR
generates more control overhead during single link failures that
do not cause partitions. In terms of partition-causing link failures,
BSDVR’s control overhead is less than TDVR’s by an order of
magnitude, leading to much better convergence times.

Index Terms—delay-tolerant networking; ad-hoc networks;
distance vector routing

I. INTRODUCTION

Delay/Disconnection Tolerant Networks (DTNs), as a form
of ad-hoc networks, have a vast array of applications where
sustainable network infrastructure may be absent, e.g., com-
munication among first responder teams during a disaster,
or communication within isolated units in battlefield. Dis-
connections or long end-to-end delays are the norm in such
environments and the network typically forms an ad-hoc op-
portunistic fashion [1]. Such ad-hoc DTNs are highly dynamic
and require specialized routing protocols that operate under
resource constraints and can handle frequent disconnections
or link failures. Traditionally, two different family of routing
protocols operate in such disconnected environments, namely
epidemic and distance vector (DV) routing.

Epidemic routing protocols involve probabilistic exchange
of data messages among nodes to increase the delivery rate
[2]. Their key advantage is a minimal control state (e.g.,
no or partial forwarding tables) but they have a costly data
plane as every data message may get copied many times
during the forwarding process. These copies cause extra
load on the network capacity that can become prohibitive in
limited-resource networks such as first responders’ network
during a disaster. To avoid forwarding multiple copies of
the data messages, DV routing makes the nodes maintain
a localized view to their direct neighbors where routes get
retrieved on-demand using the Bellman-Ford algorithm to
calculate the shortest paths, with little reliance on periodic
advertisements, which reduces the overall bandwidth demand,
therefore, making it suitable for highly dynamic networks [3].

This work was funded in part by NIST grant number 70NANB17H188 and
U.S. NSF awards 1647189 and 2115215.

However, DV routing requires the underlying network to be
connected. To handle disconnections that may cause partitions,
most DV-based routing protocols employ on-demand reactive
mechanisms involving a signaling phase before transmission
of data messages (e.g., AODV [3]) or additional state in packet
headers (e.g., DSDV [4]). Without such extra cost, DV routing
cannot avoid the well-known count-to-infinity problem when
it faces with the problem of finding a unicast path between
nodes located in different partitions of a network.

We introduce Binary State DV Routing (BSDVR) protocol
that introduces binary state information for each DV entry to
avoid the count-to-infinity problem. Even when the network is
partitioned, BSDVR successfully calculates the shortest paths
among all nodes by augmenting the Bellman-Ford algorithm
with the binary state information. With proper tuning of a data
plane, BSDVR can attain a hybrid between traditional DV and
epidemic routing, and enable unicast-like paths that is more
suitable for limited-capacity networks. Our contributions are:

• The concept of categorizing DV entries by active vs.
inactive, a.k.a. binary state, based on whether or not the
entry corresponds to a connected or disconnected path.

• A detailed control logic to augment the Bellman-Ford’s
algorithm to process DV entries with binary states.

• An emulation-based evaluation of the proposed protocol.
The rest of the paper is organized as follows: First, we

cover related work in distance vector routing in ad-hoc and
delay-tolerant networks in Section II. Section III provides
an overview of BSDVR and how it differs from traditional
DV routing. Section IV details how BSDVR’s control plane
handles link failures and provides the logic for merging active
and inactive states of DV entries as DV update messages are
exchanged. Section V presents results from the emulation-
based evaluation of BSDVR in scenarios involving single link
failures and partition-causing link failures. Finally, Section VI
summarizes our work and discusses future directions.

