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The field of Cyber-Physical Systems (CPS) is increasingly recognizing the importance of integrating 

Human Factors for Human-in-the-loop CPS (HiLCPS) developments. This is because psychological, 

physiological, and behavioral characteristics of humans can be used to predict human-machine interactions. 

The goal of this pilot study is to collect initial data to determine whether driving and eye tracking metrics 

can provide evidence of learning for a CPS project. Six participants performed a series of 12 repeated 

obstacle avoidance tasks in manual driving. Lane deviations and fixation-related eye data were recorded for 

each trial. Overall, participants displayed either conservation/safe or aggressive/risky in their lateral 

position with respect to the obstacle during successive trials. Also, eye tracking metrics were not 

significantly affected by trial number, but observational trends suggest their potential for aiding in 

understanding adjustments humans make in learning. Results can inform predictive modeling algorithms 

that can anticipate and mitigate potential problems in real-time. 

 

 

INTRODUCTION 
 
 In recent years, the field of Cyber-Physical Systems 

(CPS) has witnessed unprecedented research activity, given 

the rapid development of smart and connected technologies. 

By definition, CPS is “a new generation of systems with 

integrated computation and physical capabilities that can 

interact with humans through many new modalities” (Baheti 

& Gill, 2011). CPS aims to integrate knowledge from multiple 

disciplines and theories such as Controls, Human-Computer 

Interaction (HCI), learning theory, software, and Electrical, 

Mechanical, and other engineering areas to solve some of 

CPS’s most difficult design tasks. One particular task is to 

effectively incorporate Human-in-the-Loop (HiL) into CPS to 

ensure that humans have a good understanding of the 

operations of the systems for which they interact. Farooq & 

Grudin (2016) explain that “the era of human-computer 

interaction is giving way to the era of human-computer 

integration—integration in the broad sense of a partnership or 

symbiotic relationship in which humans and software act with 

autonomy, giving rise to patterns of behavior that must be 

considered holistically.” 

 Munir et al. (2013) highlights challenges to a HiLCPS 

approach that suggest the complexity of modeling the dynamic 

nature of the human. They include: (1) “the need for a 

comprehensive understanding of the complete spectrum of 

types of human-in-the-loop controls,” (2) “the need for 

extensions to system identification or other techniques to 

derive models of human behaviors,” and (3) “determining how 

to incorporate human behavior models into the formal 

methodology of feedback control.”  

 Several initiatives exist to overcome these challenges. 

For example, in driving, Liu & Salvucci (2001) inferred 

driver’s intentions through vehicle control actions, e.g., 

steering and accelerating, and Munir et al. (2013) suggested 

that this type of data can be used to develop a model to 

convert this open loop system to a controlled driver assistive 

feedback closed loop system that allows the vehicle to provide 

interventions, such as taking over control or sending alerts. 

Munir et al. (2013) discusses the remaining challenges in CPS 

that relate to the need to develop more robust predictive 

modeling and stochastic predictive control modeling to aid in 

avoiding preemptive problems and creating adaptive control. 

This activity will require an even greater understanding of the 

human.  

The field of Human Factors plays a critical role in CPS 

in order to ensure that human psychological, physiological, 

and/or behavioral characteristics, as they relate to interactions 

with systems, are well-understood and captured appropriately 

in models. The recently funded National Science Foundation 

(NSF) project, “CPS: Frontier: Collaborative Research: 

Cognitive Autonomy for Human CPS: Turning Novices into 

Experts,” recognizes this critical need and integrates work 

from Computer Science, Electrical, Mechanical, and Industrial 

Engineering, Human Factors, and Psychology in order to 

develop methods that hasten learning curves for individuals 

performing new, complex tasks.  

  Specifically, this project aims to develop CPS that 

continually adapts to the human to significantly reduce 

training time, increase the breadth of the human's experiences 

with systems prior to operation in a safety-critical 

environment, and improve overall safety and joint human-

machine performance. As part of this work, learning models of 

the human in various complex environments first need to be 

generated and then a human-centric architecture for "cognitive 

autonomy" can be developed that couples human 

psychophysiological and behavioral measures with objective 

measures of performance. 

As an initial step, this project built upon prior work 

related to complex driving tasks, and specifically focused on 

observing learning in obstacle avoidance tasks. To inform 

research activities, seminal papers that used obstacle 

avoidance tasks in manual driving were identified. For 

example, Adams et al. (1995) investigated vehicle controls of 

braking and steering when an obstacle was present. Their 

study found that drivers’ initial response was to steer when 

encountering an unexpected obstacle at higher speeds, but 

brake when given more time. Also, more optimal obstacle 

C
op

yr
ig

ht
 2

02
1 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

So
ci

et
y.

