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ABSTRACT

Optimal management of systems over their service life as they face a multitude of uncertainties remains a
significant challenge. While additional information can reduce uncertainties, collecting new information
incurs cost and may include observation error. Value of Information (Vol) analysis facilitates quantitative
assessment of the expected net benefits of collecting new information. Moreover, partially observable
Markov decision processes (POMDPs) can be integrated within Vol analysis to efficiently capture the
sequential decision-making environments for systems. The assumption of stationary environment in
existing POMDP frameworks may not be valid, however, in many applications such as deterioration
processes which are often non-stationary. To address this gap, this paper presents a new approach called
VoI-R-POMDP. A new POMDP framework is proposed to accurately describe non-stationary processes
using multiple integrated transition models. New strategies based on reliability concepts are developed to
accurately and efficiently determine the parameters of the proposed POMDP model based on prior
information. A new formulation of the observation function based on Bayes’ theorem is also derived. The
proposed framework is applied to a corroding beam example. Results indicate that Vol-R-POMDP can
accurately and efficiently describe the deterioration process and thus provide accurate Vol estimates for
non-stationary systems.

Key words: Value of information, Reliability methods, Partially observable Markov decision processes,
Bayes’ theorem, Non-stationary environments
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An inspection action

A maintenance action

The do-nothing maintenance action

The replacement maintenance action

The action to be executed at time step n for a POMDP model

The set of actions in POMDPs

The probability of providing “Signal of E, ;” when the system is in the state s;.
The belief state

The initial belief state

The belief state of a POMDP model at time step n

Expected cost of the optimal decision without additional information
Expected cost of the optimal decision with additional information

The number of defined damage levels

The probabilities of being different states determined by reliability methods

A discrete event describing the state s; of POMDPs

A discrete event describing the observation outcome z; of POMDPs
Conditional expected cost with the optimal decision given the observation result ¥ = y
A limit state function that describes the event E;

A function that models the monitored quantity

The number of inspection measurements

A choice of management strategy from the set

The set of management strategy

The observation matrices in POMDPs

The probability of providing observation outcome z when the system state is s and the
selected action is a

The event indicated by the inspection outcome at time step n

The received reward of a POMDP model at time step n

The reward matrices in PODMPs

The reward for the case where the system state is s and action is a

The state of a POMDP model at inspection sub-steps

The state of a POMDP model at maintenance sub-steps

The state of a POMDP model at time step n

The i™" state in the set S

The set of states in POMDPs

The transition matrices in POMDPs

The transition matrix with action a

The transition probability from state s to s’ with action a being performed

The maximum expected reward calculated by a POMDP model considering n steps
Value of information

Value of an information flow determined by the proposed POMDP framework
Value of a current inspection action determined by the proposed POMDP framework
A realization of the random vector X

The random vector representing the system uncertainty

A realization of the inspection outcomes ¥

The vector of inspection outcomes

The observation outcome

The observation outcome received at time step n for a POMDP model

The set of observation outcomes in POMDPs



O = {T, 0, R, y} is the set of parameters in a POMDP model

T = T(Sl—l,i: ay, s,,i) is the transition probability from s;_; ; to s;; with ““do nothing” action
The measurement error of an inspection action

The probability of receiving “Signal of E,;” when the system is currently in state s;

The discounting factor in POMDPs

The submatrix of the transition matrix T al,

The submatrix of the transition matrix T al
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1. Introduction

Aging deterioration and shock-type hazards threaten the functionality of systems (e.g., machines, structures
or infrastructure systems [1, 2]) over their service life, thus requiring multiple maintenance treatments to
manage the risks. The presence of uncertainties in loads, system conditions, the environment and the
subsequent effects on systems poses a substantial challenge for developing optimal maintenance policies
especially when the budget is limited [3]. As a result, management of uncertainties is necessary and crucial
for decision making; collecting new information from inspections and structural health monitoring (SHM)
systems can help with improved characterization of involved uncertainties. Nevertheless, the cost savings
by this improvement are not guaranteed to be significant, as the collected information also suffers from
measurement errors and incurs cost that may surpass monetary benefits gained by the information. To
address this challenge, the concept of Value of Information (Vol) has been proposed to quantitatively
measure the expected benefit (or in a more common sense, utility increment) from future information.
Quantifying the Vol has been an important step towards maximizing the potential benefits from inspections
or continuous SHM systems.

The mathematical framework of Vol was first proposed in [4, 5]. Based on Bayes’ theorem, if a
decision maker knows the inspection outcome, the prior belief will be updated, and her choice of action can
potentially change. The increase in utility is defined as the conditional value of information (CVI), and the
expected value of CVI is named as the value of information. In the last few decades, the concept of Vol has
been adopted and applied in various scientific and engineering fields. For example, Pozzi and Der
Kiureghian [6] outlined the framework of assessing the Vol for long-term SHM and introduced a Monte
Carlo approach to quantify the values. Zonta et al. [7] proposed assessing the value of a monitoring system
for maintenance decision making of a pedestrian bridge using the Vol concept. Straub [8] investigated the
potential of using reliability methods to reduce the computational burden of Vol analysis. Zitrou et al. [9]
performed a Vol-based sensitivity analysis to identify the model parameters that have significant impact on
a maintenance optimization problem. Long et al. [10] investigated the relation between Vol and parameters
including the number of sensors, sensor locations, measurement noise, and the Type-I error for the
indication of the system states. lannacone et al. [11] proposed a formulation to calculate the Vol considering
both deterioration processed and shock occurrences. Bjernsen et al. [12] proposed a semi-quantitative
process considering the strength of background knowledge, on which the probabilistic model of the system
is established, in the Vol assessment and decision-making. Zou et al. [13] developed a holistic decision
making-based approach to enable assessing the Vol for a sequence of future tests.

