
Algorithmica (2022) 84:1441–1465
https://doi.org/10.1007/s00453-022-00940-0

Metric Violation Distance: Hardness and Approximation

Chenglin Fan1 · Benjamin Raichel1 · Gregory Van Buskirk1

Received: 4 February 2020 / Accepted: 18 January 2022 / Published online: 8 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Metric data plays an important role in various settings, for example, in metric-based
indexing, clustering, classification, and approximation algorithms in general. Due to
measurement error, noise, or an inability to completely gather all the data, a collection
of distances may not satisfy the basic metric requirements, most notably the triangle
inequality. In this paper we initiate the study of themetric violation distance problem:
given a set of pairwise distances, modify the minimum number of distances such that
the resulting set forms ametric. Three variants of the problem are considered, based on
whether distances are allowed to only decrease, only increase, or the general casewhich
allows both decreases and increases. We show that while the decrease only variant is
polynomial time solvable, the increase only and general variants are NP-Complete,
and moreover cannot in polynomial time be approximated to any ratio better than the
minimum vertex cover problem. We then provide approximation algorithms for the
increase only and general variants of the problem, by proving interesting necessary
and sufficient conditions on the optimal solution, which are used to approximately
reduce to a purely combinatorial problem for which we provide matching asymptotic
upper and lower bounds.

Keywords Metrics · Hardness · Approximation

A preliminary version of this paper appeared in the Symposium on Discrete Algorithms (SODA), 2018
Work on this paper was partially supported by NSF CRII Award 1566137 and CAREER Award 1750780.

B Benjamin Raichel
benjamin.raichel@utdallas.edu

Chenglin Fan
cxf160130@utdallas.edu

Gregory Van Buskirk
greg.vanbuskirk@utdallas.edu

1 Department of Computer Science, University of Texas at Dallas, Richardson, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00940-0&domain=pdf
http://orcid.org/0000-0001-6584-4843

1442 Algorithmica (2022) 84:1441–1465

1 Introduction

Suppose you are given a collection of data points, along with a corresponding set
of distances (i.e. dissimilarity scores) between every pair of points. The ability to
perform various computational tasks over this collection of data points depends highly
on what structural properties these distances obey. Perhaps the most often considered
and desired are the basic metric requirements, most notably the triangle inequality (as
the other metric requirements are often trivially satisfied). Metric data plays a critical
role in various areas such as metric-based indexing, clustering, classification, and
approximation algorithms in general. Moreover, given our points come from a metric
space, we can potentially obtain additional properties by applying tools such as metric
embeddings. As a simple example of the power of metric properties, consider the
famous NP-Complete Traveling Salesperson Problem (TSP). For general positively
weighted graphs, it is well known that TSP cannot be approximated within α(n),
for any polynomial time computable function α, unless P=NP [15]. On the other
hand if the graph satisfies the triangle inequality, Christofides’ algorithm gives a 1.5-
approximation [6].

Here we consider the metric violation distance problem, denoted MVD, where
given a collection of distances between data points (forming a semi-metric), we seek
the smallest sized set of distance values that can be (arbitrarily) modified to produce
a metric space overall. One can consider the resulting metric as the nearest neighbor
from the space of all metrics, and thus one interpretation of the MVD problem is as a
measurement of how close the input is to representing a metric space. A solution to
this problem is thus desirable, since when the distance is small, one could potentially
use the nearest metric as a proxy for the original set of distances, unlocking all the
above benefits of metric spaces. Alternatively, the MVD problem arises naturally in
the following setting. Suppose you are collecting experimental data by measuring
distances between a collection of objects, where you know the distances should form
a metric space. The collected data might be non-metric for a variety of reasons, such
as measurement error, or incomplete or corrupted data entries. In this setting theMVD
problem can thus be used as a means to recover the true underlying data set.

In this paper we initiate the study of the MVD problem. We prove the problem is
APX-hard, and provide approximation algorithms for different variants.

Related Work. Brickell et al. [2] studied the metric nearness problem. Similar to
MVD, the input is a semi-metric (i.e. triangle inequalities may be violated) and the
goal is to find the closest metric space. The difference is that for MVD a closest metric
space is defined by minimizing the number of changed values, irrespective of how
much they are changed, and in their case it is defined by minimizing the sum, or some
other norm, of the changes in value. That is, MVD considers the �0 “norm”, whereas
metric nearness considers �p norms. In particular, metric nearness with �1 norm is the
linear programming relaxation of MVD, and thus is not NP-hard like MVD. So while
metric nearness is semantically similar, the challenges and approach are different, and
thus [2] focus on other aspects. Specifically, Brickell et al. show that the �1 and �∞
norm cases can be formulated as linear programs and general �p norms as convex
programs. However, rather than using off-the-shelf solvers, they show how to more

123

Algorithmica (2022) 84:1441–1465 1443

efficiently solve these problems with more tailored solutions, and demonstrate their
practical efficiency with experimental results. They also argue the decrease only case
relates to APSP, and thus their O(n3) time primal-dual algorithm for this case leads
to a new algorithm for APSP.

The MVD problem also bears a clear resemblance to metric embeddings, though
one level removed. In a standard metric embedding problem there are two collections
of metric spaces of interest, call them S (for source) and T (for target). Given a metric
space X ∈ S the goal is then to injectively map the points from X into the metric
space Y ∈ T which preserves distances as best as possible, when measured by the
distortion (roughly the maximum any distance is scaled). Typically the collection T
has some desirable structural property that in general is lacking from metrics in S,
and thus metric embeddings are a tool to gain these structural benefits. For example,
the famous result of Bourgain [3] shows that any arbitrary n-point metric embeds into

�
O(log n)

2 with O(log n) distortion, and more generally into �
O(log2 n)
p for any p, due to

Linial et al. [13]. (As metric embeddings are too broad to fully cover here, we refer
the reader to the surveys [11,14].) ThusMVD can be viewed as a type of “embedding”
problem, where S is the collection of all semi-metrics and T is the collection of all
metrics.

The larger difference betweenmetric embedding andMVD, is that formetric embed-
ding the typical goal is to minimize distortion, whereas in our case the goal is to
minimize the number of (arbitrarily) changed distances. Thus our work is more akin
to isometrically embedding with outliers. Recently Sidiropoulos et al. [16] considered
isometrically embedding metrics into ultrametrics, trees, and Euclidean space, while
minimizing the number of outlier points. Despite their input starting out as a metric,
the problems they consider similarly involve satisfying inequalities with a small num-
ber of distances (for example, ultrametrics replace the sum with max in the triangle
inequality). The larger difference is that since their notion of outliers is point based,
when a violated inequality is identified the points can simply be thrown out, whereas
in our case the values need to be corrected, and it is not possible to locally determine
how to do so (see Fig. 1, discussed in detail below). Moving towards distance based
notions of outliers, the problem of embeddings with slack was previously considered.
Rather than isometrically embedding, the goal moves back to finding minimum distor-
tion embeddings, but subject to allowing an ε fraction of the distances to be arbitrarily
distorted. For example, Abraham et al. [1,4] showed that any metric space can be

embedded into �
O(log2(1/ε))
p for any p ≥ 1 with O(log(1/ε)) distortion and ε slack,

i.e. a slack version of Bourgain’s theorem.
There are a number of othermore loosely related problems. In thematrix completion

problem, from the machine learning community, one is given a distance matrix with
manymissing entries, and the goal is to fill in themissing entries such that the resulting
matrix has as low a rank as possible [7]. In the distance realization problem, from the
networking community, given a distance matrix the goal is to find a corresponding
weighted graph (possibly restricted to be a tree) which minimizes the sum of edge
lengths [5]. While related, these problems do not capture the specific challenges of
MVD.

123

1444 Algorithmica (2022) 84:1441–1465

Fig. 1 A single red thickened violated triangle. Increasing a 16 edge causes a chain of violations, and more
generally the chain can be logarithmic in length.Many edges are omitted for simplicity (Color figure online)

Contribution and Results From a first glance it may not be apparent why the MVD
problem is so challenging. Violated triangle inequalities can trivially be identified, so
why not fix them one at a time. The first issue is that fixing a triangle may require
violating another, as shown in Fig. 1. In this example, the larger issue is that fixing the
inequality requires deciding whether to increase smaller weight edges or decrease the
larger one (or both), aswell as decidinghowmuch to change them. Increasingone lower
weight edge by ε creates only one new violation, and thus locally appears preferable,
as decreasing the large edge by ε creates two violations. Unfortunately, decreasing the
lower weight edge creates a chaining effect ultimately requiring a logarithmic number
of fixes. Alternatively one can take a more global approach, treating all the violated
inequalities as a system of constraints and then trying to solve that system. The issue
with this approach is that the objective is to minimize the number of changes rather
than the sum of the changed amounts, which is a red flag as roughly speaking this
is the difference between integer programming formulations of many NP-Complete
problems and their linear programming relaxations.

