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ABSTRACT  9 
Optimal management of systems over their service life as they face a multitude of uncertainties remains a 10 
significant challenge. While additional information can reduce uncertainties, collecting new information 11 
incurs cost and may include observation error. Value of Information (VoI) analysis facilitates quantitative 12 
assessment of the expected net benefits of collecting new information. Moreover, partially observable 13 
Markov decision processes (POMDPs) can be integrated within VoI analysis to efficiently capture the 14 
sequential decision-making environments for systems. The assumption of stationary environment in 15 
existing POMDP frameworks may not be valid, however, in many applications such as deterioration 16 
processes which are often non-stationary. To address this gap, this paper presents a new approach called 17 
VoI-R-POMDP. A new POMDP framework is proposed to accurately describe non-stationary processes 18 
using multiple integrated transition models. New strategies based on reliability concepts are developed to 19 
accurately and efficiently determine the parameters of the proposed POMDP model based on prior 20 
information. A new formulation of the observation function based on Bayes’ theorem is also derived. The 21 
proposed framework is applied to a corroding beam example. Results indicate that VoI-R-POMDP can 22 
accurately and efficiently describe the deterioration process and thus provide accurate VoI estimates for 23 
non-stationary systems.  24 
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Nomenclature  
𝑎𝑎0 An inspection action 
𝑎𝑎1 A maintenance action 
𝑎𝑎𝑁𝑁1  The do-nothing maintenance action 
𝑎𝑎𝑅𝑅1  The replacement maintenance action 

𝑎𝑎(𝑡𝑡=𝑛𝑛) The action to be executed at time step 𝑛𝑛 for a POMDP model 
𝐴𝐴 The set of actions in POMDPs 
𝐴𝐴𝑖𝑖,𝑗𝑗 The probability of providing “Signal of 𝐸𝐸𝑧𝑧,𝑖𝑖” when the system is in the state 𝑠𝑠𝑗𝑗. 
𝒃𝒃 The belief state 
𝒃𝒃𝟎𝟎 The initial belief state 
𝒃𝒃𝑡𝑡=𝑛𝑛 The belief state of a POMDP model at time step 𝑛𝑛 
𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  Expected cost of the optimal decision without additional information 

𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Expected cost of the optimal decision with additional information 
𝑑𝑑 The number of defined damage levels  

𝒃𝒃𝑡𝑡=𝑛𝑛,𝑅𝑅 The probabilities of being different states determined by reliability methods 
𝐸𝐸𝑖𝑖 A discrete event describing the state 𝑠𝑠𝑖𝑖 of POMDPs 
𝐸𝐸𝑧𝑧,𝑖𝑖 A discrete event describing the observation outcome 𝑧𝑧𝑖𝑖 of POMDPs 

E(𝐶𝐶|𝒀𝒀=𝒚𝒚) Conditional expected cost with the optimal decision given the observation result 𝒀𝒀 = 𝒚𝒚 
𝑓𝑓𝑖𝑖 A limit state function that describes the event 𝐸𝐸𝑖𝑖 
ℎ(∙) A function that models the monitored quantity 
𝑘𝑘 The number of inspection measurements 
𝑚𝑚 A choice of management strategy from the set 
𝑀𝑀 The set of management strategy 
𝑶𝑶 The observation matrices in POMDPs  

𝑂𝑂(𝑧𝑧,𝑎𝑎, 𝑠𝑠) The probability of providing observation outcome 𝑧𝑧  when the system state is 𝑠𝑠  and the 
selected action is 𝑎𝑎 

𝐸𝐸𝑧𝑧,𝑖𝑖
𝐼𝐼 (𝑡𝑡=𝑛𝑛) The event indicated by the inspection outcome at time step 𝑛𝑛 
𝑟𝑟(𝑡𝑡=𝑛𝑛) The received reward of a POMDP model at time step 𝑛𝑛 
𝑹𝑹 The reward matrices in PODMPs 

𝑅𝑅(𝑠𝑠,𝑎𝑎) The reward for the case where the system state is 𝑠𝑠 and action is 𝑎𝑎 
𝑠𝑠0 The state of a POMDP model at inspection sub-steps 
𝑠𝑠1 The state of a POMDP model at maintenance sub-steps 

𝑠𝑠(𝑡𝑡=𝑛𝑛) The state of a POMDP model at time step 𝑛𝑛 
𝑠𝑠𝑖𝑖 The 𝑖𝑖th state in the set 𝑆𝑆 
𝑆𝑆 The set of states in POMDPs 
𝑻𝑻 The transition matrices in POMDPs  
𝑻𝑻𝑎𝑎 The transition matrix with action 𝑎𝑎 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) The transition probability from state 𝑠𝑠 to 𝑠𝑠′ with action 𝑎𝑎 being performed 
𝑉𝑉𝑛𝑛∗ The maximum expected reward calculated by a POMDP model considering 𝑛𝑛 steps 
VoI Value of information 

VoIf,R Value of an information flow determined by the proposed POMDP framework 
VoIc,R Value of a current inspection action determined by the proposed POMDP framework 
𝒙𝒙 A realization of the random vector 𝑿𝑿 
𝑿𝑿 The random vector representing the system uncertainty 
𝒚𝒚 A realization of the inspection outcomes 𝒀𝒀 
𝒀𝒀 The vector of inspection outcomes 
𝑧𝑧 The observation outcome 

𝑧𝑧(𝑡𝑡=𝑛𝑛) The observation outcome received at time step 𝑛𝑛 for a POMDP model 
𝑍𝑍 The set of observation outcomes in POMDPs 
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𝚯𝚯 𝚯𝚯 = {𝑇𝑇,𝑂𝑂,𝑅𝑅, 𝛾𝛾} is the set of parameters in a POMDP model 
𝜏𝜏𝑙𝑙 𝜏𝜏𝑙𝑙 = 𝑇𝑇�𝑠𝑠𝑙𝑙−1,𝑖𝑖 ,𝑎𝑎𝑁𝑁 , 𝑠𝑠𝑙𝑙.𝑖𝑖� is the transition probability from 𝑠𝑠𝑙𝑙−1,𝑖𝑖 to 𝑠𝑠𝑙𝑙.𝑖𝑖 with “do nothing” action 
𝝐𝝐 The measurement error of an inspection action 
Γ𝑖𝑖,𝑗𝑗 The probability of receiving “Signal of 𝐸𝐸𝑧𝑧,𝑖𝑖” when the system is currently in state 𝑠𝑠𝑗𝑗 
𝛾𝛾 The discounting factor in POMDPs 

𝓜𝓜𝑙𝑙,𝑙𝑙 The submatrix of the transition matrix 𝑻𝑻𝑎𝑎𝑁𝑁1  
𝓣𝓣𝑙𝑙,𝑣𝑣 The submatrix of the transition matrix 𝑻𝑻𝑎𝑎𝑅𝑅1  

 29 
  30 
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1. Introduction 31 
Aging deterioration and shock-type hazards threaten the functionality of systems (e.g., machines, structures 32 
or infrastructure systems [1, 2]) over their service life, thus requiring multiple maintenance treatments to 33 
manage the risks. The presence of uncertainties in loads, system conditions, the environment and the 34 
subsequent effects on systems poses a substantial challenge for developing optimal maintenance policies 35 
especially when the budget is limited [3]. As a result, management of uncertainties is necessary and crucial 36 
for decision making; collecting new information from inspections and structural health monitoring (SHM) 37 
systems can help with improved characterization of involved uncertainties. Nevertheless, the cost savings 38 
by this improvement are not guaranteed to be significant, as the collected information also suffers from 39 
measurement errors and incurs cost that may surpass monetary benefits gained by the information. To 40 
address this challenge, the concept of Value of Information (VoI) has been proposed to quantitatively 41 
measure the expected benefit (or in a more common sense, utility increment) from future information. 42 
Quantifying the VoI has been an important step towards maximizing the potential benefits from inspections 43 
or continuous SHM systems.  44 

The mathematical framework of VoI was first proposed in [4, 5]. Based on Bayes’ theorem, if a 45 
decision maker knows the inspection outcome, the prior belief will be updated, and her choice of action can 46 
potentially change. The increase in utility is defined as the conditional value of information (CVI), and the 47 
expected value of CVI is named as the value of information. In the last few decades, the concept of VoI has 48 
been adopted and applied in various scientific and engineering fields. For example, Pozzi and Der 49 
Kiureghian [6] outlined the framework of assessing the VoI for long-term SHM and introduced a Monte 50 
Carlo approach to quantify the values. Zonta et al. [7] proposed assessing the value of a monitoring system 51 
for maintenance decision making of a pedestrian bridge using the VoI concept. Straub [8] investigated the 52 
potential of using reliability methods to reduce the computational burden of VoI analysis. Zitrou et al. [9] 53 
performed a VoI-based sensitivity analysis to identify the model parameters that have significant impact on 54 
a maintenance optimization problem. Long et al. [10] investigated the relation between VoI and parameters 55 
including the number of sensors, sensor locations, measurement noise, and the Type-I error for the 56 
indication of the system states. Iannacone et al. [11] proposed a formulation to calculate the VoI considering 57 
both deterioration processed and shock occurrences. Bjørnsen et al. [12] proposed a semi-quantitative 58 
process considering the strength of background knowledge, on which the probabilistic model of the system 59 
is established, in the VoI assessment and decision-making. Zou et al. [13] developed a holistic decision 60 
making-based approach to enable assessing the VoI for a sequence of future tests.  61 

As VoI explicitly analyzes the utility gained from inspections in terms of reduction in the expected 62 
loss, some studies have used VoI as a metric to optimize the way of collecting information (e.g., inspection 63 
plans or sensor placement). Straub and Faber [14, 15] developed an approach to determine component 64 
inspection plans under system effects. Zhang et al. [16] proposed a framework integrating the VoI and risk-65 
based inspection planning and applied the approach to an example concerning fatigue degradation of steel 66 
structures to illustrate the optimization of the monitoring variables, period and quality of inspections. 67 
Fauriat and Zio [17] proposed an aperiodic sequential inspection policy where the next time of action is 68 
determined by maximizing the VoI based on the condition of the system. Neves [18] developed a dynamic 69 
decision-making framework based on decision trees and VoI analysis to determine the optimal SHM and 70 
maintenance decisions in bridges. Farhan et al. [19] studied the optimal inspection time and maintenance 71 
strategy for a welded joint in an offshore wind turbine support structure based on VoI. Malings and Pozzi 72 
[20] adopted a greedy optimization technique to maximize the VoI metric and determine the optimal plan 73 
iteratively. Malings and Pozzi [21] further compared the performance of the VoI metric-based greedy 74 
optimization with genetic algorithm and a conditional entropy-based heuristic approach for the arrangement 75 
of sensor placement. The same authors investigated VoI-based dynamic adjustment of sensor placements 76 
and scheduling as new information updates the knowledge about the system [22]. 77 

Despite the above advances, determining the optimal actions with the prior or pre-posterior 78 
information can still be computationally very complex due to the increasing number of decision times. This 79 
task is even more challenging when considering the availability of future inspections, of which results are 80 
dynamic and correlated with the later optimal decisions. If the problem is simplified that one single decision 81 
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is to be made based only on the current information, both the VoI and Service Life Cost (SLC) can be 82 
overestimated. To address this limitation, more advanced techniques are required to efficiently determine 83 
the optimal management policy and SLC. 84 

