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Abstract: Physical phenomena are often described by partial differential equations (PDEs), which have 9 
been traditionally solved using computationally demanding finite element, difference, or volume methods 10 
to produce labeled data. Due to its multi-query nature, characterization of event probabilities requires many 11 
such simulations, which can become prohibitive given the high costs of acquiring labeled data. As opposed 12 
to conventional PDE solution methods, Physics-Informed Neural Network (PINN) is directly trained using 13 
the physics knowledge encoded in PDEs, and therefore is simulation free. Building on this capability, we 14 
propose a simulation-free uncertainty quantification method called adaptively trained PINN for reliability 15 
analysis (AT-PINN-RA). We introduce an active learning approach with the dual objective of training 16 
PINN for solving PDEs and characterizing the limit state. The approach actively learns from the responses 17 
of the PINN model to identify the limit state and subsequently, adaptively shifts the focus of the training of 18 
the PINN model to regions of high importance for failure probability characterization to boost the accuracy 19 
and efficiency of reliability estimation. The performance of AT-PINN-RA is investigated using four 20 
benchmark problems with varying complexities. In all examples, AT-PINN-RA provides accurate estimates 21 
of event probabilities with high efficiency. 22 
 23 
Key words: Physics-informed neural network, Deep neural network, Reliability Analysis, Adaptive 24 
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1. Introduction 27 
The primary goal of reliability analysis is to estimate the probability of an event of interest, often a failure 28 
event, considering the uncertainties that affect the occurrence of that event. The failure probability is an 29 
essential measure for various natural and engineered systems and is an integral part of risk assessment and 30 
management frameworks for design, monitoring, maintenance, and upgrade decisions. The failure 31 
probability, 𝑃𝑃𝑓𝑓, can be determined as follows: 32 
 33 

𝑃𝑃𝑓𝑓 = 𝑃𝑃(𝑔𝑔(𝝃𝝃) ≤ 0) = � 𝑓𝑓(𝝃𝝃)𝑑𝑑𝒙𝒙
𝑔𝑔(𝝃𝝃)≤0

 (1) 

 34 
where 𝝃𝝃 is the vector of random variables, 𝑔𝑔(𝝃𝝃) is the limit state function and 𝑓𝑓(𝝃𝝃) is the joint probability 35 
density function of the random variables. Despite this relatively simple formulation, the integral is often 36 
high-dimensional and may involve a complex limit state function. Thus, in most cases, the failure 37 
probability can be quite difficult to obtain due to the absence of an analytical solution for the irregular 38 
integral.  39 

The most straight forward ways of estimating the failure probability are simulation approaches, such as 40 
Monte Carlo Simulation (MCS). They often entail drawing many samples from the probability distribution 41 
of the random variables. The evaluation of the limit state function is required for each sample, which results 42 
in a high computational demand. Using MCS, 𝑃𝑃𝑓𝑓 can be estimated as follows: 43 

 44 

𝑃𝑃𝑓𝑓 = � 𝑓𝑓(𝝃𝝃)𝐼𝐼(𝝃𝝃)𝑑𝑑𝒙𝒙 ≈
1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
� 𝐼𝐼(𝝃𝝃𝑖𝑖)
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

 (2) 

 45 
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where 𝐼𝐼(𝝃𝝃) is the indicator function yielding zero when the system is safe and one when the system fails, 46 
respectively, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is the population size of the MCS samples and 𝝃𝝃𝑖𝑖 is one of the MSC samples. There are 47 
other simulation methods developed to reduce the computational cost, such as importance sampling and 48 
subset simulation. The limit state function in many problems in science and engineering is at core driven 49 
by physical laws and are expressed in the form of linear or nonlinear ODEs/PDEs. For spatiotemporal 50 
phenomena, these equations can be expressed as follows: 51 

 52 
 𝑢𝑢(𝒙𝒙, 𝑡𝑡)𝑡𝑡 + 𝐹𝐹(𝑢𝑢(𝒙𝒙, 𝑡𝑡), 𝜆𝜆) = 0, 𝑥𝑥 ∈ Ω, 𝑡𝑡 ∈ [0,𝑇𝑇] (3) 

 53 
where 𝒙𝒙 is the spatial variable with 𝐷𝐷 dimensions, 𝑡𝑡 is the temporal variable, 𝑢𝑢(𝒙𝒙, 𝑡𝑡)𝑡𝑡 is the derivative of 54 
the hidden solution 𝑢𝑢(𝒙𝒙, 𝑡𝑡) with respect to time, 𝐹𝐹(∙) is a nonlinear operator parametrized by 𝜆𝜆, and Ω is a 55 
subset of  ℝ𝐷𝐷. This type of problem is normally solved using methods such as finite element (FE) and finite 56 
difference (FD) techniques. Using these methods, it can be time-consuming to solve complex problems, 57 
hence resulting in prohibitive computational costs when considering multi-query analyses such as reliability 58 
analysis. To reduce the number of required simulations, one can use approximation methods, such as first 59 
and second order reliability method (FORM and SORM) ) [1], [2], or alternatively adopt surrogate model-60 
based methods. Candidate surrogate models include Polynomial Response Surface [3]–[5], Polynomial 61 
Chaos Expansion (PCE) [6], Support Vector Regression (SVR) [7]–[9], and Kriging [10]–[14]. However, 62 
these methods still require labeled data, and for each data point, we still require one FE or FD simulation.  63 

In the past decade, deep neural networks (DNNs) have been gaining a lot of attention due its promising 64 
performance in many scientific and engineering fields. The applications of DNN in reliability are steadily 65 
growing [15]. The DNN-based method can outperform other methods [16]. For example, Xiang et al. [17] 66 
proposed an active learning reliability method combining deep neural network and weighted sampling. Bao 67 
et al. [18] developed an adaptive subset searching-based DNN for reliability analysis. However, these 68 
methods based on DNN still require labeled data. Recently, a type of DNN that is free of labeled data has 69 
been developed. Different than the traditional DNNs that require a large number of labeled data to train, 70 
this novel DNN relies on the knowledge of the physics embedded in the ODE/PDE instead of the labeled 71 
data. The idea of using the information of ODE/PDE was discussed in some works as early as the 90s [19]–72 
[21]. Recently, it was revisited and revised by Raissi et al. in their proposed approach called Physics-73 
Informed Neural Network (PINN) [22]. PINN leverages the capability of DNN as a universal approximator 74 
[23] and utilizes the automatic differentiation (AD) [24] to differentiate neural networks. The output, which 75 
is regarded as the estimation of the solution to the ODE/PDE, and its derivatives, which are obtained with 76 
AD, are plugged into PDEs that are in the form of Eq. (3). If the squared value of the left-hand side of Eq. 77 
(3) is calculated, it can be regarded as the violation of physics. Thus, it can be regarded as a part of the loss 78 
function in DNN to be minimized, which can be referred to as physics-informed loss. The other components 79 
of the loss functions are comprised of the error estimated by the labeled data coming from the initial and 80 
boundary conditions, which are often very easy to obtain. During the training of the PINN, no evaluation 81 
of the solution of the ODE/PDE is needed, thus it can be regarded as simulation free. The PINN provides 82 
new opportunities for analyzing reliability of stochastic problems that are expressed in the form of 83 
ODE/PDEs. 84 

The application of PINN for reliability analysis has been first investigated by Chakraborty [25]. For the 85 
sake of convenience, his work will be referred to as PINN-RA in the remainder of the paper.  In PINN-RA, 86 
a modified PINN is used as the surrogate model for the function evaluation in reliability analysis. The 87 
random variables are considered as a part of the input along with the spatial and temporal variables for the 88 
modified PINN. After training the modified PINN, the neural network is able to make predictions given 89 
different realizations of the random variables. However, the generation of the random variables in the 90 
collocation points in that method is purely based on Latin hypercube sampling (LHS), which is not 91 
particularly most efficient for reliability analysis. In reliability analysis, accurate understanding and 92 
representation of true responses is critical only near the limit state. Therefore, the accuracy of the PINN 93 
model in regions other than the vicinity of the limit state is not essential. Due to the even distribution of the 94 
training focus for random variables in PINN-RA, the unimportant regions are treated equally as the 95 
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important regions, which can lead to an ineffective allocation of computational resources for achieving the 96 
desired accuracy. Moreover, as the dimension of the random vector increases, maintaining high accuracy 97 
over the entire domain of random variables becomes more challenging for the PINN model, thus potentially 98 
degrading the accuracy of reliability analysis using PINN. To overcome this limitation, we propose an 99 
adaptively trained PINN for reliability analysis (AT-PINN-RA). An active learning approach called 100 
adaptive training (AT) sampling is developed with the dual objective of training PINN for solving PDEs 101 
and characterizing the limit state. During the training process, the approach actively learns from the 102 
responses of the PINN model as it becomes more accurate in terms of characterizing the limit state. This 103 
information is subsequently utilized to guide the training focus to regions of high importance which then 104 
enhances the fidelity of limit state characterization, thus forming a virtuous circle. A set of anchor points 105 
are generated to facilitate adaptive sampling.  106 

