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ABSTRACT  11 
Bayesian updating provides a sound mathematical framework for probabilistic calibration as new 12 
information emerges. Bayesian Updating with Structural reliability methods (BUS) reformulates the 13 
acceptance domain in rejection sampling as a failure domain in reliability analysis, offering considerable 14 
potential for higher efficiency and accuracy. Kriging-based Monte Carlo Simulation has been studied to 15 
facilitate the application of BUS for problems with expensive-to-evaluate likelihood functions. 16 
Nevertheless, as the implementation of BUS often involves a rare event, the number of required Monte 17 
Carlo samples can become unaffordable. This gap is addressed here through Bayesian Updating with Active 18 
learning Kriging-based Adaptive Importance Sampling (BUAK-AIS). An importance sampling density 19 
based on Gaussian mixture distribution is introduced, and the discrepancy between the adopted and 20 
theoretically best sampling densities is measured through the Kullback–Leibler cross entropy. The proposed 21 
method includes an active learning framework that adaptively extends the training set and optimizes the 22 
parameters of the Gaussian mixture distribution based on the cross entropy and the current Kriging model.  23 
As BUS uses accepted samples to estimate the posterior distribution, the present work discusses the estimate 24 
for the first moment of the posterior distribution, and proposes a criterion to check the sufficiency of the 25 
number of accepted samples to guarantee robust estimations. A new stopping criterion is also developed by 26 
quantifying the error introduced by Kriging. Three numerical examples and an engineering application 27 
concerning model updating of cable-stayed bridges in the construction process are investigated, 28 
demonstrating the efficiency and accuracy of the proposed method. 29 
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Nomenclature  
𝑐𝑐 A constant required to formulate the acceptance domain in rejection sampling 
𝑑𝑑 The dimension of the variable space 

𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼(∙) The expectation with (𝑿𝑿,𝑃𝑃) following 𝑓𝑓𝐼𝐼𝐼𝐼 
𝑓𝑓′(∙) The prior joint PDF of 𝑿𝑿 
𝑓𝑓′′(∙) The posterior joint PDF of 𝑿𝑿 
𝑓𝑓𝐼𝐼𝐼𝐼(∙) The importance sampling distribution for (𝑿𝑿,𝑃𝑃) 
𝑓𝑓𝜺𝜺(∙) The joint PDF of 𝜺𝜺 
𝑔𝑔(∙) The limit state function 
𝑔𝑔𝐾𝐾(∙) The limit state function predicted by Kriging 

𝐼𝐼𝑔𝑔≤0(∙) The indicator function that equals one when the realization satisfies 𝑔𝑔 ≤ 0 and zero 
otherwise 

𝐼𝐼𝑤𝑤(∙) The indicator of the wrong classification event 𝐼𝐼𝑤𝑤(𝒙𝒙,𝑝𝑝) = �𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝) − 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙,𝑝𝑝)� 

𝐾𝐾 The number of Gaussian distributions for the quasi-optimal Gaussian mixture 
distribution 

𝐿𝐿(∙) The likelihood function 
𝑚𝑚 The number of independent observations 
𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 The number of calls of the performance function 
𝑁𝑁𝐶𝐶𝐶𝐶 The number of samples to update the IS distribution 
𝑁𝑁𝐹𝐹 The number of low-discrepancy samples in the design space 
𝑁𝑁𝐼𝐼 The number of initial training samples for Kriging 
𝑁𝑁𝐼𝐼𝐼𝐼 The number of IS samples 
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 The number of MCS samples 
𝑁𝑁𝑆𝑆𝑆𝑆 The number of samples in each subset for Subset Simulation 
𝑁𝑁𝑇𝑇 The number of training points for Kriging 
𝑃𝑃 The augmented variable introduced by rejection sampling 
𝑝𝑝 A realization of the variable 𝑃𝑃 
𝑿𝑿 The random vector representing the system uncertainty 
𝒙𝒙 A realization of the random vector 𝑿𝑿 
𝑥𝑥𝑖𝑖 𝒙𝒙 = [𝑥𝑥1,⋯ , 𝑥𝑥𝑑𝑑], the superscript 𝑖𝑖 denotes the dimension number 
𝒀𝒀 The vector representing the observation 
𝒚𝒚 A realization of the observation 𝒀𝒀 
𝜺𝜺 The deviation of the observation 
Ω The probabilistic domain of 𝑿𝑿 
Ω𝑎𝑎𝑎𝑎𝑎𝑎 The acceptance domain in rejection sampling 
Ω𝑓𝑓 The failure domain in BUS 
𝝁𝝁𝑓𝑓′′ The first moment of the posterior distribution 
𝝁𝝁𝑓𝑓′′,𝐾𝐾 The first moment of the posterior distribution estimated with Kriging 
𝝁𝝁�𝑓𝑓′′ The estimation of the first moment of the posterior distribution with realizations 
𝚺𝚺𝑓𝑓′′ The second moment of the posterior distribution 
𝚺𝚺�𝑓𝑓′′ The estimation of the second moment of the posterior distribution with realizations 