Partially observable Markov decision processes (POMDPs) provide a sound mathematical 85 
framework for life cycle analysis [23-26]. Compared with Markov decision processes (MDPs) [27] where 86 
the state is fully observed with absolute certainty at each time step, POMDP assumes that the true state is 87 
not fully revealed and allows updating the belief about the state with arriving observations. Thus, POMDP 88 
offers a significantly more realistic framework for the analysis and management of the service life of 89 
systems. Exact solutions of POMDP need to consider all possible actions and observation results, which 90 
can incur a high computational burden. An efficient strategy for solving large PODMP problems is the 91 
point-based algorithm [28-38], which samples a set of points as a representation of the belief space. Note 92 
that in structure and infrastructure management, a common approach to model degradation processes is 93 
Markov-based where the probability of states depends only on the previous state of the system and therefore 94 
independent of the history prior to the last state [39, 40]. Relative to general probabilistic models that may 95 
not necessarily require this assumption, Markov-based models can substantially reduce the complexity of 96 
modeling systems in uncertain environments, while providing a capable mathematical framework for 97 
sequential decision making through Markov decision processes. In engineering applications, POMDP has 98 
been successfully adopted for robot navigation [41, 42], search for victims [43], and management of 99 
systems (e.g., corroded structures [44-47], machines [26, 48] and transmission networks [49]). Memarzadeh 100 
and Pozzi [50] proposed utilizing two POMDP models for VoI analysis, and the two models are established 101 
with the only difference that one model has an additional information flow (or an additional inspection 102 
action under the information flow) and the other does not. The difference between the minimum SLCs 103 
obtained from these two models is named the value of information flow (or the value of the inspection 104 
action). A stochastic allocation model and a fee-based allocation model are specially designed to describe 105 
the information flow with the information being collected at a given probability and at a given cost at each 106 
time step, respectively. Except for the inspections that provide the information flow, it is also assumed that 107 
there are ordinary scheduled observations that only reveal if the system has failed or not. To include both 108 
the fee-based inspections and ordinary observations, each time step in the POMDP is split into an inspection 109 
sub-step, where the inspection can be executed to help with the later maintenance decisions, and a 110 
maintenance sub-step, where the ordinary observation occurs, revealing whether the system has failed or 111 
not. Li and Pozzi [39] additionally investigated the relation between VoI and multiple features of the 112 
monitoring system, such as the measurement accuracy and repair cost, based on the stochastic allocation 113 
model assumption. However, existing POMDP frameworks adopt stationary transition functions, and 114 
therefore cannot well describe a time-dependent deterioration process. Moreover, accurately determining a 115 
POMDP model based on the prior knowledge remains a challenge. For instance, even with known 116 
measurement errors, it is still challenging to derive the observation function in POMDPs, as the knowledge 117 
of the system uncertainties and monitoring process is not rigorously connected with the POMDP model. 118 
Thus, gaps remain regarding accurate modeling of uncertainties of aging systems in non-stationary 119 
environments with the POMDP model. 120 

To address these gaps, this paper proposes a new approach called VoI-R-POMDP to facilitate the 121 
POMDP-based VoI analysis. The contributions of the paper can be summarized as follows. First, a new 122 
POMDP framework is proposed that incorporates multiple models to describe different deterioration rates 123 
with the ability for the belief state to transition among these models with aging. Thus, a time-dependent 124 
deterioration process can be more accurately described by the proposed framework relative to existing 125 
POMDP models, where the stationary deterioration assumption can result in considerable errors. Second, 126 
new methods are developed for accurate and efficient POMDP model definition. Here, the transition 127 
functions are estimated using Maximum Likelihood Estimation (MLE) based on probabilities that are 128 
derived from reliability methods as benchmark. A new formulation based on Bayes’ theorem is introduced 129 
to derive accurate observation functions. The proposed approach is applied to a corroding beam example 130 
to calculate value of both current inspection action and information flow. The probabilities of failure from 131 
the proposed POMDP model and existing POMDP models are compared in terms of accuracy. The relations 132 
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among VoI, the replacement cost, the inspection accuracy and costs are investigated.  133 
The rest of the paper is organized as follows. Section 2 provides an overview of the fundamental 134 

theory of VoI and the POMDP framework. Section 3 presents the proposed VoI-R-POMDP approach. 135 
Section 4 includes a detailed numerical example to demonstrate the performance of the proposed method. 136 
Concluding remarks are presented in Section 5. 137 
 138 
2. Preliminaries 139 
This section provides an overview of VoI concept and the POMDP framework. Readers are referred to [8, 140 
39, 50, 51] for more details.  141 
 142 
2.1 Value of Information  143 
The VoI analysis quantifies the expected utility improvement of a system by acquiring additional 144 
information. A system can denote a machine, a structure or an infrastructure system, which is providing a 145 
service and is managed to retain the functionality over time. As introduced in [8], VoI can be generally 146 
formulated as: 147 

VoI = 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (1) 
where 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the expected costs of the optimal decisions with and without the additional 148 
information, respectively.  149 

The high complexity of optimal decision making for management of structures and infrastructure 150 
systems stems in part from the multitude of endogenous or exogenous uncertainties (e.g., various 151 
environmental or load conditions, workmanship, human error and occurrence of future events [52]) that 152 
they face. Following the classical reliability framework, the random vector 𝑿𝑿 is used here to represent the 153 
uncertainty associated with the phenomena of interest. For instance, when the event of interest is the failure 154 
of a transmission tower under extreme wind loads, the random vector 𝑿𝑿 will include the parameters that 155 
have considerable influence on the performance of the tower under wind loads including, among others, 156 
the modulus of elasticity, yield stress of the main legs and other elements of the tower, and the uncertainty 157 
in the wind-induced loading [53]. Thus, the relation between the failure or survival of the tower and a 158 
realization of 𝑿𝑿 can be defined using a function known as the limit state function or performance function 159 
in reliability analysis. In this environment, the decision maker can choose a maintenance strategy 𝑚𝑚 from 160 
a set of available strategies 𝑀𝑀 at a given time during the decision horizon of the system. Then, 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  can 161 
be typically calculated by: 162 

𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = min
𝑚𝑚∈𝑀𝑀

𝔼𝔼𝑿𝑿[𝑐𝑐(𝑚𝑚,𝒙𝒙)] = min
𝑚𝑚∈𝑀𝑀

� 𝑐𝑐(𝑚𝑚,𝒙𝒙)𝑓𝑓𝑿𝑿(𝒙𝒙)𝑑𝑑𝒙𝒙
𝑿𝑿

 (2) 

where 𝑐𝑐(𝑚𝑚,𝒙𝒙) is the cost corresponding to a given strategy 𝑚𝑚 and a realization 𝒙𝒙 of the random vector. E𝑿𝑿 163 
denotes the expectation with respect to 𝑿𝑿, and 𝑓𝑓𝑿𝑿(∙) is the joint probability density function (PDF) of the 164 
random vector 𝑿𝑿. 165 

The information provided by the event of inspection can affect the optimal decision. For instance, 166 
measuring the deflections of a bridge in a load test can reduce the uncertainties on the modulus of elasticity 167 
and the cross-section areas of the horizontal and diagonal bars of a truss bridge [54]. Different measured 168 
defections in the load test yield different beliefs of the current state of the bridge (e.g., an unusually large 169 
defection can indicate a high failure probability of the bridge in the future), thus resulting in different 170 
maintenance actions. Let 𝒀𝒀 denote the vector of the inspection or monitoring outcome. With a realization 171 
of the inspection outcome 𝒚𝒚, the conditional expected cost with the optimal decision can be formulated as: 172 

𝔼𝔼𝑿𝑿|𝒀𝒀(𝐶𝐶|𝒀𝒀 = 𝒚𝒚) = min
𝑚𝑚∈𝑀𝑀

� 𝑐𝑐(𝑚𝑚,𝒙𝒙)𝑓𝑓𝑿𝑿|𝒀𝒀(𝒙𝒙|𝒚𝒚)𝑑𝑑𝒙𝒙
𝑿𝑿

 (3) 

where 𝑓𝑓𝑿𝑿|𝒀𝒀(∙) is the conditional joint PDF of the random vector 𝑿𝑿 given the inspection outcome 𝒀𝒀 = 𝒚𝒚. 173 
Considering all possible outcomes of these measurement quantities, 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 can be expressed as follows: 174 
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𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝔼𝔼𝒀𝒀[𝔼𝔼𝑿𝑿|𝒀𝒀(𝐶𝐶|𝒀𝒀 = 𝒚𝒚)] = � �min
𝑚𝑚∈𝑀𝑀

� 𝑐𝑐(𝑚𝑚,𝒙𝒙)𝑓𝑓𝑿𝑿|𝒀𝒀(𝒙𝒙|𝒚𝒚)𝑑𝑑𝒙𝒙
𝑿𝑿

� 𝑓𝑓𝒀𝒀(𝒚𝒚)𝑑𝑑𝐲𝐲
𝒀𝒀

 (4) 

where E𝒀𝒀 denotes the expectation with respect to 𝒀𝒀 and 𝑓𝑓𝒀𝒀(∙) is the joint PDF of the inspection outcome 𝒀𝒀. 175 
Thus, VoI quantifies the difference between the minimum expected SLC with prior and pre-176 

posterior information. The random vector 𝑿𝑿 with PDF 𝑓𝑓𝑿𝑿 formulates the probabilistic model representing 177 
the uncertainties of a system. The vector 𝒀𝒀 formulates the inspection outcomes of the system, and the limit 178 
state function formulates the performance of the system. At least one source of uncertainties needs to be 179 
considered via statistical approaches in the computation of VoI. As in realistic applications, the agent 180 
typically needs to consider uncertainties from multiple sources (e.g., loads, system conditions and the 181 
environment). Quantifying the VoI has been an important step for evaluating the optimality of a SHM 182 
system or maximizing the potential benefits from SHM.  183 

 184 
2.2 POMDP  185 
As introduced, the VoI has been successfully implemented in many applications. However, a significant 186 
computational challenge remains regarding the determination of the optimal management strategy (𝑚𝑚 in 187 
Eq. (2) and Eq. (4)). Numerous actions can be taken with increasing number of decision times, thus, 188 
evaluating all the possibilities can become computationally intractable. POMDP-based VoI analysis, which 189 
offers a powerful tool for life cycle analysis, is therefore proposed to remedy this challenge. This section 190 
briefly introduces the basic framework of the POMDP.  191 

A POMDP can be considered as a tuple composed of seven components (𝑆𝑆,𝐴𝐴,𝑍𝑍,𝑻𝑻,𝑶𝑶,𝑹𝑹, 𝛾𝛾), where 192 
𝑆𝑆, 𝐴𝐴 and 𝑍𝑍 are the discrete set of states, actions, and observation outcomes, respectively; 𝑻𝑻, 𝑶𝑶 and 𝑹𝑹 are 193 
the matrices that define the transition function, observation function and reward function, respectively; and 194 
𝛾𝛾 is the discounting factor between 0 and 1. 𝑇𝑇(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) denotes the transition probability from state 𝑠𝑠 to 195 
state 𝑠𝑠′ with action 𝑎𝑎 being performed at this time step. 𝑂𝑂(𝑧𝑧,𝑎𝑎, 𝑠𝑠) denotes the probability of providing 196 
observation outcome 𝑧𝑧 when the system state is 𝑠𝑠 and the selected action is 𝑎𝑎. 𝑅𝑅(𝑠𝑠, 𝑎𝑎) represents the reward 197 
for the case where the system state is 𝑠𝑠 and action is 𝑎𝑎. Thus, to fully describe the transition, observation 198 
and reward function, the size of matrices 𝑻𝑻 , 𝑶𝑶  and 𝑹𝑹  should be |𝑆𝑆| × |𝑆𝑆| × |𝐴𝐴| , |𝑆𝑆| × |𝑍𝑍| × |𝐴𝐴|  and 199 
|𝑆𝑆| × |𝐴𝐴|, respectively. Moreover, 𝒃𝒃 denotes the belief state and contains the probabilities of being in 200 
different states, and 𝒃𝒃0 denotes the initial belief. In the reinforcement learning literature, the decision maker 201 
can also be referred as the agent, while the system is referred to as the environment. 202 
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 203 
Fig. 1. Illustration of the POMDP 204 