Here we take a systematic approach to understanding and handling the challenges
of the MVD problem. We consider three variants: (1) MVD where one is only allowed
to decrease values, (2)MVD where one is only allowed to increase values, and (3) the
general MVD problem. When only decreases are allowed we provide a polynomial
time solution, making a connection to the all pairs shortest paths problem. For both
the increase only and general cases, we show that the problem is NP-Complete, and
moreover is as hard to approximate as vertex cover. We also give a polynomial time
O(OPT 1/3)-approximation for both cases, where OPT denotes the optimal solution
size. We first present the approximation algorithm for the increase only case, as it is
conceptually simpler, and its results can be used to help understand the approach for
the general case. That said, the increase only case is still quite challenging, and requires

123

Algorithmica (2022) 84:1441–1465 1445

proving necessary and sufficient conditions on the solution, reducing the problem to
a purely combinatorial one with connections to fundamental problems such as block
design. Several interesting open problems remain such as whether there is a provable
hardness gap between the increase only and general versions, and for either problem
whether the gap between approximation and hardness can be narrowed.

Preliminary and Follow-Up Work. A preliminary version of this paper appeared in
the Symposium on Discrete Algorithms 2018 [9]. Simultaneously and independently,
Gilbert and Jain [10] introduced and studied the sparse metric repair problem, which
is equivalent toMVD. While [10] also showed the decrease only variant is polynomial
time solvable, otherwise the paper differs significantly, focusing on the development
of a heuristic with good empirical performance for the increase only case. Subse-
quently, both sets of authors have together investigated a generalized version of MVD,
denoted GMVD, where the input graph is no longer required to be complete [8]. This
generalized nature allows for stronger hardness results to be proven. Unfortunately,
our O(OPT 1/3)-approximation for MVD no longer applies for GMVD, although gen-
eralizing our main structural result does allow one to still apply more basic greedy
approximation algorithms. Instead, [8] focuses on developing an FPT algorithm for
chordal graphs, closing an open problem posed in [9].

2 Preliminaries

The MVD problem can be equivalently formulated as either a problem on symmetric
matrices or on weighted graphs. For the majority of the paper the graph formulation
is used, however the matrix formulation is also presented as this was the original
terminology used by Brickel et al. [2] for the similar metric nearness problem, and
also more naturally connects to the linear program feasibility check we ultimately use
to verify our solution.

2.1 Problem Definition

Let a dissimilarity matrix be any square symmetric matrix, where diagonal entries are
all zero, and all other entries are positive. For an n × n dissimilarity matrix M , we
refer to each entry Mi j as the distance from point i to point j . M is said to be a metric
matrix if for every triple of distinct indices (i, j, k) it holds that Mik ≤ Mi j + Mjk ,
that is the distances in the matrix represent the interpoint distances of an n point metric
space. A symmetric modification of a distance Mi j to a value α, sets Mi j = Mji = α.

Problem 2.1 (Matrix Metric Violation Distance (MMVD)) Given a dissimi-
laritymatrix M, compute aminimum size set S of distanceswhich can be symmetrically
modified to convert M into a metric matrix.

Alternatively, define a dissimilarity graph as any complete, undirected, and
positively-weighted graph, and define a metric graph to be any dissimilarity graph
which is its own metric completion.

123

1446 Algorithmica (2022) 84:1441–1465

Problem 2.2 (Metric Violation Distance (MVD)) Given a dissimilarity graph
G, compute a minimum size set S of edges whose weights can be modified to convert
G into a metric graph.

Note that MVD and MMVD are equivalent problems and an instance of one can be
trivially converted into an instance of the other. We thus freely interchange between
the two in the text when needed, though outside this section we mainly defer to the
graph MVD formulation as it avoids the confusion of symmetric modification.

Two variants of the MVD problem will also be considered in the paper, one where
weights are only allowed to decrease, and the other where weights are only allowed
to increase.

Problem 2.3 (Metric Violation Decrease Distance (MVDD)) Given a dis-
similarity graph G, compute a minimum size set S of edges whose weights can be
decreased to covert G into a metric graph.

Problem 2.4 (Metric Violation Increase Distance (MVID)) Given a dissimi-
larity graph G, compute aminimum size set S of edges whose weights can be increased
to covert G into a metric graph.

2.2 Feasibility Checking

Let M be an n × n dissimilarity matrix. Let S be a set of entries from M , namely a
set of pairs of distinct integers {i, j}, with 1 ≤ i, j ≤ n. Here we show that checking
whether there is a solution to MMVD for M which symmetrically modifies only the
entries in S, is polynomial time solvable bywriting the problem as an instance of linear
programming feasibility. Specifically, for each entry Mi j we define a newmatrix entry
αi j = Mi j + xi j , where xi j is a variable representing the deviation from the original
entry. If there is a solution for theMMVD problem that only symmetric modifies entries
from S, then the αi j ’s must satisfy all triangle inequalities, and for all {i, j} /∈ S we
must have xi j = x ji = 0. Thus the problem is equivalent to the feasibility of the
following linear program.

αi j = Mi j + xi j > 0 ∀ distinct pairs {i, j}
αik ≤ αi j + α jk ∀ distinct triples {i, j, k}
xi j = x ji = 0 ∀{i, j} /∈ S

xi j = x ji ∀{i, j} ∈ S

Later in the paper we consider variants of MMVDwhere entries are only allowed to
be increased. Note that the above linear program can trivially be modified to handle
this case. Namely modify the last constraint to be xi j = x ji ≥ 0 ∀{i, j} ∈ S.

2.3 Notation and an Observation

We now list some notation which will be used for our approximation algorithms.
Given a dissimilarity graph G = (V , E), a subgraph C = (V ′, E ′) is called a k-cycle

123

Algorithmica (2022) 84:1441–1465 1447

if |V ′| = |E ′| = k and the subgraph is connected with every vertex having degree
exactly 2. We often overload this notation and use C to denote either the cyclically
ordered list of vertices or edges from this subgraph. Given a k-cycle inG, if the weight
of a single edge is strictly larger than sum of the weights of the other edges in the cycle,
we say it is an unbalanced k-cycle. For a given unbalanced k-cycle, call the largest
edge of the cycle the top edge and the other edges of the cycle the non-top edges. Call
any edge from G connecting two vertices which are non-adjacent in a given cycle, a
chord of that cycle.

We define three notions of covering unbalanced cycles, which correspond to our
three problem variants. Specifically, letC be any collection of unbalanced cycles from
a dissimilarity graph G = (V , E). We say an edge subset F ⊆ E is a (i) regular
cover, (ii) non-top cover, or (iii) top cover of C, if F contains at least one (i) edge,
(ii) non-top edge, or (iii) top edge of every unbalanced cycle in C. In particular, if C

is the set of all unbalanced cycles in G then we say F (i) regular covers, (ii) non-top
covers, or (iii) top covers G, respectively.

The following simple lemma implies that all unbalanced cycles must be regular
covered for MVD, non-top covered for MVID, and top covered for MVDD.

Lemma 2.5 For any dissimilarity graph G, if there exists an unbalanced k-cycle for
k ≥ 4, then there exists an unbalanced 3-cycle, i.e. an unsatisfied triangle inequality.

Proof Let k be the smallest value such that there is an unbalanced k-cycle, and suppose
for contradiction that k ≥ 4. Let C be an unbalanced k-cycle, and let x and y be any
two non-top edges ofC which are adjacent inC . These two edge form a unique triangle
in the complete input graph G with some third edge z (note as k ≥ 4, z is not in C).
Let C ′ be the cycle obtained from C by removing x and y and adding the edge z.
Since there are no unbalanced 3-cycles, w(z) ≤ w(x) + w(y). This implies C ′ is an
unbalanced k − 1 cycle, which is a contradiction with the definition of k. 	

3 Metric Violation Distance Complexity

In this section we prove the following decision version of MVD (and henceMMVD) is
NP-hard, and moreover the optimization version is APX-hard. The hardness of MVID
will then follow by essentially the same proof. Finally, we show that converselyMVDD
is polynomial time solvable.

Problem 3.1 Given a dissimilarity graph G, can G be converted into a metric graph
by modifying the weights of at most k edges.

The proof of hardness will be by a reduction from vertex cover.

Problem 3.2 [Vertex Cover] Given an undirected graph G = (V , E), is there a subset
V ′ ⊆ V of size |V ′| ≤ k such that each edge e ∈ E is incident to at least one vertex
in V ′?

