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1. Abstract

Manufacturing improvements have enabled the integration of shape memory alloys (SMA) into novel
form factors to offer tailored solutions to engineering applications. Of these form factors, multifunctional
twisted SMA microfilament yarns offer tailorable superelastic behavior, improved actuation
displacements, and increased flexibility for integration within textiles for medical devices, defense
structures, and wearable technologies. However, the lack of understanding of the underlying physics of
twisted SMA yarns limits the potential in functionalized SMA textiles. This paper develops a semi-
analytical model of the micro-scale mechanics of superelastic SMA twisted yarns to predict their
macroscopic mechanical behavior. Using traditional yarn models redefined within SMA constitutive
equations, the evolution of material phases of the microfilaments within the mesoscale yarn element is
tracked to the predicted macroscale yarn force. Through validation, the functional dependence of the yarn
response, including effective modulus and phase transition dynamics, on twist is predicted by the model.
The model fills a knowledge gap necessary for manufacturing SMA yarns with desired mechanical
characteristics, limiting application strains to avoid failure, and achieving consistent cycled behavior. The
model provides a framework for modeling the shape memory effect in SMA microfilament yarns and
establishes an understanding of SMA yarns for implementation within textile models.

2. Introduction

Advancements in manufacturing capabilities have enabled researchers to integrate multifunctional
materials, such as shape memory alloys (SMA), in novel form factors to offer tailored solutions to real
engineering applications [1]-[8]. Of these novel form factors, twist inserted structures offer unique
rotational motions, improved actuation displacements, tailorable moduli, adjustable hysteresis, and
increased flexibility, motivating researchers to integrate SMA within a twisted structure. For example,
SMA torque tubes offer rotary actuation for increased control over wing tip dynamics in aerospace
applications [9]. SMA wire ropes and cables demonstrate superelastic capabilities in a robust structure for
structural applications [10]-[11]. Scaling down to moderate filament diameters, Kianzad et al. [12]
demonstrated both linear and rotational actuation in a NiTi wire twisted structure. Leveraging the
enhanced flexibility of twisted structures, Granberry et al. [13] integrated a NiTi wire twisted structure in
textiles capable of auxetic actuation. While promising, these relatively large diameter and low filament
count structures are still too rigid to produce cloth-like textiles. Until recently, the ability to manufacture
large numbers of small diameter NiTi filaments for yarn manufacturing did not exist. Our previous

1


mailto:jabel@umn.edu

research [14] highlighted such manufacturing advancements, demonstrated an improved tunability of
traditional SMA and SE behavior in the yarn structure experimentally, and displayed the potential of
yarns in a cloth-like textile. However, without an understanding of the underlying physics, the
tailorability of NiTi microfilament twisted yarns is limited in scope, and the potential in textiles remains
unrealized.

The yarn structure alters, enhances, or maintains desirable material properties in a compliant form that is
useful independently or integrated within a textile for engineering applications [15]-[19]. Understanding
yarn behavior facilitates the design, manufacturing, and control of a functionalized system. Modeling the
underlying physics of yarn extensional behavior is done in three distinct methods: energy derived [20]-
[21], finite element [22]-[23], and equilibrium assumptions [24]-[25]. Energy derived methods use
filament stress-strain curves of conventional engineering materials to predict global yarn behavior through
strain energy theorems. While energy methods account for nonlinear materials and large extensions, they
provide no information on the microfilament stress-strain states, limiting tunable design to a black-box
approach. Finite element methods are powerful modeling tools that account for nonlinear materials and
microfilament stress and strains, but they are computationally expensive and limit real-time adjustments
and the total number of simulations. The oldest method, popularized by J.W.S Hearle [15], uses linear
elastic materials with governing yarn equilibrium assumptions to map microfilament mechanisms to
macro-yarn extensional behavior. This method is computationally inexpensive and provides insights into
the stress state of the microfilament, but the linear elastic assumption limits the use of this structural
model with most multifunctional material models.

Numerous SMA materials models have been derived to 1) comprehend underlying physics and
mechanisms, 2) identify material or processing parameters, or 3) predict the material response to aid in
application development and integration [26]. Thorough reviews of SMA material models [26]-[30]
highlight there are been two major branches; microscopic and macroscopic. The microscopic approach
has yielded strong results for understanding physics and identifying important parameters in SMA
material modeling [31]-[32], but has proven to be mathematically rigorous and computationally expensive
to predict the material response for real engineering applications. On the other hand, the macroscopic
approach has yielded strong results for predicting the SMA material response on the larger, macroscopic
scale [33]-[37]. This approach is less computationally intensive, providing more simulations and real-time
information to control SMA integrated systems better. Of the macroscopic approaches, most fall under the
category of phenomenological models that use a thermodynamic principle framework, or in this work, a
free energy basis, to describe the material response. Phenomenological models navigate the stress-strain-
temperature relationship of SMAs by defining the driving forces and evolution of internal state variables
such as a martensitic volume fraction. Researchers have implemented phenomenological models in a
variety of ways, with one of the most popular phenomenological models is a one-dimensional model
developed by Brinson [33]. However, as SMA integrated systems have grown in complexity, so has the
need for more robust multi-axial models. To account for multi-axial loading scenarios, many have utilized
finite element methods [38]-[40], but this limits the number of simulations that can be performed. Others
have been able to reduce their models to exact solutions [41], but this is not possible for every modeling
scenario. When exact solutions are not achievable, and computer laboring FEM methods are to be
avoided, semi-analytical solutions [42]-[43] are frequently employed.

This paper presents a model of the micro-scale mechanics of superelastic NiTi microfilament twisted
yarns to predict their macroscopic mechanical behavior. The model modifies existing structural and
material models to interoperate and capture the nonlinear mechanics in both the yarn geometry and SMA
material. Insight into microfilament response is provided by Hearle's linear elastic yarn equilibrium model
[15], which is expanded with the 3D phenomenological SMA material model from Boyd & Lagoudas
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[44] and Qidwai and Lagoudas [45]. This paper utilizes a semi-analytical framework modified from
Andani & Elahinia [46]. For yarn extension, the material phases of the microfilaments are identified using
a martensite volume fraction, and the filament stress and strains are calculated from combined material
and yarn equations. Common loading and unloading material phase evolutions are outlined in the context
of the microfilament kinematics and mapped to the macro yarn force response. To validate the model, the
macro yarn force response is compared with experimental data for five yarn variations. The model
predicts the relationship between twist and mechanical characteristics such as effective modulus, phase
transitions, and loading/unloading asymmetry. The combined model predicts global yarn superelastic
response by capturing SMA microfilament stresses — filling a knowledge gap necessary for tailorable
design and functionalized integration of SMA microfilament yarns in SMA textiles.

3. Yarn Mechanics

Yarn theory is an established field, and much of this work builds on relationships defined in Structural
Mechanics of Fibers, Yarns, and Fabrics written by J.W.S Hearle [15]. In this model, the complex
filament pathways within yarns are simplified to a helical geometry to create a microscopic yarn
geometry. The microfilaments are then grouped within a mesoscopic yarn element, where governing
equations are derived by mapping filament strains to stresses. Lastly, the mesoscopic contributions are
scaled up to a macroscopic yarn force to complete the hierarchical analysis. Simplifying the filament and
yarn geometry enables relationships to be defined from macroscopic yarn extension to microscopic
filament strain and scaled back up to macroscopic yarn force.