 205 
The general POMDP framework is illustrated in Fig. 1. Following the typical illustration of 206 

Bayesian networks, circles here represent random variables, squares represent decision variables and 207 
diamonds represent utility variables. The system starts from an initial state 𝑠𝑠(𝑡𝑡=0) that belongs to the finite 208 
discrete set 𝑆𝑆. The agent can choose one action from the action set 𝐴𝐴. The state subsequently changes to 209 
𝑠𝑠(𝑡𝑡=1) with the chosen action 𝑎𝑎(𝑡𝑡=0), and this transition probability has been defined by the transition 210 
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function. The agent can also receive an observation that provides information about the current state, and 211 
the conditional probability of receiving the observation result 𝑧𝑧(𝑡𝑡=1) is defined by the observation function. 212 
Subsequently, the agent chooses an action, and the state may change again. This process can continue to an 213 
infinite-horizon where at each time step, the agent receives a reward based on the corresponding state and 214 
the action. 215 

A key feature of POMDPs is that they allow modeling the uncertainty about the system state at 216 
each time step. The belief state is based on both the initial belief and the observation outcome. Starting 217 
from the belief 𝒃𝒃 , conducting action 𝑎𝑎  and receiving an observation 𝑧𝑧 , the updated belief 𝒃𝒃′  can be 218 
formulated as follows with Bayes’ theorem: 219 

𝒃𝒃′(𝑠𝑠′) =
𝑂𝑂(𝑧𝑧,𝑎𝑎, 𝑠𝑠′)∑ 𝒃𝒃(𝑠𝑠)𝑇𝑇(𝑠𝑠,𝑎𝑎, 𝑠𝑠′)𝑠𝑠∈𝑆𝑆

𝑃𝑃𝑧𝑧
 (5) 

where 𝑃𝑃𝑧𝑧 is the probability of receiving the observation outcome 𝑧𝑧. 𝑃𝑃𝑧𝑧 can be calculated by: 220 
𝑃𝑃𝑧𝑧 = �𝒃𝒃(𝑠𝑠) �𝑇𝑇(𝑠𝑠,𝑎𝑎, 𝑠𝑠′)𝑂𝑂(𝑧𝑧,𝑎𝑎, 𝑠𝑠′)

𝑠𝑠′∈𝑆𝑆𝑠𝑠∈𝑆𝑆

 (6) 

POMDPs can be solved using dynamic programming or iteration techniques. The maximum 221 
expected reward considering 𝑛𝑛 steps, namely 𝑉𝑉𝑛𝑛∗(𝒃𝒃), can be constructed based on the maximum expected 222 
reward with 𝑛𝑛 − 1 steps, namely 𝑉𝑉𝑛𝑛−1∗ (𝒃𝒃). This relationship is formulated by the well-known Bellman 223 
equation as follows: 224 

𝑉𝑉𝑛𝑛∗(𝒃𝒃,𝚯𝚯) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

��𝒃𝒃(𝑠𝑠)𝑅𝑅(𝑠𝑠,𝑎𝑎)
𝑠𝑠∈𝑆𝑆

+ 𝛾𝛾�𝑃𝑃𝑧𝑧𝑉𝑉𝑛𝑛−1∗ (𝒃𝒃′,𝚯𝚯)
𝑧𝑧∈𝑍𝑍

� (7) 

where 𝒃𝒃 is the input of the belief; 𝒃𝒃′ and 𝑃𝑃𝑧𝑧 have been formulated by Eq. (7) and (8), respectively; and 𝚯𝚯 =225 
{𝑻𝑻,𝑶𝑶,𝑹𝑹, 𝛾𝛾} is the set of parameters in a POMDP model. 226 

It has been proven that 𝑉𝑉𝑛𝑛∗ is a piecewise linear and convex function, which can be presented by a 227 
number of linear functions [30]. However, as the number of steps grows, the complexity of 𝑉𝑉𝑛𝑛∗ can increase 228 
substantially to a degree that exact computation is no longer viable. Several random-pointed methods that 229 
can approximate 𝑉𝑉𝑛𝑛∗  have been proposed [30]. With these efficient solvers, POMDPs can be used to 230 
determine the optimal maintenance and inspection policies and obtain the maximum expected reward (or 231 
minimizing the expected cost) considering infinite steps 𝑉𝑉∞∗.  232 

 233 
 234 
3. The proposed approach 235 
As POMDPs can efficiently determine optimal policies considering available inspection and maintenance 236 
actions, POMDPs can be used to obtain the minimum SLCs with and without pre-posterior information. 237 
Therefore, the VoI can be determined as the difference between the two SLCs. However, several gaps 238 
remain including, among others, the non-stationary description of the environment, and accurate and 239 
efficient determination of the POMDP model based on prior information. For instance, when the rate of 240 
deterioration increases with aging, a constant transition function (or matrix) cannot accurately describe the 241 
physical phenomenon. Even if the physical or mathematical function to model the inspection action and the 242 
corresponding measurement errors are known, determining the observation function in the POMDP remains 243 
a challenge. These gaps limit the application of POMDP for determining the VoI in some engineering 244 
problems.  245 

To address these gaps, this paper proposes a new approach, called VoI-R-POMDP, which is able 246 
to estimate the value of both current inspection and information flow. The rest of this section presents the 247 
proposed VOI-R-POMDP approach followed by the methods to determine the proposed POMDP model.  248 
 249 
3.1 VOI-R-POMDP  250 
A classical POMDP model typically assumes that the environment can be described by a stationary 251 
transition function. Let 𝑆𝑆 = [𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑑𝑑+1] denote the set of states in the original POMDP model. 𝑠𝑠0 252 
represents the intact state, 𝑠𝑠1, …, 𝑠𝑠𝑑𝑑 are damaged states and 𝑠𝑠𝑑𝑑+1 is the failure state (the damage condition 253 
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of 𝑠𝑠𝑖𝑖  is more severe than 𝑠𝑠𝑗𝑗  if 𝑖𝑖 > 𝑗𝑗). Fig. 2 (a) shows the deterioration process modeled by a classical 254 
POMDP model. The system can transition from state 𝑠𝑠𝑖𝑖 to a more severe state 𝑠𝑠𝑖𝑖+1 with probability 𝑝𝑝(𝑖𝑖, 𝑖𝑖 +255 
1), or the system can remain in the same state with probability 𝑝𝑝(𝑖𝑖, 𝑖𝑖). These probabilities remain constant 256 
in the POMDP model. Thus, a time-dependent or non-stationary deterioration process may not be accurately 257 
described; and a time-dependent transition model is needed. However, the naïve strategy of simply 258 
appending a state describing the time onto the set of system states is not applicable, as the property of time 259 
is significantly different from that of the system states. In managing structures and infrastructure systems, 260 
the system state typically cannot be fully known by the agent and needs to be updated with the observation, 261 
while the time state is perfectly known and cannot be changed. An alternative is to duplicate the states into 262 
discretized slices of time layers [55]. However, the number of states will increase significantly, as well as 263 
the number of actions, resulting in a high computational burden. 264 
 To address this gap, this paper proposes a new approach to efficiently model the non-stationary 265 
transition. Let us consider a system with the deterioration rate increasing with aging. It is assumed that a 266 
transition function can well describe the initial deterioration process, while another transition function can 267 
well model the most severe deterioration phase. The true deterioration process during the service life 268 
typically acts between these two transition functions. Considering 𝑘𝑘  deterioration models, where each 269 
deterioration model can be regarded as a POMDP model with constant transition probabilities from one 270 
state to the others, the set of states is expanded to [𝑆𝑆1, … , 𝑆𝑆𝑘𝑘], where 𝑆𝑆𝑙𝑙 (𝑙𝑙 ∈ [1, … , 𝑘𝑘]) is [𝑠𝑠𝑙𝑙,0, 𝑠𝑠𝑙𝑙,1, … , 𝑠𝑠𝑙𝑙,𝑑𝑑+1] 271 
with the first subscript denoting the deterioration model and the second subscript the physical state of the 272 
system. For instance, 𝑠𝑠1,0  and 𝑠𝑠2,0  represent the intact state in different deterioration models; thus, the 273 
model will include different transition probabilities to capture the transition from 𝑠𝑠1,0 and 𝑠𝑠2,0. 274 
 275 

 
(a) Belief transition with aging in existing POMDP  

 
(b) Belief transition with aging in proposed non-stationary POMDP 

Fig. 2. Illustration of the proposed POMDP framework 276 
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 277 
Subsequently, in order to model the time-dependent transition effect, the belief transitions from 𝑆𝑆𝑛𝑛 278 

to 𝑆𝑆𝑛𝑛+1 with “do nothing” action ( a “do nothing” action indicates the increase of the age here). Fig. 2 (b) 279 
illustrates the deterioration process modeled by the proposed POMDP framework. Each state 𝑠𝑠𝑙𝑙,𝑖𝑖 can enter 280 
a more severe state 𝑠𝑠𝑙𝑙,𝑖𝑖+1 with the transition probability 𝑝𝑝𝑙𝑙(𝑖𝑖, 𝑖𝑖 + 1) and remain in the current state with the 281 
transition probability 𝑝𝑝𝑙𝑙(𝑖𝑖, 𝑖𝑖). Different from existing POMDP models, in the proposed approach, the state 282 
𝑠𝑠𝑙𝑙,𝑖𝑖 can also enter a physically identical state 𝑠𝑠𝑙𝑙+1,𝑖𝑖 that has a higher deterioration rate with the transition 283 
probability of 𝜏𝜏𝑙𝑙+1 (𝑙𝑙 ∈ [1, … , 𝑘𝑘 − 1], 𝑖𝑖 ∈ [0, … ,𝑑𝑑]). Thus, with aging, the belief gradually transitions from 284 
𝑆𝑆1 to 𝑆𝑆𝑘𝑘 which models a more severe deterioration process, capturing the time-dependent transitions. Note 285 
that a maintenance action (e.g., “replacement”) can reduce the rate of deterioration; therefore, the transition 286 
function can be set to transition to an early belief (e.g., the initial one). As Fig. 3 shows, with the replacement 287 
action denoted as 𝑎𝑎𝑅𝑅1 , the transition probabilities starting from an arbitrary state 𝑠𝑠𝑙𝑙,𝑗𝑗 to another state 𝑠𝑠𝑣𝑣,𝑖𝑖 288 
( 𝑙𝑙, 𝑣𝑣 ∈ [1, … , 𝑘𝑘] ,  𝑖𝑖, 𝑗𝑗 ∈ [0, … ,𝑑𝑑 + 1] ) can be represented by 𝑇𝑇[𝑠𝑠𝑙𝑙,𝑗𝑗 ,𝑎𝑎𝑅𝑅1 , 𝑠𝑠𝑣𝑣,𝑖𝑖] = 𝑝𝑝(𝑠𝑠𝑙𝑙,𝑗𝑗 , 𝑠𝑠𝑣𝑣,𝑖𝑖) . In order to 289 
transition to the initial belief in the proposed POMDP model, 𝑝𝑝(𝑠𝑠𝑙𝑙,𝑗𝑗 , 𝑠𝑠𝑣𝑣,𝑖𝑖) can be defined as 𝒃𝒃0(𝑠𝑠𝑣𝑣,𝑖𝑖), which 290 
is often zero when 𝑣𝑣 > 𝑙𝑙. Thus, the belief state becomes the initial belief after this replacement action is 291 
performed. 292 