As our reductionwill be approximation preserving, it actually impliesMVD is APX-
hard, as minimum vertex cover is APX-hard. Moreover, assuming the Unique Games
Conjecture, minimum vertex cover is hard to approximate within 2− ε for any ε > 0
[12], and thus the same is true for MVD.

123

1448 Algorithmica (2022) 84:1441–1465

Fig. 2 Vertex cover reduction: E edges are solid black, red are dashed, and purple are dotted (Color figure
online)

Theorem 3.3 Problem 3.1 is NP-Complete. Moreover,MVD is APX-hard, and assum-
ing the Unique Games Conjecture, is hard to approximate within a factor of 2− ε for
any ε > 0.

Proof Let G = (V , E) be an instance of Problem 3.2. We construct a corresponding
instance H = (V ∪ {v0}, E ′) of Problem 3.1 with weight function w : E ′ →
+,
where v0 is a newly added “apex” vertex. Note by definition H is a complete graph.
Partition the edges in E ′ into three named groups. The set E of edges from G, the
set P consisting of all edges adjacent to v0 called purple edges, and the set R of all
other edges (i.e. edges in the complement of G) called red edges. See Fig. 2 for an
illustration. The idea is to set edge weights such that modifying the weight of a given
purple edge to satisfy the triangle inequalities it is involved in, corresponds to selecting
the non-apex endpoint to cover its adjacent edges from E . Specifically, for e ∈ E set
w(e) = 2 + ε, for e ∈ P set w(e) = 1, and for e ∈ R set w(e) = 2, where ε is a
sufficiently small constant.

It is easy to verify that any unsatisfied triangle inequality in H must involve both
an edge from E and its two adjacent purple edges, that is it must be of the form
w(x, y) = 2 + ε > 1 + 1 = w(v0, x) + w(v0, y) where the edge {x, y} ∈ E .
Thus there is a one-to-one correspondence between E and the unsatisfied triangle
inequalities. So let F be the set of modified edges from a solution to Problem 3.1 on
H . We now show how to construct a vertex cover V ′ of G such that |V ′| ≤ |F |. For
e ∈ F , if e is purple, i.e. e = {v0, x}, then add x to V ′. Otherwise, if e = {x, y} ∈ E
then add either x or y to V ′ (and if it is red ignore it). Clearly |V ′| ≤ |F | and moreover
it is a valid vertex cover, since for the unsatisfied triangle inequality corresponding
to a given edge in e ∈ E , the solution F must contain either e or one of its adjacent
purple edges (and in either case we add an endpoint of e to V ′).

Conversely, observe that for each unsatisfied inequality corresponding to an edge
{x, y} ∈ E , if we change the weight of either the purple edge w(v0, x) or w(v0, y)

123

Algorithmica (2022) 84:1441–1465 1449

(or both) to be 1+ε then the inequality will be satisfied.Moreover, observe that if for a
given subset of purple edges, if we increase all their weights to be 1+ε, and not modify
any other edge weights, then we will not create any new unsatisfied inequalities. So
let V ′ be any solution to the vertex cover problem on G. The above implies that if for
every x ∈ V ′ we set w(v0, x) = 1 + ε, and leave all other weights unchanged, then
we have a valid solution to Problem 3.1 on H , such that |F | = |V ′| where F is the set
of modified edges.

The above reduction shows that Problem 3.1 is NP-Complete. In terms of approxi-
mating theMVD (or equivalent MMVD) optimization problem, observe that the above
reduction actually implies that a minimum sized solution to the described instance of
MVD corresponds to a minimum vertex cover from G (which we can even be read
off). Thus any approximation toMVD yields the same approximation to the minimum
vertex cover problem. 	

It is not difficult to argue that the hardness proof above for MVD also applies to
MVID, since in the proof weights only ever needed to be increased (we omit the details
as they are nearly identical to the above). Thus we have the following corollary of
Theorem 3.3.

Corollary 3.4 The decision version of MVID is NP-Complete. Moreover,MVID is APX-
hard, and assuming the Unique Games Conjecture, is hard to approximate within a
factor of 2 − ε for any ε > 0.

3.1 Metric Violation Decrease Distance is Polynomial Time Solvable

In this section we show that MVDD is actually polynomial time solvable by making a
connection to the all pairs shortest paths problem. A similar connection was made by
Brickell et al. [2] for the metric nearness problem.

Lemma 3.5 For an instance G = (V , E) of MVDD (Problem 2.3), a minimum size
subset S ⊆ E such that only decreasing edges from S turns G into a metric graph
can be found in polynomial time. More precisely, the running time is the same as
computing the set of all pairs shortest path distances.

Proof The algorithm is simple. Compute the all pairs shortest paths distances, and for
every edge e = {u, v} ∈ E , set w(e) equal to the shortest path distance between u
and v. Thus S is the set of edges whose weight is larger than the shortest path distance
between its end points, as these were the only weights which were changed.

First observe that it is necessary to change theweights of the edges in S. Specifically,
let e = {u, v}, and suppose w(e) is larger than the shortest path distance between u
and v. In this case the shortest u, v path together with the edge e forms an unbalanced
cycle, which by Lemma 2.5 we must balance. In order to balance this cycle, w(e)
needs to be less than or equal to the sum of the weights of the other edges in the cycle,
and since edge weights can only decrease, this implies balancing this cycle requires
decreasing w(e).

Now we argue that setting the edge weights in S to their shortest path distance
suffices to solve this instance of Problem 2.3. First observe that for any edge e = {u, v}

123

1450 Algorithmica (2022) 84:1441–1465

from any positively weighted graph if we set w(e) equal to its shortest path distance,
then the shortest path distance between every pair of vertices in the graph remains the
same. (This is because the only path lengths which can change are those which used
the edge e, and for any such path if we replace e with the shortest u, v path from the
original graph, we will get a walk in the original graph of the same total length.) Now
let H be the graph obtained from G after setting the weights in S to their shortest path
distance from G. The above observation implies that shortest path distances in H are
the same as those in G, as one can imagine obtaining H from G by modifying one
edge from S at a time. As H was obtained from G by setting weights of edges to their
shortest path distance in G, this implies that in H the weight of every edge is equal to
the shortest path distance between its endpoints, implying there can be no unsatisfied
triangle inequalities and so we are done. 	

4 Approximation Algorithm for MVID

In this section we first provide the details for our approximation to theMVID problem.
In the next section, our approximation for the general MVD problem will then follow
by a more intricate version of the same argument.

4.1 Unbalanced Cycles

Before providing our approximation algorithm for MVID, in this subsection we first
show that solutions toMVID can be characterized in terms of unbalanced cycles. Recall
Lemma 2.5, which implies that any solution to a MVID instance must non-top cover
all unbalanced cycles. We argue the more surprising fact that any such non-top cover
is also sufficient.

Lemma 4.1 If G is an instance of MVID and S is a non-top cover of all unbalanced
cycles, then G can be converted into a metric graph by only increasing weights of
edges in S.

Proof For now assume all edge weights are integers and let L denote the largest edge
weight. We describe a procedure which only modifies edges from S, producing a new
instanceG ′, such that (i) S remains a non-top cover ofG ′, (ii) the weight of at least one
edge strictly increases and none decrease, and (iii) no edge weight is ever increased
above L .

For any instance G and non-top cover S, if we prove such a procedure exists
whenever not all the edges in S have weight L , then this will imply the lemma.
Specifically, after applying the procedure at most |S| ·L times, all edge weights will be
equal to L , and hence no unbalanced cycle (and so no unsatisfied triangle inequality)
can remain, since otherwise S would cover that unbalanced cycle with an edge of
weight L , which is at least the weight of that cycle’s top edge (i.e. the cycle is not
actually unbalanced). Moreover, this procedure only increases weights of edges in
S, as desired. Note also that as the number of steps in this existential argument was
irrelevant, so long as it was finite, this procedure will imply the claim for rational input
weights as well.

123

Algorithmica (2022) 84:1441–1465 1451

Fig. 3 Cases from Lemma 4.1. Case 1 on the left. Case 2 on the right

We now prove the above described procedure exists. Let G and S be as in the
lemma statement, and fix any unbalanced triangle, which must exist otherwise all
triangle inequalities are already satisfied. Let a, b, and t be the edges of this triangle,
where t is the top edge, i.e. w(t) > w(a) + w(b). (See Fig. 3.) Note at least one
of either a or b must be in the set S. We break the analysis into two cases based on
whether just one or both are in S. In the following, for any cycle C, let w(C) denote
the sum of the weights of the edges in C.