3.1. Macroscopic Yarn Geometry

The macroscopic geometry of continuous filament (CF) yarns comprises the microscopic geometry of the
constitutive filaments. In the simplest theory, each filament in the yarn is modeled as an idealized helical
structure (Figure 1). In the idealized helical structure, each filament follows a uniform helical path
geometrically defined by a constant radius, r, from the yarn axis and constant helical angle, 8, and a
helical pitch, h. Unraveling one turn of the helix makes it easy to visualize the helical pitch, h, as well as
the filament length in one turn of twist, [ (Figure 1). The helical radius, 7, varies from zero at the center of
the yarn (Figure 1a) to the yarn radius, R,,, at the surface of the yarn (Figure 1b). Similarly, the helical
angle, 8, will vary from zero at the center of the yarn to the surface twist angle, a, at the surface and the
length in one turn of twist, [, varies from the helical pitch, h, at the center to the length in one turn of twist
at the surface, L. Unlike the other parameters, it is assumed that all filaments share a common helical
pitch, h, defined as

h=- (Eq.1)

The yarn twist, 8, is a controllable manufacturing parameter estimated from the angular spindle speed,
W, and the linear delivery speed, Vg, to be

B = (Eq.2)



In addition to defining the helical pitch, yarn twist, 3, is one of three global yarn parameters needed to
quantify the yarn radius, R,,, and surface twist angle, a. The yarn count, C, or linear density, is used to
quantify the amount of active material in the yarn across different bundle configurations and is defined as

C[tex] = n(pmrf) * 10°. (Eq.3)

Where the number of filaments, n, the density of the filament material, p, and the filament radius, 7, are
also controllable manufacturing decisions. The unit tex is a standard industry term and is defined as the
mass, in grams, in 1000 meters of yarn. The last global yarn parameter needed is the packing density, ¢,
which describes the efficiency of the filaments to pack within the yarn geometry, using the specific
volumes of the fibers, wy, and the yarn, w,,, and is defined as

1)
=1
Q= w, (Eq.4)

Together, yarn count, C, yarn twist, 5, and packing density, ¢, provide a theoretical foundation to relate
the controllable processing of CF yarn structures to the global geometry of the yarn by defining the yarn
radius, Ry, and surface twist angle, a, as

R — wy C

(Eq.5)
y 1057

tan(a) = 0.0112-B-VC - Jw,. (Eq.6)

3.2. Macroscopic Yarn Extension

When yarn is extended by a global yarn strain, ¢,, the constitutive filament helixes change pitch, length,
and radius (6h, 81, 87), as seen in Figure 1c. The yarn structural engineering strain, €, is related to the
change in helical pitch, h, through

6h

However, the change in radius and filament length need further consideration. Under an axial yarn strain,
the yarn will undergo a radial contraction that is assumed to be fractionally distributed uniformly across
all filaments in the yarn. The change in yarn radius is defined by introducing a yarn lateral contraction
ratio, v,,, similar to a natural Poisson's ratio, v, and defined as

OR or
R _ 7T h 6r Eq.S8
h h

Unless the yarn contraction behavior is known, it is simple and reasonable to assume the yarn contracts at
a constant yarn volume (i.e. v, = 0.5).



Revisiting the unraveled geometry in Figure 1, a Pythagoras relationship between the filament length,
helical pitch, and radius exists. Differentiating, rearranging, and substituting in (Eq.8) yields the axial

filament strain,
c? c?
& =ey| 7 U <1 — ﬁ) , (Eq.9)

where c is the twist constant and is used to indicate the level of yarn twist, and u is the filament length
ratio, which is a measure of radial position and varies from c at the center of the yarn to one at the
surface. Both are defined as,

¢ =cos(a) = h/L (Eq.10)
u=" (Eq.11)

For a given yarn strain, €, the filament strain, & (Eq.9), is at a minimum at the outer surface of the yarn,
where the contribution of radial contraction is at a maximum. Mechanically, radial contraction reduces the
direct conversion of yarn strain to axial filament strain through rigid body motion in the helical geometry.
Conversely, the axial filament strain, &, is a maximum at the center of the yarn where the filament length
ratio, u, approaches the twist constant, ¢, and the contribution of axial filament strain from radial
contraction (Eq. 9) approaches zero.

3.3. Mesoscopic Yarn Element

The filament strains are related to stresses through a yarn element (Figure 2) defined by Hearle [15]. A
small element is taken between two radial positions separated by a radial thickness, dr, an angular
change, d¢, from the helical pitch, 6, and a length, dz, along the yarn axis. It is assumed the element is
composed of enough infinitesimally small filaments where considering the individual arrangements is not
necessary. The shear, torsional, and bending moments acting on the yarn element are infinitesimally small
and, therefore, neglected. The remaining forces acting on the element are normal to each face. Two equal
axial stresses, X, act outward in directions parallel to the fiber axis on the axial face’s ABCD and EFGH.
Two compressive stresses, G, act on tangential faces ADHE and BCGF. Lastly, there are two compressive
stresses, G, acting on radial faces ABFE and DCGH. All transverse compressive stresses are assumed to
be equal, creating a hydrostatic condition on the element. The hydrostatic assumption is based on the
explanation that the filaments will reconfigure to equalize the stresses across opposite faces. Conventional
sign convention, tension is positive and compression is negative, is employed throughout the development
of this work.

3.4. Mesoscopic Yarn Equilibrium

From symmetry, the axial stresses, X, and areas on the two axial end faces, ABCD and EFGH, are equal,
thus the forces across these faces, Nygcp and Ngpqy, are equal and expressed as

Nugcp = Ngpgy = X * area(ABCD) = Xrcos(0)d¢dr. (Eq.12)

Similarly, the tangential stresses, G, and areas on the tangential faces, ADHE and BCGF, are equal, thus
the forces across these faces, Nypyr and Npcgr, are equal and expressed as



Napug = Npcgr = —G * area(ADHE) = —Gsec(0)drdz. (Eq.13)

In the radial direction, the radial stress, G, and area of the faces vary with the helical radius, r. The force,
NABFEI across ABFE is

Nyprg = —G * area(ABFE) = —Grd¢dz. (Eq.14)
While the force, Npceqy, across the opposite face DCGH is

dG

NDCGH = —GTd(l)dZ - (G +r d’r‘

) drdgdz. (Eq.15)
However, to satisfy equilibrium in the radial direction, the sum of the forces acting on the yarn element in
the radial direction must be equal to zero. Three forces make up that equilibrium:

1) aradially compressive component from the filament tension, caused by the difference in the
direction of the forces on the axial faces from the helix,

2) aradially outward component from the faces of ADHE and BCGF belonging to a helix, and
3) the force differential between Nyppp (Eq.14) and Npcey (Eq.15).

Simplifying the radial components yields a single ordinary differential equation that governs radial
equilibrium as a function of filament length ratio, u (Eq. 11). It is expressed as

dG_X—G
du u

(Eq.16)

With the boundary condition that the tangential stress, G, at the surface of the yarn is zero (G (1) = 0).
With the adopted sign convention, a positive axial stress, X, and negative compressional tangeital stress,
G, leads to a positive quantity for X — G, and thus the radial equilibrium ODE (Eq.16).

3.5. Macroscopic Yarn Tension

For a yarn under extension, each yarn element contributes a force component, f, to the global yarn force,
F, along the yarn axis. The elemental contribution, f, is composed of the filament axial stress, X, and the
tangential stress, G, but not the radial stress, G, and is expressed as

f = X(Q2nrdrcos(8))cos(0) + G(2nrdrsin())sin(6). (Eq.17)

The yarn force, F, is calculated from a summation of those components across the yarn radius normalized
by the packing density. After substituting, this yields

2nRy ([ c? c?
qu)l—cz_fc X¥+G 1_ﬁ udu. (Eq.18)

4. 3D Constitutive SMA Material Model

During yarn extension, the individual filaments within the yarn element experience tension along the
filament axis and compression in the orthogonal directions, requiring a material model capable of
handling multi-axial loading. The model chosen is a 3D phenomenological constitutive model for SMAs
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developed by Boyd and Lagoudas [40] and Qidwai and Lagoudas [45]. The model provides a robust 3D
framework for applying specific combined loading scenarios, such as the combined tension-torsion
loading of an SMA rod seen in Andani and Elahnia [46]. In this work, the combined tension-compression
loading of the yarn element is applied within the phenomenological constitutive model. The model has
multiple features that are vital for current simulations and future improvements. The model can consider
non-proportional loading [42], experimentally derived hardening functions [47], different forms of
equivalent stresses to account for tension-compression asymmetry [48], and plastic yielding [49]. Lastly,
the model has a Gibbs free energy basis which allows for strain-controlled simulations that align with
traditional yarn experimental procedures, compared with Hemholtz free energy models [37] that represent
results in the strain-temperature domain. The total Gibbs free energy, I', of polycrystalline SMA is
defined as

F=—2—a:5:0——0
p p T 1 (Eq.19)
:[a(T—Ty) + €]+ b [(T —Ty) —Tln (T—O)] —soT + 1o +;f(f).

