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The branching fraction of the rare B0
s → ϕμþμ− decay is measured using data collected by the LHCb

experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to integrated luminosities of 1, 2,
and 6 fb−1, respectively. The branching fraction is reported in intervals of q2, the square of the dimuon
invariant mass. In the q2 region between 1.1 and 6.0 GeV2=c4, the measurement is found to lie 3.6 standard
deviations below a standard model prediction based on a combination of light cone sum rule and lattice
QCD calculations. In addition, the first observation of the rare B0

s → f02ð1525Þμþμ− decay is reported with
a statistical significance of 9 standard deviations and its branching fraction is determined.
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Recent studies of rare semileptonic b → slþl− decays
exhibit tensions between experimental results and standard
model (SM) predictions of branching fractions [1–5],
angular distributions [6–11], and lepton universality [11–
19]. Since these decays are only allowed via higher-order
electroweak (loop) diagrams in the SM, they constitute
powerful probes for non-SM contributions. One of the most
significant discrepancies appears in the branching fraction
of the B0

s → ϕμþμ− decay [1,2]. Using 3 fb−1 of data
collected with the LHCb experiment at center-of-mass
energies of 7 and 8 TeV, the branching fraction was
measured below the SM prediction at the level of 3 standard
deviations (σ) [1]. This Letter presents an updated meas-
urement using data taken at center-of-mass energies of 7, 8,
and 13 TeV during the 2011, 2012, and 2015–2018 data-
taking periods, with integrated luminosities corresponding
to 1, 2, and 6 fb−1, respectively. Compared to the 3 fb−1

sample alone, this represents an increase of about a factor of
4 in the number of produced B0

s mesons. The branching
fraction is determined in intervals of q2, the squared
invariant mass of the dimuon system. In addition, the
observation of the B0

s → f02ð1525Þμþμ− decay and a
determination of its branching fraction are reported. This
constitutes the first observation of a rare semileptonic decay
involving a spin-2 meson in the final state and provides
complementary information to transitions involving pseu-
doscalar or vector mesons. In the following, the shorthand

notation f02 is used to refer to the f02ð1525Þ meson. The
inclusion of charge-conjugate processes is implied
throughout.
The LHCb detector is a single-arm forward spectrometer

covering the pseudorapidity range 2 < η < 5, detailed in
Refs. [20,21]. The online event selection is performed by a
trigger [22] that consists of hardware and software stages.
The former selects signal candidates containing a muon
with significant transverse momentum with respect to the
beam axis. At the software stage, a full event reconstruction
is applied. Simulated events are used in this analysis to
determine the reconstruction and selection efficiency of
signal candidates and to estimate contamination from
residual background. The simulated samples are produced
using the software described in Refs. [23–25]. Residual
mismodeling in simulation is corrected for using control
samples from data.
The B0

s → ϕμþμ− and B0
s → f02μ

þμ− decays are recon-
structed in theKþK−μþμ− final state. Particle identification
criteria are applied to the kaon and muon candidates. The
muons (kaons) are further required to have χ2IP > 9ð6Þ with
respect to any primary pp interaction vertex (PV) in the
event, where χ2IP denotes the difference in the vertex-fit χ2

of the PV when reconstructed with or without the consid-
ered track. The four final-state tracks are fit to a common
vertex that is required to have good quality and to be
significantly displaced from any PV in the event. Signal
candidates are retained if the KþK−μþμ− invariant mass
mðKþK−μþμ−Þ lies between 5270 and 5700 MeV=c2. The
invariant mass of the dikaon system mðKþK−Þ is required
to be within 12 MeV=c2 of the known ϕmass for the B0

s →
ϕμþμ− decay or within 225 MeV=c2 of the known mass of
the wider f02 resonance for the B0

s → f02μ
þμ− decay [26].

The q2 regions between 8.0 and 11.0 GeV2=c4 and
between 12.5 and 15.0 GeV2=c4 are dominated by
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tree-level B0
s decays into final states with a J=ψ or ψð2SÞ

meson. While these regions are vetoed in the selection of
the signal modes, the decays to charmonium are used as
high-yield control modes. The B0

s → J=ψϕ decay is used
for normalization. The q2 region from 0.98 to 1.1 GeV2=c4

is also vetoed to remove contributions from B0
s →

ϕð→ μþμ−Þϕ decays.
To reduce combinatorial background, formed from

random track combinations, a boosted decision tree
(BDT) algorithm [27,28] is applied. The BDT classifier
is trained on data using cross-validation techniques [29],
with B0

s → J=ψϕ events as signal proxy and candidates
from the upper mass sideband mðKþK−μþμ−Þ >
5567 MeV=c2 as background proxy. The classifier com-
bines the B0