Case 1: only one of a or b is in S. Without loss of generality suppose a is in S.
We then increase w(a) to be w(t) − w(b). If no new unbalanced cycles are created
after the increase, then we are done. Otherwise, if some new unbalanced cycle C was
created after increasing w(a), then a must be the top edge of C. Let π(C\a) denote
the sub-path of cycle C starting at the common vertex of a and t , and ending at the
common vertex of a and b. Consider the closed walk σ = π(C\a) ◦ b ◦ t , where
‘◦’ denotes walk concatenation. This closed walk σ must contain a cycle C which
includes the edge t . (If σ is simple then σ is C itself.) Note that C is unbalanced
with top edge t , since it only contains edges from (C\a) ∪ {b, t}, and so w(C\t) =
w(C) − w(t) ≤ w(C\a) + w(b) = w(C\a) − w(a) + w(t) < w(t), where the last
equality follows since we set w(a) = w(t) − w(b). Since C is unbalanced, it must be
non-top covered by S, which implies C is non-top cover by S. This is because C only
contains edges from (C\a) ∪ {b, t}, has top edge t , and by assumption b /∈ S.

Case 2: both a and b are in S. First, increase w(a) to the largest value possible
that does not create any new cycles that are both unbalanced and not non-top covered.
(Note the largest such value is well defined as the triangle inequality is not a strict
inequality.) If afterwardsw(a) ≥ w(t)−w(b), then we are done as the weight of a has
strictly increased since the previously violated triangle is now satisfied. Otherwise,
w(a) < w(t)−w(b) and there is some just balanced cycleC1 such that (C1\a)∩S = ∅,
which would become unbalanced if w(a) were any larger. Now increase w(b) to
w(b) = w(t) − w(a). If this does not create any non-top uncovered unbalanced cycle
then we are done. Otherwise, there is some non-top uncovered unbalanced cycle C2
created by setting w(b) = w(t) − w(a). Observe for later that after the change to
w(b), it still holds that w(C1\a) = w(a) as (C1\a) ∩ S = ∅ and b ∈ S. Let π(C1\a)

denote the sub-path of cycle C1 starting at the common vertex of a and t , and ending
at the common vertex of a and b, and let π(C2\b) denote the sub-path of cycle C2
starting at the common vertex of a and b, and ending at the common vertex of b
and t . Then consider the closed walk σ = π(C1\a) ◦ π(C2\b) ◦ t . As σ is closed

123

1452 Algorithmica (2022) 84:1441–1465

Fig. 4 Unbalanced 4-cycle not
covered by the dashed 3-cycle
cover

it must contain some cycle C which includes t . Note that C is unbalanced with top
edge t , since it only contains edges from (C1\a) ∪ (C2\b) ∪ {t}, and so w(C\t) =
w(C) − w(t) ≤ w(C1\a) + w(C2\b) = w(a) + w(C2\b) < w(a) + w(b) = w(t).
Since C is unbalanced, it must be non-top covered by S, which implies C2 is non-top
covered by S. This is because C only contains edges from (C1\a) ∪ (C2\b) ∪ {t},
(C1\a) ∩ S = ∅, and t is the top edge of C .

In either case, the weight of at least one edge from S was strictly increased, no
edges were decreased, and any newly created unbalanced cycle is still covered by S,
and thus the conditions of the above described procedure are satisfied. 	

Lemma 2.5 and Lemma 4.1 immediately imply the following.

Corollary 4.2 Let G be an instance of MVID. If S ⊂ E is a minimum size set which
non-top covers all the unbalanced cycles in G, then S is an optimal solution toMVID.

4.2 Small Cycle Covers are Almost Enough

Corollary 4.2 showed the equivalence between minimum non-top covers of all unbal-
anced cycles and solutions to MVID. The question is how hard is it to find or
approximate such a cover. We have already argued MVID is at least as hard as ver-
tex cover, however, covering all unbalanced cycles appears a step closer to the more
general set cover problem, which is logarithmically hard to approximate. Worse still,
we cannot (at least explicitly) write down our non-top cover problem as a set cover
instance as there are potentially an exponential number of unbalanced cycles.

One natural question is whether explicitly covering larger cycles is necessary, i.e.
perhaps non-top covering all unbalanced 3 cycles implies non-top covering all larger
unbalanced cycles, however the example in Fig. 4 quickly dispels this idea. This
example consists of single unbalanced 4-cycle, whose vertices in cyclic order are
(a, b, c, d), whose top edge {a, d} has weight 3+ε, and all other edges have weight 1.
Here there are are two unbalanced 3-cycles, (a, b, d) and (a, c, d). Thus all unbalanced
3-cycles can be covered by the edges, {a, c} and {b, d}, however this does not cover
the unbalanced 4-cycle. Unfortunately, this can be generalized for any integer n, by

123

Algorithmica (2022) 84:1441–1465 1453

creating a cycle of length n where all edges in the graph have weight 1 except for a
single cycle edge which has weight n−1+ ε. Thus for no k < n does a non-top cover
of all unbalanced cycles of size ≤ k imply a non-top cover of all unbalanced cycles.

So we must consider larger unbalanced cycles, which motivates the following def-
initions.

Definition 4.1 Let C be an unbalanced cycle of length k ≥ 4, and let (v1, v2, . . . , vk)
be the cyclic ordering of the vertices in C , where t = {vk, v1} is the top edge of C .
For any chord e = {vi , v j } of C , where i < j , we define two cycles. The top cycle,
top(C, e) = (v1, . . . , vi , v j , . . . , vk) containing the top edge t , and the bottom cycle,
bot(C, e) = (vi , vi+1 . . . , v j).

For an unbalanced cycle C , if there exists a chord e of C such that bot(C, e) is
unbalanced and e is the top edge of bot(C, e), then C is called a non-unit cycle,
otherwise C is called a unit cycle.

The following simple observation implies we can limit attention to unit cycles.

Observation 4.1 Let G = (V , E) be an instance of MVID. If S ⊂ E non-top covers
all unit cycles in G, then S must non-top cover all unbalanced cycles, and hence is a
solution toMVID. This is because by definition any unbalanced non-unit cycle C must
have a chord e whose bottom cycle is unbalanced with top edge e, and in particular
the smallest such bottom cycle C ′ must be a unit cycle. Thus as the non-top edges of
C ′ are a subset of those of C, if S non-top covers C ′ it must non-top cover C.

In general there can still be large unit cycles, however, we have the following useful
property.

Lemma 4.3 For any chord e of a unit cycle C, top(C, e) is unbalanced, with the same
top edge as C.

Proof First, observe that sinceC is a unit cycle, either the bottom cycle of e is balanced,
or it is unbalanced but the top edge is not e. In either case,w(e) ≤ w(bot(C, e))−w(e).
Let t be the top edge of C . We thus have w(t) > w(C) − w(t) = w(top(C, e)) +
w(bot(C, e)) − 2w(e) − w(t) ≥ w(top(C, e)) − w(t). 	

To see why the above lemma is useful for handling larger unit cycles, we must first
get rid of smaller unbalanced cycles, which can be easily done.

Lemma 4.4 Let G = (V , E) be an instance of MVID, let C≤k be the set of all unbal-
anced cycles with at most k edges for some constant k, and let opt be a minimum size
non-top cover of C≤k . Then in polynomial time one can compute a constant factor
approximation to opt.

More precisely, in O(|V |k) time, one can compute a set S≤k which non-top covers
C≤k , and such that |S≤k | ≤ (k − 1)|opt |.
Proof The proof follows by applying the standard hitting set approximation for
bounded size sets. Specifically, each unbalanced cycle in C≤k defines a set of ≤ k − 1
non-top edges. Let H denote the collection of all such sets, and observe a non-top
cover of C≤k corresponds to a hitting set for H . So initially let S≤k be the empty set,

123

1454 Algorithmica (2022) 84:1441–1465

Fig. 5 Cycle C = (v1, v2 . . . ,

vk), and edges of embed4(C) in
solid red (Color figure online)

and consider the sets in H one at a time. When considering a set h ∈ H , if h has not
been hit, then add all edges of h to S≤k , and otherwise do nothing. Clearly the final
set S≤k is a hitting set, and has size at most (k − 1)|opt | since each time we add all
edges of a set, the set was uncovered, and so any solution had to add at least one of
those edges. The running time follows as we make a single linear pass over H , and
note that C≤k and hence H can be enumerated in O(|V |k) time. 	

Now for larger unit cycles we have the following useful corollary of Lemma 4.3.

Corollary 4.5 Let S≤k be a non-top cover of all unbalanced cycles of length ≤ k. Then
for any unit cycle C with strictly more than k edges, if C is not non-top covered by
S≤k , then for any chord e such that top(C, e) has ≤ k edges, e ∈ S≤k .