II. RELATED WORK

Mobile ad-hoc routing literature is vast. Since our work
focuses on disconnected or partitioned networks, the most rel-
evant routing literature is DTN routing. Due to the difficulty of
handling partitions when calculating end-to-end shortest paths,
DTN routing literature focused on using epidemic forwarding
methods where data messages are probabilistically sent to
neighbors with the hope of increasing their delivery rate. These
routing protocols aim to develop the most optimal forwarding
strategy because overall performance in terms of its delivery978-1-6654-8353-7/22/$31.00 ©2022 IEEE
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rate and packet loss is greatly affected by how well the next
relay node gets selected and an optimal data dissemination
policy which determines the number of copies allowed for a
message so that its delivery likelihood is maximized.

DTN routing protocols can be classified into two broad
categories, pure opportunistic and social-based, based on the
forwarding strategies they employ [5], [6]. The latter approach
selects relay node based on social group information obtained
from historical encounters to build multi-level social groups
[7]. The former uses the same mobility patterns and interaction
history to assign a probability to relay nodes for delivering a
message. Only nodes with high delivery probability are then
selected to forward a message which reduces the overall copies
of the message in the network.

The opportunistic DTN routing protocols are more relevant
to BSDVRP since they also assume a highly intermittently
connected network. In this group, ProPHET [8] leverages
existence of non-random node mobility patterns in intermittent
networks by evaluating a delivery predictability metric from
every node’s history of encounters. MaxProp [9] assigns prior-
ity to both message delivery and message drops at the node by
dividing the message buffer into two sections which are sorted
by delivery probability and hop counts respectively to achieve
a lower delivery latency. OLSR [10] selects a group neighbors
one-hop away with bi-directional links as multi-point relays
to minimize the flooding of control messages when updating
route information and data messages trading off message
overhead with delivery latency by sending fewer copies down
potentially longer routes in the network. To improve the deliv-
ery probability, Weak State Routing [11] introduces per-node
state by making nodes periodically announce their location
in random directions resulting in aggregated ID-to-location
mappings at receivers in the proximity of the broadcasting
node. Messages are forwarded by source nodes in random
direction so that they eventually come across a relay that
maintains state about the destination node to re-direct them.

The opportunistic DTN routing protocols above employ
multiple copies of data messages to cope with possible par-
titions in the network. BSDVR, however, aims to deliver a
single copy of every data message, i.e., unicast delivery, even
if the network is partitioned. To the best of our knowledge, this
is the first time a DTN routing protocol can achieve unicast
forwarding of data messages over a partitioned network.

III. BSDVR OVERVIEW

We design a new BSDVR protocol to obtain a better trade-
off between control and data plane overheads in a dynamic
network where partitions are prevalent. Traditional approach
to DTN routing has been to use epidemic routing. In BSDVR,
the key novelty is to achieve nearly unicast forwarding by
using an enhanced version of the legacy DV routing design for
control plane and optionally allowing conventional epidemic
methods in the data plane. Following a traditional notion of
link weight in routing, BSDVR assigns each link with a cost
based on metrics such as geo-distance, capacity, or loss rate.

Binary State DVRP – Key Design Components

Distance Vector

Destination A B C

Cost 5 3 7

Distance Vector

Destination A B C

Cost, State 5, 1 3, 1 7, 0

{dest: C, via: A, cost: 7} {dest: C, via: A, cost: 7, state: 0}

TDVR BSDVR

Fig. 1: TDVR vs. BSDVR

Control Plane: BSDVR includes additional state information
in its DV table (DVT) entries as shown in Fig. 1. Each node
can have either active or inactive DV entries, allowing them
to preserve information about past connections along with the
currently active connections. Active DV entries are those that
comprise of present paths that are still active. Conversely,
inactive DV entries are made up of paths that were active
at some point in the past, but have become inactive. Both
types of entries are used in constructing the forwarding table
for the data plane. Given these binary state DVs, we carefully
integrate the active and inactive states when DV updates are
being exchanged. These binary states on paths provide nodes
with more information in making data dissemination decisions.
This binary separation allows BSDVR to detect link failures
on the ‘shortest path first (SPF) tree’ used to install the paths
in the forwarding table entries, and hence to treat connected
paths separately than the failed or disconnected ones.