 
Fig. 3. Belief transition with replacement in the proposed POMDP 293 

 294 
The formulation of the transition matrices with “do nothing” and “replacement” maintenance 295 

actions in the proposed POMDP framework is shown in Fig. 4. Each element in the matrix represents the 296 
transition probability from the corresponding row state to the corresponding column state. Note that as 297 
multiple deterioration models are considered in the proposed framework, 𝓜𝓜𝑙𝑙,𝑙𝑙 (𝑙𝑙 ∈ [1, … , 𝑘𝑘]) and 𝓜𝓜𝑙𝑙,𝑙𝑙+1 298 
(𝑙𝑙 ∈ [1, … , 𝑘𝑘 − 1]) are submatrices of the transition matrix 𝑻𝑻𝑎𝑎𝑁𝑁1 , and 𝓣𝓣𝑙𝑙,𝑣𝑣 (𝑙𝑙, 𝑣𝑣 ∈ [1, … , 𝑘𝑘]) are submatrices 299 
of the transition matrix 𝑻𝑻𝑎𝑎𝑅𝑅1 . Thus, the sum of probabilities in the same row of 𝓜𝓜𝑙𝑙,𝑙𝑙 (𝑙𝑙 ∈ [1, … , 𝑘𝑘]), 𝓜𝓜𝑙𝑙,𝑙𝑙+1 300 
(𝑙𝑙 ∈ [1, … , 𝑘𝑘 − 1]) or 𝓣𝓣𝑙𝑙,𝑣𝑣 (𝑙𝑙, 𝑣𝑣 ∈ [1, … , 𝑘𝑘]) is not necessarily identical to one, while the sum of probabilities 301 
in the same row of 𝑻𝑻𝑎𝑎𝑁𝑁1  or 𝑻𝑻𝑎𝑎𝑅𝑅1  is one. The formulation of the transition matrix in Fig. 4 (a) is consistent 302 
with Fig. 2 (b). With aging, each state can enter a more severe state or remain in the current state or enter a 303 
physically identical state that has a higher deterioration rate. The formulation in Fig. 4 (b) is consistent with 304 
Fig. 3. It is assumed that, with replacement, the belief state becomes the initial belief. Thus, the transition 305 
probability to an arbitrary state equals the initial belief of this state. 306 
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(a) Formulation of the transition matrix with aging 

 

 
(b) Formulation of the transition matrix with replacement  

Fig. 4. Illustration of the transition matrices in the proposed POMDP framework  307 
 308 

Let 𝚯𝚯R denote the parameters of the proposed POMDP model and 𝒃𝒃𝟎𝟎 the belief for the initial state. 309 
To split the effects from the inspection actions and maintenance actions, the two-sub-step adjustment 310 
proposed by Memarzadeh and Pozzi [50] is adopted here. Let 𝑉𝑉𝐼𝐼∗(𝒃𝒃𝟎𝟎,𝚯𝚯R) denote the minimum cost of the 311 
POMDP model starting from an inspection sub-step as shown in Fig. 5 (a), and 𝑉𝑉𝑀𝑀∗ (𝒃𝒃𝟎𝟎,𝚯𝚯R) denote the 312 
minimum cost of the POMDP model starting from a maintenance sub-step as shown in Fig. 5 (b). Note that 313 
compared to 𝑉𝑉𝑀𝑀∗ (𝒃𝒃𝟎𝟎,𝚯𝚯R), 𝑉𝑉𝐼𝐼∗(𝒃𝒃𝟎𝟎,𝚯𝚯R) considers the availability of an inspection action at the beginning of 314 
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the inspection sub-step. Thus, the difference between 𝑉𝑉𝐼𝐼∗(𝒃𝒃𝟎𝟎,𝚯𝚯R) and 𝛾𝛾+𝑉𝑉𝑀𝑀∗ (𝒃𝒃𝟎𝟎,𝚯𝚯R) can be defined as the 315 
value of this current inspection action (𝛾𝛾+ is the discounting factor in the two-sub-step POMDP model): 316 

VoI𝑐𝑐,𝑅𝑅 = 𝑉𝑉𝐼𝐼∗(𝒃𝒃𝟎𝟎,𝚯𝚯R) − 𝛾𝛾+𝑉𝑉𝑀𝑀∗ (𝒃𝒃𝟎𝟎,𝚯𝚯R) (8) 
Moreover, let 𝚯𝚯0 denote the parameters of the original POMDP model without access to inspection 317 

actions, while the other parameters, e.g., the transition function, remain the same as 𝚯𝚯R. Let 𝑉𝑉∞∗(𝒃𝒃𝟎𝟎,𝚯𝚯0) 318 
denote the minimum service life cost without any inspection actions. The difference between 𝑉𝑉𝐼𝐼∗(𝒃𝒃𝟎𝟎,𝚯𝚯R) 319 
and 𝑉𝑉∞∗(𝒃𝒃𝟎𝟎,𝚯𝚯0) represents the value of this information flow as follows: 320 

VoI𝑓𝑓,𝑅𝑅 = 𝑉𝑉𝐼𝐼∗(𝒃𝒃𝟎𝟎,𝚯𝚯R) − 𝑉𝑉∞∗(𝒃𝒃𝟎𝟎,𝚯𝚯0) (9) 
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(a) A two-sub-step POMDP starting from an inspection sub-step 322 
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(b) A two-sub-step POMDP starting from a maintenance sub-step 324 

Fig. 5. Illustration of the two-sub-step POMDP 325 
 326 

The proposed POMDP framework can reliably model time-dependent or non-stationary 327 
environments compared with the existing models. Nevertheless, the determination of the number of 328 
deterioration models, and the corresponding transition functions and observation function based on the prior 329 
knowledge is challenging. The rest of this section focuses on methods that are developed in this research 330 
for efficient and accurate definition of the parameters of the proposed POMDP model. As these approaches 331 
are built on reliability concepts to obtain accurate time-dependent belief of the system state and to facilitate 332 
the establishment of the proposed POMDP model, the VoI analysis method is called VoI-R-POMDP. Note 333 
that as the POMDP model can determine the optimal policy of managing the system, the action of collecting 334 
additional information is not performed when the expected cost is larger than the expected utility 335 
improvement. Thus, though the POMDP-based VoI analysis determines the net VoI result, the result cannot 336 
be negative. 337 
 338 
3.2 Definition of the transition function 339 

In reliability analysis, a performance function is typically used to describe the performance of a 340 
system. The failure event occurs when the system performance cannot meet a prescribed requirement. 341 
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Inspired by the approach in [8], we propose defining the states based on the performance of the system. For 342 
instance, if a structural component under fatigue deterioration is to be investigated, the failure of the 343 
component is determined by the crack depth. 𝑑𝑑 damage levels are considered besides the failure and intact 344 
states of the system. The system states can be defined as: the intact state 𝑠𝑠0, damaged state 𝑠𝑠1, …, 𝑠𝑠𝑑𝑑, and 345 
the failure state 𝑠𝑠𝑑𝑑+1. Mutually exclusive and collectively exhaustive events 𝐸𝐸𝑖𝑖  (𝑖𝑖 = 0, … ,𝑑𝑑 + 1) can be 346 
correspondingly defined to indicate that the system is in state 𝑠𝑠𝑖𝑖 . These events can be described by the same 347 
performance function with different criteria (e.g., the failure event occurs when the crack depth is larger 348 
than 50 mm; the intact event happens when the crack depth is less than 10 mm). Let 𝑓𝑓(𝒙𝒙) denote the 349 
performance function and 𝕔𝕔𝑖𝑖 and 𝕔𝕔𝑖𝑖+1 denote the lower bound and the upper bound of the performance, 350 
which defines the event 𝐸𝐸𝑖𝑖. The relation between the states and the performance function can be formulated 351 
as: 352 

�
𝑠𝑠𝑖𝑖 = 1 ↔ 𝑓𝑓(𝒙𝒙) ∈ [ 𝕔𝕔𝑖𝑖 , 𝕔𝕔𝑖𝑖+1)
𝑠𝑠𝑖𝑖 = 0 ↔ 𝑓𝑓(𝒙𝒙) ∉ [ 𝕔𝕔𝑖𝑖 , 𝕔𝕔𝑖𝑖+1) (10) 

Thus, the system is in state 𝑠𝑠𝑖𝑖 when 𝑓𝑓𝑖𝑖(𝒙𝒙) ≤ 0, indicating that the event 𝐸𝐸𝑖𝑖 has occurred. The belief 353 
of system state at time step 𝑛𝑛  can be formulated as {Pr(𝐸𝐸0,𝑿𝑿, 𝑡𝑡 ∈ [𝑛𝑛 − 1,𝑛𝑛], ), Pr(𝐸𝐸1,𝑿𝑿, 𝑡𝑡 ∈ [𝑛𝑛 −354 
1,𝑛𝑛]), … , Pr(𝐸𝐸𝑑𝑑+1,𝑿𝑿, 𝑡𝑡 ∈ [𝑛𝑛 − 1,𝑛𝑛])}, which represents the probabilities of these events in a specific time 355 
period. These probabilities can be efficiently estimated with time-dependent reliability methods [56-58] 356 
and the initial belief 𝒃𝒃0 can be correspondingly determined. Moreover, whether the environment can be 357 
described by a stationary transition function can also be observed based on these probabilities. As the 358 
relationship between the rate of failure and aging deviates further from a linear model, the number of the 359 
deterioration models can be adaptively increased until the non-stationary environment can be accurately 360 
described. 361 
 In the following, the determination of the transition function is discussed. With 𝑘𝑘 deterioration 362 
models, the set of system states in the proposed POMDP approach can be defined as [𝑆𝑆1, … , 𝑆𝑆𝑘𝑘], where 𝑆𝑆𝑙𝑙 363 
(𝑙𝑙 ∈ [1, … , 𝑘𝑘]) is [𝑠𝑠𝑙𝑙,0, 𝑠𝑠𝑙𝑙,1, … , 𝑠𝑠𝑙𝑙,𝑑𝑑+1]. When the maintenance action is “do nothing” (denoted as 𝑎𝑎𝑁𝑁1 ), the 364 
system in damaged state 𝑠𝑠𝑙𝑙,𝑖𝑖 deteriorates and enter state 𝑠𝑠𝑙𝑙,𝑖𝑖+1, or remains in the current state 𝑠𝑠𝑙𝑙,𝑖𝑖, or enters 365 
the state 𝑠𝑠𝑙𝑙+1,𝑖𝑖 which is physically identical but with a higher deterioration rate. The relation between the 366 
belief state at time 𝑛𝑛 and that at time 𝑛𝑛 + 1 can be expressed as: 367 

𝒃𝒃𝑡𝑡=𝑛𝑛+1�𝑠𝑠𝑙𝑙,𝑖𝑖+1� = 𝒃𝒃𝑡𝑡=𝑛𝑛�𝑠𝑠𝑙𝑙,𝑖𝑖� × 𝑝𝑝𝑙𝑙(𝑖𝑖, 𝑖𝑖 + 1) + 𝒃𝒃𝑡𝑡=𝑛𝑛�𝑠𝑠𝑙𝑙,𝑖𝑖+1� × 𝑝𝑝𝑙𝑙(𝑖𝑖 + 1, 𝑖𝑖 + 1)
+ 𝒃𝒃𝑡𝑡=𝑛𝑛�𝑠𝑠𝑙𝑙−1,𝑖𝑖+1� × 𝜏𝜏𝑙𝑙 