The Gibbs free energy, T, is a function of internal state variables, g, £¢, T, T, and &, which are the
Cauchy stress tensor, transformation strain tensor, temperature, reference temperature, and martensitic
volume fraction. The material constants, S, p, a, b, sy, and 1, are the effective compliance tensor,
density, effective thermal expansion coefficient tensor, effective specific heat, effective specific entropy
at the reference state, and the effective specific internal energy at the reference state. The effective
material properties are defined by the martensitic volume fraction, &, and the rule of mixtures. For
example, the effective compliance tensor is expressed as

S=S5S4+&M -85, (Eq.20)

The remaining parameter in (Eq.19), (), is the transformation strain hardening function and is modeled
with a quadratic dependence [42] on martensitic volume fraction, &, and expressed as

1 o, .
5Pq $+ (i +up)és §€>0
f) = (Eq.21)

EPQAEZ +(u —u)& €<0

Where pq™, pq4, 1, and u, are model paramaters that are determined experimentally and defined in
Eq.S1 (Supporting Information). Using Gibbs free energy, I (Eq.19), within the first law of
thermodynamics, a constitute relation for strain, €, is expressed as

r
=S:0+a(T—T,) + €. (Eq.22)

€=—p%

For superelastic loading, it is assumed that any change in the system comes as a result of a change in
martensitic volume fraction, £. To relate the evolution of the transformation strain tensor, €t to the
evolution of the martensitic volume fraction, &, the following relation is defined:

gt = ALE. (Eq.23)



The transformation tensor, A, governs the direction of the transformation strain and is expressed as

(3 o' .
EHE , &E>0

=125 (Eq.24)
k ft—r’ E <0

where H is a material property called the maximum uniaxial transformation strain at full transformation
and is determined experimentally. The effective stress, &, is defined as the von Mises equivalent stress,

(Eq.25)

and ¢’ is the deviatoric stress tensor. As seen in (Eq.24), the forward transformation, defined as the solid-
state material phase transformation from austenite (A) to stressed induced martensite (SIM, M"), is guided
by the applied deviatoric stress, a’. For reverse transformation, defined as the opposite transformation
from SIM back to austenite, the orientation is governed by the ratio of the forward transformation strain at
reversal, e, to the martensitic volume fraction at reversal, 7.

Using the second law of thermodynamics, the total dissipation rate is written as

azé—ﬁg=né>0 (Eq.26)
dé -

where I1 is the thermodynamic force and is expressed as

1
H=0:At+§a:A5:a+Aa
:a(T —Ty) — pAb [(T —Ty) —Tln (—)] + pAsyT — == — pAn,.
To d§
In this equation, the symbol A, shown before a variable, denotes the change in that variable from the
martensitic to austenitic phases (Ap = p™ — p4).

The transformation function, ®, defines the start and length of the transformations from a relationship
between the thermodynamic force, I1, and the internal energy dissipated, Y (Eq.S1), during solid-state
phase transformation:

n-y/wa =, §>0
®(0,T,§) ={-MI—-Y" =0, é<o. (Eq.28)

<0, £&=0

When @ < 0, the material is in the elastic domain (austenite or stressed-induced martensite), and the
martensitic volume fraction is not changing (¢ = 0). During forward and reverse transformation, the
stress, temperature, and martensitic volume fraction are constrained on the transformation surface where
® =0.



5. Constitutive equations of multi-axial loading of SMA yarn element

The yarn element derived in Sec. 3.3 has stress and strain tensors with the following forms,

G 0 O Err 0 0 & 0 0
g:(o G 0>,g= 0 €¢ 0 ]J=(0 & 0],
0 0 X 0 0 & 0 0 ¢
et 7 = 0 Sf_r 0
t_
0 0 & "
Using the yarn element’s stress tensor, g, the deviatoric stress tensor, o', is expressed as
X—-G 0
= \
X—-G
e I R (Eq30)
2 -G
.
3
and the von Mises equivalent stress (Eq.25) is solved to be
g=X-G. (Eq.31)
The transformation tensor (Eq.24) is expanded and simplified to
X—-G
- 0 0 1
3 -= 0 0
a3 . X-G 0 | 2 )
fwd = 2(X — G) 3 o -z o0
2(X — G) 2
0 0 0 1
3
1
g7 0 0 5 0 0
AE"@U = ft_r 0 gl‘—t':—r 0 = 0 _l O ]
0 0 & 2
0 0 1 (Eq.32)
where the transformation strains at reversal are defined as
1
t—r _ _ T pyet-r
& = HET, (Eq.33)

gf T =HET,

The martensitic volume fraction, &, for the forward, /"¢, and reverse, £7¢, transformation is obtained
from substituting the transformation tensor, A (Eq.32), into the thermodynamic force, I1 (Eq.27), and
then into the constrained transformation function, ® = 0 (Eq.28), yielding



fwd _ 1 _ 1 92 2 _ 2 _
gfwd — (X = G)H + 5 0855(—26%v + 2G* — 4GXv + X?) + pAso(T — M)

pq"
. (Eq.34)
+ pAb [(T —T)—Tn (—)]]
To
and
1
grev = el (X — G)H + EAS33(—ZGZV +2G? — 4GXv + X?) + pAsy (T — 4f)

(Eq.35)

o) in ()
To
Furthermore, by substituting the martensite volume fraction, & (Eq.34), and transformation tensor, A%, in
the evolution relationship described in (Eq.23), and integrating from zero to an arbitrary time, the
transformation strain, ¢, is obtained and substituted in the constitutive (Eq.22) to derive an expression for
the filament axial strain:

_ X —2Gv +
& = EA +§(EM —EA)

£H. (Eq.36)

Together, the material derived equation for filament strain, &r (Eq.36), and the yarn derived equation for
filament strain, & (Eq.9), form a critical bridge between the two models, permitting the nonlinear material
system to be integrated within the traditional yarn system.

6. Material phase evolution during yarn loading

During loading, filaments in superelastic SMA yarns experience a phase transformation from austenite
(A), through the forward transformation (A & M™), to stressed induced martensite (M"). This
transformation is radially distributed at different stages through the yarn, with each stage requiring a
specific solution procedure. To predict the macroscopic behavior of SMA yarns, the phases present in the
yarn need to be identified and used to solve for the stresses for each stage. While there are multiple
loading evolutions possible, we will outline a common path, represented by the radial distribution of
phases in the cross-section of the yarn (Figure 3), from a homogenous austenite yarn state (Figure 3a),
through heterogeneous austenite and forward transformation (Figure 3b), homogenous forward
transformation (Figure 3c¢), heterogenous forward transformation and SIM (Figure 3d), and finishing in a
homogeneous SIM yarn state (Figure 3e).