Data Plane: The binary state information of paths also gets
used to create additional states for disseminating data packets
stored in the message buffer of nodes. The data packets in
the message buffer of a node can have three possible states:
not-forwarded, inactive-forwarded and active-forwarded. Not-
forwarded packets have not yet been forwarded to any of the
other encountered nodes, e.g., because they did not have any
path to the packet’s destination. Inactive-forwarded packets are
those that have passed onto a relay node that has an inactive
path to the destination. Finally, active-forwarded packets are
those that either got passed to their destination node directly
or to a relay node that has an active path to the destination.
Once a packet becomes active-forwarded by a node it never
gets forwarded again. When the message buffer is full and old
packets are removed in the order of active-forwarded, inactive-
forwarded, and not-forwarded. This increases the packets’
delivery likelihood. In contrast to traditional epidemic routing,
BSDVR can attain more controlled and informed flooding of
the data packets by using these three states.

BSDVR vs. Traditional DV Routing: In traditional DV routing
(TDVR) based on Bellman-Ford’s algorithm, it is not possible
to entirely avoid the count-to-infinity since the nodes down-
stream to a failure cannot infer the emergence of a partition
unless they are notified that the destination is unreachable.
TDVR works with three local actions that guarantee global
convergence: (1) Monitor and update a link table that keeps
the costs of local links to neighbors, (2) Recompute DV (to
all destinations in the network) as well as the forwarding
table by using the Bellman-Ford procedure whenever there
is a change in the link table or a DV from a neighbor is
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Count to Infinity – Distance Vector Protocols

E

A

D B

C

5 12

1 10

{dest: E, via: D, cost: 9}

{dest: E, via: B, cost: 6}

{dest: E, via: B, cost: 5}{dest: E, via: C, cost: 8}

Fig. 2: A converged TDVR network

Count to Infinity – Distance Vector Routing (DVR) Protocols
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{dest: E, via: B, cost: 20}

{dest: E, via: D, cost: 23}

Cycle continues until DV entry 
at A becomes greater than ∞.

A

D B

C
12

1 10

Failure causing 
a partition

{dest: E, via: A, cost: 19}

E

A

D B

C
12

1 10

∞

Failure causing 
a partition

B had learned that A can make him reach E with 
cost 9. Without knowing he is on the upstream of 
that path, he installs this option from his DV table.

