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The field of Cyber-Physical Systems (CPS) is increasingly recognizing the importance of integrating
Human Factors for Human-in-the-loop CPS (HiLCPS) developments. This is because psychological,
physiological, and behavioral characteristics of humans can be used to predict human-machine interactions.
The goal of this pilot study is to collect initial data to determine whether driving and eye tracking metrics
can provide evidence of learning for a CPS project. Six participants performed a series of 12 repeated
obstacle avoidance tasks in manual driving. Lane deviations and fixation-related eye data were recorded for
each trial. Overall, participants displayed either conservation/safe or aggressive/risky in their lateral
position with respect to the obstacle during successive trials. Also, eye tracking metrics were not
significantly affected by trial number, but observational trends suggest their potential for aiding in
understanding adjustments humans make in learning. Results can inform predictive modeling algorithms
that can anticipate and mitigate potential problems in real-time.

INTRODUCTION

In recent years, the field of Cyber-Physical Systems
(CPS) has witnessed unprecedented research activity, given
the rapid development of smart and connected technologies.
By definition, CPS is “a new generation of systems with
integrated computation and physical capabilities that can
interact with humans through many new modalities” (Baheti
& Gill, 2011). CPS aims to integrate knowledge from multiple
disciplines and theories such as Controls, Human-Computer
Interaction (HCI), learning theory, software, and Electrical,
Mechanical, and other engineering areas to solve some of
CPS’s most difficult design tasks. One particular task is to
effectively incorporate Human-in-the-Loop (HiL) into CPS to
ensure that humans have a good understanding of the
operations of the systems for which they interact. Farooq &
Grudin (2016) explain that “the era of human-computer
interaction is giving way to the era of human-computer
integration—integration in the broad sense of a partnership or
symbiotic relationship in which humans and software act with
autonomy, giving rise to patterns of behavior that must be
considered holistically.”

Munir et al. (2013) highlights challenges to a HILCPS
approach that suggest the complexity of modeling the dynamic
nature of the human. They include: (1) “the need for a
comprehensive understanding of the complete spectrum of
types of human-in-the-loop controls,” (2) “the need for
extensions to system identification or other techniques to
derive models of human behaviors,” and (3) “determining how
to incorporate human behavior models into the formal
methodology of feedback control.”

Several initiatives exist to overcome these challenges.
For example, in driving, Liu & Salvucci (2001) inferred
driver’s intentions through vehicle control actions, e.g.,
steering and accelerating, and Munir et al. (2013) suggested
that this type of data can be used to develop a model to
convert this open loop system to a controlled driver assistive
feedback closed loop system that allows the vehicle to provide
interventions, such as taking over control or sending alerts.

Munir et al. (2013) discusses the remaining challenges in CPS
that relate to the need to develop more robust predictive
modeling and stochastic predictive control modeling to aid in
avoiding preemptive problems and creating adaptive control.
This activity will require an even greater understanding of the
human.

The field of Human Factors plays a critical role in CPS
in order to ensure that human psychological, physiological,
and/or behavioral characteristics, as they relate to interactions
with systems, are well-understood and captured appropriately
in models. The recently funded National Science Foundation
(NSF) project, “CPS: Frontier: Collaborative Research:
Cognitive Autonomy for Human CPS: Turning Novices into
Experts,” recognizes this critical need and integrates work
from Computer Science, Electrical, Mechanical, and Industrial
Engineering, Human Factors, and Psychology in order to
develop methods that hasten learning curves for individuals
performing new, complex tasks.

Specifically, this project aims to develop CPS that
continually adapts to the human to significantly reduce
training time, increase the breadth of the human's experiences
with systems prior to operation in a safety-critical
environment, and improve overall safety and joint human-
machine performance. As part of this work, learning models of
the human in various complex environments first need to be
generated and then a human-centric architecture for "cognitive
autonomy" can be developed that couples human
psychophysiological and behavioral measures with objective
measures of performance.