 A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

16
51

22
2

Proceedings of the 2021 HFES 65th International Annual Meeting 42

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1071181321651222&domain=pdf&date_stamp=2021-11-12


avoidance maneuvers included steering around obstacles and 

coasting, in combination with braking. In contrast, less 

effective maneuvers included steering straight while 

decelerating, accelerating ahead, and simply staying on course 

without taking actions, which all resulted in collision with the 

obstacle. In a different study, Broen & Chiang (1996) 

examined braking response times to unexpected obstacles 

during a driving simulator task. The main finding that 

informed the current study was that when drivers were 

traveling at 25mph, it took on average 1.33 seconds to react 

and step on the brake pedal.  

While these studies are informative regarding the 

situational strategies that drivers utilize for vehicle handling, 

as well as the time associated with their decisions, they did not 

consider other factors that could contribute to the complexity 

of the task, such as characteristics of the driving environment. 

They also did not collect psychophysiological data, focused on 

learning trends, which for today’s CPS work is needed to 

better characterize the human for system adaptations. 

Research that has studied drivers’ gaze behavior primarily 

focused on driver handling and identifying factors that 

influence driver performance and safety (e.g., Calvi & Bella, 

2014; Grüner & Ansorge, 2017). But, Rosch & Vogel-Walcutt 

(2013)’s review on eye tracking applications for the purposes 

of training expresses the need for more research in adaptive 

environments, including driving. 

Thus, in this paper, we report findings from a pilot study 

that used the obstacle avoidance paradigm to collect 

preliminary data to evaluate whether evidence of learning 

could be ascertained. In particular, we designed an experiment 

with an added level of complexity not required by previous 

studies, requiring non-dominant hand steering and driving 

during the nighttime. We also utilized eye tracking to begin 

gathering psychophysiological data related to human learning 

in complex tasks. Our goal was to investigate various driving-

related and eye tracking metrics that would enable us to 

describe trends of learning with experimental outcomes. We 

focus on manual driving, which we expect to provide baseline 

knowledge regarding how humans complete complex tasks 

that can inform future studies involving automation.  

METHOD 

Participants 

A total of six participants (3 male, 3 female) with a mean 

age of 21.33 years (SD = 0.82) volunteered for this pilot study. 

Participants were recruited from Purdue University (IRB 

Protocol #1905022220) and were all engineering senior 

undergraduate students. The average number of years driven 

across participants was 4.17 years (range: 1 to 7 years). A total 

of five out of the six participants reported driving less than 

10k miles per year, and one participant drove an average of 

12k miles per year.  

Equipment 

This study used a fixed-based medium-fidelity driving 

simulator developed by the National Advanced Driving 

Simulator (NADS miniSim). The system is equipped with 

three 48-inch monitors and one 18.5-inch monitor for 

displaying the driving environment and the vehicle dashboard 

display, respectively. There are also two foot-pedals and a 

steering wheel to capture driver inputs. The system’s sampling 

rate is 60Hz.  

Also, a FOVIO FX3 eye tracking system (31cm × 40cm), 

developed by Seeing Machines Inc. Canberra, Australia was 

utilized. This system is contact-free and mounted behind the 

steering wheel located below the main center display. This 

system also has a sampling rate of 60Hz. Eye tracking data 

was collected and analyzed using the EyeWorks Suite 

(EyeTracking, Inc., USA). 

 

Driving Scenario  
 
 The driving environment was a two-lane nighttime city 

environment. The roadway consisted of four S-curve shaped 

segments and four straightaways that preceded each S-curve 

segment. One obstacle (an old vehicle tire) was placed at the 

beginning of each S-curve at the same location (see Figure 1). 

There were no other vehicles in the scenario, i.e., no oncoming 

traffic, leading, nor trailing vehicles. Streetlights were present 

along both sides of the road for the duration of the drive. The 

obstacles were placed within the curves, so they were not 

visible to the participant until they rounded the curve.   