A:{dest: E, via: D, cost: 9}

{dest: E, via: C, cost: 22} E
∞
{dest: E, via: A, cost: 29}

Fig. 3: Emergence of count-to-infinity in TDVR over a partitioned network

Binary State DVRP – Key Design Components

Distance Vector

A B C

0, 1 1, 1 3, 1

A

B

C

1

4

2

Distance Vector

A B C

1, 1 0, 1 2, 1

Distance Vector

A B C

3, 1 2, 1 0, 1

B-C fails

Distance Vector

A B C

0, 1 1, 1 4, 1

Distance Vector

A B C

1, 1 0, 1 5, 1

Distance Vector

A B C

4, 1 5, 1 0, 1

A-C fails too

Distance Vector

A B C

0, 1 1, 1 4, 0

Distance Vector

A B C

1, 1 0, 1 5, 0

Distance Vector

A B C

4, 0 5, 0 0, 1

A

B

C

1

4

2
A

B

C

1

4

2

Fig. 4: Integration of state information in BSDVR

received in an update message, and (3) If there was a change
in the forwarding table (e.g., a shorter or longer path is
calculated for a destination), broadcast the new DV to all
neighbors. Three typical optimizations to this procedure are
broadcasting the updated part of DV instead of entire DV,
not including the sender of the update message in the DV
broadcast, and applying poisoned reverse to the DV entries by
either removing them from the DV or setting them to infinity.
In BSDVR, we implement these optimizations and assume
them for the rest of the discussion.
Avoiding Count-to-Infinity: Consider the SPF tree1 for desti-
nation E in Fig. 2. When the link B−E fails, the network is
partitioned and E is unreachable for the rest of the network as
shown in Fig. 3. Since, prior to the failure, B had learned that
A can make him reach E with cost 9, without knowing he is
on the upstream of that path, B installs this option from his
DVT and sends the “new” (but fake) path to C as an update
message. Note that this effectively changes the SPF tree for
E such that there is a loop in it, as shown in Fig. 3. Since
C has no better option, it installs this new path from B and
propagates it to D, which then to A. A further propagates it
to B, thereby establishing a count-to-infinity cycle.

The fundamental reason why TDVR cannot avoid count-to-

1In DVR, destination i is reached via the SPF tree where i is the source. The
SPF tree for each destination is conceptual and maintained across DVTs of
nodes. The forwarding tables in each node only maintain one-hop forwarding
decisions of these network-wide trees. The end-to-end shortest paths emerge
from concatenation of destination-based forwarding along these trees.

infinity when it faces partition-causing failures is that it does
not separate paths to unreachable destinations from the paths
to reachable destinations. In the example above, if the nodes
below the failure were notified that the failure could potentially
be making the destination unreachable, then precautions could
be taken. BSDVR handles this by associating active or inactive
state to each DV entry and explicitly marks the paths with
reachability information, as shown in Fig. 1. Likewise, the DV
updates being sent to the neighbors, which is part of the regular
process in TDVR, also include this binary state information. In
the example shown in Fig. 4, the link B−C is disconnected,
which causes new active shortest paths to be calculated. This is
a failure that TDVR can handle. But, when the link A−C also
fails, a partition emerges; and this causes the paths from A and
B towards C as well as from C to A and B to become inactive.
In BSDVR, these inactive paths are explicitly acknowledged
in the state fields of the corresponding DV entries.

IV. BSDVR CONTROL PLANE WITH BINARY STATES

We now detail how the active and inactive states are handled
in the control plane of BSDVR. In routing terminology, the
shortest path to a destination is the primary path towards that
destination and is typically illustrated as the upstream part of
the SPF tree for that destination. We will use this terminology
to discuss how the DV updates with binary state DV entries
are used to handle link failures that may be causing partitions
and then outline how to merge DV entries with different states.

Authorized licensed use limited to: University of Central Florida. Downloaded on July 28,2022 at 20:02:42 UTC from IEEE Xplore.  Restrictions apply. 
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B inactivates its DV entry towards C, 
erases all its DV entries towards C, and 
sends an inactive update downstream.

X

B

C

B-X fails

Nodes above the failure or at other branches 
don’t recalculate the shortest path to C.

Nodes below the failure also erase 
their DV entries towards C and 
recalculate the shortest path to C.

After detecting a failure on primary path towards 
the source, erase all the DV entries in downstream 
nodes and “force” recalculation of new paths.

Fig. 5: Failure on Primary Path

A. Handling Link Failures

To avoid count-to-infinity cycles from partition-causing fail-
ures (as in Fig. 3), BSDVR detects failures on primary path
(by inspecting binary states of the DV entries) and introduces
proactive messages to make sure any alternative active paths
are disseminated to the nodes downstream of the failures.

1) Forced Recalculation on Primary Path: A key com-
ponent BSDVR introduces is that if nodes realize that their
primary path towards a destination has a failure, they erase all
the DV entries for this destination and update other neighbors
about the change in the path. Since the DV entries are marked
with active or inactive states, the nodes can realize the failure
on the primary path when they receive an inactive DV update
from the next hop towards the destination, which is also the
parent on the SPF tree for that destination. As seen in Fig. 5,
this will cause all the nodes below the failure (on link B−X)
to inactivate their existing path (i.e., mark the DV entry for the
destination C as inactive) and erase all the alternative entries
in their DV tables for the destination C. This inactivation of
the primary path and erasure of alternative DV entries together
guarantee that the nodes below the failure will avoid count-
to-infinity if destination C has become unreachable for them,
i.e., they are disconnected from the rest of the network.