As Vol explicitly analyzes the utility gained from inspections in terms of reduction in the expected
loss, some studies have used Vol as a metric to optimize the way of collecting information (e.g., inspection
plans or sensor placement). Straub and Faber [14, 15] developed an approach to determine component
inspection plans under system effects. Zhang et al. [16] proposed a framework integrating the Vol and risk-
based inspection planning and applied the approach to an example concerning fatigue degradation of steel
structures to illustrate the optimization of the monitoring variables, period and quality of inspections.
Fauriat and Zio [17] proposed an aperiodic sequential inspection policy where the next time of action is
determined by maximizing the Vol based on the condition of the system. Neves [18] developed a dynamic
decision-making framework based on decision trees and Vol analysis to determine the optimal SHM and
maintenance decisions in bridges. Farhan et al. [19] studied the optimal inspection time and maintenance
strategy for a welded joint in an offshore wind turbine support structure based on Vol. Malings and Pozzi
[20] adopted a greedy optimization technique to maximize the Vol metric and determine the optimal plan
iteratively. Malings and Pozzi [21] further compared the performance of the Vol metric-based greedy
optimization with genetic algorithm and a conditional entropy-based heuristic approach for the arrangement
of sensor placement. The same authors investigated Vol-based dynamic adjustment of sensor placements
and scheduling as new information updates the knowledge about the system [22].

Despite the above advances, determining the optimal actions with the prior or pre-posterior
information can still be computationally very complex due to the increasing number of decision times. This
task is even more challenging when considering the availability of future inspections, of which results are
dynamic and correlated with the later optimal decisions. If the problem is simplified that one single decision
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is to be made based only on the current information, both the Vol and Service Life Cost (SLC) can be
overestimated. To address this limitation, more advanced techniques are required to efficiently determine
the optimal management policy and SLC.

Partially observable Markov decision processes (POMDPs) provide a sound mathematical
framework for life cycle analysis [23-26]. Compared with Markov decision processes (MDPs) [27] where
the state is fully observed with absolute certainty at each time step, POMDP assumes that the true state is
not fully revealed and allows updating the belief about the state with arriving observations. Thus, POMDP
offers a significantly more realistic framework for the analysis and management of the service life of
systems. Exact solutions of POMDP need to consider all possible actions and observation results, which
can incur a high computational burden. An efficient strategy for solving large PODMP problems is the
point-based algorithm [28-38], which samples a set of points as a representation of the belief space. Note
that in structure and infrastructure management, a common approach to model degradation processes is
Markov-based where the probability of states depends only on the previous state of the system and therefore
independent of the history prior to the last state [39, 40]. Relative to general probabilistic models that may
not necessarily require this assumption, Markov-based models can substantially reduce the complexity of
modeling systems in uncertain environments, while providing a capable mathematical framework for
sequential decision making through Markov decision processes. In engineering applications, POMDP has
been successfully adopted for robot navigation [41, 42], search for victims [43], and management of
systems (e.g., corroded structures [44-47], machines [26, 48] and transmission networks [49]). Memarzadeh
and Pozzi [50] proposed utilizing two POMDP models for Vol analysis, and the two models are established
with the only difference that one model has an additional information flow (or an additional inspection
action under the information flow) and the other does not. The difference between the minimum SLCs
obtained from these two models is named the value of information flow (or the value of the inspection
action). A stochastic allocation model and a fee-based allocation model are specially designed to describe
the information flow with the information being collected at a given probability and at a given cost at each
time step, respectively. Except for the inspections that provide the information flow, it is also assumed that
there are ordinary scheduled observations that only reveal if the system has failed or not. To include both
the fee-based inspections and ordinary observations, each time step in the POMDP is split into an inspection
sub-step, where the inspection can be executed to help with the later maintenance decisions, and a
maintenance sub-step, where the ordinary observation occurs, revealing whether the system has failed or
not. Li and Pozzi [39] additionally investigated the relation between Vol and multiple features of the
monitoring system, such as the measurement accuracy and repair cost, based on the stochastic allocation
model assumption. However, existing POMDP frameworks adopt stationary transition functions, and
therefore cannot well describe a time-dependent deterioration process. Moreover, accurately determining a
POMDP model based on the prior knowledge remains a challenge. For instance, even with known
measurement errors, it is still challenging to derive the observation function in POMDPs, as the knowledge
of the system uncertainties and monitoring process is not rigorously connected with the POMDP model.
Thus, gaps remain regarding accurate modeling of uncertainties of aging systems in non-stationary
environments with the POMDP model.

To address these gaps, this paper proposes a new approach called Vol-R-POMDP to facilitate the
POMDP-based Vol analysis. The contributions of the paper can be summarized as follows. First, a new
POMDP framework is proposed that incorporates multiple models to describe different deterioration rates
with the ability for the belief state to transition among these models with aging. Thus, a time-dependent
deterioration process can be more accurately described by the proposed framework relative to existing
POMDP models, where the stationary deterioration assumption can result in considerable errors. Second,
new methods are developed for accurate and efficient POMDP model definition. Here, the transition
functions are estimated using Maximum Likelihood Estimation (MLE) based on probabilities that are
derived from reliability methods as benchmark. A new formulation based on Bayes’ theorem is introduced
to derive accurate observation functions. The proposed approach is applied to a corroding beam example
to calculate value of both current inspection action and information flow. The probabilities of failure from
the proposed POMDP model and existing POMDP models are compared in terms of accuracy. The relations
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among Vol, the replacement cost, the inspection accuracy and costs are investigated.

The rest of the paper is organized as follows. Section 2 provides an overview of the fundamental
theory of Vol and the POMDP framework. Section 3 presents the proposed Vol-R-POMDP approach.
Section 4 includes a detailed numerical example to demonstrate the performance of the proposed method.
Concluding remarks are presented in Section 5.

2. Preliminaries

This section provides an overview of Vol concept and the POMDP framework. Readers are referred to [8,
39, 50, 51] for more details.

2.1 Value of Information

The Vol analysis quantifies the expected utility improvement of a system by acquiring additional
information. A system can denote a machine, a structure or an infrastructure system, which is providing a
service and is managed to retain the functionality over time. As introduced in [8], Vol can be generally
formulated as:

Vol = Cprior - Cpre—post (D
where Cprior and Cpre_pos: are the expected costs of the optimal decisions with and without the additional
information, respectively.