 

 

Driver Data 
Right Lane Reference 
Left Lane Reference 
Obstacle Location 

 
 

Figure 1. Bird’s-eye view of road network of the driving 

scenario with right and left reference lanes and driver data; 

zoomed in reference window (right-side image) 

 
Procedure 
 
 Participants were first asked to complete a practice drive 

during daytime on an open highway to familiarize themselves 

with the driving simulator and task. The actual driving 

scenario was comprised of an obstacle avoidance task. The 

task was to drive in a nighttime context on a two-lane city 

highway (see Figure 2) and avoid any roadway obstacles that 

might be present. Each participant was given the same set of 

instructions: (1) practice safe driving (i.e., stay within the lane 

boundaries), (2) drive at a constant speed of 45 mph 

throughout the session, and (3) if an obstacle was encountered, 

avoid the obstacle by moving into the opposite lane as quickly 
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as possible; once cleared, move back into the original lane and 

resume a constant speed of 45mph.  

Each participant drove the scenario on three separate 

trials (four obstacles in each), for a total of 12 obstacle events. 

Each drive lasted approximately four minutes. As mentioned, 

to increase the level of difficulty of the task, participants were 

asked to drive one-handed, with their non-dominant hand, 

throughout the entire pilot experiment. 

 

Figure 2. Nighttime driving scene from pilot study 

Dependent Measures and Data Analysis 
 

Driving performance was measured using the vehicle’s 

lane deviation (in feet), similar to lateral movement measured 

in Adams et al. (1995). This represented the distance between 

the subject vehicle and the obstacle at the time of avoidance. 

In other words, this measure indicated the maximum distance 

the subject vehicle was from the obstacle as it entered into the 

left, opposite lane.  

Eye tracking is often used in Human Factors research to 

assess attention allocation (e.g., Rosch & Vogel-Walcutt, 

2013; Zhang et al., 2020). For the eye tracking analysis, the 

driving scenario was divided into three segments: (1) 7 

seconds on the straightaway before the first curve with an 

obstacle, (2) 3 seconds during obstacle avoidance period, and 

(3) 7 seconds on the straightaway at the end of the S-curve 

(and obstacle). An area of interest (AOI) was drawn in the 

subject vehicle’s lane during the straightaway sections, and 

also around the obstacle in the 3-second section. Eye tracking 

metrics included: (1) number of fixations in each AOI (i.e., all 

fixations within the defined area and period), (2) average 

fixation duration in AOIs (i.e., total duration of all fixations in 

defined area), (3) gaze percent observed in each AOI (i.e., 

percentage of gazes within the defined area), and (4) mean 

fixation pupil size dilation (in millimeters) in AOIs (i.e., 

average pupil dilation within the defined area and period).  

These metrics represent the number of times, the location, and 

the length of time drivers fixate in the AOIs in the divided 

segments (Moacdieh & Sarter, 2015). The fixation threshold 

was set to 100 milliseconds.  

Observational analysis was performed on the behavioral 

measure. Also, Friedman tests were conducted on the eye 

tracking data using IBM SPSS Statistics 26. Results were 

considered significant at p < 0.05.   

RESULTS 

Lane Deviation 

   As mentioned, there was a total of three trials, or drives, 

completed by each of the six participants. The average lane 

deviation over four obstacle avoidances was calculated, and 

the results were combined into a single plot that depicted each 

drive. Two distinctive patterns emerged from the participants’ 

behavior in terms of how they navigated the curves. The first 

was that four out of the six participants displayed more 

conservative driving behavior in that they tended to drive 

farther away from the obstacle in successive trials compared to 

their first drive (see Figure 3a). The second trend was that two 

out of the six participants showed more aggressive behavior, 

meaning that they tended to drive closer to the obstacle in 

subsequent drives compared to their first drive (see Figure 3b). 

Currently, these categorizations are being used to label driver 

behavior for prediction modeling within the larger CPS team.  

In Figures 3a and 3b, the solid vertical line at time = 3.5 

seconds denotes the location of the obstacle. 

 

Time (s) 

Drive 1 
Drive 2 
Drive 3 
Obstacle 

 
(a) Conservative 

 

 

Time (s) 

Drive 1 
Drive 2 
Drive 3 
Obstacle 

 
(b) Aggressive 

 
Figure 3. Representation of lane deviation (obstacle 

avoidance) output for (a) one conservative/safe driver and (b) 

one aggressive/risky driver over their three trials/drives 
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Eye Tracking 

Using the trends noted in the lane deviation data, eye 

tracking data were stratified based on conservative vs. 

aggressive classifications. However, since there were only two 

participants in the aggressive group, we only analyzed eye 

data for the conservative group. Also, at this stage of the 

project, only two metrics appeared to have observational 

trends, i.e., average fixation duration in AOIs and average 

fixation pupil size in AOIs. In addition, only in the 7-second 

straightaway segment before the first curve with the obstacle 

generated any further observational trends for these metrics 

(see Figures 4 and 5, respectively).  