(11) 

Considering these physically identical states, the belief that the system is in state 𝑠𝑠𝑖𝑖 at time step 𝑛𝑛 368 
is ∑ 𝒃𝒃𝑡𝑡=𝑛𝑛�𝑠𝑠𝑙𝑙,𝑖𝑖�𝑘𝑘

𝑙𝑙=1 . From another point of view, the probabilities of being in states 𝑠𝑠𝑖𝑖 can be estimated with 369 
reliability methods, denoted as 𝒃𝒃𝑡𝑡=𝑛𝑛,𝑅𝑅(𝑠𝑠𝑖𝑖). Considering the results provided by the reliability analysis as 370 
benchmarks, the errors from the transition functions can be measured. The optimal transition probabilities 371 
can be determined by the maximum likelihood estimation (MLE) as follows: 372 

[𝝉𝝉,𝒑𝒑] = argmin
(𝝉𝝉,𝒑𝒑)

𝐿𝐿(𝒃𝒃𝑡𝑡=1,𝑅𝑅 , … ,𝒃𝒃𝑡𝑡=𝑛𝑛,𝑅𝑅|𝒃𝒃0, 𝝉𝝉,𝒑𝒑) (12) 

where 𝒑𝒑 = [𝒑𝒑1, … ,𝒑𝒑𝑘𝑘]T, 𝒑𝒑𝑙𝑙 = �𝑝𝑝𝑙𝑙
(0,0) 𝑝𝑝𝑙𝑙(1,1) ⋯ 𝑝𝑝𝑙𝑙(𝑑𝑑,𝑑𝑑)        

𝑝𝑝𝑙𝑙(0,1) 𝑝𝑝𝑙𝑙(1,2) ⋯ 𝑝𝑝𝑙𝑙(𝑑𝑑,𝑑𝑑 + 1)� (𝑙𝑙 ∈ [1, … , 𝑘𝑘]), and 𝝉𝝉 = [𝜏𝜏2, … , 𝜏𝜏𝑘𝑘] 373 

(with 𝝉𝝉 and 𝒑𝒑, the transition matrix of Fig. 4 (a) can be determined). Note that the dimensions of 𝒑𝒑𝑙𝑙, 𝒑𝒑 and 374 
𝝉𝝉 are 2 × |𝑑𝑑 + 1|, |2𝑘𝑘| × |𝑑𝑑 + 1| and 1 × |𝑘𝑘 − 1|, respectively. 𝒃𝒃0  is the initial belief state, 𝐿𝐿 is the 375 
likelihood function. Here, it is assumed that relative difference between 𝒃𝒃𝑡𝑡  and 𝒃𝒃𝑡𝑡,𝑅𝑅  follows a standard 376 
normal distribution. 377 

When the maintenance action is not “do nothing” (e.g., “minor repair”, “major repair” or 378 
“replacement”), the definition of the transition function depends on the belief about the effect of the 379 
maintenance actions. For instance, when “replacement” 𝑎𝑎𝑅𝑅1  is performed, the system can be considered as 380 
a new system, thus the transition function can be set such that the belief becomes the initial one.  381 
 382 
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3.3 Definition of the observation function 383 
Inspection actions can provide additional information to better characterize the uncertainty and support 384 
decisions. In realistic applications, the inspection action can provide either equality-type or inequality-type 385 
outcomes. However, the POMDP model can only utilize discrete signals to update the belief state. To fully 386 
leverage the collected the information, this paper generally defines that 𝑞𝑞 discrete inspection outcomes 387 
𝑧𝑧𝑖𝑖  (𝑖𝑖 = 1, … , 𝑞𝑞) are provided by the inspection action, and each outcome 𝑧𝑧𝑖𝑖 indicates the occurrence of the 388 
event 𝐸𝐸𝑧𝑧,𝑖𝑖. For instance, for a structural component under fatigue deterioration, the “Alarm” inspection 389 
outcome can be described as the event that the crack depth has become larger than 40 mm. The model can 390 
more accurately describe the equality-type inspection with more discrete outcomes 𝑧𝑧𝑖𝑖.  391 

Let Γ𝑖𝑖,𝑗𝑗 represent the probability of receiving “Signal of 𝐸𝐸𝑧𝑧,𝑖𝑖” when the system is currently in state 392 
𝑠𝑠𝑗𝑗; thus, Γ𝑖𝑖,𝑗𝑗 can be formulated as: 393 

Γ𝑖𝑖,𝑗𝑗 = Pr�𝐸𝐸𝑧𝑧,𝑖𝑖
𝐼𝐼 (𝑡𝑡=𝑛𝑛)|𝑎𝑎𝐼𝐼0,𝐸𝐸𝑗𝑗(𝑡𝑡=𝑛𝑛)� (13) 

where 𝑎𝑎𝐼𝐼0 denotes the inspection action, 𝐸𝐸𝑧𝑧,𝑖𝑖
𝐼𝐼 (𝑡𝑡=𝑛𝑛) denotes the event indicated by the inspection at time step 394 

𝑛𝑛, and 𝐸𝐸𝑗𝑗(𝑡𝑡=𝑛𝑛) is the event that actually happens at time step 𝑛𝑛. Next in the process is the determination 395 
of Γ𝑖𝑖,𝑗𝑗. Given an inspection 𝒚𝒚 at time step 𝑛𝑛, the conditional probability that the event 𝐸𝐸𝑧𝑧,𝑖𝑖 happens at this 396 
time step can be expressed as: 397 

Pr�𝐸𝐸𝑧𝑧,𝑖𝑖(𝑡𝑡=𝑛𝑛)|𝒚𝒚(𝑡𝑡=𝑛𝑛)� = � 𝐼𝐼[(𝒙𝒙, 𝑡𝑡=𝑛𝑛) ∈ 𝛺𝛺𝐸𝐸𝑧𝑧,𝑖𝑖] ∙ 𝑓𝑓𝑿𝑿|𝒀𝒀[𝒙𝒙|𝒚𝒚(𝑡𝑡=𝑛𝑛)]𝑑𝑑𝒙𝒙
𝑿𝑿

 (14) 

Following Bayes’ theorem, 𝑓𝑓𝑿𝑿|𝒀𝒀[𝒙𝒙|𝒚𝒚(𝑡𝑡=𝑛𝑛)] can be expressed as: 398 

𝑓𝑓𝑿𝑿|𝒀𝒀[𝒙𝒙|𝒚𝒚(𝑡𝑡=𝑛𝑛)] =
𝐿𝐿(𝒙𝒙, 𝑡𝑡=𝑛𝑛) 𝑓𝑓(𝒙𝒙)

∫ 𝐿𝐿(𝒙𝒙, 𝑡𝑡=𝑛𝑛) 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝑿𝑿

 (15) 

where 𝐿𝐿(∙) is the likelihood function. Considering the involvement of time, the likelihood function can be 399 
recast as [8]:  400 

𝐿𝐿(𝒙𝒙, 𝑡𝑡=𝑛𝑛) = �𝑓𝑓𝜖𝜖𝑖𝑖  [𝑦𝑦𝑖𝑖,𝑡𝑡=𝑛𝑛 − ℎ𝑖𝑖(𝒙𝒙, 𝑡𝑡=𝑛𝑛)]
𝑘𝑘

𝑖𝑖=1

 (16) 

where 𝒚𝒚𝑡𝑡=𝑛𝑛 = �𝑦𝑦1,𝑡𝑡=𝑛𝑛, . . ,𝑦𝑦𝑘𝑘,𝑡𝑡=𝑛𝑛� are the measurements at time step 𝑛𝑛, ℎ𝑖𝑖(∙) is the function that models the 401 
corresponding monitored quantity, and 𝝐𝝐 = [𝜖𝜖1, . . , 𝜖𝜖𝑘𝑘] is the vector of the measurement errors. With Eq. 402 
(15) and (16), Pr�𝐸𝐸𝑧𝑧,𝑖𝑖(𝑡𝑡=𝑛𝑛)|𝒚𝒚(𝑡𝑡=𝑛𝑛)� can be reformulated as: 403 

Pr�𝐸𝐸𝑧𝑧,𝑖𝑖(𝑡𝑡=𝑛𝑛)|𝒚𝒚(𝑡𝑡=𝑛𝑛)� =
∫ 𝐼𝐼[(𝒙𝒙, 𝑡𝑡=𝑛𝑛) ∈ 𝛺𝛺𝐸𝐸𝑧𝑧,𝑖𝑖] ∙ 𝐿𝐿(𝒙𝒙, 𝑡𝑡=𝑛𝑛) 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝑿𝑿

∫ 𝐿𝐿(𝒙𝒙, 𝑡𝑡=𝑛𝑛) 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝑿𝑿

 (17) 

The accuracy of the inspection action determines ℎ(𝑿𝑿) and the PDF of the observation error 𝑓𝑓𝝐𝝐. 404 
Considering that the inspection action is 𝑎𝑎𝐼𝐼0, the condition probability Pr�𝐸𝐸𝑧𝑧,𝑖𝑖(𝑡𝑡=𝑛𝑛)|𝑎𝑎𝐼𝐼0,𝒚𝒚(𝑡𝑡=𝑛𝑛)� is: 405 

Pr�𝐸𝐸𝑧𝑧,𝑖𝑖(𝑡𝑡=𝑛𝑛)|𝒚𝒚(𝑡𝑡=𝑛𝑛),𝑎𝑎𝐼𝐼0� =
∫ 𝐼𝐼[(𝒙𝒙, 𝑡𝑡=𝑛𝑛) ∈ 𝛺𝛺𝐸𝐸𝑧𝑧,𝑖𝑖] ∙ 𝐿𝐿(𝒙𝒙, 𝑡𝑡=𝑛𝑛, 𝑎𝑎𝐼𝐼0) 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝑿𝑿

∫ 𝐿𝐿(𝒙𝒙, 𝑡𝑡=𝑛𝑛, 𝑎𝑎𝐼𝐼0) 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝑿𝑿

 (18) 

where 𝐿𝐿(𝒙𝒙, 𝑡𝑡=𝑛𝑛,𝑎𝑎𝐼𝐼0)  is the likelihood function with the ℎ(∙)  and 𝑓𝑓𝝐𝝐  being determined based on the 406 
inspection action 𝑎𝑎𝐼𝐼0. 407 

The joint PDF of 𝒚𝒚 may not be directly obtained because a complex mathematical or physical 408 
function is required to model this monitoring process. Alternatively, we can first determine the joint 409 
distribution of 𝑿𝑿 and then sample from the conditional distribution 𝑓𝑓𝒀𝒀|𝑿𝑿. Thus, considering all possible 410 
observations, the probability that 𝐸𝐸𝑧𝑧,𝑖𝑖 happens based on all possible observation outcomes is: 411 

Pr�𝐸𝐸𝑧𝑧,𝑖𝑖
𝐼𝐼 (𝑡𝑡=𝑛𝑛)|𝑎𝑎𝐼𝐼0� = � 𝑓𝑓𝑿𝑿(𝒙𝒙)� Pr�𝐸𝐸𝑧𝑧,𝑖𝑖(𝑡𝑡=𝑛𝑛)|𝒚𝒚(𝑡𝑡=𝑛𝑛),𝑎𝑎𝐼𝐼0� ∙ 𝑓𝑓𝒀𝒀|𝑿𝑿[𝒚𝒚(𝑡𝑡=𝑛𝑛)|𝒙𝒙,𝑎𝑎𝐼𝐼0]