2) Proactive Reply to Inactive DV Updates: Given that
the nodes below the failure on primary path towards the
destination are erasing all they know, how do the nodes below
failure discover the availability of other paths to the destination
via other branches of the SPF tree that are not affected by
the failure? We introduce a proactive component to TDVR
to solve this issue. In TDVR, a node does not send a DV
update message to its neighbors unless there is a change in
its forwarding table. We change this behavior so that a node
replies to an inactive DV update (i.e., an update message
that includes an inactive DV entry for a destination) from a
neighbor, who is not on the primary path to the destination,
by sending its current active DV entry for that destination.

In Fig. 6, consider the node E below the failure. It will
send an inactive DV update to all its neighbors (Fig. 6(a)),

including A that is residing on another branch of the SPF tree
and has an active path to the destination C. When A receives
the inactive update from E, it will prefer its existing path and
will not make any changes to its existing DV. So, there will
not be any change to the forwarding table of A as a result
of the inactive update from E. In TDVR, A should not send
any update as its shortest path has not changed. But, to make
sure E is informed about the existence of the alternative path
via A, we introduce new logic here as shown in Fig. 6(b) and
make A reply to E with its latest DV which informs E about
the alternative path. Finally, after receiving the update from
A, E goes on to updating its DV with the active entry and
inform its neighbors (that were below the failure) about the
path via A as shown in Fig. 6(c).

Binary State DVRP – Handling a Link Failure
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How do the nodes below the failure learn about the alternative paths?

X

E

A

B

C

Step 3: E learns the
active path via A and
broadcasts new path to
its neighbors.

Step 1: E sends its
latest inactive DV
entry as update for
C to its neighbors.

X

E

A

B

C

Step 2: A receives
inactive DV update
and responds with
its active DV entry
despite no change
in forwarding table.

X

E

A

B

C(a) (b) (c)

Fig. 6: Proactive response to inactive DV updates in BSDVR

3) Overhead in Handling Failures Not Causing a Partition:
A careful inspection reveals that BSDVR introduces additional
messages when handling a link failure that is not causing
a partition. This is due to the fact that the nodes below a
failure are forced to erase all the alternative path information
while some of those alternative paths may still be valid. This
is visible in Fig. 6. In TDVR, since E would not erase
its alternative path via A when it received the inactive DV
update from its primary path, it would immediately install this
alternative path and the nodes below E would not even know
about the failure. In BSDVR, however, we force E to erase
what it knows for the possibility that E and its neighbors may
be part of a partition caused by the failure. This causes E to
send an inactive update to A as well as all the nodes below E.
Then, after receiving the availability of an active path via A,
E sends another DV update with this alternative active path.
This process causes the nodes below E to receive two updates,
both of which would be avoided in TDVR when handling the
failure. We will later show that this is a good tradeoff since
BSDVR avoids the huge cost of count-to-infinity in return of
small extra overhead during failures not causing a partition.

B. Merging Active and Inactive States

A major complication as well as novelty is how to calculate
paths given two types of DV entries. Since we may have
multiple paths available for reaching the same destination as
active or inactive, there is a need to assign preference between

Authorized licensed use limited to: University of Central Florida. Downloaded on July 28,2022 at 20:02:42 UTC from IEEE Xplore.  Restrictions apply. 
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Current New
Inactive Active
• This happens when an active DV entry arrives in a DV update message for an existing inactive DV entry.
• Approach: Choose the new active entry if the new entry cost is below infinity.
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A E

C

c2c1

l

{c2, 1}c1, 0

E has an active path, so A accepts the new active 
path A-EàC.

l1+c2, 1

A E

C

c2c1

l

Fig. 7: Active DV Update {c2, 1} for
Inactive DV Entry [c1, 0]