The high complexity of optimal decision making for management of structures and infrastructure
systems stems in part from the multitude of endogenous or exogenous uncertainties (e.g., various
environmental or load conditions, workmanship, human error and occurrence of future events [52]) that
they face. Following the classical reliability framework, the random vector X is used here to represent the
uncertainty associated with the phenomena of interest. For instance, when the event of interest is the failure
of a transmission tower under extreme wind loads, the random vector X will include the parameters that
have considerable influence on the performance of the tower under wind loads including, among others,
the modulus of elasticity, yield stress of the main legs and other elements of the tower, and the uncertainty
in the wind-induced loading [53]. Thus, the relation between the failure or survival of the tower and a
realization of X can be defined using a function known as the limit state function or performance function
in reliability analysis. In this environment, the decision maker can choose a maintenance strategy m from
a set of available strategies M at a given time during the decision horizon of the system. Then, Cp.; can
be typically calculated by:

Corior = min Exle(m, )] = min | c(m 0fy(dx @

where c(m, x) is the cost corresponding to a given strategy m and a realization x of the random vector. Ex
denotes the expectation with respect to X, and fx(-) is the joint probability density function (PDF) of the
random vector X.

The information provided by the event of inspection can affect the optimal decision. For instance,
measuring the deflections of a bridge in a load test can reduce the uncertainties on the modulus of elasticity
and the cross-section areas of the horizontal and diagonal bars of a truss bridge [54]. Different measured
defections in the load test yield different beliefs of the current state of the bridge (e.g., an unusually large
defection can indicate a high failure probability of the bridge in the future), thus resulting in different
maintenance actions. Let ¥ denote the vector of the inspection or monitoring outcome. With a realization
of the inspection outcome y, the conditional expected cost with the optimal decision can be formulated as:

Exy(CI¥ =) = min | cn )y Cely)dx ()

where fxjy(*) is the conditional joint PDF of the random vector X given the inspection outcome ¥ = y.
Considering all possible outcomes of these measurement quantities, Cpre—_post €an be expressed as follows:
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where Ey denotes the expectation with respect to ¥ and fy (*) is the joint PDF of the inspection outcome Y.

Thus, Vol quantifies the difference between the minimum expected SLC with prior and pre-
posterior information. The random vector X with PDF fy formulates the probabilistic model representing
the uncertainties of a system. The vector ¥ formulates the inspection outcomes of the system, and the limit
state function formulates the performance of the system. At least one source of uncertainties needs to be
considered via statistical approaches in the computation of Vol. As in realistic applications, the agent
typically needs to consider uncertainties from multiple sources (e.g., loads, system conditions and the
environment). Quantifying the Vol has been an important step for evaluating the optimality of a SHM
system or maximizing the potential benefits from SHM.

2.2 POMDP
As introduced, the Vol has been successfully implemented in many applications. However, a significant
computational challenge remains regarding the determination of the optimal management strategy (m in
Eq. (2) and Eq. (4)). Numerous actions can be taken with increasing number of decision times, thus,
evaluating all the possibilities can become computationally intractable. POMDP-based Vol analysis, which
offers a powerful tool for life cycle analysis, is therefore proposed to remedy this challenge. This section
briefly introduces the basic framework of the POMDP.

A POMDP can be considered as a tuple composed of seven components (S, 4,Z,T, O, R, y), where
S, A and Z are the discrete set of states, actions, and observation outcomes, respectively; T, O and R are
the matrices that define the transition function, observation function and reward function, respectively; and
y is the discounting factor between 0 and 1. T (s, a, s") denotes the transition probability from state s to
state s’ with action a being performed at this time step. 0(z, a, s) denotes the probability of providing
observation outcome z when the system state is s and the selected action is a. R(s, a) represents the reward
for the case where the system state is s and action is a. Thus, to fully describe the transition, observation
and reward function, the size of matrices T, O and R should be |S| X |S| X |4], |S| X |Z] x |A| and
|S| x |A|, respectively. Moreover, b denotes the belief state and contains the probabilities of being in
different states, and b, denotes the initial belief. In the reinforcement learning literature, the decision maker
can also be referred as the agent, while the system is referred to as the environment.

a(=0) ai=D \ i e \ i
¥ (t=0) Z@=)) <ra=n, | i @ F(=n), |
t i
I 1

S(t=0) :@
time:t=0 time:t=1 I“ time:t=n ||“

Fig. 1. [llustration of the POMDP

The general POMDP framework is illustrated in Fig. 1. Following the typical illustration of
Bayesian networks, circles here represent random variables, squares represent decision variables and
diamonds represent utility variables. The system starts from an initial state s(t=0) that belongs to the finite
discrete set S. The agent can choose one action from the action set A. The state subsequently changes to
s(t=1) with the chosen action a(t=0), and this transition probability has been defined by the transition
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function. The agent can also receive an observation that provides information about the current state, and
the conditional probability of receiving the observation result z(t=1) is defined by the observation function.
Subsequently, the agent chooses an action, and the state may change again. This process can continue to an
infinite-horizon where at each time step, the agent receives a reward based on the corresponding state and
the action.

A key feature of POMDPs is that they allow modeling the uncertainty about the system state at
each time step. The belief state is based on both the initial belief and the observation outcome. Starting
from the belief b, conducting action a and receiving an observation z, the updated belief b’ can be
formulated as follows with Bayes’ theorem:

0(z,a,5") Xses b(s)T(s, a,s")

b'(s) = > 5)
Z
where P, is the probability of receiving the observation outcome z. P, can be calculated by:
P, =) b)) T(5,0,5)0(,a,5) ©

SES SIES
POMDPs can be solved using dynamic programming or iteration techniques. The maximum

expected reward considering n steps, namely V,*(b), can be constructed based on the maximum expected
reward with n — 1 steps, namely V,;_; (b). This relationship is formulated by the well-known Bellman
equation as follows:

v (b, ®) = max {Z b(s)R(s,a) + Z RV, (b, 0)} )
“ SES ZEZ

where b is the input of the belief; b’ and P, have been formulated by Eq. (7) and (8), respectively; and ©@ =

{T, 0, R,y} is the set of parameters in a POMDP model.