As an initial step, this project built upon prior work
related to complex driving tasks, and specifically focused on
observing learning in obstacle avoidance tasks. To inform
research activities, seminal papers that used obstacle
avoidance tasks in manual driving were identified. For
example, Adams et al. (1995) investigated vehicle controls of
braking and steering when an obstacle was present. Their
study found that drivers’ initial response was to steer when
encountering an unexpected obstacle at higher speeds, but
brake when given more time. Also, more optimal obstacle
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avoidance maneuvers included steering around obstacles and
coasting, in combination with braking. In contrast, less
effective maneuvers included steering straight while
decelerating, accelerating ahead, and simply staying on course
without taking actions, which all resulted in collision with the
obstacle. In a different study, Broen & Chiang (1996)
examined braking response times to unexpected obstacles
during a driving simulator task. The main finding that
informed the current study was that when drivers were
traveling at 25mph, it took on average 1.33 seconds to react
and step on the brake pedal.

While these studies are informative regarding the
situational strategies that drivers utilize for vehicle handling,
as well as the time associated with their decisions, they did not
consider other factors that could contribute to the complexity
of the task, such as characteristics of the driving environment.
They also did not collect psychophysiological data, focused on
learning trends, which for today’s CPS work is needed to
better characterize the human for system adaptations.
Research that has studied drivers’ gaze behavior primarily
focused on driver handling and identifying factors that
influence driver performance and safety (e.g., Calvi & Bella,
2014; Griiner & Ansorge, 2017). But, Rosch & Vogel-Walcutt
(2013)’s review on eye tracking applications for the purposes
of training expresses the need for more research in adaptive
environments, including driving.

Thus, in this paper, we report findings from a pilot study
that used the obstacle avoidance paradigm to collect
preliminary data to evaluate whether evidence of learning
could be ascertained. In particular, we designed an experiment
with an added level of complexity not required by previous
studies, requiring non-dominant hand steering and driving
during the nighttime. We also utilized eye tracking to begin
gathering psychophysiological data related to human learning
in complex tasks. Our goal was to investigate various driving-
related and eye tracking metrics that would enable us to
describe trends of learning with experimental outcomes. We
focus on manual driving, which we expect to provide baseline
knowledge regarding how humans complete complex tasks
that can inform future studies involving automation.

METHOD
Participants

A total of six participants (3 male, 3 female) with a mean
age of 21.33 years (SD = 0.82) volunteered for this pilot study.
Participants were recruited from Purdue University (IRB
Protocol #1905022220) and were all engineering senior
undergraduate students. The average number of years driven
across participants was 4.17 years (range: 1 to 7 years). A total
of five out of the six participants reported driving less than
10k miles per year, and one participant drove an average of
12k miles per year.

Equipment

This study used a fixed-based medium-fidelity driving
simulator developed by the National Advanced Driving

Simulator (NADS miniSim). The system is equipped with
three 48-inch monitors and one 18.5-inch monitor for
displaying the driving environment and the vehicle dashboard
display, respectively. There are also two foot-pedals and a
steering wheel to capture driver inputs. The system’s sampling
rate is 60Hz.

Also, a FOVIO FX3 eye tracking system (31cm X 40cm),
developed by Seeing Machines Inc. Canberra, Australia was
utilized. This system is contact-free and mounted behind the
steering wheel located below the main center display. This
system also has a sampling rate of 60Hz. Eye tracking data
was collected and analyzed using the EyeWorks Suite
(EyeTracking, Inc., USA).

Driving Scenario

The driving environment was a two-lane nighttime city
environment. The roadway consisted of four S-curve shaped
segments and four straightaways that preceded each S-curve
segment. One obstacle (an old vehicle tire) was placed at the
beginning of each S-curve at the same location (see Figure 1).
There were no other vehicles in the scenario, i.e., no oncoming
traffic, leading, nor trailing vehicles. Streetlights were present
along both sides of the road for the duration of the drive. The
obstacles were placed within the curves, so they were not
visible to the participant until they rounded the curve.

——— Driver Data

——— Right Lane Reference

——— Left Lane Reference
(O Obstacle Location

Drive Drection
Diriwee Dirgsction

Figure 1. Bird’s-eye view of road network of the driving
scenario with right and left reference lanes and driver data;
zoomed in reference window (right-side image)

Procedure

Participants were first asked to complete a practice drive
during daytime on an open highway to familiarize themselves
with the driving simulator and task. The actual driving
scenario was comprised of an obstacle avoidance task. The
task was to drive in a nighttime context on a two-lane city
highway (see Figure 2) and avoid any roadway obstacles that
might be present. Each participant was given the same set of
instructions: (1) practice safe driving (i.e., stay within the lane
boundaries), (2) drive at a constant speed of 45 mph
throughout the session, and (3) if an obstacle was encountered,
avoid the obstacle by moving into the opposite lane as quickly
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as possible; once cleared, move back into the original lane and
resume a constant speed of 45mph.