Proof Let e be any chord such that top(C, e) has ≤ k edges. As C is a unit cycle, by
Lemma 4.3, top(C, e) is unbalanced, with the same top edge as C . Thus S≤k must
non-top cover top(C, e). Note however, that with the exception of the edge e, the
non-top edges of top(C, e) are a subset of those of C . Thus since C is not non-top
covered by S≤k , e must be the edge in S≤k which non-top covers top(C, e). 	

By Observation 4.1 we know it suffices to non-top cover all unit cycles, however,
the issue is that in general unit cycles may be large. On the other hand, Corollary 4.5
tells us that if we first cover smaller unbalanced cycles, then while we may not cover
larger unit cycles, we do cover all chords near their top edges. We first describe a
procedure which adds a carefully chosen set of edges to cover larger unit cycles, and
then in the next section argue how to bound the size of the added set by charging to
these chords.

Definition 4.2 Let S≤6 be a non-top cover of all unbalanced cycles with ≤ 6 edges.
Consider any unbalanced cycle C = (v1, v2, v3 . . . , vk−2, vk−1, vk), with k > 6,

123

Algorithmica (2022) 84:1441–1465 1455

where t = {vk, v1} is the top edge ofC . For any such cycleC , we define the embedded
4-cycle of C to be the cycle defined by the cyclically ordered edges embed4(C) =
({v2, vk−2}, {vk−2, v3}, {v3, vk−1}, {vk−1, v2}). See Fig. 5.

Observe that for a unit cycle C with more than 6 edges, Corollary 4.5 implies that
if C is not covered by S≤6, then S≤6 must contain all edges of embed4(C). Next
observe that the chords of embed4(C), namely the edges {v2, v3} and {vk−2, vk−1}
are actually non-top edges of the cycle C . In other words, if we add to S≤6 any set
of edges containing at least one chord from the embedded 4 cycle of each unit cycle,
then we will have a non-top cover of all unit cycles, and hence a solution to MVID by
Observation 4.1. Recall we cannot list all unit cycles, and hence it is not clear how
to precisely list all their embedded 4 cycles. On the other hand, as all edges of an
embedded 4 cycle of a unit cycle are contained in S≤6, we can instead consider the
potentially larger set of all 4 cycles in the graph defined by the edge set S≤6. This
implies the following lemma.

Lemma 4.6 Let G be an instance of MVID, and let S≤6 be a non-top cover of all
unbalanced cycles with ≤ 6 edges. Let Sc be a set of edges containing at least one
chord from all possible 4 cycles defined by the edges of S≤6. Then S = S≤6 ∪ Sc is a
valid solution to the given instance of MVID, that is the edges in S can be increased
to convert G into a metric graph.

4.3 Chording Cycles

The goal of this section is to compute a set Sc as described inLemma4.6which contains
at least one chord of every induced 4-cycle of a subset of edges. So let G = (V , E)

be a complete graph, and for any edge subset F ⊆ E , consider the induced subgraph
H = (V , F). Let Cycle(F) denote the set of all cycles in H with exactly 4 edges. Let
chord4(F) denote the following iterative procedure. Initially let S = ∅, and consider
each cycle C ∈ Cycle(F) one at time. If either chord of C appears in S ignore C ,
otherwise add both chords to S. (Note chords are considered from the complete graph
G, i.e. regardless of whether they appear in H .) After all cycles have been considered
output S.

Clearly chord4(F) outputs a set S containing at least one chord from each cycle
in Cycle(F) and does so in polynomial time. The question is how big is |S| relative
to |F |. So let C denote the set of cycles for which chord4(F) added its chords to S.
Observe that no two cycles in C can share a chord (as the first of any pair of cycles in
C to be considered by chord4(F) had its chords added, prohibiting any future cycles
sharing those chords from being in C). So we have |S|/2 = |C|, and also note that
|edges(C)| ≤ |F | (as C is a set of cycles from H = (V , F)), where edges(C) is the
set of all edges from cycles inC. Thus to bound the size of |S| in terms of |F |, it suffices
to bound |C| in terms of |edges(C)|. This gives the following purely combinatorial
problem.

Lemma 4.7 Let G = (V , E) be a graph whose edge set E is the union of the
edges of a collection of 4-cycles, C, such that no two 4-cycles in C share a chord.

123

1456 Algorithmica (2022) 84:1441–1465

(Note this applies to all chords in the complete graph on V , i.e. regardless of whether
they appear in E.) Then |C| = O(|E |4/3).

Proof We partition the vertex set V into two groups based on degree. Specifically, let
Vs be the set of all vertices of degree ≤ |E |1/3 and let Vl be the vertices with degree
> |E |1/3. Nowwe separately bound the number of cycles containing at least one vertex
from Vs and the number of cycles only containing vertices from Vl , and hence the total
number of cycles is the sum of these two numbers. First, we further partition Vs into
groups g1, . . . , gk such that for all 1 ≤ i ≤ k, |E |1/3 ≤ ∑

v∈gi degree(v) ≤ 2|E |1/3.
(Such a partition can be computed by iterating over the vertices in Vs with a running
degree sum total, setting aside a group and reseting the total to zero each time the sum
is ≥ |E |1/3.) Note that as the total degree of each gi is at least |E |1/3, by the degree
sum formula k|E |1/3 ≤ 2|E |, and so k ≤ 2|E |2/3. Now any two edges adjacent to the
same vertex can both appear together in at most one 4-cycle, as otherwise this would
imply the two 4-cycles share a chord. Thus each distinct pair of edges adjacent to a
vertex v can correspond to at most one cycle, and hence the total number of cycles
involving v is bounded by

(degree(v)
2

) ≤ (degree(v))2/2. We thus have that number
of cycles involving vertices from Vs is

≤ 1

2

k∑

i=1

∑

v∈gi
(degree(v))2 ≤ 1

2

k∑

i=1

(
∑

v∈gi
degree(v)

)2

≤ 1

2

k∑

i=1

4|E |2/3 ≤ |E |2/3 · 4|E |2/3 = 4|E |4/3,

where the second inequality follows from the fact that a2+b2 ≤ (a+b)2 for a, b ≥ 0.
Now consider the vertices in Vl . As each vertex in Vl has degree > |E |1/3, by

the degree sum formula, 2|E | ≥ ∑
v∈Vl degree(v) ≥ |Vl | · |E |1/3. Therefore |Vl | ≤

2|E |2/3. Now as discussed above, we only need to consider cycles composed entirely
of vertices from Vl . Now Vl can define at most

(|Vl |
2

) ≤ |Vl |2/2 ≤ 2|E |4/3 chords, and
since no two cycles can share a chord, this implies Vl can define at most |E |4/3 cycles,
and thus the lemma statement follows. 	

By the discussion before the lemma, we thus have the following.

Corollary 4.8 Let F be any subset of edges from a complete graph G = (V , E). Then
in polynomial time chord4(F) outputs a set of edges S such that (i) S contains at least
one chord of every 4-cycle induced by the edges of F, and (ii) |S| = O(|F |4/3).

The reader may wonder whether the analysis of Lemma 4.7 is tight. Thus in
“Appendix A” we provide a corresponding lower bound showing that indeed the 4/3
exponent is tight in the worst case for this combinatorial problem. This lower bound
uses an interesting and non-trivial probabilistic method argument, though as it does
not directly relate to upper bounding the approximation quality of our algorithm, it is
left to the appendix.

123

Algorithmica (2022) 84:1441–1465 1457

4.4 The Result

The approach outlined in Sect. 4.2 (particularly Lemma 4.6), together with the bound
from Corollary 4.8 readily give the following.

Input : An instance G of MVID, Problem 2.4.
Output: A solution S, and a valid assignement to the edges in S.

1 Compute a non-top cover S≤6 of all unbalanced cycles with ≤ 6 edges using Lemma 4.4
2 Compute a chord cover Sc = chord4(S≤6) using Corollary 4.8
3 Formulate and return any feasible solution to the LP described in Sect. 2.2 for the edge set
S = S≤6 ∪ Sc .

Algorithm 1: Finds a valid solution for MVID.

Theorem 4.9 Algorithm 1 gives a polynomial time O(OPT 1/3)-approximation to any
instanceG of MVID (Problem 2.4), where OPT denotes the size of an optimal solution.

Proof Algorithm 1 returns a set S = S≤6 ∪ Sc. By Lemma 4.4, S≤6 is a non-top cover
of all unbalanced cycles with≤ 6 edges, and by Corollary 4.8, Sc contains at least one
chord from every 4-cycle induced by the edges of S≤6. Thus by Lemma 4.6, S is a
valid solution to the given instance of MVID, and Sect. 2.2 implies the edge assignment
given by the LP is feasible.