It has been proven that I}, is a piecewise linear and convex function, which can be presented by a
number of linear functions [30]. However, as the number of steps grows, the complexity of ;" can increase
substantially to a degree that exact computation is no longer viable. Several random-pointed methods that
can approximate V,; have been proposed [30]. With these efficient solvers, POMDPs can be used to
determine the optimal maintenance and inspection policies and obtain the maximum expected reward (or
minimizing the expected cost) considering infinite steps V.

3. The proposed approach
As POMDPs can efficiently determine optimal policies considering available inspection and maintenance
actions, POMDPs can be used to obtain the minimum SLCs with and without pre-posterior information.
Therefore, the Vol can be determined as the difference between the two SLCs. However, several gaps
remain including, among others, the non-stationary description of the environment, and accurate and
efficient determination of the POMDP model based on prior information. For instance, when the rate of
deterioration increases with aging, a constant transition function (or matrix) cannot accurately describe the
physical phenomenon. Even if the physical or mathematical function to model the inspection action and the
corresponding measurement errors are known, determining the observation function in the POMDP remains
a challenge. These gaps limit the application of POMDP for determining the Vol in some engineering
problems.

To address these gaps, this paper proposes a new approach, called VoI-R-POMDP, which is able
to estimate the value of both current inspection and information flow. The rest of this section presents the
proposed VOI-R-POMDP approach followed by the methods to determine the proposed POMDP model.

3.1 VOI-R-POMDP

A classical POMDP model typically assumes that the environment can be described by a stationary
transition function. Let S = [Sg, Sy, ..., Sq4+1] denote the set of states in the original POMDP model. s,
represents the intact state, sq, ..., sS4 are damaged states and s, is the failure state (the damage condition

8



254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276

of s; is more severe than s; if i > j). Fig. 2 (a) shows the deterioration process modeled by a classical
POMDP model. The system can transition from state s; to a more severe state s;,; with probability p(i, i +
1), or the system can remain in the same state with probability p(i, i). These probabilities remain constant
in the POMDP model. Thus, a time-dependent or non-stationary deterioration process may not be accurately
described; and a time-dependent transition model is needed. However, the naive strategy of simply
appending a state describing the time onto the set of system states is not applicable, as the property of time
is significantly different from that of the system states. In managing structures and infrastructure systems,
the system state typically cannot be fully known by the agent and needs to be updated with the observation,
while the time state is perfectly known and cannot be changed. An alternative is to duplicate the states into
discretized slices of time layers [55]. However, the number of states will increase significantly, as well as
the number of actions, resulting in a high computational burden.

To address this gap, this paper proposes a new approach to efficiently model the non-stationary
transition. Let us consider a system with the deterioration rate increasing with aging. It is assumed that a
transition function can well describe the initial deterioration process, while another transition function can
well model the most severe deterioration phase. The true deterioration process during the service life
typically acts between these two transition functions. Considering k deterioration models, where each
deterioration model can be regarded as a POMDP model with constant transition probabilities from one
state to the others, the set of states is expanded to [Sy, ..., Sg], where S; (I € [1, ..., k])is [S;0,S1.1) s Spa+1]
with the first subscript denoting the deterioration model and the second subscript the physical state of the
system. For instance, s; o and s, o represent the intact state in different deterioration models; thus, the
model will include different transition probabilities to capture the transition from s; o and s5 .

[ “Do nothing” — ]

p(0,0) p(d+1,d+1)

(o0 ot s rr{en)

(a) Belief transition with aging in existing POMDP

[ “Do nothing”  — ]

p1(0,0) p1(d+1,d+1)

A

m(o,n S11
)

p2(0,0)

(b) Belief transition with aging in proposed non-stationary POMDP
Fig. 2. Illustration of the proposed POMDP framework
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Subsequently, in order to model the time-dependent transition effect, the belief transitions from S,
to Sy+1 with “do nothing” action ( a “do nothing” action indicates the increase of the age here). Fig. 2 (b)
illustrates the deterioration process modeled by the proposed POMDP framework. Each state s;; can enter
a more severe state s; ;1 with the transition probability p; (i, i + 1) and remain in the current state with the
transition probability p; (i, i). Different from existing POMDP models, in the proposed approach, the state
s;; can also enter a physically identical state s;, ; that has a higher deterioration rate with the transition
probability of ;.1 (I € [1, ...,k —1],i € [0, ..., d]). Thus, with aging, the belief gradually transitions from
S1 to S, which models a more severe deterioration process, capturing the time-dependent transitions. Note
that a maintenance action (e.g., “replacement”) can reduce the rate of deterioration; therefore, the transition
function can be set to transition to an early belief (e.g., the initial one). As Fig. 3 shows, with the replacement
action denoted as a}, the transition probabilities starting from an arbitrary state s1,j to another state s,,;
(Lvell, .. k],i,j€]0,..,d +1]) can be represented by T[sl,j,a}z,sv,i] = p(Syj» Sp,i) - In order to
transition to the initial belief in the proposed POMDP model, p(s, j, s;,;) can be defined as by (s, ;), which
is often zero when v > [. Thus, the belief state becomes the initial belief after this replacement action is
performed.