𝒀𝒀
𝑑𝑑𝒚𝒚𝑑𝑑𝒙𝒙

𝑿𝑿
 (19) 
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Subsequently, the probability that event 𝐸𝐸𝑧𝑧,𝑖𝑖 is indicated by the observation but event 𝐸𝐸𝑗𝑗 has truly 412 
occurred at the inspection time step 𝑛𝑛 can be derived as: 413 

Pr�𝐸𝐸𝑧𝑧,𝑖𝑖
𝐼𝐼 (𝑡𝑡=𝑛𝑛) ∩ 𝐸𝐸𝑗𝑗(𝑡𝑡=𝑛𝑛)|𝑎𝑎𝐼𝐼0� 

= � 𝐼𝐼[(𝒙𝒙, 𝑡𝑡=𝑛𝑛) ∈ 𝛺𝛺𝐸𝐸𝑗𝑗] ∙ 𝑓𝑓𝑿𝑿(𝒙𝒙)� Pr�𝐸𝐸𝑧𝑧,𝑖𝑖(𝑡𝑡=𝑛𝑛)|𝒚𝒚(𝑡𝑡=𝑛𝑛),𝑎𝑎𝐼𝐼0� ∙ 𝑓𝑓𝒀𝒀|𝑿𝑿[𝒚𝒚(𝑡𝑡=𝑛𝑛)|𝒙𝒙,𝑎𝑎𝐼𝐼0]
𝒀𝒀

𝑑𝑑𝒚𝒚𝑑𝑑𝒙𝒙
𝑿𝑿

 
(20) 

With Bayes’ theorem, Γ𝑖𝑖,𝑗𝑗 can be expressed as: 414 

Γ𝑖𝑖,𝑗𝑗 =
Pr�𝐸𝐸𝑧𝑧,𝑖𝑖

𝐼𝐼 (𝑡𝑡=𝑛𝑛) ∩ 𝐸𝐸𝑗𝑗(𝑡𝑡=𝑛𝑛)|𝑎𝑎𝐼𝐼0�
Pr�𝐸𝐸𝑗𝑗(𝑡𝑡=𝑛𝑛)|𝑎𝑎𝐼𝐼0�

 

=
∫ 𝐼𝐼[(𝒙𝒙, 𝑡𝑡=𝑛𝑛) ∈ 𝛺𝛺𝐸𝐸𝑗𝑗] ∙ 𝑓𝑓𝑿𝑿(𝒙𝒙)∫ Pr�𝐸𝐸𝑧𝑧,𝑖𝑖(𝑡𝑡=𝑛𝑛)|𝒚𝒚(𝑡𝑡=𝑛𝑛), 𝑎𝑎𝐼𝐼0� ∙ 𝑓𝑓𝒀𝒀|𝑿𝑿[𝒚𝒚(𝑡𝑡=𝑛𝑛)|𝒙𝒙, 𝑎𝑎𝐼𝐼0]𝒀𝒀 𝑑𝑑𝒚𝒚𝑑𝑑𝒙𝒙𝑿𝑿

∫ 𝐼𝐼 �(𝒙𝒙, 𝑡𝑡=𝑛𝑛) ∈ 𝛺𝛺𝐸𝐸𝑗𝑗� ∙ 𝑓𝑓𝑿𝑿(𝒙𝒙)𝑑𝑑𝒙𝒙𝑿𝑿

 
(21) 

Note that Γ𝑖𝑖,𝑗𝑗  is identical to Pr�𝑧𝑧𝑖𝑖�𝑎𝑎𝐼𝐼0, 𝑠𝑠𝑗𝑗� with 𝑧𝑧𝑠𝑠𝑠𝑠  denoting the “Signal of 𝐸𝐸𝑧𝑧,𝑖𝑖” outcome. After 415 
determining all Γ𝑖𝑖,𝑗𝑗  considering the given inspection action, the set of observation probabilities or the 416 
observation function will be established for the proposed POMDP model. MCS is a basic approach for 417 
determining Γ𝑖𝑖,𝑗𝑗. The same sampling strategy as in [8] (first, sample from 𝑿𝑿 and then sample multiple 𝒀𝒀 418 
based on each 𝒙𝒙) is used in this paper. More advanced techniques, such as IS and surrogate models, can be 419 
potentially used here.  420 

 421 
4. Illustrative application 422 
4.1 Engineering model 423 
In order to further illustrate the proposed approach, the VoI analysis is investigated for a corroding simply 424 
supported beam [59]. As shown in Fig. 6, the span of the beam is 𝐿𝐿 = 5 m and cross-section of the beam is 425 
rectangular. It is assumed that the section uniformly corrodes, and the relation between the section and time 426 
can be formulated as: 427 

ℎ(𝑡𝑡) = ℎ0 − 2𝑤𝑤𝑤𝑤 (22) 

𝑏𝑏(𝑡𝑡) = 𝑏𝑏0 − 2𝑤𝑤𝑤𝑤 (23) 
where ℎ0  and 𝑏𝑏0  are the initial depth and width of the cross section, respectively and 𝑤𝑤  is the time-428 
dependent corrosion rate that is assumed to be 𝜃𝜃√𝑡𝑡 m/year, where 𝜃𝜃 is also a random variable listed in 429 
Table 1.  430 
 431 

 432 
Fig. 6. The corroding beam and the cross section 433 

 434 
The beam is subjected to both the gravity load (the force density is 78500 N/m3) and a concentrated 435 

load 𝐹𝐹. Due to the functionality constraint, it is assumed that the external load is applied in the weak axis. 436 
The details of the simply supported beam and the probabilistic information are listed in Table 1. 437 
 438 
Table 1 Parameters of the crack growth model 439 

Variable Distribution Mean Standard deviation 
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𝑢𝑢𝑦𝑦 Deterministic 2.1×108 (Pa) - 

ℎ0 Lognormal 0.045 (m) 4×10-3 
𝑏𝑏0 Lognormal 0.20 (m) 0.01 
𝜃𝜃 Lognormal 2.5×10-5 (m/year) 2.5×10-6 
𝐹𝐹 Deterministic 8000 (N) - 

 440 
Let 𝑢𝑢𝑦𝑦 denote the yield strength of the steel. The structure fails when the stress of the beam exceeds 441 

𝑢𝑢𝑦𝑦. The performance function is formulated as: 442 

𝑔𝑔(𝒙𝒙, 𝑡𝑡) =
(𝑏𝑏0 − 2𝑤𝑤𝑤𝑤)(ℎ0 − 2𝑤𝑤𝑤𝑤)2𝑢𝑢𝑦𝑦

4
− (

𝐹𝐹𝐹𝐹
4

+
78500𝑏𝑏0ℎ0𝐿𝐿2

8
) (24) 

where 𝑿𝑿 = [ℎ0,𝑏𝑏0,𝜃𝜃]𝑇𝑇 is a vector of the random variables that describe the uncertainties for the initial size 443 
of structure and the corrosion rate, 𝒙𝒙 is a realization of 𝑿𝑿, 𝑡𝑡 is the time parameter, 𝑤𝑤 is identical to 𝜃𝜃√𝑡𝑡 and 444 
𝐹𝐹 is the external load. 445 

The information collection action in this example includes measuring the width and depth of the 446 
sound area using inspection. The likelihood function describing the inspection outcome at time step 𝑛𝑛 can 447 
be thus formulated as: 448 

𝐿𝐿(𝒙𝒙) = 𝑓𝑓𝜖𝜖1  �𝑦𝑦ℎ,𝑡𝑡=𝑛𝑛 − ℎ(𝒙𝒙, 𝑡𝑡=𝑛𝑛)� × 𝑓𝑓𝜖𝜖2  [𝑦𝑦𝑏𝑏,𝑡𝑡=𝑛𝑛 − 𝑏𝑏(𝒙𝒙, 𝑡𝑡=𝑛𝑛)] (25) 
where 𝑦𝑦ℎ,𝑡𝑡=𝑛𝑛 and 𝑦𝑦𝑏𝑏,𝑡𝑡=𝑛𝑛 are the measured width and depth at time step 𝑛𝑛, respectively, ℎ(𝒙𝒙, 𝑡𝑡=𝑛𝑛), which 449 
is defined by Eq. (22), represents the depth of the sound steel at time step 𝑛𝑛, and 𝑏𝑏(𝒙𝒙, 𝑡𝑡=𝑛𝑛), which is defined 450 
by Eq. (23), represents the width of the sound steel at time step 𝑛𝑛. In this example, 𝑓𝑓𝜖𝜖1 and 𝑓𝑓𝜖𝜖2 are both 451 
defined as a zero-mean normal PDF with the standard deviation of 𝜎𝜎𝜖𝜖1 = 𝜎𝜎𝜖𝜖2 = 1 mm. 452 

It is assumed that an inspection action and a maintenance action can be taken every two years. Note 453 
the exact choice of the optimal maintenance action at each time step depends on the current belief of the 454 
state of the beam, which changes with aging and is updated with different inspection outcomes in the 455 
POMDP model. The available choices of actions in this example are listed as follows: 456 

1) Inspection actions: “do inspection”, denoted as 𝑎𝑎𝐼𝐼0, and “do nothing”, denoted as 𝑎𝑎𝑁𝑁0 . 457 
2) Maintenance actions: “replacement”, denoted as 𝑎𝑎𝑅𝑅1 , and “do nothing”, denoted as 𝑎𝑎𝑁𝑁1 . 458 

The goal is to estimate VoI𝑐𝑐,𝑅𝑅 for performing an inspection action at the initial time step and VoI𝑓𝑓,𝑅𝑅 459 
for performing the inspection actions in the service life of the beam. The cost of failure 𝑐𝑐𝐹𝐹 is the sum of the 460 
costs of replacing the beam, the incurred user cost, and the potential injury and casualty. Assuming that the 461 
failure cost is proportional to the cost of the bridge in [7], 𝑐𝑐𝐹𝐹  is estimated as $1.16×105. The cost of 462 
replacing the beam 𝑐𝑐𝑅𝑅 and the cost of inspection 𝑐𝑐𝐼𝐼 are estimated as $2×104 and $200, respectively. The 463 
magnitude of the applied cost model is consistent with [8, 54]. In engineering applications, more detailed 464 
cost models can be applied based on the specific application. 465 
 466 
4.2 The reliability assisted POMDP model 467 
The proposed POMDP model is determined following the proposed approaches in Section 3. Three states 468 
including 𝑠𝑠0, 𝑠𝑠1, and the failure state 𝑠𝑠2 are considered here based on the maximum stress under the dead 469 
load and external load as shown in Table 2.  470 
 471 
Table 2 Definition of states 472 
State condition Maximum stress Cost 

𝑠𝑠0 <0.9𝜎𝜎𝑢𝑢 0 
𝑠𝑠1 ≥0.9𝜎𝜎𝑢𝑢 & < 𝜎𝜎𝑢𝑢 0 
𝑠𝑠2 ≥ 𝜎𝜎𝑢𝑢 1.16×106 

 473 
The time-dependent probabilities of the states of the beam can be efficiently determined by 474 

reliability methods. MCS is adopted in this example as the benchmark. Approximation methods, such as 475 
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First-Order Reliability Methods (FORM) that transform the non-standard normal variables to standard 476 
normal variables using transformation techniques (e.g., Rosenblatt transformation [52]) and approximate 477 
the failure probability based on the most probable failure point, can also be applied here. Table 3 lists the 478 
probabilities of being in these states at different time steps.  479 
Table 3 The probabilities of being in different system states 480 