Binary State DVRP – Merging Active and Inactive States
Current New
Inactive Active
• This happens when an active DV entry arrives in a DV update message for an existing inactive DV entry.
• Approach: Choose the new active entry if the new entry cost is below infinity.
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A E

C

c1

l
{∞, 1}c1, 0

E has been using A to reach C and A
has not informed E about the failure, 
A should not accept the active entry.

c2, 1

c2 = l + c1

Fig. 8: Poisoned
Active DV Update

Binary State DVRP – Merging Active and Inactive States (cont’d)
Current New
Active Inactive
• This happens when an inactive DV entry arrives in a DV update message for an existing active DV entry.
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A

E

C

c2

l

l+c2, 1

E is the parent of A on its primary path to C. Since E is 
sending an inactive entry, there must be a failure on the 

primary path. Hence, A accepts this update and deletes all its 
DV entries towards C.

{c2, 0}

A

E

C

c2

l

l+c2, 0

Fig. 9: Inactive DV Update
{c2, 0} from the Parent

Binary State DVRP – Merging Active and Inactive States (cont’d)
Current New
Active Inactive
• This happens when an inactive DV entry arrives in a DV update message for an existing active DV entry.
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A E

C

c2

l

{c2, 0}c1, 1

c1

E is not on the primary path to C. Should it reply 
with its active DV entry? The failure that triggered E 
to send an inactive entry may be upstream to A too.

Fig. 10: Inactive DV Update
{c2, 0} from Non-parent

Binary State DVRP – Merging Active and Inactive States (cont’d)
Current New
Active Inactive
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Failure above the fork

A E

C

c2

l

{c2, 0}c1, 1

c1

A E

C

l

{c2, 0}c1, 1

c1
X

` `

c2 

A E

C

l

{c2, 0}c1, 1

c1 
X

` `

c2 

Failure below the forkRoot-branched

Benign Cases: A sends a reply with its active entry.
Malign Case: A does not send a 
reply with its active DV entry.

Ambiguous: A starts Pending Reply Timer and waits before sending a reply with its active DV entry.Fig. 11: Inactive DV update {c2, 0} from a non-parent node

them. Table I summarizes BSDVR’s control logic in handling
different DV entries when an update message is received. If
both the incoming and existing DV entries are the same type,
BSDVR uses Bellman-Ford’s algorithm to calculate minimum
cost paths. However, there are two new cases to consider: 1)
An active DV entry arrives while there is an inactive entry for
the same destination. 2) An inactive DV entry arrives while
there is an active entry for the same destination. Next, we
detail how BSDVR handles these cases by using the following
notation based on the scenario in Fig. 7:

• C is the destination,
• E is the sender of the DV update,
• A is the recipient of the inactive DV update,
• l is the cost of the link A− E,
• c1 is the length of the shortest path A→ C, and
• c2 is the length of the shortest path E → C.
1) Active DV Update for an Inactive DV Entry: When an

active DV update arrives while current DV entry for the same
destination is inactive, BSDVR chooses the new active entry
if the new entry cost is below infinity. This is shown in Fig.
7. E sends an active DV update {c2, 1} informing A about
the existence of an active path towards the destination C with
a finite distance c2. Since A’s existing DV entry [c1, 0] for
destination C is inactive, it is best for A to install the new

Current New Rule
Active Active Choose min-cost DV entry

Inactive Inactive Choose min-cost DV entry
Inactive Active Choose the active entry iff its cost is finite
Active Inactive IF {cost of the active entry is infinity}

Choose the inactive entry
ELSE

IF {the inactive entry is on primary path}
Choose the inactive entry
Remove alternative DVT entries

ELSE
Reply to the inactive update

TABLE I: Merging Current and New DV Entries

path with the cost l+c2 regardless of how c1 compares to this
active path’s length. This is simply because of the fact that an
active path is reachable while an inactive path is unreachable,
and hence an active path is preferable. An exceptional case
is that the DV update may be poisoned, which will present
an active path with infinite cost as illustrated in Fig. 8. This
happens when E has been using A to reach C and A has not
informed E about the failure yet. Observing the ∞ cost value
in the DV update, A should not accept the active path via E
as that would constitute a loop.