[ “Replacement” ———-» ]

Svi )

\p(sl,j'su,l))i * ,p(sl'j, SU,(1+1)

Fig. 3. Belief transition with replacement in the proposed POMDP

The formulation of the transition matrices with “do nothing” and “replacement” maintenance
actions in the proposed POMDP framework is shown in Fig. 4. Each element in the matrix represents the
transition probability from the corresponding row state to the corresponding column state. Note that as
multiple deterioration models are considered in the proposed framework, M, (I € [1, ..., k]) and M} ;4
(I €[1,...,k — 1]) are submatrices of the transition matrix Ty, and Ty, (L, v € [1, ..., k]) are submatrices

of the transition matrix Ta}?. Thus, the sum of probabilities in the same row of M} ; (L € [1, ..., k]), M} ;44

(le[1,..,k—1])or T, (I,v € [1, ..., k]) is not necessarily identical to one, while the sum of probabilities
in the same row of Tazlv or Ta}l? is one. The formulation of the transition matrix in Fig. 4 (a) is consistent
with Fig. 2 (b). With aging, each state can enter a more severe state or remain in the current state or enter a
physically identical state that has a higher deterioration rate. The formulation in Fig. 4 (b) is consistent with
Fig. 3. It is assumed that, with replacement, the belief state becomes the initial belief. Thus, the transition
probability to an arbitrary state equals the initial belief of this state.
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Transition matrix with “do nothing” ]
(s, s - Sk-1 Sk )
i ;
MM, 0 o S1
0 inm,im,, i - : 52
T, = () 0 (o)
N
Miy—1p-1] M1 Sk-1
(V] (0] (V] Mk Sk
|
[ O denotes a matrix with all zero elements ]
_ [ S0 Sia Sid Std+1 ]_
)
(Strto St+1,1 - Si+1d+1]
p1(0,0) | p(0,1) 0 0 S10 B ]
Te1 | O 0 S0
0 n1D) | m(12) : Si1
0 | Ty4q : Si1
My=|i o 0 0 o ||| My =
0
@@ d) | p(d,d+1) Sia
0 0 Ti4+1 Std+1
0 0 0 pi(d+1,d+1) Spa+ i i

(a) Formulation of the transition matrix with aging
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(b) Formulation of the transition matrix with replacement
Fig. 4. [llustration of the transition matrices in the proposed POMDP framework

Let O denote the parameters of the proposed POMDP model and b the belief for the initial state.
To split the effects from the inspection actions and maintenance actions, the two-sub-step adjustment
proposed by Memarzadeh and Pozzi [50] is adopted here. Let V;*(bg, ®r) denote the minimum cost of the
POMDP model starting from an inspection sub-step as shown in Fig. 5 (a), and Vy; (b, ®g) denote the
minimum cost of the POMDP model starting from a maintenance sub-step as shown in Fig. 5 (b). Note that
compared to Vy;(bg, Or), V" (bg, Or) considers the availability of an inspection action at the beginning of
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the inspection sub-step. Thus, the difference between V;*(bg, ®Or) and y *Vy; (bg, Og) can be defined as the
value of this current inspection action (y* is the discounting factor in the two-sub-step POMDP model):

Volg g = Vi (b, Or) — ¥ *Vyi(bg, OR) @)
Moreover, let ®, denote the parameters of the original POMDP model without access to inspection
actions, while the other parameters, e.g., the transition function, remain the same as @g. Let Vs (bg, ©,)

denote the minimum service life cost without any inspection actions. The difference between V;*(bg, Or)
and V; (bg, ©,) represents the value of this information flow as follows:

Vols g = V[ (bg, Og) — Vi (bo, ©¢) )
i
a?t:O) al(t:O) Cl(()tzl) Cll(tzl) }i
1
1 i
r8=0) Zl(t:O) VEI:O) Z?z:n r?t:l) Z (t=1) r%zzl) !

1

S?t:O) ‘@ v@ > Sl(tzl) i
time .t =0 i) time :t =1 I—

(a) A two-sub-step POMDP starting from an inspection sub-step

Maintenance Sub Step Inspection Sub Step Maintenance Sub Step H
!

1l

1 0 1 1

A (1=0), A (t=1) A (t=1) )

1l

1
l"%t:O) Z%t:l r%:]) Z (1=1), r%tzl) |

time:r=0 NN time:t =1 I—

(b) A two-sub-step POMDP starting from a maintenance sub-step
Fig. 5. Illustration of the two-sub-step POMDP

The proposed POMDP framework can reliably model time-dependent or non-stationary
environments compared with the existing models. Nevertheless, the determination of the number of
deterioration models, and the corresponding transition functions and observation function based on the prior
knowledge is challenging. The rest of this section focuses on methods that are developed in this research
for efficient and accurate definition of the parameters of the proposed POMDP model. As these approaches
are built on reliability concepts to obtain accurate time-dependent belief of the system state and to facilitate
the establishment of the proposed POMDP model, the Vol analysis method is called VoI-R-POMDP. Note
that as the POMDP model can determine the optimal policy of managing the system, the action of collecting
additional information is not performed when the expected cost is larger than the expected utility
improvement. Thus, though the POMDP-based Vol analysis determines the net Vol result, the result cannot
be negative.

3.2 Definition of the transition function

In reliability analysis, a performance function is typically used to describe the performance of a
system. The failure event occurs when the system performance cannot meet a prescribed requirement.
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Inspired by the approach in [8], we propose defining the states based on the performance of the system. For
instance, if a structural component under fatigue deterioration is to be investigated, the failure of the
component is determined by the crack depth. d damage levels are considered besides the failure and intact
states of the system. The system states can be defined as: the intact state sy, damaged state s, ..., sS4, and
the failure state s;,,. Mutually exclusive and collectively exhaustive events E; (i =0, ...,d + 1) can be
correspondingly defined to indicate that the system is in state s;. These events can be described by the same
performance function with different criteria (e.g., the failure event occurs when the crack depth is larger
than 50 mm; the intact event happens when the crack depth is less than 10 mm). Let f(x) denote the
performance function and c; and c;,, denote the lower bound and the upper bound of the performance,
which defines the event E;. The relation between the states and the performance function can be formulated
as:

{Si =1o f(x) €[c;,cipq) (10)

si=0e f(x) € [c;,cipq)

Thus, the system is in state s; when f;(x) < 0, indicating that the event E; has occurred. The belief
of system state at time step n can be formulated as {Pr(E,, X,t € [n—1,n],),Pr(E;, X,t € [n —
1,n]),...,Pr(Eg41, X, t € [n — 1,n])}, which represents the probabilities of these events in a specific time
period. These probabilities can be efficiently estimated with time-dependent reliability methods [56-58]
and the initial belief by can be correspondingly determined. Moreover, whether the environment can be
described by a stationary transition function can also be observed based on these probabilities. As the
relationship between the rate of failure and aging deviates further from a linear model, the number of the
deterioration models can be adaptively increased until the non-stationary environment can be accurately
described.