State condition Probability at 
the 1st time step 

Probability at 
the 5th time step 

Probability at 
the 10th time step 

Probability at 
the 20th time step 

𝑠𝑠0 9.9535×10-1 9.8231×10-1 8.8974×10-1 3.6244×10-1 
𝑠𝑠1 4.5137×10-3 1.6047×10-2 9.0260×10-2 3.6889×10-1 
𝑠𝑠2 1.3208×10-4 1.6391×10-3 2.0002×10-2 2.6867×10-1 

 481 
 Four transition models are used to describe the time-dependent deterioration process in the 482 
proposed POMDP framework. The details of defining the transition function have been explained in Section 483 
3. The initial belief is determined as 𝒃𝒃0 = [0.9962, 0.0038, 0]. 𝝉𝝉 and 𝒑𝒑 in Eq. (12) are determined as 484 
follows: 485 

𝝉𝝉 = [0.1683, 0.1714, 0.1484] 

𝒑𝒑1 = �0.8305
0.0012

0.7975
0.0342� ,𝒑𝒑2 = �0.8229

0.0057
0.7799
0.0487� ,𝒑𝒑3 = �0.8286

0.0230
0.8466
0.0050� ,𝒑𝒑4 = �0.8313

0.1687
0.8333
0.1667� 

The formulation of the transition matrix has been illustrated by Fig. 4. To validate the accuracy of 486 
the proposed framework, the probability of failure with MCS, the probability of failure determined by the 487 
transition function in the proposed POMDP model and that in existing POMDP models are compared in 488 
Fig. 7. POMDP model-1 and POMPD model-2 are determined to fit the deterioration process at the 489 
beginning of the service life and at the end of service life, respectively. Considering the results from MCS 490 
as the benchmark, the probability of failure increases nonlinearly with aging. Thus, POMDP model-1 and 491 
POMPD model-2, which are based on the stationary transition assumption, have considerable errors in 492 
probability estimations. In comparison, the proposed POMDP model accurately describes the deterioration 493 
process over the entire service life of the beam. 494 

 495 
Fig. 7. The comparison among the failure probabilities from different POMDP models 496 

 497 
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For the sake of illustration, two signals are considered as the inspection outcomes in the POMDP 498 
model: signal of 𝑠𝑠0, called 𝑧𝑧𝑠𝑠0, indicating that the beam is in state 𝑠𝑠0, and signal of 𝑠𝑠1, called 𝑧𝑧𝑠𝑠1, indicating 499 
that the beam is in state 𝑠𝑠1. The observation probability can be determined as explained in Section 3.3. 500 
𝑂𝑂(𝑧𝑧𝑠𝑠0,𝑎𝑎𝐼𝐼0, 𝑠𝑠0) is 0.9982 and 𝑂𝑂(𝑧𝑧𝑠𝑠1,𝑎𝑎𝐼𝐼0, 𝑠𝑠1) is 0.5355. 501 
 502 
4.3 The value of information 503 
After establishing the proposed POMDP model, value of the current inspection action VoI𝑐𝑐,𝑅𝑅  can be 504 
determined based on Eq. (8). The minimum service life cost with pre-posterior information 𝑉𝑉𝐼𝐼∗(𝒃𝒃𝟎𝟎,𝚯𝚯) is -505 
$6,177. The minimum service life cost without additional inspection action at the initial time step is 506 
𝑉𝑉𝑀𝑀∗ (𝒃𝒃𝟎𝟎,𝚯𝚯R) =-$6,122. Thus, the value of the current information is VoI𝑐𝑐,𝑅𝑅 = $0. On the other hand, value 507 
of information flow can be similarly determined based on Eq. (9). The minimum service life cost without 508 
inspection action is 𝑉𝑉∞∗(𝒃𝒃𝟎𝟎,𝚯𝚯0) =-$9,237. Thus, the value of information flow is VoI𝑓𝑓,𝑅𝑅 = $3,430. 509 
 510 
 511 

  
(a) VoI𝑓𝑓,𝑅𝑅 from different models (b) VoI𝑓𝑓,𝑅𝑅 versus the inspection accuracy 

  
(c) VoI𝑓𝑓,𝑅𝑅 versus the inspection cost (d) VoI𝑓𝑓,𝑅𝑅 versus the replacement cost 

Fig. 8. Parametric investigation on the value of information flow 512 
 513 

The probability of failure is relatively low at the beginning time step, thus the inspection may not 514 
be necessary and the value of the current information VoI𝑐𝑐,𝑅𝑅 is 0. As the corrosion rate of the beam is 515 
assumed to be time-dependent, the probability of failure increases at a higher rate with aging. Collecting 516 
additional information through inspection is more essential when the failure probability is larger. Thus, in 517 
this non-stationary environment, the flow of information in the service life can bring considerable benefit 518 
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(𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓,𝑅𝑅=$3,285). To further investigate the influence of POMDP parameters on VoI, VoI𝑓𝑓,𝑅𝑅 is investigated 519 
parametrically as Fig. 8 shows. In Fig. 8 (a), it is observed that the minimum service life costs with and 520 
without inspection actions and VoI𝑓𝑓,𝑅𝑅 from the proposed POMDP model are between the corresponding 521 
values from POMDP model-1 and POMDP model-2. This observation is consistent with Fig. 7, where the 522 
transition function of POMDP model-1 significantly underestimates the probability of failure, while the 523 
transition function of POMDP model-2 overestimates the probability of failure in the aging process. The 524 
existing POMDP models with stationary deterioration processes can introduce large errors in estimating 525 
the service life cost and VoI in a non-stationary environment. The significance of the proposed approach is 526 
thus highlighted. Fig. 8 (b) shows the relation between the VoI𝑓𝑓,𝑅𝑅 and the error of the inspection action 527 
when error of inspection increases from 0.1 mm to 5 mm. As illustrated in the figure, VoI𝑓𝑓,𝑅𝑅 decreases 528 
slowly with the increase of the error. However, after the error reaches the threshold of 0.5 mm, the rate of 529 
reduction increases until VoI𝑓𝑓,𝑅𝑅 comes close to zero. The trend in the figure is based on the assumption that 530 
the inspection cost remains the same with different inspection errors. In reality, the inspection cost is 531 
typically inversely proportional to the inspection error, thus, the selection of the inspection accuracy should 532 
be investigated to reach the optimality of VoI𝑓𝑓,𝑅𝑅. The relation between VoI𝑓𝑓,𝑅𝑅 and the cost of the inspection 533 
action is shown in Fig. 8 (c). The value of information decreases monotonically with the increase of the 534 
inspection cost. When the inspection cost is around $2,000, VoI𝑓𝑓,𝑅𝑅 drops to almost zero. Fig. 8 (d) illustrates 535 
the relation between VoI𝑓𝑓,𝑅𝑅 and the cost of the replacement action. It is noted that when the replacement 536 
cost increases from $0 to around $5×104, the value of information flow shows a significant increase from 537 
$0 to more than $4,000. Subsequently, when the replacement cost increases further, the value of information 538 
drops until it reaches zero. When replacement is considerably cheap (even cheaper than the inspection), 539 
replacement can be applied without collecting information in advance. On the other hand, when 540 
replacement is extremely expensive (even more expensive than the failure cost), the decision maker prefers 541 
to “do nothing” and thus, the collected information cannot yield a better maintenance decision. 542 
 543 
5. Conclusion 544 
This paper presented a new approach for value of information (VoI) analysis called VoI-R-POMDP for 545 
systems with time-dependent deterioration processes and introduced methods for accurate determination of 546 
the POMDP model. A novel POMDP framework, which establishes multiple transition models describing 547 
different deterioration rates, is proposed to accurately model the non-stationary deterioration process in 548 
realistic applications. Accurate and efficient strategies are also proposed for the POMDP model definition. 549 
The transition function is estimated using the maximum likelihood estimation considering the probabilities 550 
that are derived from reliability methods. A new formulation of the observation function based on Bayes’ 551 
theorem is proposed to accurately describe the inspection process in the POMDP model. The VoI-R-552 
POMDP approach is investigated for a corroding beam example to demonstrate its performance. The 553 
proposed approach can provide considerably more accurate estimates of values of both current inspection 554 
and information flow in the case where the deterioration process is non-stationary. The paper is concluded 555 
by discussing limitations and possible extensions. First, when the limit state function or the function that 556 
models monitored quantities become expensive-to-evaluate, advanced sampling techniques [60, 61] or 557 
surrogate models [62, 63] can be applied to reduce the computational costs. Moreover, the decomposition 558 
approach in [50] can be extended for VoI analysis of a system with multiple components. 559 

 560 
CRediT authorship contribution statement 561 
Chaolin Song: Conceptualization, Methodology, Formal Analysis, Writing - original draft. Chi Zhang: 562 
Methodology, Validation, Writing - review & editing. Abdollah Shafieezadeh: Methodology, Validation, 563 
Writing - review & editing, Supervision, Rucheng Xiao: Conceptualization, Supervision. 564 
 565 
Declaration of Competing Interest 566 
The authors declare that they have no known competing financial interests or personal relationships that 567 
could have appeared to influence the work reported in this paper. 568 