s transverse momentum and χ2IP, the angle
between the B0

s momentum and the vector connecting the
PVand the decay vertex of the B0

s candidate, the fit quality
of the B0

s vertex and its displacement from the associated
PV, particle identification information, and χ2IP of the final-
state particles.
The criterion on the BDT output is optimized by

maximizing the expected significance of the B0
s →

ϕμþμ− and B0
s → f02μ

þμ− signals separately, due to differ-
ent levels of background contamination. The requirement
on the BDT classifier yields a signal efficiency of 96%
(85%) and a background rejection of 96% (95%) for the
B0
s → ϕμþμ− (B0

s → f02μ
þμ−) decay mode. Finally, infor-

mation from particle identification is combined with
invariant mass variables, constructed under the relevant
particle hypotheses, to reject background from Λ0

b →
pK−μþμ− decays, where the proton is misidentified as a
kaon, and from B0

s → J=ψϕ, B0
s → ψð2SÞϕ and B0 →

J=ψK�0 decays, where a final-state hadron is misrecon-
structed as a muon and vice versa.
The differential branching fraction of the B0

s → ϕμþμ−

decay is determined in intervals of q2, relative to the B0
s →

J=ψϕ normalization mode, according to

dBðB0
s → ϕμþμ−Þ
dq2

¼ BðB0
s → J=ψϕÞ × BðJ=ψ → μþμ−Þ

q2max − q2min

×
Nϕμþμ−

NJ=ψϕ
×

ϵJ=ψϕ
ϵϕμþμ−

; ð1Þ

where NJ=ψϕ and ϵJ=ψϕ are the yields and efficiencies of
the normalization mode, and Nϕμþμ− and ϵϕμþμ− are the
corresponding parameters for the signal mode in the
½q2min; q

2
max� interval. The branching fractions related to

the normalization mode are given by BðB0
s→J=ψϕÞ¼

ð1.018�0.032�0.037Þ×10−3 [30] and BðJ=ψ→μþμ−Þ¼
ð5.961�0.033Þ% [26].
As the relative efficiencies vary according to the data-

taking conditions, the data are split into the 2011–2012,
2015–2016, and 2017–2018 periods. The yields of the
normalization mode for the different data-taking periods are
determined using extended unbinned maximum-likelihood
fits to the mðKþK−μþμ−Þ distribution. The B0

s → J=ψϕ
decay is modeled using the sum of two Gaussian functions
with a common mean and a power-law tail toward upper
and lower mass. The combinatorial background is modeled
using an exponential function. The mðKþK−μþμ−Þ dis-
tribution of the normalization mode for the full data sample,
overlaid with the fit projections, is shown in Fig. 1 (left).
The yields of the normalization modeNJ=ψϕ are determined
to be 62980� 270, 70970� 290, and 148490� 410 for
the three different data-taking periods, where the uncer-
tainties are statistical only.
For the rare B0

s → ϕμþμ− decay, a simultaneous
extended maximum-likelihood fit of the data samples for
the different periods is performed in intervals of q2, where
the signal yields are parametrized using Eq. (1) and the
differential branching fraction is shared between the sam-
ples. The model used to describe the mðKþK−μþμ−Þ
distribution is the same as for the B0

s → J=ψϕ normaliza-
tion mode. The model parameters for the signal component
are fixed to those from the fit of the normalization mode,
where the q2 dependence of the mass resolution is
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FIG. 1. Reconstructed invariant mass of the KþK−μþμ− system for (left) the B0
s → J=ψϕ normalization mode and (right) the

B0
s → ϕμþμ− signal candidates, integrated over q2 and overlaid with the fit projections.
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accounted for with scaling factors determined from
simulation.
Negligible contributions from physical background,

including B0
s → KþK−μþμ− decays with the KþK− system

in an S-wave configuration, are not considered in the fit and
a systematic uncertainty is assigned. Integrated over the
full q2 range, signal yields, Nϕμþμ− , of 458� 12, 484� 13,
and 1064� 28 are found from the simultaneous fit
to the different datasets. Figure 1 (right) shows the
mðKþK−μþμ−Þ distribution of the full data sample, inte-
grated over q2 and overlaid with the fit projections. Figures
for the different data-taking periods are available as
Supplemental Material [31].
The relative branching fraction measurement is affected

by systematic uncertainties on the fit model and the
efficiency ratio, where the latter is determined using SM
simulation. A summary of the systematic uncertainties is
provided in the Supplemental Material [31]. The dominant
systematic uncertainty on the absolute branching fraction
[Eq. (1)] originates from the model used to simulate B0

s →
ϕμþμ− events (0.04 − 0.10 × 10−8 GeV−2 c4). The model
depends on ΔΓs, the decay width difference in the B0