The running time is clearly polynomial as the procedures of Lemma 4.4, Corollary
4.8, and the feasibility checking of Sect. 2.2, were all already argued to run in poly-
nomial time. As for the approximation quality, note that Lemma 4.1 implies OPT is
the size of a minimum sized set of edges which non-top covers all unbalanced cycles.
Moreover, Lemma 4.4 tells us |S≤6| ≤ 5|opt6| = O(OPT), where opt6 denotes any
minimum size non-top cover of all unbalanced cycles of length≤ 6. Finally, Corollary
4.8 tells us |Sc| = O(|S≤6|4/3), and therefore |S| = O(OPT 4/3). 	

5 General Metric Violation Distance

Now we consider the general MVD problem, where both increasing and decreasing
edge weights are allowed. The high level argument will be similar to that used for
MVID.

5.1 Unbalanced Cycles

Recall our different notions of covering fromSect. 2.3. Lemma2.5 implies any solution
to a MVD instance must regular cover all unbalanced cycles. We now prove the more
surprising fact that any such regular cover is also sufficient, that is the analog of Lemma
4.1 but forMVD. However, the proof here is farmore intricate, and in particular requires
the following helper lemma.

123

1458 Algorithmica (2022) 84:1441–1465

Fig. 6 Edge b top covers C1 and
non-top covers C2

Lemma 5.1 Let G = (V , E) be an instance of MVD. If S is a regular cover of all
unbalanced cycles, then S can be partitioned into two disjoint sets S+ and S− such
that each unbalanced cycle is either non-top covered by S+ or top covered by S−.

Proof Let S be a regular cover of all unbalanced cycles and let S+ and S− initially be
empty sets. We now define an interative procedure, which in each iteration removes
one edge from S and adds it to either S+ or S−. We maintain the invariant that each
unbalanced cycle is either top covered by S− ∪ S or non-top covered by S+ ∪ S. Thus,
after a finite number of iterations, S will be empty, and S+ and S− will be two disjoint
sets such that each unbalanced cycle is either non-top covered by S+ or top covered
by S−.

Suppose at step i , we pick an edge b from set S. There are two cases. Case 1: if
each unbalanced cycle is either top covered by S− ∪ (S\b) or non-top covered by
(S+ ∪ b) ∪ (S\b), then we add b to S+. Case 2: if each unbalanced cycle is either top
covered by (S− ∪ b)∪ (S\b) or non-top covered by S+ ∪ (S\b), then we add b to S−.
We now argue by contradiction that these are the only possible cases.

If Case 1 does not hold, then there must be an unbalanced cycle C1 which is neither
top covered by S− ∪ (S\b) nor non-top covered by (S+ ∪ b) ∪ (S\b). As C1 must be
top covered by S− ∪ S or non-top covered by S+ ∪ S (by induction), this implies that
b must top cover C1. If Case 2 does not hold then there is an unbalanced cycle C2
which is neither top covered (S− ∪ b) ∪ (S\b) nor non-top covered by S+ ∪ (S\b),
and similarly this implies b must non-top cover C2. Now consider the closed walk
σ = π(C1\b) ◦ π(C2\b) (see Fig. 6). Let t be the top edge of C2. There exists a
cycle C only containing edges from σ whose top edge is t , and is unbalanced because
w(t) > w(C2\t) = w(C2\{t, b})+w(b) > w(C2\{t, b})+w(C1\b) ≥ w(C)−w(t).
Observe that (C1\b) ∩ (S+ ∪ S) = ∅ and (C2\t) ∩ (S+ ∪ (S\b)) = ∅ which implies
(C\t) ∩ (S+ ∪ S) = ∅ because b /∈ C . Additionally, we have that t /∈ (S− ∪ S) as
otherwise C2 would be top covered by (S− ∪b)∪ (S\b). AsC must be top covered by
S− ∪ S or non-top covered by S+ ∪ S (again by induction), this give a contradiction
as we showed t /∈ (S− ∪ S) and (C\t) ∩ (S+ ∪ S) = ∅.

Therefore, we can add b to S+ or S− (according to case 1 or 2) and remove it from
S such that each unbalanced cycle remains either top covered by S− ∪ S or non-top

123

Algorithmica (2022) 84:1441–1465 1459

covered by S+ ∪ S. Thus, after at most |S0| rounds, where S0 is the initial state of S,
S+ and S− will be as in the lemma statement. 	

Lemma 5.2 If G is an instance of MVD and S is a regular cover of all unbalanced
cycles, then G can be converted into a metric graph by only changing weights of edges
in S.

Proof For now assume all edge weights are integers and let L denote the largest edge
weight. First use Lemma 5.1 to partition S into two disjoint sets S+ and S−, such that
every unbalanced cycle is either non-top covered by S+ or top covered by S−. We
describe a procedure, producing a new instance G ′, such that [(i)] every unbalanced
cycle of G ′ is either non-top covered by S+ or top covered by S−, [(ii)] the weight of
either at least one S+ edge strictly increases or at least one S− edge strictly decreases
(and no other edge weights are modified), and [(iii)] no edge weight is ever increased
above L or decreased below 0. Proving such a procedure exists for any instance G
and regular cover S, will imply the lemma. Specifically, after applying the procedure
at most |S| · L times, all edge weights in S+ will be equal to L , and all edge weights
in S− will be equal to 0. This implies there are no remaining unbalanced cycles, since
otherwise the unbalanced cycle is either non-top covered by an edge of weight L or
top covered by an edge of weight 0, in either case implying the cycle is not actually
unbalanced. Moreover, this procedure only modifies edge weights from S as desired.
As the number of steps in this existential argument was irrelevant, so long as it was
finite, this procedure will imply the claim for rational input weights as well.

We now prove the above described procedure exists. Let G and S be as in the
lemma statement, and fix any unbalanced triangle, which must exist otherwise all
triangle inequalities are already satisfied. Let a, b, and t be the edges of this triangle,
where t is the top edge. Note that either {a, b} ∩ S+ �= ∅ or t ∈ S−. We break the
analysis into several cases based on whether just one or both of a,b are in S+, or
neither are in S+ and t is in S−. If a cycle is not non-top covered by S+ or not top
covered by S−, we say that cycle is uncovered.

Case 1: t /∈ S−, and exactly one of a or b is in S+. Without loss of generality
suppose a ∈ S+, b /∈ S+, t /∈ S−. We then increase w(a) to be w(t) − w(b). If no
new unbalanced cycles are created after the increase, then we are done. Otherwise, if
some new unbalanced cycle C was created after increasing w(a), then a must be the
top edge of C. Let π(C\a) denote the sub-path of cycle C which starts at the common
vertex of a and t , and ends at the common vertex of a and b. Consider the closed walk
σ = π(C\a) ◦ b ◦ t . This closed walk σ must contain a cycle C which includes the
edge t . Note that C is unbalanced with top edge t , since it only contains edges from
(C\a)∪{b, t}, and sow(C\t) = w(C)−w(t) ≤ w(C\a)+w(b) = w(C\a)−w(a)+
w(t) < w(t), where the last equality follows since we set w(a) = w(t)−w(b). Since
C is unbalanced, it must be non-top covered by S+ as t /∈ S−, which implies C is
non-top covered by S+, because C only contains edges from (C\a) ∪ {b, t}, has top
edge t , and by assumption b /∈ S+.

Case 2: t /∈ S− and a, b ∈ S+. First, increasew(a) to the largest value possible that
does not create any uncovered unbalanced cycle. If afterwards w(a) ≥ w(t) − w(b),
then we are done as the weight of a has strictly increased since the previously violated
triangle is now satisfied. Otherwise, w(a) < w(t) − w(b) and there is some just

123

1460 Algorithmica (2022) 84:1441–1465

balanced cycle C1 that (C1\a) ∩ S+ = ∅, which would become unbalanced if w(a)

were any larger. Now increase w(b) to w(t) − w(a). If this does not create any
uncovered unbalanced cycle then we are done; otherwise, some unbalanced cycle
C2 was created. Observe for later that after the change to w(b), it still holds that
w(C1\a) = w(a) as (C1\a)∩ S+ = ∅ and b ∈ S+. Let π(C1\a) denote the sub-path
of C1 starting at the common vertex of a and t , and ending at the common vertex of
a and b, and let π(C2\b) denote the sub-path of C2 starting at the common vertex of
a and b, and ending at the common vertex of b and t . Then consider the closed walk
σ = π(C1\a)◦π(C2\b)◦t . Asσ is closed itmust contain some cycleC which includes
the edge t . Note thatC is unbalanced with top edge t , since it only contains edges from
(C1\a) ∪ (C2\b) ∪ {t}, and so w(C\t) = w(C) − w(t) ≤ w(C1\a) + w(C2\b) =
w(a) + w(C2\b) < w(a) + w(b) = w(t). Since C is unbalanced, it must be non-top
covered by S+ as t /∈ S−, which implies C2 is non-top covered by S+. This is because
C only contains edges from (C1\a) ∪ (C2\b) ∪ {t}, and (C1\a) ∩ S+ = ∅, and t is
the top edge of C .