𝒜𝒜𝑖𝑖 Denoting 𝑥𝑥𝑖𝑖 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)

𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝) 

ℬ Denoting 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)

𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝) 

𝒥𝒥𝑘𝑘 Denoting 𝐼𝐼𝑤𝑤(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) 𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘,𝑝𝑝𝑘𝑘)

 

𝒫𝒫𝑘𝑘𝑖𝑖  Denoting 𝑥𝑥𝑘𝑘𝑖𝑖 𝐼𝐼𝑤𝑤(𝒙𝒙𝑘𝑘,𝑝𝑝𝑘𝑘) 𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘,𝑝𝑝𝑘𝑘)

 

Ξ𝒥𝒥 The sum of 𝒥𝒥𝑘𝑘 for the IS realizations, i.e., ∑ 𝒥𝒥𝑘𝑘
𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1 , also denoted as 𝐷𝐷𝑑𝑑 
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Ξ𝒫𝒫𝑖𝑖 The sum of 𝒫𝒫𝑘𝑘𝑖𝑖  for the IS realizations, i.e., ∑ 𝒫𝒫𝑘𝑘𝑖𝑖
𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1 , also denoted as 𝐷𝐷𝑛𝑛𝑖𝑖  

𝝐𝝐𝝁𝝁𝑓𝑓′′ The vector that equals �𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�𝒜𝒜1 ,⋯ ,𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�𝒜𝒜𝑑𝑑 ,𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�ℬ� 
𝝐𝝐𝑫𝑫𝑛𝑛 The vector representing the maximum relative error for estimating 

𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 �𝒙𝒙
𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)

𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)� with the Kriging surrogate model 
𝜖𝜖𝐷𝐷𝑑𝑑  The maximum relative error for estimating 𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 �

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)

𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)� with the Kriging 
surrogate model 

  34 
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1. Introduction 35 
In the design and management of structures and infrastructure systems, a multitude of uncertainties (e.g., 36 
various environmental or load conditions, workmanship, human error and occurrence of future events [1-37 
3]) exist that must be characterized and considered when designing or maintaining systems. Collecting new 38 
information for model calibration and system identification can reduce these uncertainties and facilitate 39 
effective decisions [4-7]. Bayesian updating provides a coherent framework for probabilistic calibration, 40 
where a posterior joint probability density function (PDF) is derived using the prior joint PDF and the 41 
observed data. With the advancements in sensing and monitoring technologies, Bayesian updating has 42 
recently received much attention and been successfully applied in various fields [8-15]. 43 

The Kalman filter [16] is one of the most popular algorithms for Bayesian updating. As the Kalman 44 
filter adopts the linear Gaussian assumption, only the first and second moments are required to describe a 45 
distribution. However, this assumption is not applicable for nonlinear and non-Gaussian problems. Many 46 
studies [17-22] have attempted relaxing these assumptions to extend the Kalman filter. For instance, 47 
Extended Kalman Filter, the Assumed Density Filter and the Unscented Kalman Filter consist of 48 
linearizing the state-space using Taylor series expansion, moments matching and weighted statistical linear 49 
regression process, respectively [23]. On the other hand, approximating posterior distribution via sampling 50 
realizations has received much attention, as a parametric assumption (e.g., the Gaussian assumption) is not 51 
required a priori. The rejection sampling [24] is a basic technique to generate samples from the posterior 52 
distribution considering the likelihood function as a filter. However, the acceptance rate of the simple 53 
rejection sampling can be very low in high-dimensional problems or with multiple observations, resulting 54 
in low sampling efficiency. Markov chain Monte Carlo (MCMC), which allows sampling directly from 55 
the posterior distribution, has been widely investigated for Bayesian updating. To avoid the convergence 56 
issue, Beck and Au [25] proposed an adaptive Metropolis–Hastings method (AMH), which utilized a series 57 
of intermediate PDF to approach the target posterior PDF. Subsequently, Ching and Chen [26] proposed a 58 
TMCMC method, which adopted a resampling technique instead of the kernel density in AMH to improve 59 
the efficiency. However, the gained efficiency may not be significant with the increase of the dimension 60 
of the variable space [27].  61 