20 
 

 569 
Acknowledgments 570 
This research was partly funded by the U.S. National Science Foundation (NSF) through award CMMI-571 
2000156; the Lichtenstein endowment at The Ohio State University; and the China Scholarship Council. 572 
Opinions and findings presented are those of the authors and do not necessarily reflect the views of the 573 
sponsors.  574 
 575 
Reference 576 
[1] O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, M. Gabbouj, D.J.J.a.p.a. Inman, A Review of Vibration-Based 577 
Damage Detection in Civil Structures: From Traditional Methods to Machine Learning and Deep Learning 578 
Applications, (2020). 579 
[2] C. Duan, C.J.I.A.T.o.M. Deng, Prognostics of Health Measures for Machines with Aging and Dynamic Cumulative 580 
Damage, (2020). 581 
[3] H. Mo, G. Sansavini, M. Xie, Performance-based maintenance of gas turbines for reliable control of degraded 582 
power systems, Mechanical Systems and Signal Processing, 103 (2018) 398-412. 583 
[4] H. Raiffa, R. Schlaifer, Applied statistical decision theory, (1961). 584 
[5] R.A. Howard, Information value theory, IEEE Transactions on systems science and cybernetics, 2 (1966) 22-26. 585 
[6] M. Pozzi, A. Der Kiureghian, Assessing the value of information for long-term structural health monitoring,  586 
Health monitoring of structural and biological systems 2011, International Society for Optics and Photonics, 2011, pp. 587 
79842W. 588 
[7] D. Zonta, B. Glisic, S. Adriaenssens, Value of information: impact of monitoring on decision‐making, Structural 589 
Control and Health Monitoring, 21 (2014) 1043-1056. 590 
[8] D. Straub, Value of information analysis with structural reliability methods, Structural Safety, 49 (2014) 75-85. 591 
[9] A. Zitrou, T. Bedford, A. Daneshkhah, Robustness of maintenance decisions: Uncertainty modelling and value of 592 
information, Reliability Engineering & System Safety, 120 (2013) 60-71. 593 
[10] L. Long, M. Döhler, S. Thöns, Determination of structural and damage detection system influencing parameters 594 
on the value of information, Structural Health Monitoring, (2020) 1475921719900918. 595 
[11] L. Iannacone, P. Francesco Giordano, P. Gardoni, M. Pina Limongelli, Quantifying the value of information from 596 
inspecting and monitoring engineering systems subject to gradual and shock deterioration, Structural Health 597 
Monitoring, (2021) 1475921720981869. 598 
[12] K. Bjørnsen, J.T. Selvik, T. Aven, A semi-quantitative assessment process for improved use of the expected value 599 
of information measure in safety management, Reliability Engineering & System Safety, 188 (2019) 494-502. 600 
[13] G. Zou, M.H. Faber, A. González, K. Banisoleiman, Computing the value of information from periodic testing 601 
in holistic decision making under uncertainty, Reliability Engineering & System Safety, 206 (2021) 107242. 602 
[14] D. Straub, M.H. Faber, System effects in generic risk-based inspection planning, J. Offshore Mech. Arct. Eng., 603 
126 (2004) 265-271. 604 
[15] D. Straub, M.H. Faber, Risk based inspection planning for structural systems, Structural safety, 27 (2005) 335-605 
355. 606 
[16] W.-H. Zhang, J. Qin, D.-G. Lu, S. Thöns, M.H. Faber, VoI-informed decision-making for SHM system 607 
arrangement, Structural Health Monitoring, (2020) 1475921720962736. 608 
[17] W. Fauriat, E. Zio, Optimization of an aperiodic sequential inspection and condition-based maintenance policy 609 
driven by value of information, Reliability Engineering & System Safety, 204 (2020) 107133. 610 
[18] A.C. Neves, J. Leander, I. González, R. Karoumi, An approach to decision‐making analysis for implementation 611 
of structural health monitoring in bridges, Structural Control and Health Monitoring, 26 (2019) e2352. 612 
[19] M. Farhan, R. Schneider, S. Thöns, Predictive information and maintenance optimization based on decision 613 
theory: a case study considering a welded joint in an offshore wind turbine support structure, Structural Health 614 
Monitoring, (2021) 1475921720981833. 615 
[20] C. Malings, M. Pozzi, Conditional entropy and value of information metrics for optimal sensing in infrastructure 616 
systems, Structural Safety, 60 (2016) 77-90. 617 
[21] C. Malings, M. Pozzi, Submodularity issues in value-of-information-based sensor placement, Reliability 618 
Engineering & System Safety, 183 (2019) 93-103. 619 
[22] C. Malings, M. Pozzi, Value-of-information in spatio-temporal systems: Sensor placement and scheduling, 620 
Reliability Engineering & System Safety, 172 (2018) 45-57. 621 
[23] K.J. Astrom, Optimal control of Markov processes with incomplete state information, Journal of mathematical 622 
analysis and applications, 10 (1965) 174-205. 623 



21 
 

[24] R.D. Smallwood, E.J. Sondik, The optimal control of partially observable Markov processes over a finite horizon, 624 
Operations research, 21 (1973) 1071-1088. 625 
[25] C. Duan, V. Makis, C. Deng, An integrated framework for health measures prediction and optimal maintenance 626 
policy for mechanical systems using a proportional hazards model, Mechanical Systems and Signal Processing, 111 627 
(2018) 285-302. 628 
[26] H. Jin, F. Han, Y. Sang, An optimal maintenance strategy for multi-state deterioration systems based on a semi-629 
Markov decision process coupled with simulation technique, Mechanical Systems and Signal Processing, 139 (2020) 630 
106570. 631 
[27] R. Bellman, Dynamic programming, Science, 153 (1966) 34-37. 632 
[28] A.R. Cassandra, M.L. Littman, N.L. Zhang, Incremental pruning: A simple, fast, exact method for partially 633 
observable Markov decision processes, arXiv preprint arXiv:1302.1525, (2013). 634 
[29] H. Kurniawati, D. Hsu, W.S. Lee, Sarsop: Efficient point-based pomdp planning by approximating optimally 635 
reachable belief spaces,  Robotics: Science and systems, Zurich, Switzerland., 2008. 636 
[30] M.L. Littman, A tutorial on partially observable Markov decision processes, Journal of Mathematical Psychology, 637 
53 (2009) 119-125. 638 
[31] N. Meuleau, K.-E. Kim, L.P. Kaelbling, A.R. Cassandra, Solving POMDPs by searching the space of finite 639 
policies, arXiv preprint arXiv:1301.6720, (2013). 640 
[32] S.C. Ong, S.W. Png, D. Hsu, W.S. Lee, POMDPs for robotic tasks with mixed observability,  Robotics: Science 641 
and systems, 2009, pp. 4. 642 
[33] P. Poupart, Exploiting structure to efficiently solve large scale partially observable Markov decision processes, 643 
Citeseer, 2005. 644 
[34] T. Smith, R. Simmons, Focused real-time dynamic programming for MDPs: Squeezing more out of a heuristic,  645 
AAAI, 2006, pp. 1227-1232. 646 
[35] T. Smith, R. Simmons, Heuristic search value iteration for POMDPs, arXiv preprint arXiv:1207.4166, (2012). 647 
[36] T. Smith, R. Simmons, Point-based POMDP algorithms: Improved analysis and implementation, arXiv preprint 648 
arXiv:1207.1412, (2012). 649 
[37] M.T. Spaan, F.A. Oliehoek, The MultiAgent Decision Process toolbox: software for decision-theoretic planning 650 
in multiagent systems,  Proc. of the AAMAS Workshop on Multi-Agent Sequential Decision Making in Uncertain 651 
Domains (MSDM), 2008, pp. 107-121. 652 
[38] M.T. Spaan, N. Vlassis, Perseus: Randomized point-based value iteration for POMDPs, Journal of artificial 653 
intelligence research, 24 (2005) 195-220. 654 
[39] S. Li, M. Pozzi, What makes long‐term monitoring convenient? A parametric analysis of value of information in 655 
infrastructure maintenance, Structural Control and Health Monitoring, 26 (2019) e2329. 656 
[40] W.-H. Zhang, D.-G. Lu, J. Qin, S. Thöns, M.H. Faber, Value of information analysis in civil and infrastructure 657 
engineering: a review, Journal of Infrastructure Preservation and Resilience, 2 (2021) 1-21. 658 
[41] M.T. Spaan, N. Spaan, A point-based POMDP algorithm for robot planning,  IEEE International Conference on 659 
Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, IEEE, 2004, pp. 2399-2404. 660 
[42] A. Foka, P. Trahanias, Real-time hierarchical POMDPs for autonomous robot navigation, Robotics and 661 
Autonomous Systems, 55 (2007) 561-571. 662 
[43] R.Z.B. Bravo, A. Leiras, F.L.J.P. Cyrino Oliveira, O. Management, The Use of UAV s in Humanitarian Relief: 663 
An Application of POMDP‐Based Methodology for Finding Victims, 28 (2019) 421-440. 664 
[44] H. Ellis, M. Jiang, R.B. Corotis, Inspection, maintenance, and repair with partial observability, Journal of 665 
Infrastructure Systems, 1 (1995) 92-99. 666 
[45] E. Fereshtehnejad, A. Shafieezadeh, A randomized point-based value iteration POMDP enhanced with a counting 667 
process technique for optimal management of multi-state multi-element systems, Structural Safety, 65 (2017) 113-668 
125. 669 
[46] K. Papakonstantinou, M. Shinozuka, Optimum inspection and maintenance policies for corroded structures using 670 
partially observable Markov decision processes and stochastic, physically based models, Probabilistic Engineering 671 
Mechanics, 37 (2014) 93-108. 672 
[47] K.G. Papakonstantinou, M. Shinozuka, Planning structural inspection and maintenance policies via dynamic 673 
programming and Markov processes. Part II: POMDP implementation, Reliability Engineering & System Safety, 130 674 
(2014) 214-224. 675 
[48] C. Bunks, D. McCarthy, T. Al-Ani, Condition-based maintenance of machines using hidden Markov models, 676 
Mechanical Systems and Signal Processing, 14 (2000) 597-612. 677 
[49] M. Compare, P. Baraldi, P. Marelli, E. Zio, Partially observable Markov decision processes for optimal operations 678 
of gas transmission networks, Reliability Engineering & System Safety, 199 (2020) 106893. 679 



22 
 

[50] M. Memarzadeh, M. Pozzi, Value of information in sequential decision making: Component inspection, 680 
permanent monitoring and system-level scheduling, Reliability Engineering & System Safety, 154 (2016) 137-151. 681 
[51] M. Pozzi, A. Der Kiureghian, Assessing the value of alternative bridge health monitoring systems,  6th 682 
International Conference on Bridge Maintenance, Safety and Management, IABMAS, 2012. 683 
[52] R.E. Melchers, A.T. Beck, Structural reliability analysis and prediction, John wiley & sons, 2018. 684 
[53] Y. Mohammadi Darestani, A. Shafieezadeh, K. Cha, Effect of modelling complexities on extreme wind hazard 685 
performance of steel lattice transmission towers, Structure and Infrastructure Engineering, 16 (2020) 898-915. 686 
[54] C. Zhang, Z. Wang, A. Shafieezadeh, Value of Information Analysis via Active Learning and Knowledge Sharing 687 
in Error-Controlled Adaptive Kriging, IEEE Access, 8 (2020) 51021-51034. 688 
[55] L. Liu, G.S. Sukhatme, A solution to time-varying Markov decision processes, IEEE Robotics and Automation 689 
Letters, 3 (2018) 1631-1638. 690 
[56] S. Chakraborty, S. Tesfamariam, Subset simulation based approach for space-time-dependent system reliability 691 
analysis of corroding pipelines, Structural Safety, 90 (2021) 102073. 692 
[57] X. Han, D.Y. Yang, D.M. Frangopol, Time-variant reliability analysis of steel plates in marine environments 693 
considering pit nucleation and propagation, Probabilistic Engineering Mechanics, 57 (2019) 32-42. 694 
[58] D.-C. Feng, S.-C. Xie, Y. Li, L. Jin, Time-dependent reliability-based redundancy assessment of deteriorated RC 695 
structures against progressive collapse considering corrosion effect, Structural Safety, 89 (2021) 102061. 696 
[59] C. Jiang, D. Wang, H. Qiu, L. Gao, L. Chen, Z. Yang, An active failure-pursuing Kriging modeling method for 697 
time-dependent reliability analysis, Mechanical Systems and Signal Processing, 129 (2019) 112-129. 698 
[60] I. Papaioannou, S. Geyer, D. Straub, Improved cross entropy-based importance sampling with a flexible mixture 699 
model, Reliability Engineering & System Safety, 191 (2019) 106564. 700 
[61] W. Du, Y. Luo, Y. Wang, Time-variant reliability analysis using the parallel subset simulation, Reliability 701 
Engineering & System Safety, 182 (2019) 250-257. 702 
[62] Z. Wang, A. Shafieezadeh, REAK: Reliability analysis through Error rate-based Adaptive Kriging, Reliability 703 
Engineering & System Safety, 182 (2019) 33-45. 704 
[63] C. Zhang, Z. Wang, A. Shafieezadeh, Error quantification and control for adaptive kriging-based reliability 705 
updating with equality information, Reliability Engineering & System Safety, 207 (2021) 107323. 706 
 707 


	Nomenclature
	1. Introduction
	2. Preliminaries
	2.1 Value of Information
	2.2 POMDP

	3. The proposed approach
	3.1 VOI-R-POMDP
	3.2 Definition of the transition function
	3.3 Definition of the observation function

	4. Illustrative application
	4.1 Engineering model
	4.2 The reliability assisted POMDP model
	4.3 The value of information

	5. Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Reference