Case 3: t ∈ S− and a, b /∈ S+. First, decrease w(t) to be w(a) + w(b). If no new
unbalanced cycles are created, then we are done. Otherwise, some new unbalanced
cycle C was created, which includes t and has top edge t ′ �= t . Let π(C\t) denote the
sub-path C starting at the common vertex of t and a, and ending at the common vertex
of t and b. Consider the closed walk σ = π(C\t)◦a◦b, and letC be a cycle contained
in the σ which includes t ′. Note that C is unbalanced with top edge t ′, since it only
contains edges from (C\t) ∪ {a, b}, and so it holds that w(C\t ′) = w(C) − w(t ′) ≤
w(C) + w(a) + w(b) − w(t) − w(t ′) = w(C\t ′) < w(t ′), where the last equality
follows since we set w(t) = w(a) + w(b). Since C is unbalanced, it must be either
top covered by S− or non-top covered by S+, which implies C is either top covered
by S− or non-top covered by S+, because C only contains edges from (C\t) ∪ {a, b},
and by assumption a, b /∈ S+.

Case 4: t ∈ S− and exactly one of a or b is in S+.Without loss of generality suppose
a ∈ S+, b /∈ S+. First, increase w(a) to the largest value possible that does not create
any new uncovered unbalanced cycle. If afterwards w(a) ≥ w(t) − w(b), then we
are done. Otherwise, w(a) < w(t) − w(b) and there is some just balanced cycle C1
with (C1\a) ∩ S+ = ∅, which would be unbalanced if w(a) were any larger. Now
decrease w(t) to w(t) = w(b) + w(a). If this does not create an unbalance cycle,
then we are done. Otherwise, some unbalanced cycle C2 containing t was created,
with top edge t ′ �= t . Let π(C1\a) denote the sub-path of C1 starting at the common
vertex of a and t and ending at the common vertex of a and b, and let π(C2\b)
denote the sub-path of C2 starting at the common vertex of b and t and ending at the
common vertex of a and t . Consider the closed walk σ = π(C1\a) ◦ b ◦ π(C2\t),
and let C be a cycle in σ including t ′. Note C is unbalanced with top edge t ′, since
it only contains edges from (C1\a) ∪ (C2\t) ∪ {b}, and so w(C\t ′) ≤ w(C) − w(t ′)
≤ w(C1\a) + w(C2\t) + w(b) − w(t ′) = w(a) + w(b) + w(C2) − w(t) − w(t ′) =
w(C2) − w(t ′) = w(C2\t ′) < w(t ′). Since C is unbalanced, it is either non-top
covered by S+ or top covered by S−, implying C2 is either non-top covered by S+
or top covered by t ′ ∈ S−, since C only has edges from (C1\a) ∪ (C2\t) ∪ {b}, and
(C1\a) ∩ S+ = ∅, b /∈ S+, and t ′ is the top edge of C .

123

Algorithmica (2022) 84:1441–1465 1461

Case 5: t ∈ S− and a, b ∈ S+. First, increasew(a) to the largest value possible that
does not create any uncovered unbalanced cycles. If afterwards w(a) ≥ w(t)−w(b),
then we are done. Otherwise, w(a) < w(t) − w(b) and there is some just balanced
cycle C1 with (C1\a) ∩ S+ = ∅, which would be unbalanced if w(a) were any
larger. Now increase w(b) to the largest value possible that does not create any new
unbalanced cycles that are not non-top covered. If afterwards w(b) ≥ w(t) − w(a),
then we are done. Otherwise, w(b) < w(t) − w(a) and there is some just balanced
cycle C2 with (C2\b)∩ S+ = ∅, which would be unbalanced if w(b) were any larger.
Now decrease w(t) to w(a)+w(b). If this does not create any uncovered unbalanced
cycle then we are done. Otherwise, some uncovered unbalanced cycle C3 is created
which contains t and whose top edge is t ′ �= t . Let π(C1\a) denote the sub-path of
C1 starting at the common vertex of a and t , and ending at the common vertex of a
and b, let π(C2\b) denote the sub-path of C2 starting at the common vertex of a and
b, and ending at the common vertex of b and t , and let π(C3\t) denote the sub-path
of C3 starting at the common vertex of b and t , and ending at the common vertex of a
and t . Consider the closed walk σ = π(C1\a) ◦ π(C2\b) ◦ π(C3\t). As σ is closed
it must contain some cycle C which includes the edge t ′. Note that C is unbalanced
with top edge t ′, since it only contains edges from (C1\a) ∪ (C2\b) ∪ (C3\t), and so
it holds that w(C\t ′) = w(C) − w(t ′) ≤ w(C1\a) + w(C2\b) + w(C3\t) − w(t ′) =
w(a) + w(b) − w(t) + w(C3\t ′) = w(C3\t ′) < w(t ′). Since C is unbalanced, it
must be either non-top covered by S+ or top covered by t ′, which implies C3 is either
non-top covered by S+ or top covered by t ′. This is because C only contains edges
from (C1\a) ∪ (C2\b) ∪ (C3\t), and (C1\a) ∩ S+ = ∅, (C2\b) ∩ S+ = ∅, and t ′ is
the top edge of C .

In every case, the weight of at least one edge from S+ was strictly increased or
from S− was strictly decreased, and any newly created unbalanced cycle is either
top covered by S− or non-top covered by S+, and thus the conditions of the above
described procedure are satisfied. 	

5.2 The Result

By the previous subsection, we know that optimal solutions to MVD are minimum
regular covers of all unbalanced cycles. Surprisingly we can approximate such regular
covers using the exact same algorithm used to approximate non-top covers, namely
output a set S = S≤6 ∪ Sc where S≤6 is a regular cover of all unbalanced cycles with
≤ 6 edges, and Sc is a set containing at least one chord from every induced 4-cycle
of S≤6. While this still produces a valid solution, the reason somewhat differs from
before, as outlined in the proof below. First, we need the following lemma, whose
proof is omitted as it is identical to Lemma 4.4, except for the change from non-top
to regular covers.

Lemma 5.3 Let G = (V , E) be an instance of MVD, let C≤k be the set of all unbal-
anced cycles with at most k edges for some constant k, and let opt be a minimum
size regular cover of C≤k . Then in polynomial time one can compute a constant factor
approximation to opt.

123

1462 Algorithmica (2022) 84:1441–1465

More precisely, in O(|V |k) time, one can compute a set S≤k which regular covers
C≤k , and such that |S≤k | ≤ k|opt |.

Input : An instance G of MVD, Problem 2.2.
Output: A solution S, and a valid assignement to the edges in S.

1 Compute a regular cover S≤6 of all unbalanced cycles with ≤ 6 edges using Lemma 5.3
2 Compute a cover Sc = chord4(S≤6) using Corollary 4.8
3 Formulate and return any feasible solution to the LP described in Sect. 2.2 for the edge set
S = S≤6 ∪ Sc .

Algorithm 2: Finds a valid solution for MVD.

Theorem 5.4 Algorithm 2 gives a polynomial time O(OPT 1/3)-approximation to any
instance G of MVD (Problem 2.2), where OPT denotes the size of an optimal solution.

Proof First we argue that Algorithm 2 returns a regular cover of all unbalanced cycles
and hence is a valid solution by Lemma 5.2. So consider some unbalanced cycle C ′.
If it is regular covered by S≤6 then we are done, so assume otherwise. We now argue
C ′ must be regular covered by Sc. Among all unbalanced bottom cycles defined by
a chord of C ′ such that the chord is the top edge of the bottom cycle and the bottom
cycle is not regular covered by S≤6, let C = bot(C ′, e′) be the one with the minimum
number of edges. If C ′ has no such unbalanced bottom cycles that are not regular
covered, then set C = C ′. Let t denote the top edge of C .