The rest of the paper is organized as follows: Section 2 presents a review of PINN and PINN-RA. Section 107 
3 introduces the proposed method AT-PINN-RA. The performance of the proposed method is then 108 
demonstrated via four numerical examples in Section 4. In the end, conclusions are provided in Section 5. 109 

   110 
2. PINN for Reliability Analysis 111 
In this section, PINN is briefly reviewed first. Next, the existing approach PINN-RA proposed by 112 
Chakraborty [25] is presented. 113 
 114 
2.1 Overview of PINN 115 
For the architecture of the network, the original PINN uses fully connected deep neural networks (FC-116 
DNNs), which are the simplest and most common ones in the domain of deep learning. A FC-DNN can be 117 
seen as nested nonlinear transformations of simple affine transformations [26]. These models can be 118 
expressed as follows:  119 
 120 

𝒀𝒀 = 𝜑𝜑𝐿𝐿+1(𝑾𝑾𝐿𝐿+1𝒛𝒛𝐿𝐿 + 𝒃𝒃𝐿𝐿+1) 
𝒛𝒛𝐿𝐿 = 𝜑𝜑𝐿𝐿(𝑾𝑾𝐿𝐿𝒛𝒛𝐿𝐿−1 + 𝒃𝒃𝐿𝐿) 

𝒛𝒛𝐿𝐿−1 = 𝜑𝜑𝐿𝐿−1(𝑾𝑾𝐿𝐿−1𝒛𝒛𝐿𝐿−2 + 𝒃𝒃𝐿𝐿−1) 
… 

𝒛𝒛1 = 𝜑𝜑1(𝑾𝑾1𝒛𝒛0 + 𝒃𝒃1) 

(4) 

 121 
where 𝒀𝒀 is the final output of the FC-DNN, 𝜑𝜑𝑖𝑖 is a nonlinear activation function for the 𝑖𝑖𝑡𝑡ℎ layer, of which 122 
some typical choices are ReLUs, leaky ReLUs, Sigmoids and hyperbolic tangents [27], 𝑾𝑾𝑖𝑖 is the matrix 123 
that stores the weights in the 𝑖𝑖𝑡𝑡ℎ layer, 𝒛𝒛𝑖𝑖 is the output of the 𝑖𝑖𝑡𝑡ℎ layer and the input of the (𝑖𝑖 + 1)𝑡𝑡ℎ  layer, 124 
and 𝒃𝒃𝑖𝑖 is the vector that stores the bias parameters in the 𝑖𝑖𝑡𝑡ℎ layer. From this point, 𝜽𝜽 will be used to denote 125 
the collection of all the 𝑾𝑾𝑖𝑖′’s and  𝒃𝒃𝑖𝑖’s in the network for the sake of convenience. The network presented 126 
in Eq. (4) has 𝐿𝐿 + 2 layers in total, with 0𝑡𝑡ℎ layer being the input layer and (𝐿𝐿 + 1)𝑡𝑡ℎ layer being the output 127 
layer. The layers between the input layer and output layer are often referred to as hidden layers. In this work, 128 
the hyperbolic tangent functions are chosen as the activation functions for the hidden layers and the output 129 
layer uses a linear activation function. For the sake of convenience, Eq. (4) is written in a more compact 130 
form as follows: 131 
 132 

𝒀𝒀 = ℕ(𝒛𝒛𝟎𝟎) (5) 
 133 
where ℕ(∙) represents the neural network. 134 

In PINN, a FC-DNN is used to estimate the hidden solution of the ODE/PDE 𝑢𝑢(𝒙𝒙, 𝑡𝑡). The input of the 135 
neural network is the spatial variable 𝒙𝒙 and temporal variable 𝑡𝑡. The output of the variable, which is denoted 136 
as 𝑢𝑢�(𝒙𝒙, 𝑡𝑡) = ℕ(𝒙𝒙, 𝑡𝑡), is the solution estimated by PINN. Training a deep neural network often requires a 137 
significant amount of training data. However, for forward ODE/PDE problems, PINN is data-free. It only 138 
requires 𝑁𝑁  collocation points ��𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖��𝑖𝑖=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  that can easily be generated using a preferred design of 139 
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experiment (DOE). The automatic differentiation [24] is used to calculate the derivatives of 𝑢𝑢�(𝒙𝒙, 𝑡𝑡) with 140 
respect to 𝒙𝒙  and 𝑡𝑡  for these collocation points. Then, the values of 𝑢𝑢�(𝒙𝒙, 𝑡𝑡)  and its derivatives for the 141 
collocation points are used to calculate the losses that represent the violations of the PDE, initial and 142 
boundary condition states, respectively. When the weighted sum of the losses is being minimized, the 143 
violations of physics are also being optimized. Thus, 𝑢𝑢�(𝒙𝒙, 𝑡𝑡) converges toward 𝑢𝑢(𝒙𝒙, 𝑡𝑡) during the process 144 
of training the network.  Before the training starts, a dataset of training points, with a population size of 145 
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, is generated. A graphical instruction of PINN is shown in Fig 1(a).  146 

The physics-informed loss function for the collocation points can be expressed as follows: 147 
 148 

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃(𝜽𝜽) =
1

𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃
� � 𝑢𝑢�(𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖)𝑡𝑡 + 𝐹𝐹�𝑢𝑢�(𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖), 𝜆𝜆��2
𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃

𝑖𝑖=1

 (6) 

 149 
where 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃is the number of collocation points generated for the PDE residual in a batch, and  𝑢𝑢�(𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖)𝑡𝑡 +150 
𝐹𝐹�𝑢𝑢�(𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖), 𝜆𝜆� is the residual of the PDE calculated at (𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖).  For the initial condition, the data-driven 151 
loss function can be formulated as follows:  152 
 153 

𝐿𝐿𝐼𝐼𝐼𝐼(𝜽𝜽) =
1
𝑁𝑁𝐼𝐼𝐼𝐼

��𝑢𝑢𝐼𝐼𝐼𝐼,𝑖𝑖 − 𝑢𝑢�(𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖)�2
𝑁𝑁𝐼𝐼𝐼𝐼

𝑖𝑖=1

 (7) 

 154 
where 𝑁𝑁𝐼𝐼𝐼𝐼 is the number of collocation points generated for the initial condition in a batch, and 𝑢𝑢𝐼𝐼𝐼𝐼,𝑖𝑖 is the 155 
initial condition of the system evaluated at (𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖). And similarly, for the boundary condition, the data-156 
driven loss function can be formulated as follows: 157 
 158 

𝐿𝐿𝐵𝐵𝐵𝐵(𝜽𝜽) =
1
𝑁𝑁𝐵𝐵𝐵𝐵

��𝑢𝑢𝐵𝐵𝐵𝐵,𝑖𝑖 − 𝑢𝑢�(𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖)�2
𝑁𝑁𝐵𝐵𝐵𝐵

𝑖𝑖=1

 (8) 

 159 
where 𝑁𝑁𝐵𝐵𝐵𝐵  is the number of collocation points generated for the boundary condition in a batch, and 𝑢𝑢𝐼𝐼𝐼𝐼,𝑖𝑖 is 160 
the boundary condition of the system evaluated at (𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖) . Thus, the loss function in PINN can be 161 
formulated as follows: 162 
 163 

𝐿𝐿(𝜽𝜽) = 𝑃𝑃𝑃𝑃(𝜽𝜽) + γb𝐵𝐵𝐵𝐵(𝜽𝜽) + γi𝐼𝐼𝐼𝐼(𝜽𝜽), (9) 
 164 
where γb and γi are the weight parameters for the boundary and initial condition state losses, respectively. 165 
The weights γb and γi can be customized or tuned during the training process [28], [29], to improve the 166 
trainability of PINN. In this paper, γb and γi are both set as one as in the original PINN. The graphical 167 
illustration of PINN is shown in Fig 1(a). 168 
 169 
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Fig 1(a). The graphic illustration of PINN 

 

 
Fig 1(b). The graphic illustration of PINN-RA 

 170 
The FC-DNN is trained by performing an optimization for 𝜽𝜽 to minimize the loss function in Eq. (9). 171 

The optimization problem has the following form: 172 
 173 

𝜽𝜽∗ = argmin
𝜽𝜽

𝐿𝐿(𝜽𝜽) (10) 
 174 
A network is trained in a series of epochs. One epoch is one round of training on the entire dataset. The 175 

batch-size determines the number of training points from a dataset used to evaluate one gradient update. 176 
Training with a batch-size of the number of the entire training points 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is known as full-batch learning, 177 
and training with a batch-size of a smaller number 𝑁𝑁 < 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is known as mini-batch learning. In this 178 
paper, mini-batch learning is adopted for all the methods discussed.  Once the network is trained, it can be 179 
used to make predictions of the solution to the PDE at any unknown point (𝒙𝒙∗, 𝑡𝑡∗).  180 

 181 
2.2 PINN-RA 182 
Chakraborty [25] proposed to use PINN for reliability analysis. In his work, a modified version of PINN, 183 
which is herein referred to as PINN-RA, was introduced. Let’s represent the value of the limit state function 184 
as:   185 