As an alternative, Straub and Papaioannou [28] proposed performing Bayesian Updating with 62 
Structural reliability methods (BUS), by transforming the acceptance domain in rejection sampling as the 63 
failure domain in reliability analysis. The significant advantage of BUS lies in exploring the possibility of 64 
using reliability methods to solve the Bayesian updating problem. The performance of BUS highly depends 65 
on the adopted reliability method. The subset simulation, which calculates the failure probability with 66 
MCMC through a series of intermediate events, has been applied to BUS in [28]. On the other hand, 67 
surrogate model-based reliability analysis, which uses the surrogate model as a substitute of original 68 
performance function has become popular in recent years due to its high efficiency. Compared with 69 
traditional sampling methods, the computational cost can be reduced by several orders of magnitude, as 70 
noticed in reliability analysis with Artificial Neural Networks (ANN) [27], Polynomial Chaos Expansion 71 
[29, 30], and Support Vector Regression [31, 32]. Among these, Kriging-based adaptive reliability analysis 72 
[33] has become one of the most popular approaches, as Kriging can provide the uncertainty of prediction 73 
to guide the selection of the training point and quantify the accuracy of the surrogate model. Wang and 74 
Shafieezadeh [34] proposed implementing adaptive Kriging with Monte Carlo Simulation (MCS) in the 75 
framework of BUS, called BUAK, which shows high efficiency, especially with expensive-to-evaluate 76 
likelihood functions. However, as the implementation of BUS often involves a rare event estimation, the 77 
BUAK-MCS may not be computationally affordable in some applications due to the low convergence rate 78 
of MCS. 79 

To address this gap, this paper proposes an efficient Bayesian updating method with active learning 80 
Kriging-based adaptive importance sampling, called BUAK-AIS. The main contributions of the paper can 81 
be summarized as follows. First, this work proposes an active learning Kriging-based adaptive importance 82 
sampling framework for efficient Bayesian updating. In the framework, the training database is expanded 83 
in each iteration and the importance sampling distribution is optimized sequentially based on the cross 84 
entropy. Moreover, the estimate for the first moment of the posterior distribution is discussed. A criterion 85 
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is proposed and checked in the framework to guarantee that the realizations in the accepted domain can 86 
provide a robust estimate for the posterior distribution. A new stopping criterion for the active learning of 87 
Kriging is also proposed by quantifying the error caused by the Kriging surrogate model in the estimation 88 
of the posterior distribution. Three numerical examples and an engineering application regarding model 89 
updating of cable-stayed bridges in the construction process are selected to illustrate the accuracy and 90 
efficiency of the proposed methods.  91 