Authorized licensed use limited to: University of Central Florida. Downloaded on July 28,2022 at 20:02:42 UTC from IEEE Xplore.  Restrictions apply. 



Emulation Results: Single Link Failures

ReDiCom: Resilient Communication for First Responders in Disaster Management 1

(b) Control Traffic (Bytes) (c) Control Traffic per Link (Bytes)

BSDVR takes longer to 
converge due to the 

reply timer.

(a) Convergence Time (ms)

Fig. 12: Results from experiments with single link failures.

Emulation Results: Partitions
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(c) Control Traffic (Bytes)(b) Convergence Time (ms)(a) Convergence Time (ms)

Fig. 13: Results from experiments with partitions.

2) Inactive DV Update for an Active DV Entry: Even
though it may seem that there should be no action to be
taken when an inactive DV update comes for an active DV
entry, there are two critical cases for BSDVR to handle: 1)
This inactive DV update may be an indication of a failure
on the primary path. 2) The inactive update is coming from
a neighbor that just inactivated its existing path (due to an
inactive update from its primary path) and it needs to be
informed about the existence of the alternate active path. We
now detail BSDVR’s approach in these cases:

Failure on Primary Path: An inactive DV update may come
from the parent due to a failure upstream to the parent. In Fig.
9, E inactivated its DV entry for destination C due to a failure
on its upstream path towards C and needs to let its neighbors
know about this. Thus, it sends an inactive DV update to A.
At A, this presents itself as a situation where the parent node
on the primary path towards the destination C is reporting
that its path to C is now inactive. Since this means that the
upstream is now failed, A accepts this update and erases all
its alternative DV entries for C and sends an inactive update
to its other neighbors. As explained in Sec. IV-A1, this is an
intentional inactivation embedded in the protocol so that all
the nodes below a failure are forced to recalculate their paths.

Proactive Reply: When an inactive update comes from a non-
parent neighbor, this means the sender of the update does not

know about the existing active path. From A’s perspective, E
is a neighbor that does not have an active path to C while A
itself has one. So, A should proactively inform E about the
existence of an active path to C so that E can also utilize
this path. However, as illustrated in Fig. 10, the complication
here is that the failure that triggered E to send an inactive
entry may be upstream to A too. This situation can happen
when failure information propagates to E before A. If that
is the case, A should not reply and wait until it is sure that
its active entry [c1, 1] is still valid. These possibilities must
be differentiated in order for A to decide when to proactive
reply by sending an active DV update to E. We categorize
the possibilities into three cases as shown in Fig. 11: First, E
could be on an entirely different branch from the root of the
SPF tree. We call this case as the “Root-branched” case, and
in this case, A should reply to E with its active DV entry for
destination C. It is also possible that the paths from A to C and
E to C overlap upstream and there is a fork at a node X . This
fork case can be good or bad. If the failure is below the fork
node X , then A should reply with its active entry. However, if
the failure is above the fork, then A should wait until it gets
notified that its primary path to C has become inactive. At A,
it may be possible to distinguish these cases and identify the
benign and malign ones. But, if it is ambiguous, A starts a
Pending Reply Timer and waits before sending a reply to E.
We rely on this timer for resolving ambiguous cases of sending
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proactive replies. In the current version, we judge that there is
no possibility of a fork node X (which means it has to be a
benign case) if (1) A’s parent is C or (2) the cost of reaching
E from A via A’s parent is equal to c1 + c2. Otherwise, A
starts the timer due to doubt on the presence of fork node X .