𝑔𝑔(𝝃𝝃) = 𝑢𝑢(𝝃𝝃) − 𝑢𝑢𝑐𝑐 (11) 
where 𝑢𝑢𝑐𝑐 is the critical value for the solution 𝑢𝑢, and 𝑢𝑢(𝝃𝝃) is the system response, which is the solution to 186 
the ODE/PDE as follows: 187 
 188 

 𝑢𝑢(𝒙𝒙, 𝑡𝑡)𝑡𝑡 + 𝐹𝐹(𝑢𝑢(𝒙𝒙, 𝑡𝑡), 𝜆𝜆, 𝝃𝝃) = 0, 𝑥𝑥 ∈ Ω, 𝑡𝑡 ∈ [0,𝑇𝑇] (12) 
 189 
Eq. (12) is very similar to Eq. (3) with the only difference that 𝝃𝝃 is introduced in the nonlinear operator. 190 
This means that some parameters in the original 𝜆𝜆 are now stochastic and are represented by 𝝃𝝃. With this 191 
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change in the equation, the current objective is to train a FC-DNN that can act as a surrogate for the response 192 
𝑢𝑢 with respect to 𝝃𝝃. Thus, in PINN-RA, 𝝃𝝃 is concatenated with the spatial variable 𝒙𝒙 and temporal variable 193 
𝑡𝑡  to form the new collocation point ��𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝝃𝝃𝑖𝑖��𝑖𝑖=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . And the collocation points generated using a 194 
preferred DOE are fed into the modified PINN  𝑢𝑢�𝑁𝑁(𝒙𝒙, t, 𝝃𝝃) = ℕ(𝒙𝒙, t, 𝝃𝝃). The graphical illustration of PINN-195 
RA is shown in Fig 1. (b). The three loss terms are expressed as follows, respectively:  196 
 197 

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃(𝜽𝜽) =
1

𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃
� � 𝑢𝑢��𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝝃𝝃𝑖𝑖�𝑡𝑡 + 𝐹𝐹�𝑢𝑢��𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝝃𝝃𝑖𝑖�, 𝜆𝜆��

2
,

𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃

𝑖𝑖=1

 

𝐿𝐿𝐼𝐼𝐼𝐼(𝜽𝜽) =
1
𝑁𝑁𝐼𝐼𝐼𝐼

��𝑢𝑢𝐼𝐼𝐼𝐼,𝑖𝑖(𝝃𝝃𝑖𝑖) − 𝑢𝑢�(𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝝃𝝃𝑖𝑖)�2,
𝑁𝑁𝐼𝐼𝐼𝐼

𝑖𝑖=1

 

𝐿𝐿𝐵𝐵𝐵𝐵(𝜽𝜽) =
1
𝑁𝑁𝐵𝐵𝐵𝐵

��𝑢𝑢𝐵𝐵𝐵𝐵,𝑖𝑖(𝝃𝝃𝑖𝑖) − 𝑢𝑢�(𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝝃𝝃𝑖𝑖)�2
𝑁𝑁𝐵𝐵𝐵𝐵

𝑖𝑖=1

 

(13) 

 198 
The loss terms for initial and boundary conditions can sometimes be eliminated by incorporating the initial 199 
and boundary conditions into the formulation of the neural network as follows: 200 
 201 

𝑢𝑢�(𝒙𝒙, t, 𝝃𝝃) = 𝑢𝑢𝐼𝐼𝐼𝐼,𝐵𝐵𝐵𝐵(𝒙𝒙𝒃𝒃, t𝑖𝑖 , 𝝃𝝃) + 𝐵𝐵 ∙ 𝑢𝑢�𝑁𝑁(𝒙𝒙, t, 𝝃𝝃) (14) 
 202 
where 𝐵𝐵 is a function that satisfies 𝐵𝐵 = 0 at points associated with the initial and boundary conditions, and 203 
𝑢𝑢𝐼𝐼𝐼𝐼,𝐵𝐵𝐵𝐵(𝒙𝒙𝒃𝒃, t𝑖𝑖 , 𝝃𝝃) is a function that satisfies all the initial and boundary conditions. Thus, 𝑢𝑢�(𝒙𝒙, t, 𝝃𝝃) will 204 
automatically satisfy the initial and boundary conditions without the need of 𝐿𝐿𝐼𝐼𝐼𝐼(𝜽𝜽) and 𝐿𝐿𝐵𝐵𝐵𝐵(𝜽𝜽) being 205 
involved in the loss function. More details of this scheme will be provided in the numerical examples section. 206 
Similar to the original PINN, the loss function for PINN-RA needs to be minimized to achieve a PINN 207 
surrogate model that is able to make predictions of the solution given different realizations of the random 208 
variables.  209 

The advantage of PINN-RA is obvious: it is free of simulation. The incurred computational cost merely 210 
comes from training the neural network, and the trained network can be directly used for many-query 211 
analyses such as reliability analysis. However, the collocation points in PINN-RA only depend on the initial 212 
DOE, and the training points are not tailored to reliability analysis. This may lead to the waste of 213 
computational resources, as most of the training points are in the regions that are not of interest. Moreover, 214 
the accuracy of the results may not be guaranteed as there can be cases where there are no sufficient 215 
collocation points in the vicinity of the limit state. To overcome this challenge, a novel method has been 216 
proposed, which is introduced in the next section.  217 

 218 
3. AT-PINN-RA 219 
3.1 Adaptive training focus 220 
As noted earlier, the sampling of the collocation points in PINN-RA may not be in favor of reliability 221 
analysis. In surrogate model assisted reliability analysis methods, an active learning function is evaluated 222 
for all the candidate training points in the candidate pool to identify the “best” training points. For example, 223 
Bichon et al. [30]  developed the expected feasibility function (EFF) that provides an indication of how 224 
much the true value of the response at a point can be expected to be less than the current best solution. 225 
Echard et al. [31] proposed the 𝑈𝑈 learning function that represents a reliability index for the risk of a 226 
surrogate model making a mistake about the sign of limit state function for a candidate training point. Lv 227 
et al. [32] developed the H learning function based on the information entropy. Sun et al. [33] proposed the 228 
least improvement function LIF that values how much the accuracy of estimated failure probability will be 229 
improved with adding a specific training point. Wang et al. proposed a learning function considering the 230 
probability density and distributed uniformity [34]. These learning functions generally aim at finding the 231 
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potential training points that are in the vicinity of the limit state and have large uncertainty. Training these 232 
surrogate models is quite different from a PINN, albeit they have the same objective that is to construct a 233 
model to perform reliability analysis. The construction of the surrogate model requires training points that 234 
are obtained with simulations. The training points, or collocation points, in PINN are randomly generated. 235 
The training process is to make the neural network satisfy the physics described by the ODE/PDEs. 236 
However, the advantages are obvious if the collocation points can be adaptively tailored, similar to adaptive 237 
surrogate-based reliability methods, to boost the convergence of the model and improve the accuracy in 238 
terms of calculating the failure probability. In this context, we propose AT-PINN-RA that adaptively 239 
samples more collocations points in the vicinity of the limit state according to the current model. For the 240 
purpose of illustration, let us consider a reliability problem entailing the ODE studied in [25], [35]. The 241 
governing differential equation is presented as follows: 242 

 243 
d𝑢𝑢
d𝑡𝑡

= −𝑍𝑍𝑍𝑍, 𝑡𝑡 ∈ [0,1] (15) 

 244 
where 𝑍𝑍 is the decay rate coefficient and is considered to be a random variable. The random variable follows 245 
a normal distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2), where 𝜇𝜇 = −2 and 𝜎𝜎 = 1. The system is subjected to the following initial 246 
condition: 247 
 248 

𝑢𝑢(𝑡𝑡 = 0) = 1.0 (16) 
 249 
There exists an analytical solution as follows: 250 
 251 

𝑢𝑢(𝑡𝑡,𝑍𝑍) = 𝑢𝑢0exp (−𝑍𝑍𝑍𝑍) (17) 
 252 
The limit state function is defined as: 253 
 254 

𝑔𝑔(𝑢𝑢(𝑡𝑡,𝑍𝑍)) = 𝑢𝑢(𝑡𝑡,𝑍𝑍) − 𝑢𝑢𝑐𝑐 (18) 
 255 
where 𝑢𝑢𝑐𝑐 is the critical value that is set as 0.5 here. For this problem, the reliability is evaluated at 𝑡𝑡 = 1. 256 
In PINN-RA, the collocation points are generated using Latin Hypercube sampling (LHS) at the beginning 257 
of the training process and are kept the same thought the training process. For the temporal variable 𝑡𝑡, 258 
realizations are generated using a uniform distribution 𝑈𝑈(0,1.0). For the random variable 𝑍𝑍, although it 259 
follows a normal distribution, a uniform distribution 𝑈𝑈(𝜇𝜇 − 5𝜎𝜎, 𝜇𝜇 + 5𝜎𝜎)  is used for the coverage of 260 
collocation points in favor of the reliability analysis. Thus, the collocation points ��𝑡𝑡𝑖𝑖 ,𝑍𝑍𝑖𝑖��𝑖𝑖=1