6.1. Loading of homogeneous austenite

For the evolution outlined in Figure 3, it is assumed that in superelastic loading, the entirety of the yarn
begins in a homogenous austenite condition (Figure 3a). In austenite, the transformation function, ®
(Eq.28), remains in the elastic domain and the forward martensitic volume fraction, £/%¢, is constant at
zero. The material is treated as a linear elastic isotropic material with a material modulus equal to E4, and
the material based equation for filament strain, & (Eq.36), is updated to
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_X=2vG

Substituting the derived yarn equation for filament strain, & (Eq.9), and rearranging for the axial stress,
X, yields

s c?
X =E", F—vy 1- ) + 2vG. (Eq.38)

Substituting the axial stress, X, in the governing ordinary differential equation (ODE) for radial
equilibrium (Eq.16) and solving for the compressive stress, G, with the initial condition on the surface of
the yarn, (G (1) = 0), yields

c?vy, — 2¢*v + vyu® 4 % 4 2vvyu® — 2ctvy,,
u2v+1(4v2 — 1)
vy + 2vvy, — 2¢%v + vy, 4 ¢% = 2Py,
B 4v2 —1 '

G = E4gyu®1 [
(Eq.39)

The compressive stress, G, is substituted back into the expression for the axial stress (Eq.38). For a given
yarn strain, &y, and filament length ratio, u, all the stress and strains on the yarn element are known. The

forward martensite volume fraction, &4 (Eq. 34), is calculated for all elements to check for the onset of

fwd

forward transformation, when & is greater than zero.

6.2. Loading of heterogeneous austenite and forward transformation

When the forward martensitic volume fraction, & fwa s between zero and one, the yarn element is in
forward transformation, and a mixture of austenite and martensite are present in the material. At this point
in the loading evolution, the yarn is in a heterogeneous state of forward transformation and austenite
(Figure 3b). The forward transformation will occur first in the center of yarn, where the equivalent stress
is highest (Eq.31), due to the elevated filament strain and increased compressional stresses. The boundary
of the forward transformation will grow outward towards the surface of the yarn. The outer portion of the
yarn remaining in austenite is solved according to Sec. 6.1; however, the forward transformation portion
requires independent consideration.

With a non-zero forward martensitic volume fraction, & fwa the axial stress, X, is expressed as
X = (g — ™) « (B4 + &WAEM — E4)) + 26 (Eq.40)

by rearranging the filament strain, & (Eq.36). To solve the governing radial equilibrium ODE (Eq.16), we
need to consider the martensitic volume fraction, &%, in the expression for axial stress X, which is also
function of the filament length ratio, u. Rather than solving for an explicit solution for G, as we did in

austenite, a system of differential equations is established. First, we must consider the differentials with

respect to the filament length ratio, u, for filament strain &¢ (Eq.9),
des —2c? 2c?
W\ @ ) (Eq.41)
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martensitic volume fraction (Eq.34),

défwa 1 rdX dG
=@~ @)

du du du
+ 1AS ( 4 GdG + 4G de 4 GdX 4 XdG ZXdX) e
2B\ T e T Y T M du]
and axial stress (Eq.40),
dX dep  déiwd A dagrwa (Eq.43)
==L fwdpM _ A - M _ A _ zfwd
- (du —H (B4 +g™eE™ - E4)) + o (B — E)(g; — §7¥H)
+ 2 de
v

Substituting &/ (Eq.9), = (Eq.16), £/ (Eq.34), =L (Eq.41), and &

(Eq 42) i 1n — (Eq 43) yields

2 2c%v _ A My x g
. <‘SY<2uL3+ y>+HA)D +2v(G X) , (E*—E™)CA

3 M
ax _ u pa” v Pa (Eq.44)
pq pq

where

1 46v(G-X) 4G(G-X) 4Xv(G-X) H({G-X
A =2 85 ( ) 4a6( ) | AXu( ) HC )

u u u

. c? c2 HE*
C"=¢,(vy ——1 u2 +p_qM

D* 3 EA N (EA _ EM)E*
pqM

E* = H(G — X) — pAso(T — M) — pAb [(T ~To) =Tin (r%)]

1
+50853(267V — 267 = X* + 4XGv).

The updated expression for Z—z (Eq.44) is in terms of X, G, and u and with the governing radial
equilibrium ODE (Eq.16), a system of nonlinear differential equations is formed with proper initial
boundary conditions and can be solved numerically in Matlab using an explicit Runge-Kutta algorithm,

In heterogenous forward transformation and austenite, the boundary condition of the forward
transformation is located at the transformation front where the forward martensitic volume fraction, & fwd
is equal to zero. The axial stress, X, compressive stress, G, and filament length ratio, u, at the
transformation front is solved at a given yarn strain, €, from a system of equations containing (Eq.38),

(Eq.39), and setting the forward martensitic volume fraction, §/%® (Eq.34), equal to zero. The axial stress,

12



X, and compressive stress, G, at the transformation front are used as boundary conditions in the nonlinear
. dG dx . .
system of equations, = (Eq.16) & ™ (Eq.44), and the stresses for the forward transformation section of

the yarn are determined.

6.3. Loading of homogeneous forward transformation

In this loading evolution (Figure 3), the forward transformation will continue to grow outward until the
entire yarn is in a homogenous forward transformation state (Figure 3c). In homogenous forward

transformation, the same system of nonlinear differential equations, Z—z (Eq.16) & Z—i (Eq.44), outlined in
Sec. 6.2, is used to solve for the axial stress X, and compressive stress, G. In this case, the transformation
front has stopped expanding and the boundary conditions for the system are stable on the surface of the

yarn. At the surface (u = 1), there is no compressive stresses (G(1) = 0), and the axial stress X (Eq.40),
and forward martensitic volume fraction £/¢ (Eq.34), is simplified and solved. The system of nonlinear

differential equations, Z—i (Eq.16) & Z—i (Eq.44), is then solved to determine the stresses in the yarn. The

forward martensite volume fraction, €4 (Eq.34), is calculated for all elements to check for the
completion of the forward transformation, or when £/%¢ is greater than one

6.4. Loading of heterogeneous forward transformation and SIM

The forward transformation reaches completion when the material has fully transformed into stressed
induced martensite. This transition occurs when the forward martensitic volume fraction, & fwa g
calculated (Eq.34) to be greater than one. When this occurs, the yarn is in a heterogeneous state of SIM
and forward transformation (Figure 3d). The SIM will appear first in the yarn center, where the equivalent
stress is highest (Eq.31) due to the elevated filament strain and increased compressional stresses. The
boundary of the SIM will grow outward towards the surface of the yarn. The portion of the yarn
remaining in forward transformation is solved according to Sec. 6.3 since the boundary condition remains
on the surface of the yarn.

In SIM, the transformation function, ® (Eq.28), returns to the elastic domain and the forward martensitic
fwd is constant at one. The material is treated as a linear elastic isotropic material with
a material modulus equal to, EM, and the axial stress, X, is updated to

volume fraction, &

X = (g —H)*EM +26v. (Eq45)

In SIM, the forward martensitic volume fraction, & fwd s not a function of filament length ratio, u, and
the axial stress, X, is substituted in the governing radial equilibrium ODE (Eq.16) and solved for the
compressive stress, G, with the proper boundary condition. In this scenario, the boundary of the SIM
region is on the transformation front where the forward martensitic volume fraction (Eq. 33) equals
exactly one (§/%? = 1). The compressive stress, G, and filament length ratio, u, at the boundary is
numerically approximated, and the compressive stress, G, for the remaining SIM elements is solved from
the ODE (Eq.16). Lastly, the compressive stresses are substituted back into (Eq.45) to solve for the axial
stress, X.

6.5. Loading of homogeneous SIM

The SIM region will continue to grow outward until it reaches the surface of the yarn (Figure 3e), and the
yarn is in a homogenous SIM state. In homogenous SIM, the boundary of the SIM region is stable on the
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outside surface of the yarn where G = 0, and u = 1. With a constant boundary condition, a closed-form
solution for compression is solved from the radial equilibrium ODE (Eq.16) and is defined as

G
_ EMuZ"_l(Hu2 + c?ey + gyvyu? + 2Hvu? — 2c%eyv + c?eyvy — 2c?ey vy, + 2£yvvyu2)
u2vti(4v? — 1) (Eq.46)
B EMuZV‘l(H + 2Hv + &,vy, + c?e, + 2e,vv, — 2c%eyv + cPey vy, — ZCZEyVVy)
4v2 —1 '

The compressive stress is substituted back into (Eq.46) to solve for the axial stress, X. The yarn will
remain in homogenous SIM until the completion of loading.