Each participant drove the scenario on three separate
trials (four obstacles in each), for a total of 12 obstacle events.
Each drive lasted approximately four minutes. As mentioned,
to increase the level of difficulty of the task, participants were
asked to drive one-handed, with their non-dominant hand,
throughout the entire pilot experiment.

Figure 2. Nighttime driving scene from pilot study
Dependent Measures and Data Analysis

Driving performance was measured using the vehicle’s
lane deviation (in feet), similar to lateral movement measured
in Adams et al. (1995). This represented the distance between
the subject vehicle and the obstacle at the time of avoidance.
In other words, this measure indicated the maximum distance
the subject vehicle was from the obstacle as it entered into the
left, opposite lane.

Eye tracking is often used in Human Factors research to
assess attention allocation (e.g., Rosch & Vogel-Walcutt,
2013; Zhang et al., 2020). For the eye tracking analysis, the
driving scenario was divided into three segments: (1) 7
seconds on the straightaway before the first curve with an
obstacle, (2) 3 seconds during obstacle avoidance period, and
(3) 7 seconds on the straightaway at the end of the S-curve
(and obstacle). An area of interest (AOI) was drawn in the
subject vehicle’s lane during the straightaway sections, and
also around the obstacle in the 3-second section. Eye tracking
metrics included: (1) number of fixations in each AOI (i.e., all
fixations within the defined area and period), (2) average
fixation duration in AOIs (i.e., total duration of all fixations in
defined area), (3) gaze percent observed in each AOI (i.e.,
percentage of gazes within the defined area), and (4) mean
fixation pupil size dilation (in millimeters) in AOIs (i.e.,
average pupil dilation within the defined area and period).
These metrics represent the number of times, the location, and
the length of time drivers fixate in the AOIs in the divided
segments (Moacdieh & Sarter, 2015). The fixation threshold
was set to 100 milliseconds.

Observational analysis was performed on the behavioral
measure. Also, Friedman tests were conducted on the eye
tracking data using IBM SPSS Statistics 26. Results were
considered significant at p < 0.05.

RESULTS

Lane Deviation

As mentioned, there was a total of three trials, or drives,
completed by each of the six participants. The average lane
deviation over four obstacle avoidances was calculated, and
the results were combined into a single plot that depicted each
drive. Two distinctive patterns emerged from the participants’
behavior in terms of how they navigated the curves. The first
was that four out of the six participants displayed more
conservative driving behavior in that they tended to drive
farther away from the obstacle in successive trials compared to
their first drive (see Figure 3a). The second trend was that two
out of the six participants showed more aggressive behavior,
meaning that they tended to drive closer to the obstacle in
subsequent drives compared to their first drive (see Figure 3b).
Currently, these categorizations are being used to label driver
behavior for prediction modeling within the larger CPS team.
In Figures 3a and 3b, the solid vertical line at time = 3.5
seconds denotes the location of the obstacle.
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Figure 3. Representation of lane deviation (obstacle

avoidance) output for (a) one conservative/safe driver and (b)
one aggressive/risky driver over their three trials/drives
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Eye Tracking

Using the trends noted in the lane deviation data, eye
tracking data were stratified based on conservative vs.
aggressive classifications. However, since there were only two
participants in the aggressive group, we only analyzed eye
data for the conservative group. Also, at this stage of the
project, only two metrics appeared to have observational
trends, i.e., average fixation duration in AOIs and average
fixation pupil size in AOIs. In addition, only in the 7-second
straightaway segment before the first curve with the obstacle
generated any further observational trends for these metrics
(see Figures 4 and 5, respectively).
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Figure 4. Average fixation duration in AOI (milliseconds) for
all four conservative drivers for each trial
Note. Error bars: +SE

A Friedman test was used to determine whether the
distributions for Trial 1, Trial 2, and Trial 3 were the same for
the average fixation duration in AOI for the 7 seconds before
the first curve. Average fixation duration did not significantly
increase between the trials, ¥*(2) = 1.500, p = .472 (i.e., Trial 1
Median (Mdn) = 427.50 secs; Trial 2 Mdn = 481.50 secs; Trial
3 Mdn = 452.00 secs).
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Figure 5. Average fixation pupil size dilation (millimeters) for
all four conservative drivers for each trial
Note. Error bars: +SE

Similarly, average pupil size did not significantly
increase between the trials, ¥%(2) = 0.500, p = .779 (i.e., Trial 1
Mdn = 3.57 mm; Trial 2 Mdn = 5.09 mm; Trial 3 Mdn = 5.05
mm).