𝑁𝑁
 are evenly 261 

scattered in the domain as shown in Fig 2. 262 
 263 
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Fig 2. The collocation points generated using LHS 

 264 
Because of the existence of the analytical solution, we can find that the critical value for 𝑍𝑍 is 0.6931, 265 

that is, the limit state occurs at 𝑍𝑍 = 0.6931. Therefore, if we are able to use PINN to make accurate 266 
predictions in the vicinity of 𝑍𝑍 = 0.6931, which is presented in the red box in Fig 2, we will be able to 267 
achieve an accurate estimation of the reliability. The collocation points in other regions are not as essential 268 
as the ones in the critical region. Focusing the training of the network on this critical region, can reduce the 269 
computational cost of training and improve the accuracy of network predictions as they concern estimating 270 
the failure probability. However, in most cases, the critical regions are unknown. The proximity information 271 
provided by PINN can be utilized for this purpose. Here, we propose the adaptive training (AT) sampling 272 
to gradually shift the training focus to the critical region during the training of the network, which will be 273 
introduced below. Note that in this work, only the sampling of the random variables in the collocation points 274 
is adaptive; the spatial and temporal variables in the collocation points are still generated using LHS. The 275 
reason is that only the reliability of the system at a specified time and location is studied in this paper. 276 

The main idea of AT is to use the proximity information of the current network to turn the focus of 277 
training to critical regions. This goal is achieved by sampling more random variables in the collocation 278 
points in those regions. Thus, we propose a weight function to evaluate the significance of the random 279 
variable points as follows: 280 

 281 
𝑊𝑊𝑊𝑊 �𝑔𝑔 �𝑢𝑢��𝝃𝝃𝑖𝑖��� = exp�−𝐴𝐴�𝑔𝑔(𝑢𝑢��𝝃𝝃𝑖𝑖�)�� (19) 

 282 
As the value of the limit state function 𝑔𝑔 �𝑢𝑢��𝝃𝝃𝑖𝑖�� approaches the limit state according to the current model, 283 
a larger weight is assigned to the realization of the random variable 𝝃𝝃𝑖𝑖. 𝐴𝐴 is a factor that can define the 284 
shape of the function. The evaluation of the weight function is not significantly computationally expensive; 285 
however, it can still get costly when it comes to the entire set of collocation points in each iteration. To 286 
overcome this challenge, we propose to generate a smaller set of random variable points, which are referred 287 
to as “anchors” 𝝃𝝃𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑎𝑎 , where 𝑁𝑁𝑎𝑎  is the number of anchors. Then, the entire 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  random 288 
variable samples of the collocation points are categorized into 𝑁𝑁𝑎𝑎 groups based on their proximity to those 289 
anchor points. At the beginning of each iteration, only the anchor points, 𝝃𝝃𝑎𝑎𝑖𝑖 , 𝑘𝑘 = 1,2, … ,𝑁𝑁𝑎𝑎, are evaluated 290 
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using the weight function, and then the values of the normalized weight function are calculated for those 291 
points using the following formula: 292 
 293 

𝑁𝑁𝑁𝑁𝑁𝑁 �𝑔𝑔 �𝑢𝑢��𝝃𝝃𝑎𝑎𝑖𝑖 ��� =
exp �−𝐴𝐴 �𝑔𝑔 �𝑢𝑢��𝝃𝝃𝑎𝑎𝑖𝑖 ����

∑ exp �−𝐴𝐴 �𝑔𝑔 �𝑢𝑢��𝝃𝝃𝑎𝑎𝑘𝑘����
𝑁𝑁𝑎𝑎
𝑘𝑘=1

 

 

(20) 

Note that this NWF function has a very similar format to the softmax function, which is often used in 294 
multinominal logistic regression and the last activation function of a neural network to normalize the output 295 
of a network to a probability distribution over predicted output classes. Herein, it can be regarded as a 296 
pseudo probability of the evaluated random variable point 𝝃𝝃𝑎𝑎𝑖𝑖  being the closest one to the limit state, which 297 
means the higher this probability, the more likely 𝝃𝝃𝑎𝑎𝑖𝑖  is closer to the limit state. A probability distribution 298 
of a discrete random variable can be constructed using the 𝑁𝑁𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 values as the probability mass function 299 
(PMF) values. Each value in the PMF indicates the probability of drawing the random points from the 300 
corresponding group. In this manner, in each batch, 𝑁𝑁 random points  𝝃𝝃𝑖𝑖 are drawn using the PMF values 301 
generated based on Eq. (20), and then they are concatenated with the 𝑁𝑁 pair of spatial variables 𝒙𝒙 and 302 
temporal variables t from the LHS pool generated at the beginning to form the collocation points. These 303 
collocation points in each batch are focused on the critical region based on the belief of the current network. 304 
Gradually, the training focus is shifted to the real limit state as the training process progresses. Note that 305 
factor 𝐴𝐴 determines how aggressively we shift our training focus, that is, when 𝐴𝐴 is set to be a large value, 306 
very high priority will be given to the points that are, based on the current network, are believed to be close 307 
to the limit state, and vice versa. In this study, we set 𝐴𝐴 as 1 for all the numerical examples.  308 
 309 
3.2 The procedures of AT-PINN-RA 310 
With the AT sampling, we propose the adaptively trained Physics-Informed Neural Network for reliability 311 
analysis (AT-PINN-RA). Note that the FC-DNN structure of the proposed method is the same as PINN-312 
RA; however, the AT sampling approach makes a significant difference in terms of the performance of the 313 
method. The implementation procedure of AT-PINN-RA is described in Algorithm 1.  314 
 315 
Algorithm 1 AT-PINN-RA 

1: Generate 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 pairs of spatial and temporal variables ��𝒙𝒙𝒊𝒊, 𝒕𝒕𝒊𝒊��𝒊𝒊=𝟏𝟏
𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  and 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 candidate 

training samples for random variables �𝝃𝝃𝒄𝒄𝒊𝒊 �𝒊𝒊=𝟏𝟏
𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  using LHS, and generate 𝑵𝑵𝒂𝒂 anchor points for 

the random variables �𝝃𝝃𝒂𝒂𝒊𝒊 �𝒊𝒊=𝟏𝟏
𝑵𝑵𝒂𝒂 . Set the batch-size 𝑵𝑵 and total number of epochs 𝑵𝑵𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

2: Categorize �𝝃𝝃𝒄𝒄𝒊𝒊 �𝒊𝒊=𝟏𝟏
𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  into 𝑵𝑵𝒂𝒂 groups according to their proximity to the anchor points �𝝃𝝃𝒂𝒂𝒊𝒊 �𝒊𝒊=𝟏𝟏

𝑵𝑵𝒂𝒂  
3: Initialize the PINN for 𝒖𝒖� 
4: While True: 
5: For 𝒌𝒌 = 𝟏𝟏: (𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕/𝑵𝑵) : 
6: Use Eq. (20) to determine the NWF values for all the anchor points and construct 

a PMF  
7: Use the constructed PMF to sample N random variable points �𝝃𝝃𝒊𝒊�𝒊𝒊=𝟏𝟏

𝑵𝑵
 from 

random variable candidates �𝝃𝝃𝒄𝒄𝒊𝒊 �𝒊𝒊=𝟏𝟏
𝑵𝑵

 from the 𝑵𝑵𝒂𝒂 groups 
8: Draw 𝑵𝑵 pairs of spatial and temporal variables ��𝒙𝒙𝒊𝒊, 𝒕𝒕𝒊𝒊��𝒊𝒊=𝟏𝟏

𝑵𝑵
 from the 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 pairs 

9: Concatenate ��𝒙𝒙𝒊𝒊, 𝒕𝒕𝒊𝒊��𝒊𝒊=𝟏𝟏
𝑵𝑵

 and �𝝃𝝃𝒊𝒊�𝒊𝒊=𝟏𝟏
𝑵𝑵

 and feed the concatenated variable to FC-
DNN 
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10: Record the loss  
11: Perform one gradient update for 𝒖𝒖�  
12:              End (the end of one epoch) 
13:              Calculate the average loss for the past epoch 
14: If the average loss has not improved for over 100 epochs: 
15:               Break  
16: End (the end of the training process) 
17: Use the trained neural network to perform reliability analysis 