In the following, the determination of the transition function is discussed. With k deterioration
models, the set of system states in the proposed POMDP approach can be defined as [Sy, ..., S ], where S;
(L€ [1,...,k]) is [S1,0 St 1, --» Si.a+1]- When the maintenance action is “do nothing” (denoted as ay), the
system in damaged state s, ; deteriorates and enter state s;;,1, or remains in the current state s, ;, or enters
the state ;41 ; which is physically identical but with a higher deterioration rate. The relation between the
belief state at time n and that at time n + 1 can be expressed as:

bren+1(Stis1) = Be=n(510) X P1(, i + 1) + bron(s1i41) X G + 1,0+ 1) an
+ben(Si1,41) X Ty

Considering these physically identical states, the belief that the system is in state s; at time step n
is Z{;l b;—, (Sl,i)- From another point of view, the probabilities of being in states s; can be estimated with
reliability methods, denoted as by—, r(s;). Considering the results provided by the reliability analysis as
benchmarks, the errors from the transition functions can be measured. The optimal transition probabilities
can be determined by the maximum likelihood estimation (MLE) as follows:

[t,p] = ar(gm)in L(b¢=1 R, s br=n r|bo, T, D) (12)
Tp
_ . _ [200) p(1,1) - p(dd) _
where p = [p1, ..., D] . D1 = 2, (01) p(12) -~ pid.d+1) (le[1,..,k]), and T = [Ty, ..., Tx]

(with T and p, the transition matrix of Fig. 4 (a) can be determined). Note that the dimensions of p, p and

tare 2 x |d+ 1|, |2k| x |d + 1] and 1 x |k — 1], respectively. by is the initial belief state, L is the
likelihood function. Here, it is assumed that relative difference between b, and b, ; follows a standard
normal distribution.

When the maintenance action is not “do nothing” (e.g., “minor repair”, “major repair” or
“replacement”), the definition of the transition function depends on the belief about the effect of the
maintenance actions. For instance, when “replacement” a} is performed, the system can be considered as
a new system, thus the transition function can be set such that the belief becomes the initial one.
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3.3 Definition of the observation function
Inspection actions can provide additional information to better characterize the uncertainty and support
decisions. In realistic applications, the inspection action can provide either equality-type or inequality-type
outcomes. However, the POMDP model can only utilize discrete signals to update the belief state. To fully
leverage the collected the information, this paper generally defines that q discrete inspection outcomes
z; (i = 1, ..., q) are provided by the inspection action, and each outcome z; indicates the occurrence of the
event E, ;. For instance, for a structural component under fatigue deterioration, the “Alarm” inspection
outcome can be described as the event that the crack depth has become larger than 40 mm. The model can
more accurately describe the equality-type inspection with more discrete outcomes z;.

Let T ; represent the probability of receiving “Signal of E, ;” when the system is currently in state
sj; thus, I j can be formulated as:

I;; = Pr[EL ,(t=n)|af, E;(t=n)] (13)
where a? denotes the inspection action, E é,i (t=n) denotes the event indicated by the inspection at time step
n, and Ej(t=n) is the event that actually happens at time step n. Next in the process is the determination

of T; ;. Given an inspection y at time step n, the conditional probability that the event E, ; happens at this
time step can be expressed as:

PrB,Ce=mly(e=m)] = | 11Got=n) € 2, frplxly(e=m)]dx (14)
X

Following Bayes’ theorem, fxy[x|y(t=n)] can be expressed as:
L(x,t=n) f(x)
frirlxly(t=n)] = (15)
Jy L(x,t=n) f(x) dx
where L(+) is the likelihood function. Considering the involvement of time, the likelihood function can be
recast as [8]:

k
L@ t=n) = | [ fo Dien = it t=m)) (16)
i=1

where y;—, = [th:n, . yk,t=n] are the measurements at time step n, h;(-) is the function that models the
corresponding monitored quantity, and € = [€4, .., €] is the vector of the measurement errors. With Eq.
(15) and (16), Pr[EZ,i(t=n)|y(t=n)] can be reformulated as:

Jy 1l(x,t=n) € Qg ] L(x,t=n) f(x) dx

fX L(x,t=n) f(x) dx
The accuracy of the inspection action determines h(X) and the PDF of the observation error f.
Considering that the inspection action is a?, the condition probability Pr[EZ'i(t=n)|a?, y(t=n)] is:

Ji 1(x t=n) € 2g, ] L(x, t=n,a}) f(x) dx

Jy L(x t=n, a?) f(x) dx
where L(x,t=n,a?) is the likelihood function with the h(:) and f, being determined based on the
inspection action a?.

The joint PDF of y may not be directly obtained because a complex mathematical or physical
function is required to model this monitoring process. Alternatively, we can first determine the joint
distribution of X and then sample from the conditional distribution fy|x. Thus, considering all possible
observations, the probability that E, ; happens based on all possible observation outcomes is:

Pr[E,;(t=n)|y(t=n)] = (17)

PrE,; (t=n)|y(t=n), a] =

(18)

Pr[E] (t=n)|a?] = fX fx (@) fy Pr[E,. (t=)ly(t=n), a!] - fyx[y(t=m)|x,al] dydx  (19)
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Subsequently, the probability that event E, ; is indicated by the observation but event E; has truly
occurred at the inspection time step n can be derived as:
Pr[E};(t=n) N E;(t=n)|a]]

= [ NG € 05] i@ | PrlELiemmIye=n),of] - Frly(e=ml of) dyd
With Bayes’ theorem, [ ; can be expressed as:
_ PrlE}i(t=n) 0 E;(t=n)]|af]
b Pr[E;(t=n)|a?]
Jy 16 t=n) € 25 ] fx(x) [, Pr[E,(t=n)ly(t=n),a] - fux[y(t=n)Ix.f] dydx D

fx I[(x, t=n) € -QE]-] - fx(x)dx
Note that I ; is identical to Pr(zi|a?,3j) with zg; denoting the “Signal of E,;” outcome. After
determining all [; ; considering the given inspection action, the set of observation probabilities or the
observation function will be established for the proposed POMDP model. MCS is a basic approach for
determining [ ;. The same sampling strategy as in [8] (first, sample from X and then sample multiple ¥
based on each x) is used in this paper. More advanced techniques, such as IS and surrogate models, can be
potentially used here.