7. Material phase evolution during yarn unloading

A well-known advantage of using a superelastic material is the material's ability to recover large
deformations upon unloading. While in a complex architecture, SMA microfilament yarns leverage this
material characteristic to provide enhanced recoverable deformations. Unlike loading, in which the
entirety of the yarn is assumed to be in an initial homogenous austenite state, unloading can occur from
any stage in loading evolution (Figure 3). For this paper, we outline two unloading evolutions from a
homogeneous SIM yarn (Figure 4) and a heterogeneous forward transformation and SIM yarn (Figure 5)
since it is assumed that most unloading situations follow these paths. To identify the phases present in the
yarn at the onset of unloading, the forward martensitic volume fractions at the end of loading are saved in
the martensitic volume fraction at reversal, =7, and are used guide the unloading solution procedure.

7.1. Unloading from homogeneous SIM

If the yarn unloads from homogeneous SIM, unloading follows a simple path that appears similar to the
loading path in reverse (Figure 4f-j). During homogeneous SIM unloading (Figure 4f), the axial stress, X,
and the compressive stress, G, are solved in the same way as in Sec. 6.5, using equations (Eq.45) and
(Eq.46). The updated stresses are used to calculate the reverse martensitic volume fraction, "¢V (Eq.35),
to check for the onset of reverse transformation, which occurs when the martensite volume fraction is less
than one (§7¢Y < 1).

Upon unloading, the reverse transformation will begin on the outside surface of the yarn where the
equivalent stresses are the smallest, and the transformation front will grow inward towards the center of
the yarn. The yarn will then be in a heterogeneous state of reverse transformation and SIM (Figure 4g).

L L . . . . . aG
The portion in reverse transformation is solved using the nonlinear system of differential equations, -

(Eq.16) & z—i (Eq.44), outlined in Sec. 6.3 but updated with the reverse martensitic volume fraction, §"¢V

(Eq.35). In this evolution stage, the boundary condition location is constant on the surface of the yarn.
The remaining SIM portion is solved using the stresses at the transformation front as the initial condition
for the SIM solution procedure outlined in Sec. 6.4. The reverse transformation front will continue to
grow inward towards the center of the yarn until the yarn is in a homogeneous reverse transformation
state (Figure 4h).

After each unloading step, the reverse martensitic volume fraction, "¢ (Eq.35), is calculated to check for
the completion of the reverse transformation, which occurs when the reverse martensitic volume fraction
is equal to or less than zero. The completion of the reverse transformation indicates that a portion of the
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yarn has returned to an austenitic state, and the yarn is in a heterogeneous state of austenite and reverse
transformation (Figure 41i). The portion of the yarn in austenite is solved first according to the procedure
outlined in Sec. 6.1 with the initial condition on the outside surface of the yarn.

The transformation front at the end of the austenite portion, where £7¢V = 0, is used to solve for the
boundary conditions of the remaining reverse transformation. The stresses of the remaining reverse
transformation elements are then solved using the procedure outlined in Sec. 6.2, but updated with the
reverse martensitic volume fraction, é7¢¥ (Eq.35). Upon further loading, the yarn will be in a homogenous
austenite state and unload back to the initial state at the onset of loading.

7.2. Unloading from heterogeneous forward transformation and SIM

The yarn geometry (filament diameter, twist, number of filaments, packing density, etc.) influences the
distribution of stresses and strains in the yarn at the end of loading. Consequently, there are many possible
yarn unloading evolutions from a state of heterogeneous forward transformation and SIM. However, for
this paper, we will detail a single pathway (Figure 5) that can be generalized for other unloading
evolutions.

If any portion of the yarn is in forward transformation at the conclusion of loading, the yarn unloads from
a heterogeneous state of incomplete forward transformation and SIM (Figure 5f). The unloading
procedure for the incomplete forward transformation portion is altered due to the inclusion of the
martensitic volume fraction at reversal, ££~7. The effective material properties of such yarn elements are
defined by a rule of mixtures (Eq.20); specifically, the material modulus is defined as

E =EA+ &7 (EM - EA, (Eq.47)
The axial stress equation is updated to
X = (g —&"TH) *E + 26v, (Eq.48)

where the martensitic volume fraction at reversal, &7, is treated as a function of filament length ratio, u,
by polynomial fitting the martensitic volume fractions at the onset of unloading for elements with
incomplete forward transformations. To calculate the unloading stresses of the incomplete forward
transformation portion of the yarn, the axial stress, X (Eq.48), is used in the governing ODE (Eq.16) and
solved with the initial condition on the surface of the yarn. The boundary of the remaining SIM section is
numerically approximated by solving when the martensitic volume fraction at reversal is equal to one, and
the SIM elements are solved according to Sec. 6.4.

The updated stresses are then used to calculate the reverse martensitic volume fraction to check for the
onset of reverse transformation. The elements unloading from forward transformation will begin reverse
transformation when the reverse martensitic volume fraction, £"¢V, is below the martensitic volume
fraction at reversal, £:~7. Meanwhile, the elements unloading in SIM will begin reverse transformation
when the reverse martensitic volume fraction, é7¢?, is below one. Consequently, the reverse
transformation onset conditions are dissimilar at different radial positions, and it is not guaranteed that
reverse transformation will begin on the surface of the yarn. For this exercise, we will outline a case in
which reverse transformation initiates on the surface of the yarn, and the transformation front grows
inward towards the center of the yarn. The general solution procedure could be expanded for the case
where reverse transformation begins inside the yarn.
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When reverse transformation has started, it is possible for the yarn to be in a heterogeneous state of
reverse transformation, incomplete forward transformation, and SIM (Figure 5g). The solution procedure
starts with the outermost portion, where the initial condition is on the surface of the yarn and works
inward using the updated stresses to approximate the initial conditions of the next distinct region. In this
scenario (Figure 5g), the outermost reverse transformation is solved using the updated version of the

nonlinear system of equations, Z—i (Eq.16) & Z—z (Eq.44), followed by unloading from forward

transformation, which is solved using the axial stress, X (Eq.48), and governing ODE (Eq.16). Lastly, the
remaining SIM portion is solved according to Sec. 6.4.

Upon further unloading, the reverse transformation will continue to grow inward until the yarn is in a
heterogeneous state of reverse transformation and SIM (Figure 5h). Eventually, elements in the yarn will
complete the reverse transformation to austenite when the reverse martensite volume fraction, "¢V, is less
than zero. Similar to reverse transformation, this is not guaranteed to initiate on the surface of the yarn,
although it does occur in this unloading evolution. When austenite is present, the yarn will be in a
heterogeneous state of austenite and reverse transformation (Figure 5i). The austenite front grows inward
towards the center of the yarn until the yarn is in a homogeneous austenite state (Figure 5j) until the
completion of unloading (solution procedure in Sec. 7.1). The yarn has finished unloading back to the
initial state, and the microfilament and macroscopic yarn responses are analyzed.

8. Modeling Results

The microfilament response is dependent on yarn parameters (filament diameter, number of filaments,
twist) and loading conditions (temperature, yarn displacement); however, a general pattern of behavior
can be identified from a single configuration. To discuss the patterns observed in the microfilament
response, we modeled a 6.32 twist per centimeter (TPCM) yarn consisting of 400 microfilaments of 10
um diameters subjected to a displacement of 15.0% structural strain. The model predicts the spatially
distributed axial filament stress, X, tangential filament stress, G, and phase evolution on the mesoscale
during loading and unloading (Figure 6). The contribution of all filaments is summed to predict the
macroscopic yarn force.