V. EVALUATION & ANALYSIS

We implemented BSDVR2 using multiple processes, which
emulates a routing environment among mobile devices where
processes open or close TCP-like connections with each other
using Bluetooth or Wi-Fi interfaces. We were able to emulate
up to 30 nodes placed randomly in a topology with 3 to
5 average node degree. We set the Pending Reply Timer of
BSDVR to 100 ms and compared it against the TDVR in terms
of convergence time and messaging overhead. In TDVR, we
represented the infinity with the maximum integer value. We
repeated the experiments 3 times on different topologies.
Single Link Failures: We failed the links in the network one
by one. Since the topologies had a minimum degree of 2,
this meant that there was no partition due to the link failures.
In terms of convergence time, we observe in Fig. 12(a) that
BSDVR performs worse than TDVR in handling failures that
do not cause partitions. This is due to the fact that there is a
fixed Pending Reply Timer that sometimes cause the nodes
to wait unnecessarily before sending an active path to its
neighbor. This is also visible on the control traffic, in Fig.
12(b), as BSDVR generates more DV updates (Sec. IV-A3).
Even though the number of replies is few, unnecessary DV
updates cause notable additional control traffic in BSDVR.
The good news is that BSDVR’s control traffic overhead does
saturate with respect to the network’s capacity as seen in Fig.
12(c). The takeaway is that optimizing the Pending Reply
Timer or eliminating the need for the timer is crucial for
BSDVR’s performance over a non-partitioned network.
Partition-Causing Failures: The real benefit of BSDVR is in
handling the failures that cause partitions. To test this, in
the same topologies as before, we failed the links of a node
simultaneously and caused a partition in the network. We
then measured the convergence time and control traffic in
the rest of the network without the disconnected node. We
repeated this for every node in the network. As shown in Fig.
13(a), TDVR experiences count-to-infinity and takes much
longer time to converge, while BSDVR’s convergence time
is virtually unaffected by the partition in the network. This is
more clear in the logarithmic scale plot in Fig. 13(b). We see
that BSDVR’s convergence time increases only linearly as the
network grows. In terms of the control traffic, in Fig. 13(c), we
see an order of magnitude benefit for BSDVR as it prevents
count-to-infinity during partition-causing failures.

VI. SUMMARY AND FUTURE WORK

We introduced BSDVR protocol that uses binary state
information to facilitate a hybrid between traditional DV and

2Please refer to https://tinyurl.com/3w59tr45 for code and detailed expla-
nation of the implementation.

epidemic routing protocols. BSDVR’s key goal is to achieve
unicast-like routing that can work on DTNs where partitions
are prevalent and link capacities are too limited for carrying
multiple copies of data messages. We compared BSDVR
against the traditional DV routing protocol in a controlled
network. Our emulation experiments showed that BSDVR
generates more control overhead during link failures that do
not cause partitions; however, this control overhead saturates
with respect to the network’s capacity. In terms of failures
causing network partitions, BSDVR control overhead has an
order of magnitude benefit over traditional DV routing, leading
to significantly better convergence times.

BSDVR offers several interesting future research directions.
Legacy routing protocols essentially ignore the paths that are
disconnected, and hence delete the state left from those discon-
nected paths. BSDVR opens a new dimension by showing, in
the case of shortest-path routing, how the state information of a
disconnected path can be integrated with the state information
of connected paths. To this end, it is worthy to revisit distance
vector routing protocols that run in wireline networks and see
if the concept of binary state can help.

Data plane performance of BSDVR needs to be studied.
In terms of its control plane design, BSDVR can use further
optimizations of its Pending Reply Timer. Also, when differ-
entiating the benign and malign cases during the reception of
an inactive DV update from a non-parent node, it is possible
that A can use more sophisticated logic to further avoid the
reply timer. Finally, BSDVR’s theoretical analysis of worst,
average, and best case scenarios in terms of convergence time,
messaging overhead, and state complexity at routers.
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