 
Figure 4. Average fixation duration in AOI (milliseconds) for 

all four conservative drivers for each trial 

Note. Error bars: ±SE 

A Friedman test was used to determine whether the 

distributions for Trial 1, Trial 2, and Trial 3 were the same for 

the average fixation duration in AOI for the 7 seconds before 

the first curve. Average fixation duration did not significantly 

increase between the trials, χ2(2) = 1.500, p = .472 (i.e., Trial 1 

Median (Mdn) = 427.50 secs; Trial 2 Mdn = 481.50 secs; Trial 

3 Mdn = 452.00 secs).  

  

 
Figure 5. Average fixation pupil size dilation (millimeters) for 

all four conservative drivers for each trial 

Note. Error bars: ±SE 

Similarly, average pupil size did not significantly 

increase between the trials, χ2(2) = 0.500, p = .779 (i.e., Trial 1 

Mdn = 3.57 mm; Trial 2 Mdn = 5.09 mm; Trial 3 Mdn = 5.05 

mm). 

 Overall, although preliminary visual inspection suggests 

increasing trends in the eye tracking measures, at this stage in 

the pilot study, no statistical differences were found among the 

drives. 

 

DISCUSSION 
 

 The goal of this pilot study was to investigate driving-

related and eye tracking metrics that could enable us to 

observe learning from the experimental data. To this end, 

participants completed a series of drives, where they needed to 

avoid 12 roadway obstacles. Two notable obstacle avoidance 

trends emerged from the data: some drivers displayed 

conservative/safe driving behavior, while others showed more 

aggressive/risky navigation around obstacles. Also, though not 

significantly different between the driving trials with the 

current dataset, preliminary eye tracking data highlight 

potential for aiding in understanding adjustments humans 

make during the learning process. This work represents an 

important first step in evaluating, modeling, and predicting 

human behavior, which is considered an essential aspect to 

Human-in-the-Loop cyber-physical systems (HiLCPS) (Jirgl 

et al., 2018).  

              It is not too surprising that a dichotomous pattern was 

observed in the behavior of our participants, given individual 

differences and the variety of ways that people can respond to 

aspects in life. In fact, the conservative and aggressive 

categorizations have been exploited in previous research. For 

example, Das & Ahmed (2019) utilized conservative and 

aggressive driving behavior designations for naturalistic 

manual driving but, in contrast, monitored lane-changing 

under weather conditions. Their designations were related to 

drivers’ risk perception, and they found that aggressive drivers 

drove at higher speeds and initiated more lane changes than 

conservative drivers, regardless of traffic or weather 

conditions. For our research, these categorizations are useful 

in delineating different approaches to skill development over 

time. In contrast to Adams et al. (1995), who measured lateral 

movement to investigate whether drivers collided with or 

avoided obstacles, we first used this direct (lateral) measure to 

implicate the process of learning. However, given the nature 

of our driving task, several other complementary driving-

related metrics could be informative regarding one’s learning 

behavior. For example, braking response time, maximum 

braking force, and average pedal acceleration position can be 

used to identify various input strategies employed by drivers 

for a given task, as well as how they change over time. For 

example, it may be implied that a driver is adopting a coasting 

strategy if pedal acceleration position decreases, while braking 

force remains at zero. We plan to analyze and report the 

findings from these measurements as our CPS study continues.  

For the eye tracking data, visual inspection of the pilot 

data suggests that both average fixation duration in AOI and 

average pupil size could become sensitive to repeated trials 

with a larger sample size (as the study continues). If this is the 

case, in terms of learning, one can speculate that as the 

average fixation duration increases with successive trials, 

participants may be spending more time visually preparing for 

the future imminent obstacles. This could also explain why 
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pupil size may potentially increase. Pupil dilation has been 

found to reflect changes in cognitive workload (Charles & 

Nixon, 2019), and drivers may devote more time and attention 

to (thus experience higher workload in) subsequent trials, in 

hopes to improve handling behavior. It is also feasible to posit 

that as a person practices this particular task overtime, gaze 

duration in the AOI will likely decrease due to familiarity and 

skill development gained through repetition – both of which 

may lessen the level of vigilance needed on successive trial. 

Alternatively, as the study progresses, if no differences in eye 

behavior among trials are observed, then the design of the 

driving task may not induce significantly changes to drivers’ 

cognitive workload. 