8.1. Meso- to microscopic loading of yarn element

During initial loading from 0 to 0.84% structural strain, at a temperature above austenite finish, all
filaments in the yarn structure exhibit linearly increasing axial filament stress (Figure 6a). All filaments,
except the outer surface filaments, exhibit linearly decreasing tangential filament compression (Figure
6b). Due to the spatially distributed filament strain from rigid body radial contraction, the modulus of the
axial stress (Figure 6a) is at a maximum of (64.4GPa) at the center filament (black), and at a minimum of
(42.8GPa) on the surface of the yarn (green). Additionally, the tangential compression modulus (Figure
6b) is at a maximum absolute value (8.56GPa) on the center filament (black) and equal to zero on the
surface filament (green) due to the governing radial equilibrium ODE boundary condition. The onset of
forward transformation occurs at 0.84% structural strain in the center of the yarn, where the equivalent
von Mises stress (Eq.31) is highest.

During SMA forward transformation, mechanical energy is dissipated as thermal energy during the solid-
state phase transition from austenite to stressed induced martensite, resulting in a stress plateau. In a yarn
with a heterogeneous state of forward transformation and austenite (from 0.84% to 1.43% structural
strain), the non-constant transformation front boundary condition forces the tangential filament
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compression (Figure 6b) to decrease nonlinearly (black). To maintain the stress plateau in the equivalent
stress, the axial stress (Figure 6a) compensates by nonlinearly decreasing (black).

Heterogeneous forward transformation ends when the yarn surface filament reaches forward
transformation (1.43% structural strain). During homogeneous forward transformation (1.43% to 8.38%
structural strain), the transformation front boundary condition stabilizes on the surface of the yarn, and the
nonlinear compensation that was present in heterogeneous forward transformation and austenite ceases.
The axial stress and tangential compression of the surface (green) and center (black) filaments continue in
a stress plateau (Figure 6).

The center filaments (black) will be the first to finish forward transformation and enter SIM (8.38%
structural strain). At this strain, the yarn will be in a heterogeneous state of forward transformation and
SIM. The transformation front grows outward towards the surface of the yarn, forcing a non-constant
boundary for the SIM portion. In SIM, the SMA material has returned to the elastic regime (Eq.28) and
loads linearly in the von Mises equivalent stress. However, for the elements in SIM, the changing
boundary condition forces the tangential compression (Figure 6b) of the center filaments (black) to
decrease nonlinearly. While subtle, the axial stress (Figure 6a) of the center filament (black) also
compensates nonlinearly to maintain elastic loading in the von Mises equivalent stress.

Filaments in the center (black) are in forward transformation for a total of 7.54% structural strain from
0.84% to 8.38% structural strain (Figure 6), which is comparable to values seen in monofilament SMA
[49]. However, the surface filaments (green) have an extended forward transformation structural strain
range of 12.5% from 1.43% to 13.9% structural strain, a 65.4% increase over the center filaments. This
increased forward transformation range is due to the spatially distributed filament strain, &¢, from the
increased radial contraction in the outer surface filaments.

In this loading evolution, the surface filament (green) completes the forward transformation at 13.9%
structural strain, and the yarn enters a state of homogeneous SIM. The axial stress (Figure 6a) increases
linearly, and the tangential compression (Figure 6b) decreases linearly until the completion of loading. In
homogeneous SIM, the axial stress of the center filament (black) loads with a maximum linear modulus
of 23.0GPa while the surface filament (green) loads with a minimum linear modulus of 15.3GPa. The
tangential compression of the center filament (black) loads with a maximum modulus absolute value of
3.05GPa compared to zero for the surface filament (green).

8.2. Meso- to microscopic unloading of yarn element

If homogeneous SIM is reached, the axial stress (Figure 6a) and tangential compression (Figure 6b) in all
filaments will load linearly with the same modulus but in the opposite direction as they did during
homogeneous SIM loading. The linear loading will continue until the outer surface of the yarn begins
reverse transformation at a stress and strain that is lower than that for forward transformation (11.0%
structural strain).

The yarn will then be in a heterogeneous state of reverse transformation and SIM (11.0% to 6.67%
structural strain), with the reverse transformation front growing inward towards the center of the yarn.
The elements in reverse transformation have a stable boundary condition on the outside of the yarn, and
the axial stress (Figure 6a) and tangential compression (Figure 6b) for the surface filament (green)
undergo constant stress plateaus. The remaining filaments in SIM, including the center filament (black),
have a non-constant boundary from the inwardly growing reverse transformation front. Consequently, the
tangential compression (Figure 6b) increases nonlinearly, and the axial stress (Figure 6a) compensates to
maintain elastic behavior in the equivalent von Mises stress.

17



Upon further unloading (6.67% to 0.39% structural strain), the yarn will be in homogeneous reverse
transformation. All the filaments will be in a constant stress plateau, with the boundary condition stable
on the surface of the yarn. The surface filament (green) will first complete the reverse transformation to
austenite (0.39% structural strain), and the yarn will be in a state of heterogeneous austenite and reverse
transformation (0.39% to 0.23% structural strain).

The austenite portion will unload linearly with the same modulus seen in loading. The remaining reverse
transformation, including the center filament (black), will nonlinearly adapt to the changing boundary
condition at the end of the austenitic region to maintain a stress plateau in the equivalent von Mises stress.
Eventually, the yarn will be in homogeneous austenite and will unload back to the initial state with the
same modulus seen in loading.

8.3. Meso- to macroscopic behavior

Microfilament behavior heavily contributes to global yarn behavior. The axial tension and tangential
compression on each radial element contribute a force, f (Eq.17), to the global yarn force, F (Eq.18). The
elemental force contributions are summated over the entire yarn to calculate the yarn force, F, for any
given yarn strain (Figure 6¢). In homogeneous austenite loading (0% to 1.43% structural strain), the
individual filament moduli summate to create an effective yarn modulus of 44.56GPa (Figure 6¢). The
effective yarn modulus is normalized to the cross-sectional area of the active material in the untwisted
yarn. Higher twisted yarn configurations have a broader distribution of filament moduli, resulting in a
lower effective yarn modulus. For homogeneous states, such as homogeneous austenite, the yarn exhibits
stable, linear behavior. However, when the yarn is in a heterogeneous state, multiple phases within the
yarn contribute to the nonlinear transition regions seen in the global force behavior. The lengths of the
nonlinear transition regions are defined by the length of the heterogeneous states of the yarn, which are
influenced by the distribution of strains across the radial elements. At lower structural strains, the
distribution of strains is more compact (Eq.9), and the nonlinear transitions are shorter. For example, the
duration of the transition from austenite to forward transformation is 0.59% structural strain, compared
with 5.52% for the transition between forward transformation and SIM (Figure 6¢). Higher twisted yarn
configurations have more distributed stress and strains, resulting in extended nonlinear heterogeneous
states of the yarn. Overall, the nonlinear transitions enable the yarn structure to handle higher maximum
elongations and, during unloading, recover significant structural strains.