The rest of the paper is organized as follows. Section 2 presents an overview of the fundamental 92 
theory of Bayesian updating, BUS and Kriging. Section 3 presents the details of the proposed method, 93 
BUAK-AIS. Section 4 provides three numerical examples and an engineering application to illustrate the 94 
performance of the proposed method. Concluding remarks are presented in Section 5. 95 
 96 
2. Preliminaries 97 
This section provides a brief overview of Bayesian updating, Bayesian Updating with Structural reliability 98 
methods (BUS), and Kriging. More information about these techniques can be found in [28, 34], [28], and 99 
[35], respectively.  100 
 101 
2.1 Bayesian updating 102 
Uncertainties stemming from external environments and internal conditions may pose significant challenge 103 
to design and maintaining the functionality and integrity of systems in their service life. Following the 104 
classical reliability framework, let the random vector 𝑿𝑿 represent the uncertainty of the system associated 105 
with the phenomena of interest. Given the probabilistic model of 𝑿𝑿 and the formulation of the system 106 
performance function, risk and reliability analysis can help with the assessment of the system state and 107 
facilitate risk-informed decision making. However, the background knowledge, where the prior 108 
probabilistic model of 𝑿𝑿 is established, may not perfectly describe the actual system. This deviation can 109 
yield inaccurate assessments and predictions, therefore resulting in decisions that are not most cost-effective 110 
and even threatening the safety of the system. Thus, collecting new information through Structural Health 111 
Monitoring (SHM) becomes essential in the management of critical structures and infrastructure systems, 112 
as the observed data can be used for system identification and probabilistic calibration. For this purpose, 113 
Bayesian updating provides a sound mathematical framework. 114 

Let 𝑓𝑓′(𝒙𝒙) and 𝒀𝒀 denote the prior PDF of 𝑿𝑿 and the vector of observations, respectively. 𝐿𝐿(𝒙𝒙) 115 
denotes the likelihood function, which is proportional to the conditional probability of receiving a 116 
realization of 𝒀𝒀 given a realization of 𝑿𝑿, i.e., 𝐿𝐿(𝒙𝒙) ∝ Pr(𝒀𝒀 = 𝒚𝒚|𝑿𝑿 = 𝒙𝒙). The Bayesian updating can be 117 
formulated as: 118 

𝑓𝑓′′(𝒙𝒙) =
𝐿𝐿(𝒙𝒙)𝑓𝑓′(𝒙𝒙)

∫ 𝐿𝐿(𝒙𝒙)𝑓𝑓′(𝒙𝒙)𝑑𝑑𝒙𝒙Ω

 (1) 

where Ω is the probabilistic domain of the random variables 𝑿𝑿, and 𝑓𝑓′′(𝒙𝒙) is the posterior distribution 119 
which is the aim of Bayesian updating.  120 

Let ℎ(∙)  denote the function describing the responses of observed phenomena. Considering a 121 
realization of observations 𝒚𝒚 of equality type and a realization of the random vector 𝒙𝒙, the deviation 122 
between the observation and the prediction can be expressed as 𝒚𝒚 − ℎ(𝒙𝒙). The deviation can be caused by 123 
measurement errors or model errors. Let 𝜺𝜺 denote the deviation of the observation, and 𝑓𝑓𝜺𝜺 denote the joint 124 
PDF of 𝜺𝜺. The likelihood function can be formulated as: 125 

𝐿𝐿(𝒙𝒙) = 𝑓𝑓𝛆𝛆(𝒚𝒚 − ℎ(𝒙𝒙)) (2) 

With 𝑚𝑚  mutually independent observations (𝒚𝒚 = [𝑦𝑦1,⋯ ,𝑦𝑦𝑚𝑚]), the likelihood function can be 126 
decomposed as: 127 

𝐿𝐿(𝒙𝒙) = �𝐿𝐿𝑖𝑖(𝑦𝑦𝑖𝑖|𝒙𝒙)
𝑚𝑚

𝑖𝑖=1

= �𝑓𝑓𝜀𝜀𝑖𝑖(𝑦𝑦𝑖𝑖 − ℎ𝑖𝑖(𝒙𝒙))
𝑚𝑚

𝑖𝑖=1

 (3) 



6 
 

where 𝐿𝐿𝑖𝑖  denotes the likelihood function of receiving the observation 𝑦𝑦𝑖𝑖 , ℎ𝑖𝑖(∙)  denotes the function 128 
describing the prediction of the observation 𝑦𝑦𝑖𝑖, 𝜀𝜀𝑖𝑖 denotes the deviation of 𝑦𝑦𝑖𝑖, and 𝑓𝑓𝜀𝜀𝑖𝑖 denotes the PDF of 129 
𝜀𝜀𝑖𝑖. 130 
 131 
2.2 Bayesian updating with structural reliability methods (BUS) 132 
The rejection sampling is a basic sampling method to estimate the posterior distribution. The idea of 133 
rejection sampling consists of extending the space of random variables to [𝑿𝑿,𝑃𝑃] by introducing an 134 
augmented variable 𝑃𝑃, and defining the accepted domain as: 135 