s

system [32], and the specific form factors used. The effect
of the model choice on the relative efficiency is assessed by
varying ΔΓs by 20%, corresponding to the difference in
ΔΓs between the default value [33] and that of Ref. [26],
and by comparing the form factors in Ref. [34] with the
older calculations in Ref. [35]. The observed differences are
taken as a systematic uncertainty. Other leading sources of
systematic uncertainty arise from the limited size of the
simulation sample (0.02 − 0.07 × 10−8 GeV−2 c4) and the
omission of small background contributions from the fit
model (0.01 − 0.04 × 10−8 GeV−2 c4).
The resulting relative and total branching fractions are

given in Table I. In addition, the differential branching
fraction is shown in Fig. 2, overlaid with SM predictions.
These predictions are based on form factor calculations

using light cone sum rules (LCSRs) [34,36] at low q2 and
lattice QCD (LQCD) [37,38] at high q2, which are
implemented in the FLAVIO software package [39]. In the
q2 region between 1.1 and 6.0 GeV2=c4, the measured
branching fraction of ð2.88� 0.22Þ × 10−8 GeV−2 c4,
lies 3.6σ below a precise SM prediction of
ð5.37� 0.66Þ × 10−8 GeV−2 c4, which uses both LCSR
and LQCD calculations. A less precise SM prediction of
ð4.77� 1.01Þ × 10−8 GeV−2 c4 based on LCSRs alone lies
1.8σ above the measurement. To determine the total
branching fraction, the branching fractions of the individual
q2 intervals are summed and corrected for the vetoed q2

regions using ϵq2veto ¼ ð65.47� 0.27Þ%. This efficiency is
determined using SM simulation, and its uncertainty
originates from the comparison of form factors from
Refs. [34,35]. The resulting branching fractions are
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FIG. 2. Differential branching fraction dBðB0
s → ϕμþμ−Þ=dq2,

overlaid with SM predictions using light cone sum rules
[34,36,39] at low q2 and lattice calculations [37,38] at high
q2. The results from the LHCb 3 fb−1 analysis [1,30] are shown
with gray markers.

TABLE I. Differential dBðB0
s → ϕμþμ−Þ=dq2 branching fraction, both relative to the normalization mode and absolute, in intervals of

q2. The uncertainties are, in order, statistical, systematic, and due to the uncertainty on the branching fraction of the normalization mode.

q2 interval (GeV2=c4) dBðB0
s → ϕμþμ−Þ=BðB0

s → J=ψϕÞdq2 (10−5 GeV−2 c4) dBðB0
s → ϕμþμ−Þ=dq2 (10−8 GeV−2 c4)

0.1 − 0.98 7.61� 0.52� 0.12 7.74� 0.53� 0.12� 0.37
1.1 − 2.5 3.09� 0.29� 0.07 3.15� 0.29� 0.07� 0.15
2.5 − 4.0 2.30� 0.25� 0.05 2.34� 0.26� 0.05� 0.11
4.0 − 6.0 3.05� 0.24� 0.06 3.11� 0.24� 0.06� 0.15
6.0 − 8.0 3.10� 0.23� 0.06 3.15� 0.24� 0.06� 0.15
11.0 − 12.5 4.69� 0.30� 0.07 4.78� 0.30� 0.08� 0.23
15.0 − 17.0 5.15� 0.28� 0.10 5.25� 0.29� 0.10� 0.25
17.0 − 19.0 4.12� 0.29� 0.12 4.19� 0.29� 0.12� 0.20
1.1 − 6.0 2.83� 0.15� 0.05 2.88� 0.15� 0.05� 0.14
15.0 − 19.0 4.55� 0.20� 0.11 4.63� 0.20� 0.11� 0.22
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BðB0
s→ϕμþμ−Þ

BðB0
s→J=ψϕÞ ¼ð8.00�0.21�0.16�0.03Þ×10−4;

BðB0
s→ϕμþμ−Þ¼ð8.14�0.21�0.16�0.03�0.39Þ×10−7;

where the uncertainties are, in order, statistical, systematic,
from the extrapolation to the full q2 region, and for the
absolute branching fraction, from the branching fraction of
the normalization mode.
The B0

s → f02μ
þμ− decay is searched for using the comb-

ined q2 region ½0.1;0.98�∪ ½1.1;8.0�∪ ½11.0;12.5�GeV2=c4.
The branching fraction of the signal decay is determi-
ned relative to the B0

s → J=ψϕ normalization mode,
according to

BðB0
s → f02μ

þμ−Þ
BðB0

s → J=ψϕÞ ¼ BðJ=ψ → μþμ−Þ × Bðϕ → KþK−Þ
Bðf02 → KþK−Þ

×
Nf0

2
μþμ−

NJ=ψϕ
×

ϵJ=ψϕ
ϵf0

2
μþμ−

; ð2Þ

where the ratio of branching fractions Bðϕ → KþK−Þ=
Bðf02 → KþK−Þ ¼ 1.123� 0.030 [26] is used. To separate
the f02 signal from S- and P-wave contributions to the wide
mðKþK−Þ mass window, a two-dimensional fit to
the mðKþK−μþμ−Þ and mðKþK−Þ distributions is per-
formed. The B0