9. Model Validation

The microfilaments were created by Fort Wayne Metals using an accumulative drawing/rolling and
bonding technique. The NiTi alloy used in this study has a chemical composition of 56wt% nickel with
300ppm oxygen, 310ppm carbon, and balanced titanium. It is a nickel-rich material, with an ingot Ar of
68°C. Each microfilament bundle consists of 400 microfilaments with 10um diameters. The bundles were
processed into yarns in an industrial ring spinner at a local fiber processing and yarn spinning mill.
Manufacturing spindle speed and delivery speed were controlled to manage the amount of twist inserted
into the yarns. Five distinct yarn configurations were made with different manufacturing twists ranging
from 0.70 TPCM to 10.54 TPCM. To shape-set the yarn structure, each yarn was thermally processed in a
custom-built in-line reel to reel system that travels through a tube furnace at S00°C for 120 seconds under
a set tension after twist insertion (Figure S1b, Supporting Information). The tension during thermal
processing was adjusted for the level of twist in the yarns. Higher twisted yarns needed higher tensions
during processing to remove the increased manufacturing strains and twist set the structure. To validate
the model, a variety of material, geometric, and mechanical tests were conducted. Differential scanning
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calorimetry (DSC) was performed to determine the transformation temperatures of the microfilaments
(Figure Sla & Table 1). SEM and microscopy imaging were performed to identify the packing density, ¢,
used for all yarn configurations (Figure S2b & Table 1). A series of isothermal experiments were
performed on the five yarn configurations on an RSA-G2 dynamic mechanical analyzer (DMA) with an
environmental chamber for temperature control. Displacement controlled tests were performed at a
macroscopic strain rate of L1 = +5 x 107° s~! and at a temperature of 80°C, well above austenite
finish temperature, Ar. DMA tests were performed on a 0.70TPCM yarn to identify the austenite

modulus, E4, martensitic modulus, EM, model parameter, pAs,, and the maximum uniaxial
transformation strain, H, that are used for all yarn configurations (Table 1). After calibration, the model
was run for the five yarn configurations and compared to the experimental curves (Figure 7).

During initial loading, the model predicts the inverse relationship between increasing twist and decreasing
effective yarn modulus. Experimental results demonstrated a 84.9% decrease from a homogeneous
austenite effective yarn modulus of 71.0GPa in the 0.70TPCM yarn to 10.7GPa in the 10.54TPCM yarn
(Figure 7a). Meanwhile, the model captured a 67.1% decrease in effective yarn modulus from 69.5GPa in
the 0.70TPCM yarn to 22.89GPa in the 10.54TPCM yarn (Figure 7b). At higher twists, there is more
variation in filament axial strain (Eq.9) within the yarn structure, resulting in a wider range of stresses and
a decrease in effective yarn modulus, which is captured in both experimental and modeling results (Figure
7b).

The homogeneous austenite effective modulus ends with the onset of forward transformation and a
nonlinear transition (heterogeneous state) to homogeneous forward transformation. It is observed in
experimental results (Figure 7a) that the forces and lengths of the nonlinear transitions are impacted by
the twist. The 0.70TPCM yarn exhibits a short transition of 0.74% structural strain from 15.28N to
19.53N force. However, the 10.54TPCM yarn transitions over an extended range of 3.02% structural
strain at significantly lower forces of 6.05N to 11.0N (Figure 7a). The model captures this pattern of
behavior: the 0.70TPCM yarn transitions almost instantaneously in 0.01% structural strain at 18.98N to
19.13N while the 10.54TPCM yarn transitions over a range of 2.53% structural strain from 6.47N to
10.77N (Figure 7b). The impact of twist on the nonlinear transitions is explained by a couple of factors.
First, the length of the nonlinear transitions is bounded by the length of the heterogeneous states, which
are longer when the distribution of strain is broader for higher twists and at higher structural strains.
Secondly, the forces at which these nonlinear transitions occur are influenced by the impact twist has on
compressional stresses in the yarn. Higher twisted yarns have larger compressional stresses and lower
axial stresses (Eq.38). While both axial stress and tangential compression contribute to the equivalent von
Mises stress, axial stress contributes more to the total yarn force, F, than tangential compression due to
geometric constants described in (Eq.18). As a result, higher twisted yarns experience nonlinear
transitions at lower forces than lower twisted configurations. The same explanations can be applied to the
lower forces and expanded transition lengths observed in the higher twisted experimental yarns
throughout the remaining loading and unloading (Figure 7a).

The loading evolution can end in multiple yarn states, which impact the unloading behavior. If the yarn
reaches homogeneous SIM by the end of loading, then unloading will occur with the same localized
effective modulus as SIM, as shown in the modeling results in the 0.70TPCM and 3.51TPCM yarns
(Figure 7b). However, if the yarn is in a heterogeneous state of forward transformation and SIM at the
completion of loading, then the effective unloading modulus will differ from the loading modulus. The
variation in effective loading and unloading moduli is visible in the 5.27, 7.03, and 10.54TPCM yarns in
Figure 7b. At the end of loading of the modeled 5.27TPCM yarn, the localized effective modulus was
estimated to be 14.5GPa. Because 23.3% of the filaments remained in forward transformation, the
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effective unloading modulus was predicted to be 18.4GPa for a 26.7% change in modulus. While the
exact percentage of filaments in forward transformation at the end of loading can not be derived from the
experimental curves (Figure 7a), a similar pattern of moduli changes is observed, indicating a
heterogeneous mixture of phases is present in the yarn at the end of loading. Unlike the model results, the
0.70 and 3.51TPCM yarns do not exhibit the same effective loading and unloading moduli. This is
attributed to two factors; the first is a change in frictional forces from the reversal of loading direction that
is currently neglected in the model. Secondly, it is hypothesized that the change in loading direction could
cause a change in the yarn contraction ratio, v,, which is currently modeled as constant. Like the
modeling results, the higher twisted 5.27, 7.03, and 10.54TPCM experimental yarns demonstrate an
exaggerated change in modulus from loading to unloading (Figure 7a). At the end of loading, the
10.54TPCM yarn has a localized effective modulus of 2.88GPa compared to a modulus of 28.3GPa at the
start of unloading, an order of magnitude change in modulus from the presence of forward transformation
remaining in the yarn.

To validate the model’s ability to capture unloading from unique yarn phase evolution stages, 3.51 TPCM
yarns were loaded to various increasing structural strains and unloaded (Figure 7c). While the exact phase
evolution stage is unknown in the experimental data, it is observed that with increasing structural strain,
the effective yarn unloading modulus decreases. This is because the effective material moduli, E, of the
filaments in forward transformation will be transitioning from their original austenitic modulus, E4, to the
decreased martensitic modulus, EM, at the end of forward transformation (rule of mixtures, (Eq.20).
Increased structural straining correlates to a higher percentage of filaments that have either started,
completed, or are farther along in the forward transformation, resulting in a decreased effective yarn
modulus exhibited during unloading. Experimentally, this is observed in the 41.1% decrease in the
effective yarn modulus from unloading at 2.5% structural strain compared with unloading at 10.0%
structural strain (Figure 7c).

The experimental data was compared with model simulations of identical loading scenarios of a 3.51
TPCM yarn (Figure 7d). The model was able to capture the decrease in effective yarn unloading modulus
as a result of a higher percentage of the filaments in forward transformation quantifiable by the mean
filament value of forward martensitic volume fraction of the filaments. At 2.5% structural strain, all the
filaments are in forward transformation, however the mean forward martensitic volume fraction of 0.22
implies that the filaments are early along in their transformation (completion at ¢ = 1). At 5.0%,
7,5% and 10.0% structural strain, the mean martensitic volume fractions were 0.55, 0.84, and 1.0. At
higher structural strains, the filaments were further along in the forward transformation, resulting in a
58.4% decrease in the effective yarn unloading modulus from the 2.5% structural strain loading to the
10.0% structural strain loading, similar to the 41.1% decrease observed experimentally (Figure 7c¢).

While the model qualitatively predicts the impact of the twist on the effective modulus, transition regions,
unloading behavior, and forces, there is room for improvement. Qualitatively, it is observed in the
experimental data that the transformation slopes increase with increasing yarn twist while the model
predicts pseudoelastic force plateaus for all yarn configurations. Quantitatively, it is observed from error
analysis (Figure 8), where the error is defined as the percent relative difference between the experimental
force and modeling force, that the model struggles to quantitatively predict the forces at the beginning and
end of loading and unloading. Percent relative difference peaks, up to a maximum of 78.7% in the
7.03TPCM yarn, are observed during the initial loading period (0% to ~2% structural strain). The model
does align with the experimental data, as the percent relative difference quickly decreases below 25% at
~2.00% structural strain and sustains lower percent relative differences for the remainder of loading.
During unloading, the percent relative difference in the 7.03TPCM yarn stays consistently below 40%
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(~12% to 4% structural strain) until peaking again to 99.0% at the end of unloading (~2% structural
strain). The high percent relative difference observed in unloading is attributed to permanent deformation
sustained by some filaments in loading and is not accounted for in the model.