Ω𝑎𝑎𝑎𝑎𝑎𝑎 = [𝑝𝑝 ≤ 𝑐𝑐𝐿𝐿(𝒙𝒙)] (4) 
where 𝑝𝑝 is a realization of 𝑃𝑃 and 𝑐𝑐 is a constant. The distribution of 𝑃𝑃 can be defined as a standard uniform 136 
distribution, and 𝑐𝑐 can be therefore defined as 1/max (𝐿𝐿(𝒙𝒙)) to satisfy 𝑐𝑐𝐿𝐿(𝒙𝒙) ≤ 1. An adaptive approach 137 
for determining 𝑐𝑐 is discussed in [36, 37]. DiazDelaO et al. [8] also presented a fundamental discussion on 138 
the role of 𝑐𝑐  and developed an adaptive BUS-based formulation to approach the posterior distribution 139 
without 𝑐𝑐 a prior. When sampling 𝑃𝑃 and 𝑿𝑿 from the standard uniform distribution and prior distribution, 140 
respectively, the PDF for the realizations of 𝑿𝑿  in the acceptance domain can approach the posterior 141 
distribution. This can be guaranteed by:  142 

∫ 𝑓𝑓′(𝒙𝒙)𝑃𝑃∈Ω𝑎𝑎𝑎𝑎𝑎𝑎
d𝑝𝑝

∫ 𝑓𝑓′(𝒙𝒙)[𝑿𝑿,𝑃𝑃]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎
d𝑝𝑝d𝒙𝒙

=
∫ 𝑓𝑓′(𝒙𝒙)𝑐𝑐𝑐𝑐(𝒙𝒙)
0 d𝑝𝑝

∫ ∫ 𝑓𝑓′(𝒙𝒙)𝑐𝑐𝑐𝑐(𝒙𝒙)
0 d𝑝𝑝d𝒙𝒙Ω

=
𝑐𝑐𝑐𝑐(𝒙𝒙)𝑓𝑓′(𝒙𝒙)

∫ 𝑐𝑐𝑐𝑐(𝒙𝒙)𝑓𝑓′(𝒙𝒙)𝑑𝑑𝒙𝒙Ω

= 𝑓𝑓′′(𝒙𝒙) (5) 

However, as mentioned in [28], the acceptance rate for the simple rejection sampling can be 143 
extremely low. With 𝑚𝑚 independent and identically distributed measurements, the average acceptance ratio 144 
is proportional to 1/√𝑚𝑚 . This limits the application of rejection sampling for complex engineering 145 
problems. To address this limitation, the Bayesian updating with structural reliability methods (BUS) is 146 
proposed by Straub and Papaioannou [28]. The core idea is to reformulate the rejection sampling as a 147 
reliability problem. The acceptance domain Ω𝑎𝑎𝑎𝑎𝑎𝑎 can also be considered as the failure domain in reliability 148 
analysis, as shown by Eq. (6). 149 

Ω𝑓𝑓 = [𝑔𝑔(𝒙𝒙,𝑝𝑝) ≤ 0] (6) 
where 𝑔𝑔(𝒙𝒙,𝑝𝑝) = 𝑝𝑝 − 𝑐𝑐𝐿𝐿(𝒙𝒙), which is known as the limit state function in reliability analysis. Thus, existing 150 
reliability analysis methods, e.g., MCS and subset simulation, can be implemented in the framework of 151 
BUS to solve this reliability problem. However, unlike reliability analysis which focuses on the probability 152 
of failure, BUS concentrates on estimating the posterior distribution with the samples in the failure domain. 153 
The estimation of the Cumulative Distribution Function (CDF), and the first and second moments of the 154 
posterior distribution with MCS-based BUS can be formulated as follows: 155 

𝐶𝐶𝐶𝐶𝐶𝐶(𝝍𝝍) = � 𝐼𝐼(𝒙𝒙 ≤ 𝝍𝝍)𝑓𝑓′′(𝒙𝒙)𝑑𝑑𝒙𝒙
Ω

 