(20)

4. Illustrative application

4.1 Engineering model

In order to further illustrate the proposed approach, the Vol analysis is investigated for a corroding simply
supported beam [59]. As shown in Fig. 6, the span of the beam is L = 5 m and cross-section of the beam is
rectangular. It is assumed that the section uniformly corrodes, and the relation between the section and time
can be formulated as:

h(t) = hg — 2wt (22)
b(t) = by — 2wt (23)

where hj and b, are the initial depth and width of the cross section, respectively and w is the time-

dependent corrosion rate that is assumed to be 8/t m/year, where 6 is also a random variable listed in
Table 1.

F Corroded area Sound 1
Dead load | ound stee i‘

R IR | i
i At T

/

bo
Fig. 6. The corroding beam and the cross section
The beam is subjected to both the gravity load (the force density is 78500 N/m?) and a concentrated

load F. Due to the functionality constraint, it is assumed that the external load is applied in the weak axis.
The details of the simply supported beam and the probabilistic information are listed in Table 1.

Table 1 Parameters of the crack growth model
Variable Distribution Mean Standard deviation
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Uy Deterministic 2.1x10%(Pa) -

hy Lognormal 0.045 (m) 4x107
by Lognormal 0.20 (m) 0.01

0 Lognormal 2.5%x10” (m/year) 2.5%10°
F Deterministic 8000 (N) -

Let u,, denote the yield strength of the steel. The structure fails when the stress of the beam exceeds
uy. The performance function is formulated as:
(bo — 2wt)(hy — 2wt)?u,,  FL  78500byh,L?
5 1) = 3 "Gt
where X = [hg, by, 8]7 is a vector of the random variables that describe the uncertainties for the initial size
of structure and the corrosion rate, x is a realization of X, t is the time parameter, w is identical to 04/t and
F is the external load.

The information collection action in this example includes measuring the width and depth of the
sound area using inspection. The likelihood function describing the inspection outcome at time step n can
be thus formulated as:

L(x) = fe, [Vne=n — R, t=0)] X fe, [Vb,t=n — b(x, t=n)] (25)
where yj 1=, and y;, ;= are the measured width and depth at time step n, respectively, h(x, t=n), which
is defined by Eq. (22), represents the depth of the sound steel at time step n, and b(x, t=n), which is defined
by Eq. (23), represents the width of the sound steel at time step n. In this example, f,; and f,, are both
defined as a zero-mean normal PDF with the standard deviation of 0., = 0., = 1 mm.

It is assumed that an inspection action and a maintenance action can be taken every two years. Note
the exact choice of the optimal maintenance action at each time step depends on the current belief of the
state of the beam, which changes with aging and is updated with different inspection outcomes in the
POMDP model. The available choices of actions in this example are listed as follows:

1) Inspection actions: “do inspection”, denoted as a?, and “do nothing”, denoted as ay.
2) Maintenance actions: “replacement”, denoted as ak, and “do nothing”, denoted as a.

The goal is to estimate Vol g for performing an inspection action at the initial time step and Vol p
for performing the inspection actions in the service life of the beam. The cost of failure cg is the sum of the
costs of replacing the beam, the incurred user cost, and the potential injury and casualty. Assuming that the
failure cost is proportional to the cost of the bridge in [7], ¢ is estimated as $1.16x10°. The cost of
replacing the beam cy and the cost of inspection c; are estimated as $2x10* and $200, respectively. The
magnitude of the applied cost model is consistent with [8, 54]. In engineering applications, more detailed
cost models can be applied based on the specific application.

24

4.2 The reliability assisted POMDP model

The proposed POMDP model is determined following the proposed approaches in Section 3. Three states
including s, S;, and the failure state s, are considered here based on the maximum stress under the dead
load and external load as shown in Table 2.

Table 2 Definition of states

State condition Maximum stress Cost
So <0.90, 0
S1 =090, & <0y 0
S, > oy 1.16x10°

The time-dependent probabilities of the states of the beam can be efficiently determined by
reliability methods. MCS is adopted in this example as the benchmark. Approximation methods, such as
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First-Order Reliability Methods (FORM) that transform the non-standard normal variables to standard
normal variables using transformation techniques (e.g., Rosenblatt transformation [52]) and approximate
the failure probability based on the most probable failure point, can also be applied here. Table 3 lists the
probabilities of being in these states at different time steps.

Table 3 The probabilities of being in different system states

Stat dit; Probability at Probability at Probability at Probability at
ate condition the st time step the 5th time step the 10th time step the 20th time step

So 9.9535%10! 9.8231x10! 8.8974x10! 3.6244%10!

sy 4.5137x10° 1.6047x107 9.0260x10 3.6889x10"!

S, 1.3208x10™ 1.6391x107 2.0002x1072 2.6867x10!

Four transition models are used to describe the time-dependent deterioration process in the
proposed POMDP framework. The details of defining the transition function have been explained in Section
3. The initial belief is determined as by = [0.9962, 0.0038, 0]. T and p in Eq. (12) are determined as
follows:

T = [0.1683, 0.1714, 0.1484]

_ [0.8305 0.7975] :[0.8229 0.7799 :[0.8286 0.8466 _ [0.8313 0.8333]
P1=10.0012 0.03420°P2 T l0.0057 0.0487)°P3 T 10.0230 0.0050/"P* T lo.1687 0.1667

The formulation of the transition matrix has been illustrated by Fig. 4. To validate the accuracy of
the proposed framework, the probability of failure with MCS, the probability of failure determined by the
transition function in the proposed POMDP model and that in existing POMDP models are compared in
Fig. 7. POMDP model-1 and POMPD model-2 are determined to fit the deterioration process at the
beginning of the service life and at the end of service life, respectively. Considering the results from MCS
as the benchmark, the probability of failure increases nonlinearly with aging. Thus, POMDP model-1 and
POMPD model-2, which are based on the stationary transition assumption, have considerable errors in
probability estimations. In comparison, the proposed POMDP model accurately describes the deterioration
process over the entire service life of the beam.