The differences between the model and experimental results are hypothesized to result from multiple
considerations not currently accounted for in the model, such as permanent deformation, manufacturing
inconsistencies, frictional forces, and non-constant contraction ratio. The non-constant contraction ratio is
hypothesized to have the most significant impact on the accuracy of the model. An earlier assumption
stated that the yarn contraction ratio, vy, is a constant; however, this is an assumption made for linear
elastic materials. The yarn contraction ratio plays a large role in the variation of filament strain, and thus
the filament stresses within the yarn at any given structural strain. Accounting for a non-constant
contraction ratio could improve the predictive ability of the model by distributing the filament strains
more broadly. More variation in filament strain would result in decreased effective moduli, decreased
transition forces, increased transition lengths, and increased phase heterogeneity, all of which would
improve the predictive capability of the model. Additionally, increased and non-constant contraction
could lead to exaggerated filament interlocking and enlarged frictional forces, resulting in the structural
hardening behavior observed in the increasing transformation slopes of higher twisted yarns.
Understanding the change in contraction ratio during phase transformations could be critical for capturing
the shape of the experimental yarns after initial loading, therefore improving the overall accuracy.

10. Conclusion

In this paper, we develop a predictive model for the superelastic behavior of SMA microfilament yarns by
modifying existing structural and material models to interoperate. The semi-analytical model uses a
hierarchical approach to provide insight into the microfilament response to predict and explain the
macroscale behavior of the yarn. Linear elastic based yarn models are redefined with 3D phenomenological
SMA constitutive equations. During yarn loading and unloading, the material phases present in the yarn are
identified using a martensitic volume fraction, and the appropriate stress equations are applied. Common
loading and unloading evolutions are outlined in the context of the microfilament kinematics to map to the
macroscopic yarn force response. To validate the model, the yarn force response is compared with
experimental data for five yarns with varying twists. The model is shown to accurately predict relationships
between the yarn response and twist, including effective loading modulus and exaggerated transition
regions between phases through an understanding of the microfilament response. Lastly, the addition of a
non-constant contraction ratio is discussed to offer improvements over the quantitative accuracy of the
model.

The semi-analytical model fills a knowledge gap necessary for the functionalized integration of SMA
microfilament yarns. Using the model, manufacturing decisions can be made to produce SMA
microfilament yarns with desired mechanical characteristics, such as effective modulus, for specific
application needs. Insight in the microfilament stress and strains provides designers with safe application
strains to avoid failure or significant permanent deformations. Additionally, the microfilament strains can
provide insight into the consistent cycled behavior, which is influenced by the extent of the material
straining. This model establishes a foundation for creating a predictive model for the actuation behavior
of SMA yarns that use the shape memory effect. For other multifunctional material systems, this model
provides a framework for working within the complex yarn architecture. Lastly, this paper institutes a
mechanical understanding of SMA yarn behavior that can be implemented within existing textile models
to predict the performance of functionalized cloth-like multifunctional SMA textiles for wearable, robotic,
medical, defense, and transportation applications.
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Figure 1. Geometric representation of a microfilament in the center (a), surface (b), and intermediate (c) locations of an
idealized yarn structure. The filaments are represented in their helical structures within the yarn cylinder with a shared helical
pitch, h, and in the unraveled right triangle forms with their unique radius, v, and length in one turn of twist, 1. The impact of
yarn extension on the filament geometry is demonstrated in (c).
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Figure 2. Visual representation of a yarn element at a radial distance, r, and with helical angle, 0 (left). The element consists of
a large number of infinitesimally small microfilaments and is geometrically defined by a radial thickness, dr, an angular change,
d¢, and a length, dz, within the yarn. During yarn extension, the yarn element experiences an axial stress, X, on the axial faces,

ABCD and EFGH, and tangential compression, G, on the remaining transverse faces (right) forming a hydrostatic loading

condition.
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Figure 3. A common material phase evolution of the yarn cross-section during yarn loading at temperatures above austenite
finish, Ag. The yarn starts in a homogeneous austenitic state (a). Forward transformation initiates in the center of the yarn and
grows outward (b) until the yarn is in a homogeneous forward transformation (c). Upon further loading, the element in the center
of the yarn first completes the forward transformation to SIM (d) and the SIM front grows outward (d) until the entire yarn is in
SIM (e).

28



d) e)
Loading >
< Unloading
) h) g) D I
. Forward Reverse Stressed Induced
- Aus::mte - Transformation Transformation - Martensite
) (A & M) (A & M) (M)

Figure 4. Material phase unloading evolution (f-j) from austenitic loading to a homogeneous SIM yarn state (a-e). At the onset of
unloading, the material is in a homogeneous SIM state (f) before reverse transformation initiates on the surface of the yarn (g)
and grows inward towards the center of yarn until a homogeneous reverse transformation is reached (h). Reverse transformation
back to austenite finished first on the surface of the yarn and grows inward (i) until the yarn is in a homogeneous austenitic state

0)-
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Figure 5. An alternate material phase unloading evolution (f-j) from austenitic loading to a heterogeneous forward
transformation and SIM state (a-e). In this unloading evolution, the yarn begins unloading in a heterogeneous state of incomplete
forward transformation and SIM (f). In this scenario, the reverse transformation initiates on the surface of the yarn and grows
inward (g) through the incomplete forward transformation to the SIM portion of the yarn (h). Upon further loading, the reverse
transformation back to austenite will first complete on the surface of the yarn and grow inward (i) until the entire yarn is in
homogeneous austenite (j).
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Figure 6. The axial filament stress (a), tangential filament
compression (b) loading and unloading response for the
center element (black), and surface element (green) of a 6.32
TPCM twisted yarn with 400 filaments of 10um diameters
subjected to a loading displacement of 15.0% structural
strain.  The correlating global yarn force response is
exhibited in (c). The material phase evolution outlined in
Figure 4 is used to break up the responses into the
correlating homogenous and heterogeneous states.



Material Constants Values Material Constants Values

E4 70.0 GPa pAsf —0.322 MPa
EM 25.0 GPa pAs! —0.386 MPa
ya = yM 0.33 H 0.0585
p 6.45% Af 47.8°C
kM 6.60@ Ag 38.62°C
°C
k4 5.50@ Mg —34.53°C
°C
M, —25.12°C
Yarn Constants Values
vy (-)0.5
C 202.63 tex
B 0.70,3.51,5.27,7.03,10.54 TPCM
% 0.45

Table 1. Material and yarn parameter values used in all simulations. The majority of material values are experiementally derived
from a combination of DSC, as well as isothermal uniaxial tensile tests on the 0.70 TPCM yarn. The yarn constants are a
combinaiton of manufacturing decisions and values derived from SEM characterizaiton.
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Figure 7. (a) Experimental results of isothermal loading of five yarn configurations of varying twists at temperatures above
austenite finish, As. The same yarn configurations and loading conditions are used as inputs in the semi-analytical model to
compare the experimental response to the model response (b). The model captures the relationship between twist and effective
modulus and transitional regions between phases, but could quantitatively be improved by accounting for early structural strain
(1-2%) behavior. (c) Experimental results of isothermal loading of 3.51 TPCM yarns to increasing structural strains to highlight
the different unloading behavior from phase evolution yarn stages. (d) Modeling simulations of a 3.51 TPCM yarn loaded to
various increasing structural strains to demonstrate the ability to capture different unloading behaviors from phase evolution

yarn stages.
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Figure 8. The loading (a) and unloading (b) percent relative
difference between the experimental yarn force response
(Figure 7a) and modeled yarn force response (Figure 7b).
Percent relative difference is observed to be at maximums in
early structural strain regions (1-2%), and towards the end of
loading (8-14%).
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