=  
∫ 𝐼𝐼(𝒙𝒙 ≤ 𝝍𝝍)𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

≈
∑ 𝐼𝐼(𝒙𝒙𝑘𝑘 ≤ 𝝍𝝍) ∙ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑘𝑘=1

∑ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑘𝑘=1

 
(7) 

𝝁𝝁𝑓𝑓′′ = � 𝒙𝒙𝑓𝑓′′(𝒙𝒙)𝑑𝑑𝒙𝒙
Ω

=  
∫ 𝒙𝒙𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

≈  
∑ 𝒙𝒙𝑘𝑘 ∙ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑘𝑘=1

∑ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑘𝑘=1

 (8) 

𝚺𝚺𝑓𝑓′′ = � �𝒙𝒙 − 𝝁𝝁𝑓𝑓′′�
T�𝒙𝒙 − 𝝁𝝁𝑓𝑓′′�𝑓𝑓′′(𝒙𝒙)𝑑𝑑𝒙𝒙

Ω
=  
∫ �𝒙𝒙 − 𝝁𝝁𝑓𝑓′′�

T�𝒙𝒙 − 𝝁𝝁𝑓𝑓′′�𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

 (9) 
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≈  
∑ �𝒙𝒙𝑘𝑘 − 𝝁𝝁�𝑓𝑓′′�

T�𝒙𝒙𝑘𝑘 − 𝝁𝝁�𝑓𝑓′′� ∙ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑘𝑘=1

∑ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑘𝑘=1

 

where 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  is the number of MCS samples, 𝐼𝐼𝑔𝑔≤0(∙) is an indicator function that equals one when the 156 
realization satisfies 𝑔𝑔 ≤ 0 and zero otherwise, and 𝐼𝐼(𝒙𝒙 ≤ 𝝍𝝍) is also an indicator function that equals one 157 
when the realization satisfies 𝒙𝒙 ≤ 𝝍𝝍 and zero otherwise. 158 
 159 
2.3 Kriging 160 
As an exact interpolation method that can provide the uncertainty information based on the Gaussian 161 
process assumption, Kriging has received much attention recently. A Kriging surrogate model assumes that 162 
the true prediction of a point consists of a regression part and a random part: 163 

𝑔𝑔�(𝒙𝒙) = 𝑆𝑆(𝒙𝒙,𝜷𝜷) + 𝑧𝑧(𝒙𝒙) (10) 
where 𝑔𝑔�(𝒙𝒙) is the prediction of the performance, 𝑆𝑆(𝒙𝒙,𝜷𝜷) = 𝒔𝒔(𝒙𝒙)𝑇𝑇𝜷𝜷 is the regression part and 𝑧𝑧(𝒙𝒙) is the 164 
zero-mean Gaussian process. 𝒔𝒔(𝒙𝒙) is identical to {𝑠𝑠1(𝒙𝒙),⋯ , 𝑠𝑠𝑁𝑁𝑆𝑆(𝒙𝒙)}𝑇𝑇, and 𝜷𝜷 = {𝛽𝛽1,⋯ ,𝛽𝛽𝑁𝑁𝑆𝑆}𝑇𝑇 is the set of 165 
regression parameters. For instance, when the trend has a constant yet unknown value, the Kriging model 166 
is known as the Ordinary Kriging, and in this case, both 𝑁𝑁𝑆𝑆 and 𝑠𝑠1(𝒙𝒙) are identical to 1. 167 

Subsequently, with 𝑁𝑁𝑇𝑇  training points 𝓣𝓣 = {𝒙𝒙1,⋯ ,𝒙𝒙𝑁𝑁𝑇𝑇}T  and their noise-free responses 𝓜𝓜 =168 
{𝑔𝑔(𝒙𝒙1),⋯ ,𝑔𝑔�𝒙𝒙𝑁𝑁𝑇𝑇�}𝑇𝑇, the prediction 𝑔𝑔�(𝒙𝒙𝑡𝑡) of an arbitrary test point 𝒙𝒙𝑡𝑡 and 𝓜𝓜 are assumed to follow a 169 
joint Gaussian distribution: 170 

�𝑔𝑔�(𝒙𝒙𝑡𝑡)
𝓜𝓜

� = 𝒩𝒩𝑁𝑁𝑇𝑇+1 ��
𝑆𝑆(𝒙𝒙𝑡𝑡,𝜷𝜷)
𝑆𝑆(𝓣𝓣,𝜷𝜷)� ,𝜎𝜎2 � 1 𝒓𝒓T(𝒙𝒙𝑡𝑡)