Probability of failure via MCS

0.3 ... Probability of failure in proposed POMDP model
----- Probability of failure in POMDP model-1
025117~ -Probability of failure in POMDP model-2 |
0.2r
7 0.15
0.1r
0.05r
0 == =
5 10 15 20
time step

Fig. 7. The comparison among the failure probabilities from different POMDP models
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For the sake of illustration, two signals are considered as the inspection outcomes in the POMDP
model: signal of s, called zg, indicating that the beam is in state s, and signal of 54, called z4, indicating
that the beam is in state s;. The observation probability can be determined as explained in Section 3.3.
0(z50,a?, 5g) is 0.9982 and 0(zgq, a?, s;) is 0.5355.

4.3 The value of information

After establishing the proposed POMDP model, value of the current inspection action Vol can be
determined based on Eq. (8). The minimum service life cost with pre-posterior information V;*(bg, ©) is -
$6,177. The minimum service life cost without additional inspection action at the initial time step is
Va(bg, Or) =-$6,122. Thus, the value of the current information is Vol g = $0. On the other hand, value
of information flow can be similarly determined based on Eq. (9). The minimum service life cost without
inspection action is V5 (bg, ©) =-$9,237. Thus, the value of information flow is Vols p = $3,430.

20k T T 5 6k
[ L.CC with inspection K]
[T 1L.CC without inspection o Sk
15k f 14102 L
= 4kt
g
10702 = I
10k | 9461 ug 3k
6177 8 2k
5k 756 1k |
>
611 612 Ok PP ' N
Ok L m—— 0.1 02 03 05 1 2 3 5
POMDP-1 Proposed POMDP POMDP-2 Inspection error o, (mm)
(a) Vol g from different models (b) Vol g versus the inspection accuracy
6k - - - 6k
2 2
= 5kt = 5kt
= =
g g
< 4k < 4k r
g g
§ 3kt :§ 3k b
= =
s 2k + b 2k ¢
] <5}
% 1k | % 1k |
> >
Ok : ' : Ok : : : : :
0 0.5k 1k 1.5k 2k 0 50k 100k 150k 200k
Inspection cost Replacement cost
(c) Vols g versus the inspection cost (d) Vol g versus the replacement cost

Fig. 8. Parametric investigation on the value of information flow

The probability of failure is relatively low at the beginning time step, thus the inspection may not
be necessary and the value of the current information Vol is 0. As the corrosion rate of the beam is
assumed to be time-dependent, the probability of failure increases at a higher rate with aging. Collecting
additional information through inspection is more essential when the failure probability is larger. Thus, in
this non-stationary environment, the flow of information in the service life can bring considerable benefit
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(Vols g=$3,285). To further investigate the influence of POMDP parameters on Vol, Vol p is investigated
parametrically as Fig. 8 shows. In Fig. 8 (a), it is observed that the minimum service life costs with and
without inspection actions and Vols z from the proposed POMDP model are between the corresponding
values from POMDP model-1 and POMDP model-2. This observation is consistent with Fig. 7, where the
transition function of POMDP model-1 significantly underestimates the probability of failure, while the
transition function of POMDP model-2 overestimates the probability of failure in the aging process. The
existing POMDP models with stationary deterioration processes can introduce large errors in estimating
the service life cost and Vol in a non-stationary environment. The significance of the proposed approach is
thus highlighted. Fig. 8 (b) shows the relation between the Vol ; and the error of the inspection action
when error of inspection increases from 0.1 mm to 5 mm. As illustrated in the figure, Vol  decreases
slowly with the increase of the error. However, after the error reaches the threshold of 0.5 mm, the rate of
reduction increases until Vol z comes close to zero. The trend in the figure is based on the assumption that
the inspection cost remains the same with different inspection errors. In reality, the inspection cost is
typically inversely proportional to the inspection error, thus, the selection of the inspection accuracy should
be investigated to reach the optimality of Vol . The relation between Vol  and the cost of the inspection
action is shown in Fig. 8 (c). The value of information decreases monotonically with the increase of the
inspection cost. When the inspection cost is around $2,000, Vol  drops to almost zero. Fig. 8 (d) illustrates
the relation between Volg g and the cost of the replacement action. It is noted that when the replacement
cost increases from $0 to around $5x10*, the value of information flow shows a significant increase from
$0 to more than $4,000. Subsequently, when the replacement cost increases further, the value of information
drops until it reaches zero. When replacement is considerably cheap (even cheaper than the inspection),
replacement can be applied without collecting information in advance. On the other hand, when
replacement is extremely expensive (even more expensive than the failure cost), the decision maker prefers
to “do nothing” and thus, the collected information cannot yield a better maintenance decision.

5. Conclusion

This paper presented a new approach for value of information (Vol) analysis called Vol-R-POMDP for
systems with time-dependent deterioration processes and introduced methods for accurate determination of
the POMDP model. A novel POMDP framework, which establishes multiple transition models describing
different deterioration rates, is proposed to accurately model the non-stationary deterioration process in
realistic applications. Accurate and efficient strategies are also proposed for the POMDP model definition.
The transition function is estimated using the maximum likelihood estimation considering the probabilities
that are derived from reliability methods. A new formulation of the observation function based on Bayes’
theorem is proposed to accurately describe the inspection process in the POMDP model. The Vol-R-
POMDP approach is investigated for a corroding beam example to demonstrate its performance. The
proposed approach can provide considerably more accurate estimates of values of both current inspection
and information flow in the case where the deterioration process is non-stationary. The paper is concluded
by discussing limitations and possible extensions. First, when the limit state function or the function that
models monitored quantities become expensive-to-evaluate, advanced sampling techniques [60, 61] or
surrogate models [62, 63] can be applied to reduce the computational costs. Moreover, the decomposition
approach in [50] can be extended for Vol analysis of a system with multiple components.
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