Overall, although preliminary visual inspection suggests
increasing trends in the eye tracking measures, at this stage in
the pilot study, no statistical differences were found among the
drives.

DISCUSSION

The goal of this pilot study was to investigate driving-
related and eye tracking metrics that could enable us to
observe learning from the experimental data. To this end,
participants completed a series of drives, where they needed to
avoid 12 roadway obstacles. Two notable obstacle avoidance
trends emerged from the data: some drivers displayed
conservative/safe driving behavior, while others showed more
aggressive/risky navigation around obstacles. Also, though not
significantly different between the driving trials with the
current dataset, preliminary eye tracking data highlight
potential for aiding in understanding adjustments humans
make during the learning process. This work represents an
important first step in evaluating, modeling, and predicting
human behavior, which is considered an essential aspect to
Human-in-the-Loop cyber-physical systems (HiLCPS) (Jirgl
et al., 2018).

It is not too surprising that a dichotomous pattern was
observed in the behavior of our participants, given individual
differences and the variety of ways that people can respond to
aspects in life. In fact, the conservative and aggressive
categorizations have been exploited in previous research. For
example, Das & Ahmed (2019) utilized conservative and
aggressive driving behavior designations for naturalistic
manual driving but, in contrast, monitored lane-changing
under weather conditions. Their designations were related to
drivers’ risk perception, and they found that aggressive drivers
drove at higher speeds and initiated more lane changes than
conservative drivers, regardless of traffic or weather
conditions. For our research, these categorizations are useful
in delineating different approaches to skill development over
time. In contrast to Adams et al. (1995), who measured lateral
movement to investigate whether drivers collided with or
avoided obstacles, we first used this direct (lateral) measure to
implicate the process of learning. However, given the nature
of our driving task, several other complementary driving-
related metrics could be informative regarding one’s learning
behavior. For example, braking response time, maximum
braking force, and average pedal acceleration position can be
used to identify various input strategies employed by drivers
for a given task, as well as how they change over time. For
example, it may be implied that a driver is adopting a coasting
strategy if pedal acceleration position decreases, while braking
force remains at zero. We plan to analyze and report the
findings from these measurements as our CPS study continues.

For the eye tracking data, visual inspection of the pilot
data suggests that both average fixation duration in AOI and
average pupil size could become sensitive to repeated trials
with a larger sample size (as the study continues). If this is the
case, in terms of learning, one can speculate that as the
average fixation duration increases with successive trials,
participants may be spending more time visually preparing for
the future imminent obstacles. This could also explain why

45



Proceedings of the 2021 HFES 65th International Annual Meeting

Copyright 2021 by Human Factors and Ergonomics Society. All rights reserved. 10.1177/1071181321651222

pupil size may potentially increase. Pupil dilation has been
found to reflect changes in cognitive workload (Charles &
Nixon, 2019), and drivers may devote more time and attention
to (thus experience higher workload in) subsequent trials, in
hopes to improve handling behavior. It is also feasible to posit
that as a person practices this particular task overtime, gaze
duration in the AOI will likely decrease due to familiarity and
skill development gained through repetition — both of which
may lessen the level of vigilance needed on successive trial.
Alternatively, as the study progresses, if no differences in eye
behavior among trials are observed, then the design of the
driving task may not induce significantly changes to drivers’
cognitive workload.

In summary, to assess human behavior for interactions
with future adaptive and highly autonomous systems, it is
important to employ methods that enable obtaining data about
human interactions through devices/sensors (Spurgin, 2009).
Given that this is a pilot study working towards this goal, we
are continuing our data collection efforts. In addition, our CPS
project is creating algorithms for predictive modeling and
verification, e.g., via stochastic reachability, that can
anticipate and mitigate potential problems in real-time.
Findings from this pilot study will be used to inform the
design of future experiments that will consider the use of
additional psychophysiological sensing techniques, such as
electroencephalography (EEG) and Galvanic Skin Response
(GSR), new experimental designs/platforms, and additional
data analysis.
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