AsC is not regular covered by S≤6, clearly it has> 6 edges, and thus embed4(C) is
well defined (seeDefinition4.2). Fix any edge e ∈ embed4(C), and letC1 = top(C, e)
and C2 = bot(C, e). We now argue e ∈ S≤6. Note that C1 has at most 6 edges, thus if
C1 is unbalanced, then it must be regular covered by S≤6, and in particular this implies
e ∈ S≤6 since e is the only edge of C1 not in C . Otherwise, C1 is balanced, in which
case w(e) ≥ w(t) − w(C1\{t, e}), which implies C2 is unbalanced as,

w(e) ≥ w(t) − (w(C1) − w(t) − w(e))

= 2w(t) − (w(C1) − w(e)) = 2w(t) − (w(C) − w(C2\e)) > w(C2\e)

since w(t) > w(C) − w(t). Thus C2 = bot(C, e) = bot(C ′, e) is an unbalanced
bottom cycle of C ′ with length less than C and with top edge e, and so must be regular
covered by S≤6. As C is not regular covered, and e is the only edge of C2 not in C ,
this implies e ∈ S≤6. Thus in either case, for any e ∈ embed4(C), e ∈ S≤6. This
implies Sc will contain a chord of the cycle embed4(C), and therefore C ′ will be
regular covered by Sc.

The above argues we return a valid solution. The approximation ratio and time
complexity analysis are nearly identical to that in the proof of Theorem 4.9, and so
are omitted here. 	

123

Algorithmica (2022) 84:1441–1465 1463

6 Conclusion

In this paper we presented an O(OPT 1/3) approximation for MVD, where OPT
is the size of the optimal solution, which in the worst case is �(n2). Conversely, we
showedMVDisAPX-hard by reduction fromvertex cover,which assuming theUnique
Games Conjecture is hard to approximate within 2 − ε for any ε > 0. Thus a natural
open problem is to close this gap between hardness and approximation. Moreover,
our approximation algorithm takes �(n6) time to compute a cover as we enumerate
cycles of length 6, and so there is also the problem of improving the running time.
Finally, in this paper we distinguished the increase only case from the general one,
and this helped in the algorithm design process. However, it remains an open question
whether there is actually a difference in hardness between these two cases.

Acknowledgements The authors thank Sariel Har-Peled for helping us understand the nature of the com-
binatorial problem arising from our chording procedure in Sect. 4.3. The authors also thank Hsien-Chih
Chang, K. Alex Mills, and Amir Nayyeri for helpful discussions. Finally, the authors thank the reviewers
for their valuable comments.

AMatching Lower Bound

The following is a matching lower bound to the combinatorial problem from Lemma
4.7.

Lemma A.1 Let G = (V , E) be a graph whose edge set E is the union of the edges
of a collection of 4-cycles, C, such that no two 4-cycles in C can share a chord. (Note
this applies to all chords in the complete graph on V , i.e. regardless of whether they
appear in E.) Then in the worst case |C| = �(m4/3), where m = |E |.
Proof Construct a graph G = (V , E), where V is the disjoint union of four sets of
vertices X1, X2, X3, and X4, each containing exactly t vertices, where t is a value
to be determined shortly. The edge set E is sampled as follows. For 1 ≤ i ≤ 4, for
each pair (u, v) ∈ Xi × Xi+1 (where X5 = X1), the edge (u, v) is sampled into E
independently with probability

p = m

8t2
� 1.

Let C be the set of 4-cycles defined by E . Any cycle C ∈ C must contain exactly
one vertex from each of X1, X2, X3, and X4. The probability that any quadruple of
vertices (i1, i2, i3, i4) ∈ X1 × X2 × X3 × X4 defines a cycle in C is p4. As such, the
expected size of C is

α = p4t4 =
(m

8t2

)4
t4 =

(m

8t

)4
.

Consider such a cycle C = (i1, i2, i3, i4) that we know exists in the graph. Any
cycle which shares the chord {i1, i3} with C clearly shares the vertices i1 and i3. Now

123

1464 Algorithmica (2022) 84:1441–1465

such a cycle either shares a third vertex or not. The expected number of cycles which
share the chord {i1, i3} and no other vertex is at most t2 p4 The expected number of
cycles which share the chord {i1, i3} and one other vertex is at most 2tp2. Let XC be
a random variable denoting the number of cycles sharing either chord (i.e., {i1, i3} or
{i2, i4}) with C . Assuming tp2 ≤ 1 we have,

E[XC | C exists] ≤ 2(2tp2 + t2 p4) ≤ 2(2 + tp2)tp2 ≤ 6tp2.

Assume further that 6tp2 ≤ 1/10, then by Markov’s inequality we have

β(C) = Pr
[
no cycle shares a chord with C | C exists

]

= 1 − Pr[XC ≥ 1|Cexists] ≥ 9

10
.

Let Y be a random variable denoting the number of cycles that exists in the graph and
don’t share a chord with any other cycle that exists in the graph. We have that

δ = E[Y]

=
∑

C

Pr
[
(no cycle shares chord with C) ∩(C exists)

]

=
∑

C

β(C) · Pr[C exists] ≥ 9

10
α.

Note that as α was the expected number of cycles overall, this implies δ = E[Y] =
�(α).

Recall that we assumed 6tp2 ≤ 1/10, which plugging in for p becomes,

1

10
≥ 6t

(m

8t2

)2 ≥ 3

32

m2

t3
�⇒ t ≥ (30/32)1/3m2/3.

Thus setting t = m2/3 (which up to constants minimizes α) implies the expected
number of cycles that do not share a chord is

δ = �(p4t4) = �

((m

t2

)4
t4

)

= �

(
m4

t4

)

= �

(
m4

m8/3

)

= �
(
m4/3

)
.

On the other hand, the expected number of edges is 4t2 p = m/2, and moreover by the
Chernoff bound with high probability is at most m. Thus by the probabilistic method
there exists a graph where |E | ≤ m and the number of 4-cycles which don’t share a
chord is �(m4/3). (Note to match the lemma statement, in the above construction one
should only keep edges which were in cycles that did not share a chord with any other
cycle.) 	

123

Algorithmica (2022) 84:1441–1465 1465

References

1. Abraham, I., Bartal, Y., Chan, T.-H., Dhamdhere, K., Gupta, A., Kleinberg, J., Neiman, O., Slivkins,
A.: Metric embeddings with relaxed guarantees. In: 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 83–100 (2005)

2. Brickell, J., Dhillon, I., Sra, S., Tropp, J.: The metric nearness problem. SIAM J. Matrix Anal. Appl.
30(1), 375–396 (2008)

3. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52(1–2),
46–52 (1985)

4. Chan, T.-H., Dhamdhere, K., Gupta, A., Kleinberg, J., Slivkins, A.: Metric embeddings with relaxed
guarantees. SIAM J. Comput. 38(6), 2303–2329 (2009)

5. Chung, F., Garrett, M., Graham, R., Shallcross, D.: Distance realization problems with applications to
internet tomography. J. Comput. Syst. Sci. 63(3), 432–448 (2001)

6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical
Report 388, Graduate School of Industrial Administration, Carnegie Mellon University (1976)

7. Candès, E., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM 55(6), 111–
119 (2012)

8. Fan, C., Gilbert, A., Raichel, B., Sonthalia, R., Van Buskirk, G.: Generalized metric repair on graphs.
In: 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume 162 of
LIPIcs, pp. 25:1–25:22 (2020)

9. Fan, C., Raichel, B., Gregory Van Buskirk. Metric violation distance: Hardness and approximation. In:
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 196–209 (2018)

10. Gilbert, A., Jain, L.: If it ain’t broke, don’t fix it: Sparse metric repair. In: 55th Annual Allerton
Conference on Communication, Control, and Computing, pp. 612–619 (2017)

11. Indyk, P., Matoušek, J.: Low-distortion embeddings of finite metric spaces. In: Handbook of Discrete
and Computational Geometry, pp. 177–196. CRC Press (2004)

12. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst.
Sci. 74(3), 335–349 (2008)

13. Linial,N., London, E., Rabinovich,Y.: The geometry of graphs and someof its algorithmic applications.
Combinatorica 15(2), 215–245 (1995)

14. Matoušek, J.: Lecture Notes on Metric Embeddings (2013). http://kam.mff.cuni.cz/~matousek/ba-a4.
pdf

15. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23(3), 555–565 (1976)
16. Sidiropoulos, A., Wang, D., Wang, Y.: Metric embeddings with outliers. In: Proceedings of Twenty-

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 670–689 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://kam.mff.cuni.cz/~matousek/ba-a4.pdf
http://kam.mff.cuni.cz/~matousek/ba-a4.pdf

	Metric Violation Distance: Hardness and Approximation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Feasibility Checking
	2.3 Notation and an Observation

	3 Metric Violation Distance Complexity
	3.1 Metric Violation Decrease Distance is Polynomial Time Solvable

	4 Approximation Algorithm for MVID
	4.1 Unbalanced Cycles
	4.2 Small Cycle Covers are Almost Enough
	4.3 Chording Cycles
	4.4 The Result

	5 General Metric Violation Distance
	5.1 Unbalanced Cycles
	5.2 The Result

	6 Conclusion
	Acknowledgements
	A Matching Lower Bound
	References