 316 
In order to cover the domain that contains the limit state, we use LHS to generate anchor points with uniform 317 
distribution, and the range for uniform sampling is [𝜇𝜇 − 5𝜎𝜎, 𝜇𝜇 + 5𝜎𝜎], where 𝜇𝜇 and 𝜎𝜎 are the mean and 318 
standard deviation of the random variable, respectively. This range should be sufficient to solve problems 319 
with failure probabilities larger than 3 × 10−7. One can change the factor 5 to other values that is suitable 320 
for the specific problem. It is suggested that the number of anchor points is determined as 10𝑛𝑛, where n is 321 
dimension of the random variables. When 𝑛𝑛 is larger than 3, a number of anchor points of 1,000 is found 322 
to be enough. In this study, a stopping criterion based on the max stagnation of loss is used. When the 323 
average loss over the epoch has not increased for a certain number of epochs (in this study, we find that 324 
100 is sufficient for all the numerical examples), we assume the convergence is achieved and the training 325 
is stopped. The performance of the proposed AT-PINN-RA will be demonstrated using four benchmark 326 
problems in the next section.   327 
 328 
4. Numerical examples 329 
In this work, four numerical examples are tested to demonstrate the performance of the proposed AT-PINN-330 
RA method. In all numerical examples, both PINN-RA and AT-PINN-RA are used to perform the reliability 331 
analyses, and the results are directly compared. Both methods are implemented and trained via PyTorch 332 
1.70. Training is performed on a NVIDIA RTX 3090. The loss functions in all the networks are minimized 333 
using Adam optimizer [36], which is also used in multiple works related to PINN [22], [37], [38]. In all the 334 
numerical examples, the initial learning rate is set as 10−3. If the loss has not improved for 1,000 gradient 335 
updates, the learning rate will be multiplied by a factor of 0.7. For all the numerical examples, the total 336 
number of collocation points 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 and the batch-size are set as 30,000 and 1,000, respectively. In each 337 
epoch, the gradient update will be performed 30 times. A maximum epoch number of 5,000 is set for all 338 
the numerical examples. The training will be terminated when the stopping criterion is met, or the maximum 339 
epoch number is reached. For all the numerical examples in this study, the MCS population used to calculate 340 
the failure probability has a size of  105. The results of all the examples are averaged over 20 repeated trials. 341 
The result of MCS with traditional numerical methods using MALAB [39]  and FENICS [40]  is used as 342 
the reference in all numerical examples. 343 
 344 
4.1 ODE example 345 
The first example investigated is the ODE example illustrated in Section 3. For solving this problem, a FC-346 
DNN is constructed. The network has 4 hidden layers, and each hidden layer has 50 neurons. The network 347 
has 2 inputs: the temporal variable 𝑡𝑡 and random variable 𝑍𝑍. To automatically satisfy the initial condition, 348 
the approach in [25] is adopted here. The PINN output is modified as follows: 349 
 350 

𝑢𝑢�(𝑡𝑡,𝑍𝑍) = 𝑡𝑡 ∙ ℕ(𝑡𝑡,𝑍𝑍) + 1.0 (21) 
 351 
where ℕ(𝑡𝑡,𝑍𝑍) is the direct output of the FC-DNN, and 𝑢𝑢�(𝑡𝑡,𝑍𝑍) is the solution estimated by the PINN. Thus, 352 
only one loss term is needed for this problem, and it is presented as follows:  353 
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 354 

𝐿𝐿(𝜽𝜽) =
1
𝑁𝑁
��𝑢𝑢��𝑡𝑡𝑖𝑖 ,𝑍𝑍𝑖𝑖�𝑡𝑡 + 𝑍𝑍𝑢𝑢��𝑡𝑡𝑖𝑖 ,𝑍𝑍𝑖𝑖��

2
𝑁𝑁

𝑖𝑖=1

 (22) 

 355 
To train the network using PINN-RA, the collocation points ��𝑡𝑡𝑖𝑖 ,𝑍𝑍𝑖𝑖��𝑖𝑖=1

30,000
 are generated using LHS. For 356 

AT-PINN-RA, the realizations of the temporal variable �𝑡𝑡𝑖𝑖�𝑖𝑖=1
30,000

 and candidate training samples for 357 

random variable �𝑍𝑍𝐶𝐶𝑖𝑖 �𝑖𝑖=1
30,000

 as well as 10 anchor points �𝑍𝑍𝑎𝑎𝑖𝑖 �𝑖𝑖=1
10

 are generated. The Adam optimizer is run 358 
until the stopping criterion is met or it reaches 5,000 epochs for both methods. 359 

From the experiments, it is found that the proposed AT sampling in AT-PINN-RA is quite effective. 360 
The evolution of the collocation points in a randomly selected trial of AT-PINN-RA can be found in Fig 3. 361 
The figure shows the collocation points in the first batch of the corresponding epoch. A clear pattern can 362 
be observed where the training focus has been gradually shifted to the critical value of 𝑍𝑍. Near the end of 363 
the training (Epoch 400), almost all the sampled collocation points are located in the vicinity of the critical 364 
value. On the other hand, for PINN-RA, the collocation points are evenly scattered in the domain throughout 365 
the entire training process, without the training focus set on the important regions. Thus, the model in PINN-366 
RA cannot be trained as effectively as the one in AT-PINN-RA. 367 

The results by both methods are presented in Table 1. The average error of AT-PINN-RA is only 1.00%, 368 
while that for PINN-RA is 3.75%. Moreover, AT-PINN-RA takes 450 epochs to converge on average. on 369 
the other hand, PINN-RA, without the adaptive training focus, takes 3,544 epochs to converge. The boxplot 370 
of the results is presented in Fig 4. Fig 5 presents the comparison of the error evolution of the two methods 371 
with the same pool for initial collocation points. It can be observed that AT-PINN-RA converges 372 
significantly faster to the actual failure probability compared to PINN-RA. 373 

A parametric study has been performed for the number of anchor points for this example. Fig 6 shows 374 
the results for different number of anchor points over 20 repeated trials. It can be observed that the 375 
performance will not be significantly different after 10 anchor points.  376 

 377 
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Fig 3. The evolution of the collocation points in AT-PINN-RA (The red line indicates the critical value 

of 𝑍𝑍) 
 378 
Table 1 Reliability results for Example 1 379 

Method Epoch number(Standard 
deviation) 𝑷𝑷𝒇𝒇 (Standard deviation) Average error 

(Standard deviation) 
MCS - 3.54×10-3 - 

PINN-RA 3544(1039) 3.57×10-3  (3.36×10-4) 3.75% (2.23%) 
AT-PINN-RA 450(92) 3.65×10-3  (1.89×10-4) 1.00% (1.20%) 

 380 
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Fig 4. The comparison of the two methods for Example 1 

 381 

 
Fig 5. The comparison of error evolution by the two methods for Example 1 
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Fig 6. Efficiency and accuracy for different numbers of anchor points 

 384 
The effect of the max stagnation for the stopping criterion is investigated for this example. Fig 6 shows 385 

the results for different stopping criteria over 20 repeated trials. It is observed that when the max stagnation 386 
is set to be larger, the average epoch number for the method to converge increases and the average error 387 
decreases.  388 

A parametric study on the size of collocation points has also been performed. The results for different 389 
sizes of anchor points over 20 repeated trials are presented in Fig 7. Note that when the size of collocation 390 
points changes, the number of gradient updates in one epoch will also change accordingly. Thus, the 391 
numbers of gradient updates are listed here instead of the numbers of epochs, as they are better 392 
representative of the running time. The results show that with a larger size of the collocation points the error 393 
tends to be lower. The number of gradient updates for the size of 30,000, which is the one used in this study, 394 
is lower than both that of 20,000 and 40,000. Note that these results are affected by the fact that the stopping 395 
criterion is changing when the size of collocation points changes. Although the max stagnation of 100 396 
epochs is set for all cases of different collocation point sizes, the numbers of gradient updates for the max 397 
stagnation are different. When the size of the collocation points increases, the stopping criterion is more 398 
difficult to satisfy. 399 
 400 
 401 

 
Fig 7. Efficiency and accuracy for different numbers for max stagnation 
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Fig 8. Efficiency and accuracy for different sizes of collocation points 

 403 
 404 
 405 
4.2 1D Burgers’ equation 406 
A viscous Burgers’ equation is considered as the second example to show the performance of the proposed 407 
method. The example was also studied in [25], [35]. The governing PDE of the viscous Burgers’ equation 408 
is presented as follows: 409 
 410 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑢𝑢𝑥𝑥 = 𝜈𝜈𝑢𝑢𝑥𝑥𝑥𝑥 , 𝑥𝑥 ∈ [−1,1], 𝑡𝑡 ∈ [0,10] (23) 
 411 
where 𝑢𝑢𝑥𝑥 and 𝑢𝑢𝑥𝑥𝑥𝑥 are the first and second order partial derivatives of 𝑢𝑢 with respect to 𝑥𝑥, respectively. 𝜈𝜈 is 412 
the viscosity of the system. The system is subjected to the boundary conditions as follows: 413 
 414 

𝑢𝑢(𝑥𝑥 = −1) = 1 + 𝛿𝛿,𝑢𝑢(𝑥𝑥 = 1) = −1 (24) 
 415 
where 𝛿𝛿 is a random variable that represents a small perturbation that is applied to the boundary at 𝑥𝑥 = −1, 416 
and it follows a uniform distribution 𝑈𝑈(0,0.1).  The initial condition, which is a linear interpolation of the 417 
boundary conditions, can be accordingly expressed as follows: 418 
 419 

𝑢𝑢(𝑥𝑥, 𝑡𝑡 = 0) = −1 + (1 − 𝑥𝑥)(1 +
𝛿𝛿
2

) (25) 