In summary, to assess human behavior for interactions 

with future adaptive and highly autonomous systems, it is 

important to employ methods that enable obtaining data about 

human interactions through devices/sensors (Spurgin, 2009). 

Given that this is a pilot study working towards this goal, we 

are continuing our data collection efforts. In addition, our CPS 

project is creating algorithms for predictive modeling and 

verification, e.g., via stochastic reachability, that can 

anticipate and mitigate potential problems in real-time. 

Findings from this pilot study will be used to inform the 

design of future experiments that will consider the use of 

additional psychophysiological sensing techniques, such as 

electroencephalography (EEG) and Galvanic Skin Response 

(GSR), new experimental designs/platforms, and additional 

data analysis. 

   

ACKNOWLEDGEMENTS 
 

 This work was supported, in part, by a grant from the 

National Science Foundation (NSF grant #1836952; Program 

Manager: Dr. Sylvia Spengler).  

 

REFERENCES 
 

Adams, L., Flannagan, M., & Sivak, M. (1995). Obstacle 
avoidance maneuvers in an automobile simulator. Final 
report. internal-pdf://0010441184/OBSTACLE 

AVOIDANCE MANEUVERS IN AN 

AUTOMOBILE.pdf 

Baheti, R., & Gill, H. (2011). Cyber-physical systems. The 
Impact of Control Technology, 12(1), 161–166. internal-

pdf://176.66.198.248/Baheti and Gill 2011.pdf 

Broen, N. L., & Chiang, D. P. (1996). Braking response times 

for 100 drivers in the avoidance of an unexpected 

obstacle as measured in a driving simulator. 

Proceedings of the Human Factors and Ergonomics 
Society Annual Meeting, 40, 900–904. internal-

pdf://245.155.146.249/BRAKING RESPONSE TIMES 

AVOIDANCE OF AN UNEXPEC.pdf 

Calvi, A., & Bella, F. (2014). Modeling speed differential 

parameters in day and night environments using driving 

simulator. Procedia Engineering, 84, 648–661. 

Charles, R. L., & Nixon, J. (2019). Measuring mental 

workload using physiological measures: A systematic 

review. Applied Ergonomics, 74, 221–232. 

Das, A., & Ahmed, M. M. (2019). Exploring the effect of fog 

on lane-changing characteristics utilizing the SHRP2 

naturalistic driving study data. Journal of 
Transportation Safety & Security, 1–26. 

Farooq, U., & Grudin, J. (2016). Human-computer integration. 

Interactions, 23(6), 26–32. 

Grüner, M., & Ansorge, U. (2017). Mobile eye tracking during 

real-world night driving: A selective review of findings 

and recommendations for future research. Journal of 
Eye Movement Research, 10(2). 

Jirgl, M., Bradac, Z., & Fiedler, P. (2018). Human-in-the-loop 

issue in context of the cyber-physical systems. IFAC-
PapersOnLine, 51(6), 225–230. 

Liu, A., & Salvucci, D. (2001). Modeling and prediction of 

human driver behavior. Intl. Conference on HCI, 1479–

1483. internal-pdf://116.11.136.235/Liu and Salvucci 

2001.pdf 

Moacdieh, N., & Sarter, N. (2015). Display clutter: A review 

of definitions and measurement techniques. Human 
Factors, 57(1), 61–100. 

Munir, S., Stankovic, J. A., Liang, C.-J. M., & Lin, S. (2013). 

Cyber physical system challenges for human-in-the-loop 

control. 8th International Workshop on Feedback 
Computing (Feedback Computing 13). internal-

pdf://173.111.163.11/Munir et al 2013.pdf 

Rosch, J. L., & Vogel-Walcutt, J. J. (2013). A review of eye-

tracking applications as tools for training. Cognition, 
Technology & Work, 15(3), 313–327. 

Spurgin, A. J. (2009). Human reliability assessment theory 
and practice. CRC press. 

Zhang, T., Yang, J., Liang, N., Pitts, B. J., Prakah-Asante, K. 

O., Curry, R., Duerstock, B. S., Wachs, J. P., & Yu, D. 

(2020). Physiological measurements of situation 

awareness: a systematic review. Human Factors, 

0018720820969071. internal-

pdf://232.31.146.112/Zhang et al 2020.pdf 

 

 
 

 

C
op

yr
ig

ht
 2

02
1 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

So
ci

et
y.

 A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

16
51

22
2

Proceedings of the 2021 HFES 65th International Annual Meeting 46


	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