s → f02μ
þμ− signal decay is modeled in

mðKþK−μþμ−Þ using the sum of two Gaussian functions,
with a power-law tail toward upper and lower mass, and in
mðKþK−Þ using a relativistic spin-2 Breit-Wigner function.
The model parameters are determined from data using fits
to the B0

s → J=ψf02 control mode and are fixed for the
signal mode. Contributions from the S-wave and P-wave
resonances, e.g., the ϕ and the ϕð1680Þ mesons, are
combined and described with a linear function in
mðKþK−Þ and use the same model as the signal in
mðKþK−μþμ−Þ. Interference effects are neglected as these
were found to be small in the study of B0

s → J=ψKþK−

decays in Ref. [40]. The combinatorial background is
modeled using an exponential function in both the recon-
structed B0

s mass and the mass of the dikaon system.

Background from B0 → Kþπ−μþμ− and Λ0
b → pK−μþμ−

decays is found to be non-negligible in the wide mðKþK−Þ
window. These background components are included in the
fit model, with their yields constrained to the expected
values and line shapes determined on simulated events.
The branching fraction of the B0

s → f02μ
þμ− decay is

determined using a simultaneous fit to the three data
samples. The branching fraction of the signal and the S-
and P-wave contributions are shared between the data
samples. From this fit, the signal yields Nf0

2
μþμ− are found

to be 62� 8, 67� 8, and 161� 20 for the different data-
taking periods. Figure 3 shows the mðKþK−μþμ−Þ and
mðKþK−Þ mass distributions, where the latter is shown
within 50 MeV=c2 of the known B0

s mass [26], overlaid
with the fit projections. The significance of the signal is
determined using Wilks’s theorem [41], comparing the log-
likelihood with and without the signal component. The
B0
s → f02μ

þμ− decay is observed with a statistical signifi-
cance of 9σ. Systematic effects on the significance due to
the choice of fit model are negligible.
The dominant systematic uncertainties on the relative

branching fraction of the B0
s → f02μ

þμ− decay originate
from the uncertainty of the branching fraction ratio Bðϕ →
KþK−Þ=Bðf02 → KþK−Þ (0.04 × 10−7), the modeling of
the parameters of the Breit-Wigner function describing
the f02 resonance, and the simplified fit model for the
mðKþK−Þ distribution (0.03 × 10−7). The effect of the
simplified fit model is evaluated using pseudoexperiments,
in which events are generated using the amplitude model in
Ref. [40] and fit with the default model. The observed
difference in the determined yield is taken as a systematic
uncertainty. Further details on the systematic uncertainties
associated with BðB0

s → f02μ
þμ−Þ are given in the

Supplemental Material [31].
The fraction of signal events within the considered q2

region is calculated using the q2 -differential distribution
in Ref. [42] and found to be ϵq2veto ¼ ð73.8� 2.8Þ%.
Accounting for this factor, the relative and total branching
fractions are determined to be
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BðB0
s→f02μ

þμ−Þ
BðB0

s→J=ψϕÞ ¼ð1.55�0.19�0.06�0.06Þ×10−4;

BðB0
s→f02μ

þμ−Þ¼ð1.57�0.19�0.06�0.06�0.08Þ×10−7;

where the given uncertainties are, in order, statistical,
systematic, from the extrapolation to the full q2 range
and, for the absolute branching fraction, from the uncer-
tainty on the branching fraction of the normalization mode.
The total B0

s → f02μ
þμ− branching fraction is found to be in

agreement with SM predictions [42–44].
In summary, the most precise measurement of the

branching fraction of the rare B0
s → ϕμþμ− decay is

presented, using LHCb data corresponding to an integrated
luminosity of 9 fb−1. Consistent with earlier measurements
[1,2], the data are found to lie below SM expectations. In
the q2 region between 1.1 and 6.0 GeV2=c4 the measure-
ment deviates by 3.6σ with respect to a precise SM
prediction [34,36–39]. These results supersede, and are
consistent with, those of Refs. [1,2]. In addition, the first
observation of the rare B0

s → f02μ
þμ− decay is reported

with a statistical significance of 9 standard deviations and
the resulting branching fraction is found to be in agreement
with SM predictions [42–44].
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11Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

12Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
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sAlso at Università di Firenze, Firenze, Italy.
tAlso at Hanoi University of Science, Hanoi, Vietnam.
uAlso at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
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