 420 
The solution to this PDE has a transition layer at distance 𝑧𝑧 such that 𝑢𝑢(𝑧𝑧) = 0. This transition layer is 421 
highly sensitive to the perturbation 𝛿𝛿 [41]. The limit state function for this problem is defined as: 422 
 423 

𝑔𝑔(𝑍𝑍, 𝑡𝑡) = −𝑧𝑧(𝛿𝛿) + 𝑧𝑧0 (26) 
 424 
where 𝑧𝑧(𝛿𝛿) is the distance for the transition layer expressed as a function of the perturbation. For this 425 
problem, a FC-DNN with 4 hidden layers and 50 neurons in each layer is constructed. The network has 426 
three inputs: the spatial variable 𝑥𝑥, temporal variable 𝑡𝑡 and random variable 𝛿𝛿. The direct output of FC-427 
DNN 𝑢𝑢�(𝑥𝑥, 𝑡𝑡, 𝛿𝛿) is used as the estimation of the solution by PINN. The loss function for the PINN can be 428 
formulated as follows: 429 
  430 
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(27) 

 431 
where 𝑢𝑢𝐼𝐼𝐼𝐼(𝑥𝑥𝐼𝐼𝐼𝐼𝑖𝑖 , 𝑡𝑡𝐼𝐼𝐼𝐼𝑖𝑖 , 𝛿𝛿𝑖𝑖) are the initial conditions of the system, and 𝑢𝑢𝐵𝐵𝐵𝐵(𝑥𝑥𝐵𝐵𝐵𝐵𝑖𝑖 , 𝑡𝑡𝐵𝐵𝐵𝐵𝑖𝑖 , 𝛿𝛿𝑖𝑖) are the boundary 432 
conditions of the system. 433 
To train the network using PINN-RA, the collocation points ��𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝛿𝛿𝑖𝑖��𝑖𝑖=1

30,000
 are generated using LHS 434 

for the PDE residual, 1,000 collocation points ��𝑥𝑥𝐼𝐼𝐼𝐼𝑖𝑖 , 𝑡𝑡𝐼𝐼𝐼𝐼𝑖𝑖 , 𝛿𝛿𝐼𝐼𝐼𝐼𝑖𝑖 ��𝑖𝑖=1
1,000

 for the initial condition loss term and 435 

1,000 collocation points ��𝑥𝑥𝐵𝐵𝐵𝐵𝑖𝑖 , 𝑡𝑡𝐵𝐵𝐵𝐵𝑖𝑖 , 𝛿𝛿𝐵𝐵𝐵𝐵𝑖𝑖 ��𝑖𝑖=1
1,000

 for the boundary condition loss term. For AT-PINN-RA, the 436 

realizations of spatial and temporal variables ��𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖��𝑖𝑖=1
30,000

 and candidate training samples for random 437 

variables  �𝛿𝛿𝐶𝐶𝑖𝑖 �𝑖𝑖=1
30,000

are generated for the PDE residual. Moreover, 1,000 pairs of spatial and temporal 438 

variables ��𝑥𝑥𝐼𝐼𝐼𝐼𝑖𝑖 , 𝑡𝑡𝐼𝐼𝐼𝐼𝑖𝑖 ��𝑖𝑖=1
1,000

 for the initial condition loss term and 1,000 pairs of spatial and temporal variables 439 

��𝑥𝑥𝐵𝐵𝐵𝐵𝑖𝑖 , 𝑡𝑡𝐵𝐵𝐵𝐵𝑖𝑖 ��𝑖𝑖=1
1,000

 for the boundary condition loss term, as well as 10 anchor points �𝛿𝛿𝑎𝑎𝑖𝑖 �𝑖𝑖=1
10

 are generated 440 
for the random variable 𝛿𝛿. In each batch, 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃 , 𝑁𝑁𝐼𝐼𝐼𝐼 and 𝑁𝑁𝐵𝐵𝐵𝐵  are all set as 1,000. Note that in AT-PINN-441 
RA, the 1,000 random variable samples generated using AT are shared among the PDE residual, initial 442 
condition loss term and boundary condition loss term. The Adam optimizer is run until the stopping criterion 443 
is met or it reaches 5,000 epochs for both methods. 444 

In this example, the actual critical value of 𝛿𝛿 is 0.896. The proposed AT sampling in AT-PINN-RA is 445 
able to locate the vicinity of the critical value and shift the training focus accordingly. The evolution of the 446 
NWF values of the anchor points in a randomly selected trial of AT-PINN-RA can be found in Fig 9. It can 447 
be observed in the figure that before the training process (Epoch 0), there are no significant differences 448 
among the NWF values for different groups. Over the training process, the NWF value for the anchor point 449 
that is closest to the critical value gradually increases and at the end of the training process, the NWF value 450 
for that anchor point becomes the largest among all the NWF values. The training focus has been 451 
successfully shifted to the actual critical value. On the other hand, for PINN-RA, the training focus is evenly 452 
distributed without considering the importance of the region.  453 

The results by both methods are presented in Table 2. The average error by AT-PINN-RA is about 34% 454 
of the error by PINN-RA. The boxplot in Fig 10 also indicates that AT-PINN-RA is able to generate a more 455 
robust prediction with much fewer epochs compared to PINN-RA. In over half of the 20 repeated trials, the 456 
training for PINN-RA stops due to the maximum epoch instead of the stopping criterion.  457 
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Fig 9. The evolution of the NWF values of the anchor points in AT-PINN-RA (The red line indicates 

the critical value of 𝛿𝛿) 
 458 
Table 2 Reliability results for Example 2 459 

Method Epoch number(Standard 
deviation) 𝑷𝑷𝒇𝒇 (Standard deviation) Average error 

(Standard deviation) 
MCS - 1.037×10-1 - 
PINN-RA 4123(1531) 1.02×10-1(8.79×10-3) 5.29% (6.84%) 
AT-PINN-RA 1926(235) 1.04×10-1 (2.26×10-3) 1.80% (1.28%) 

 460 

 
Fig 10. The comparison of the two methods for Example 2 

 461 
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The third example considered in this study investigates the displacement of a 2D isotropic elastic structure. 463 
The model is described by two coupled PDEs in 2D. Nabian et al. [42] also investigated the application of 464 
PINN to the same governing equations and structure. In this problem, a 2D isotropic elastic plate with 465 
irregular geometry, which is depicted in Fig 11, is subjected to stochastic external forces. The displacement 466 
of a location of interest in this plate should not exceed a predefined critical value. Such problems may 467 
emerge in fluid-structure interactions [43]. The objective of this example is to estimate the probability of 468 
the displacement of interest exceeding the critical value.  469 

 
Fig 11. The 2D plate 

 470 
The governing equation for the structure can be expressed as follows:  471 
 472 

(𝜆𝜆 + 𝜇𝜇)
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜇𝜇 �

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

� + 𝑓𝑓𝑥𝑥 = 0 

(𝜆𝜆 + 𝜇𝜇)
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜇𝜇 �

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑦𝑦2

� + 𝑓𝑓𝑦𝑦 = 0 
(28) 

 473 
where 𝑢𝑢 and 𝑣𝑣 are the displacements along the 𝑥𝑥 and 𝑦𝑦 axes, respectively, 𝜇𝜇 and 𝜆𝜆 are constants, and 𝑓𝑓𝑥𝑥 474 
and 𝑓𝑓𝑦𝑦  are the external body forces along the 𝑥𝑥 and 𝑦𝑦 axes, respectively. The constants are defined as 475 
follows:  476 
 477 

𝜆𝜆 =
𝜈𝜈𝜈𝜈

(1 + 𝜈𝜈)(1 − 𝜈𝜈)
 

𝜇𝜇 =
𝐸𝐸

2(1 + 𝜈𝜈)
 

(29) 

 478 
where 𝜈𝜈 and 𝐸𝐸 are the Poisson’s ratio and Young’s modulus of the structure, respectively. In this study, 479 
they are set as 0.2 and 0.25, respectively. Using a similar approach to Nabian et al. [42], we synthesize a 480 
governing equation that would generate a prescribed solution. The prescribed structure displacements in 481 
our study can be expressed as follows: 482 
 483 

𝑢𝑢(𝑥𝑥, 𝑦𝑦,𝒁𝒁) = 0 
𝑣𝑣(𝑥𝑥,𝑦𝑦,𝒁𝒁) = 𝑠𝑠𝑠𝑠𝑠𝑠(

𝜋𝜋
2

(𝑥𝑥 + 1)) [𝑍𝑍13𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦 − 1) − 𝑍𝑍23𝑐𝑐𝑐𝑐𝑐𝑐 (𝑦𝑦 + 1)]  (30) 

 484 



19 
 

where 𝑍𝑍1 and 𝑍𝑍2 are two independent random variables that both follow a normal distribution 𝑁𝑁(1,0.12). 485 
Fig 12 represents four realizations of the solution 𝑣𝑣. The body forces 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 can be back-calculated using 486 
Eq. (28) and (30) and then applied to synthesize the PDEs used in this problem The displacement along the 487 
y axis, 𝑣𝑣, at point (0,1) (the middle point on the top side) is of interest. The limit state function of this 488 
examples is defined as follows: 489 
 490 

𝑔𝑔(𝒁𝒁) = 𝑣𝑣𝑐𝑐 − 𝑣𝑣(0,1,𝒁𝒁)  (31) 
 491 
where 𝑣𝑣𝑐𝑐 is the critical displacement and set as 2.5. The system is determined to fail when the displacement 492 
𝑣𝑣(0,1,𝒁𝒁) exceeds the critical value. 493 
 494 

 
Fig 12. Four realizations of the solution 𝑣𝑣 

 495 
For this problem, two FC-DNNs are constructed for 𝑢𝑢 and v, respectively, and each network has 4 496 

hidden layers and 50 neurons in each layer. Both FC-DNNs share the same inputs: the spatial variable 𝑥𝑥, 497 
temporal variable 𝑡𝑡 and random variable 𝑍𝑍1 and 𝑍𝑍2 . The direct outputs of the two FC-DNNs 𝑢𝑢�(𝑥𝑥, 𝑡𝑡,𝒁𝒁) and 498 
𝑣𝑣�(𝑥𝑥, 𝑡𝑡,𝒁𝒁) are used as the estimation of the solutions by PINN. The loss function for the PINN can be 499 
formulated as follows:  500 

 501 
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can be obtained directly using Eq. (30). 504 
To train the network using PINN-RA, the collocation points ��𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝒁𝒁𝑖𝑖��𝑖𝑖=1

30,000
 are generated using LHS 505 

for the PDE residual, and 1,000 collocation points ��𝑥𝑥𝐵𝐵𝐵𝐵𝑖𝑖 , 𝑡𝑡𝐵𝐵𝐵𝐵𝑖𝑖 ,𝒁𝒁𝐼𝐼𝐼𝐼𝑖𝑖 ��𝑖𝑖=1
1,000

 for the boundary condition loss 506 

term. For AT-PINN-RA, the realizations of the spatial and temporal variables ��𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖��𝑖𝑖=1
30,000

 and candidate 507 

training samples for random variable �𝒁𝒁𝐶𝐶𝑖𝑖 �𝑖𝑖=1
30,000

are generated for the PDE residual. Moreover, 1,000 pairs 508 

of spatial and temporal variables ��𝑥𝑥𝐵𝐵𝐵𝐵𝑖𝑖 , 𝑡𝑡𝐵𝐵𝐵𝐵𝑖𝑖 ��𝑖𝑖=1
1,000

 for the boundary condition loss term as well as 100 509 

anchor points �𝒁𝒁𝑎𝑎𝑖𝑖 �𝑖𝑖=1
100

 are generated for the random variable vector 𝒁𝒁. In each batch, 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃  and 𝑁𝑁𝐵𝐵𝐵𝐵  are 510 
both set as 1,000. Note that in AT-PINN-RA, the 1,000 random variable samples generated using AT are 511 
shared between the PDE residual and boundary condition loss term. The Adam optimizer is run until the 512 
stopping criterion is met or it reaches 5,000 epochs for both methods. 513 

Fig 13 shows two realizations of the solutions for 𝑣𝑣 by AT-PINN-RA, the real solutions and the 𝐿𝐿1 514 
errors of the AT-PINN-RA solutions. It can be observed that the PINN model can predict the solution with 515 
high accuracy, especially in the region near the point of interest.  516 

In this example, the proposed AT sampling in AT-PINN-RA is able to identify the limit state and shift 517 
the focus of training to the region around the limit state. Fig 14 shows the anchor points and the sampled 518 
random variable points in the last epoch of the training for AT-PINN-RA. It can be observed that the density 519 
of the points around the limit state is higher than other regions. In addition, it can be seen that the estimated 520 
limit state by AT-PINN-RA is quite accurate. 521 

The comparisons of PINN-RA and AT-PINN-RA are presented in Table 3. AT-PINN-RA achieves an 522 
average error that is about 56% of the one of PINN-RA. Moreover, it takes 1235 epochs on average for AT-523 
PINN-RA to converge, while AT-PINN-RA reaches the predefined maximum epoch number 5,000 in most 524 
cases. The boxplot in Fig 15 also indicates that AT-PINN-RA is more accurate and more efficient than 525 
PINN-RA.  526 
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Fig 13. The solutions to 𝑣𝑣 and errors of two randomly selected realizations of the random variables. 

(First row) The 𝑣𝑣 solutions by AT-PINN-RA. (Second row) The real 𝑣𝑣 solutions. (Third row) 𝐿𝐿1 errors 
of the AT-PINN-RA solutions 

 527 
 528 
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Fig 14. The random variable points in the collocation points in AT-PINN-RA 

 529 
Table 3 Reliability results for Example 3 530 

Method Epoch number(Standard 
deviation) 𝑷𝑷𝒇𝒇 (Standard deviation) Average error 

(Standard deviation) 
MCS - 4.19×10-3 - 
PINN-RA 4491(1213) 4.38×10-3 (1.63×10-4) 4.68% (2.13%) 
AT-PINN-RA 1235(229) 4.27×10-3 (1.48×10-4) 2.64% (1.82%) 

 531 

 
Fig 15. The comparison of the two methods for Example 3 

 532 
4.4 Cell-signaling cascading 533 
The last example in this study is based on a mathematical model of the autocrine cell signaling cascade. 534 
This model was first proposed in [44]. The model describes signal cascading entailing three enzymes in an 535 
autocrine loop with positive feedback. The dimensionless concentrations are scaled by the total amount of 536 
the enzyme. These concentrations for the active (“phosphorylated”) form of the enzymes are investigated. 537 
The model was converted into a benchmark reliability analysis problem in [35] and was also studied in [25]. 538 
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The uncertainties in maximal reaction velocities will influence the dimensionless concentrations. In this 539 
problem, the concentration of an enzyme should be above a certain threshold value to speed up the reaction. 540 
The governing differential equations for the considered system are presented as follows: 541 
 542 

d𝑒𝑒1𝑝𝑝
d𝑡𝑡

=
𝐼𝐼(𝑡𝑡)

1 + 𝐺𝐺4𝑒𝑒3𝑝𝑝
 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,1(1 − 𝑒𝑒1𝑝𝑝)
𝐾𝐾𝑚𝑚,1 + (1 − 𝑒𝑒1𝑝𝑝)

−
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,2𝑒𝑒1𝑝𝑝
𝐾𝐾𝑚𝑚,2 + 𝑒𝑒1𝑝𝑝 

 

d𝑒𝑒2𝑝𝑝
d𝑡𝑡

=  
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,3𝑒𝑒1𝑝𝑝�1 − 𝑒𝑒2𝑝𝑝�
𝐾𝐾𝑚𝑚,3 + �1 − 𝑒𝑒2𝑝𝑝�

−
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,4𝑒𝑒2𝑝𝑝
𝐾𝐾𝑚𝑚,4 + 𝑒𝑒2𝑝𝑝 

 

d𝑒𝑒3𝑝𝑝
d𝑡𝑡

=  
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,5𝑒𝑒2𝑝𝑝�1 − 𝑒𝑒3𝑝𝑝�
𝐾𝐾𝑚𝑚,5 + �1 − 𝑒𝑒3𝑝𝑝�

−
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,6𝑒𝑒3𝑝𝑝
𝐾𝐾𝑚𝑚,6 + 𝑒𝑒3𝑝𝑝 

 

(33) 

 543 
where 𝑒𝑒1𝑝𝑝,  𝑒𝑒2𝑝𝑝 and 𝑒𝑒3𝑝𝑝 the concentrations of the active form of enzymes, which are the solutions to the 544 
equations, 𝐺𝐺4 = 0, 𝐼𝐼(𝑡𝑡) = 1, 𝐾𝐾𝑚𝑚,𝑖𝑖 = 0.2,∀𝑖𝑖, and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6 are the random variables considered 545 
in the system, which can be expressed as follows:  546 
  547 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 = 〈𝑉𝑉〉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖(1 + 𝜎𝜎𝜎𝜎𝑖𝑖), 𝑖𝑖 = 1,2, … ,6 (34) 
 548 
where 〈𝑉𝑉〉𝑚𝑚𝑚𝑚𝑚𝑚,1 = 0.5 , 〈𝑉𝑉〉𝑚𝑚𝑚𝑚𝑚𝑚,2 = 0.15 , 〈𝑉𝑉〉𝑚𝑚𝑚𝑚𝑚𝑚,3 = 0.15 , 〈𝑉𝑉〉𝑚𝑚𝑚𝑚𝑚𝑚,4 = 0.15 , 〈𝑉𝑉〉𝑚𝑚𝑚𝑚𝑚𝑚,5 = 0.25 , 549 
〈𝑉𝑉〉𝑚𝑚𝑚𝑚𝑚𝑚,6 = 0.05 , 𝜎𝜎 = 0.1  and 𝑍𝑍𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6  are the independent random variables that all follow 550 
uniform distributions 𝑈𝑈(−1,1).  551 

The system is subjected to the initial condition as follows: 552 
 553 

𝑒𝑒1𝑝𝑝(𝑡𝑡 = 0) = 0, 𝑒𝑒2𝑝𝑝(𝑡𝑡 = 0) = 1, 𝑒𝑒3𝑝𝑝(𝑡𝑡 = 0) = 0 (35) 
 554 
The limit state function considered is expressed as follows: 555 
 556 

𝑔𝑔(𝑍𝑍, 𝑡𝑡) = 𝑒𝑒3𝑝𝑝(𝒁𝒁, 𝑡𝑡) − 𝑒𝑒3𝑝𝑝,𝑐𝑐 (36) 
 557 
where 𝑒𝑒3𝑝𝑝,𝑐𝑐  is the threshold value for 𝑒𝑒3𝑝𝑝 . When 𝑒𝑒3𝑝𝑝  is larger than the critical value, the system is 558 
determined to be safe. 559 

For solving this problem, a FC-DNN is constructed. The network has 4 hidden layers, and each hidden 560 
layer has 50 neurons. The network has 7 inputs: the temporal variable 𝑡𝑡 and six random variables 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 , 𝑖𝑖 =561 
1,2, … ,6 . There are 3 outputs for the network, which are denoted as ℕ𝑒𝑒1𝑝𝑝�𝑡𝑡,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6� , 562 
ℕ𝑒𝑒2𝑝𝑝�𝑡𝑡,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6� and ℕ𝑒𝑒2𝑝𝑝�𝑡𝑡,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6�, respectively. To automatically satisfy the 563 
initial condition, the approach in [25] is adopted here. The PINN output is modified as follows: 564 

 565 
𝑒̂𝑒1𝑝𝑝 = 𝑡𝑡 ∙ ℕ𝑒𝑒1𝑝𝑝              
𝑒̂𝑒2𝑝𝑝 = 𝑡𝑡 ∙ ℕ𝑒𝑒2𝑝𝑝 + 1.0 
𝑒̂𝑒3𝑝𝑝 = 𝑡𝑡 ∙ ℕ𝑒𝑒3𝑝𝑝             

(37) 

 566 
where 𝑒̂𝑒1𝑝𝑝, 𝑒̂𝑒2𝑝𝑝 and 𝑒̂𝑒3𝑝𝑝 are the solutions estimated by the PINN. Thus, for each solution, only one loss term 567 
is needed. All the loss functions for the three solutions are presented as follows, respectively:  568 
 569 
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𝐿𝐿𝑒̂𝑒1𝑝𝑝(𝜽𝜽) =
1
𝑁𝑁
���1 + 𝐺𝐺4𝑒̂𝑒1𝑝𝑝� �𝐾𝐾𝑚𝑚,1 + �1 − 𝑒̂𝑒1𝑝𝑝�� �𝐾𝐾𝑚𝑚,2 + 𝑒̂𝑒1𝑝𝑝�

d𝑒̂𝑒1𝑝𝑝
d𝑡𝑡

𝑁𝑁

𝑖𝑖=1
− 𝐼𝐼(𝑡𝑡)�𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,1(1 − 𝑒̂𝑒1𝑝𝑝)(𝐾𝐾𝑚𝑚,2 + 𝑒̂𝑒1𝑝𝑝)�

+ �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,2𝑒̂𝑒1𝑝𝑝)(1 + 𝐺𝐺4𝑒̂𝑒1𝑝𝑝)(𝐾𝐾𝑚𝑚,1 + (1 − 𝑒̂𝑒1𝑝𝑝)��
2

 

𝐿𝐿𝑒̂𝑒2𝑝𝑝(𝜽𝜽) =
1
𝑁𝑁
���𝐾𝐾𝑚𝑚,3 + �1 − 𝑒̂𝑒2𝑝𝑝�� �𝐾𝐾𝑚𝑚,4 + 𝑒̂𝑒2𝑝𝑝�

d𝑒̂𝑒2𝑝𝑝
d𝑡𝑡

𝑁𝑁

𝑖𝑖=1
− �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,3𝑒̂𝑒1𝑝𝑝(1 − 𝑒̂𝑒2𝑝𝑝)(𝐾𝐾𝑚𝑚,4 + 𝑒̂𝑒2𝑝𝑝)�

+ �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,4𝑒̂𝑒2𝑝𝑝)(𝐾𝐾𝑚𝑚,3 + (1 − 𝑒̂𝑒2𝑝𝑝)��
2

 

𝐿𝐿𝑒̂𝑒3𝑝𝑝(𝜽𝜽) =
1
𝑁𝑁
���𝐾𝐾𝑚𝑚,5 + �1 − 𝑒̂𝑒3𝑝𝑝�� �𝐾𝐾𝑚𝑚,6 + 𝑒̂𝑒3𝑝𝑝�

d𝑒̂𝑒3𝑝𝑝
d𝑡𝑡

𝑁𝑁

𝑖𝑖=1
− �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,5𝑒̂𝑒2𝑝𝑝(1 − 𝑒̂𝑒3𝑝𝑝)(𝐾𝐾𝑚𝑚,6 + 𝑒̂𝑒3𝑝𝑝)�

+ �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,6𝑒̂𝑒3𝑝𝑝)(𝐾𝐾𝑚𝑚,5 + (1 − 𝑒̂𝑒3𝑝𝑝)��
2

 

(38) 

 570 
To train the network using PINN-RA, the collocation points ��𝑡𝑡𝑖𝑖 ,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘

𝑖𝑖 , 𝑘𝑘 = 1,2, … ,6��
𝑖𝑖=1
30,000

 are 571 

generated using LHS. For AT-PINN-RA, the realizations of temporal variables �𝑡𝑡𝑖𝑖�𝑖𝑖=1
30,000

 and candidate 572 

training samples for random variables �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘(𝐶𝐶)
𝑖𝑖 , 𝑘𝑘 = 1,2, … ,6�

𝑖𝑖=1

30,000
are generated. Moreover, 1000 573 

anchor points �(𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 (𝑎𝑎)
𝑖𝑖 , 𝑘𝑘 = 1,2, … ,6)�

𝑖𝑖=1

1000
 are generated for the random variables due to the high 574 

dimensions of this problem. It is found that adding more anchor points will not increase the accuracy 575 
significantly. The batch-size 𝑁𝑁 is set as 1000 for both PINN-RA and AT-PINN-RA. The Adam optimizer 576 
is run until the stopping criterion is met or it reaches 5,000 epochs for both methods. 577 

In this example, AT-PINN-RA outperforms PINN-RA in terms of both efficiency and accuracy. With a 578 
fewer epoch number on average, AT-PINN-RA achieves an average error of 1.88%, which is smaller than 579 
3.03% for PINN-RA. The boxplot in Fig 16 also provides a straightforward comparison of the two methods 580 
which shows that AT-PINN-RA is more robust than PINN-RA by a great margin. 581 

 582 
Table 4 Reliability results for Example 3 583 

Method Epoch number(Standard 
deviation) 𝑷𝑷𝒇𝒇 (Standard deviation) Average error 

(Standard deviation) 
MCS - 4.59×10-2 - 
PINN-RA 2286(925) 4.55×10-2 (2.04×10-3) 3.03% (3.30%) 
AT-PINN-RA 1929(540) 4.56×10-2 (1.11×10-3) 1.88% (1.57%) 

 584 
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Fig 16. The comparison of two methods for Example 4 

 585 
5. Conclusions 586 
In this paper, we have proposed a novel method for reliability analysis, which is called adaptively trained 587 
Physics-Informed Neural Network for reliability analysis (AT-PINN-RA). The advantages of the proposed 588 
method are two-folds: first, the proposed method is simulation free, and the computational costs are only 589 
from training the neural network. Second, a novel active learning approach called adaptive training (AT) 590 
sampling is proposed to boost the convergence rate and accuracy simultaneously. The proposed AT 591 
sampling approach adaptively shifts the training focus to the important regions where the limit state may 592 
occur in the entire domain. Anchor points and the corresponding probability mass function are introduced 593 
to boost the efficiency of the sampling process. During the training of the surrogate model, more training 594 
points are sampled in the vicinity of the limit state, which can help the model converge faster and be more 595 
accurate in the regions of interest. The performance of the AT-PINN-RA is demonstrated using four 596 
reliability problems. In all the examples, AT-PINN-RA shows significantly better performance than the 597 
existing approach, PINN-RA. AT-PINN-RA is able to make accurate predictions in all numerical examples, 598 
as the AT sampling can successfully identify the important regions. On the other hand, without the adaptive 599 
training focus, PINN-RA cannot always generate accurate results in all examples. The proposed approach 600 
facilities quantification of uncertainties and in particular analyzing the probability of events of interest. As 601 
the PINN is gaining more attention in solving complex PDEs, there is a growing opportunity to solve 602 
reliability analysis problems entailing fundamental governing equations in many engineering problems and 603 
physics phenomena using the proposed method. With the increasing complexity of problems, the simulation 604 
costs of solving reliability analysis problems can become prohibitive. In this context, the proposed method, 605 
as a simulation free method, can have more potential than the traditional methods. In addition, the 606 
advancements in the original PINN can be easily incorporated in the proposed method to improve the 607 
capability, efficiency and accuracy of the method. 608 
 609 
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