𝒓𝒓(𝒙𝒙𝑡𝑡) 𝑹𝑹 �� (11) 
where 𝑆𝑆(𝒙𝒙𝑡𝑡 ,𝜷𝜷) has been explained above, 𝑆𝑆(𝓣𝓣,𝜷𝜷) = 𝑺𝑺𝜷𝜷, and 𝑺𝑺 is a matrix with the element in the row 𝑖𝑖 171 
and column 𝑗𝑗 being 𝑠𝑠𝑗𝑗(𝒙𝒙𝑖𝑖), 𝑖𝑖 ∈ [1,⋯ ,𝑁𝑁𝑇𝑇], 𝑗𝑗 ∈ [1,⋯ ,𝑁𝑁𝑆𝑆]. Thus, the size of matrix 𝑺𝑺 is 𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑆𝑆. 𝒓𝒓(𝒙𝒙𝑡𝑡) is 172 
the vector representing the correlation between 𝒙𝒙𝑡𝑡 and 𝓣𝓣, 𝑹𝑹 is the covariance matrix with the elements 𝑅𝑅𝑖𝑖𝑖𝑖 173 
in the row 𝑖𝑖  and column 𝑗𝑗  describing the correlation between 𝒙𝒙𝑖𝑖  and 𝒙𝒙𝑗𝑗  ( 𝑖𝑖, 𝑗𝑗 ∈ [1,⋯ ,𝑁𝑁𝑇𝑇] ), and 174 
𝜎𝜎2 represents the generalized mean square error (MSE) from the regression. 175 
 Linear, spline or Gaussian correlation models, among others, can be applied to define 𝑅𝑅𝑖𝑖𝑖𝑖 and 𝒓𝒓(𝒙𝒙𝑡𝑡). 176 
For instance, with Gaussian correlation model, the 𝑅𝑅𝑖𝑖𝑖𝑖 and 𝒓𝒓(𝒙𝒙𝑡𝑡) will have the following form: 177 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑅𝑅(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = �𝑒𝑒𝑒𝑒𝑒𝑒�−𝜃𝜃𝑘𝑘(𝑥𝑥𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘)2�
𝑑𝑑

𝑘𝑘=1

 (12) 

𝒓𝒓(𝒙𝒙𝑡𝑡) = {𝑅𝑅(𝒙𝒙1,𝒙𝒙𝑡𝑡),⋯ ,𝑅𝑅(𝒙𝒙𝑁𝑁𝑇𝑇 ,𝒙𝒙𝑡𝑡)}𝑇𝑇 (13) 
where 𝑑𝑑 denotes the dimension of the input variable, i.e., 𝒙𝒙𝑘𝑘 = [𝑥𝑥𝑘𝑘1,⋯ , 𝑥𝑥𝑘𝑘𝑑𝑑] with the subscript 𝑘𝑘 denoting 178 
the sample number and the superscript denoting the dimension number, and 𝜽𝜽 = [𝜃𝜃1,⋯ ,𝜃𝜃𝑑𝑑] is the set of 179 
correlation parameters. 180 

As pointed out in [38], 𝜽𝜽 can significantly influence the performance of Kriging in reliability 181 
analysis. Approaches such as Maximum Likelihood Estimation (MLE) and Cross-validation Estimation 182 
have been proposed to determine the optimal 𝜽𝜽, called 𝜽𝜽�∗. Note that as 𝜽𝜽�∗ is determined based on the 183 
training database, 𝜽𝜽�∗ can typically change in the active learning process, and with limited samples, the 184 
parameters that provide the most accurate reliability result may not be the ones obtained by optimization 185 
[38]. To keep consistent with the existing work [34], MLE is adopted in this paper: 186 

𝜽𝜽�∗ = argmin
𝜽𝜽

(|𝑺𝑺|
1
𝑁𝑁𝑇𝑇𝜎𝜎2) (14) 

where 𝜎𝜎2 can be formulated as: 187 

𝜎𝜎2 =
1
𝑛𝑛𝑡𝑡

(𝓜𝓜−𝑺𝑺𝜷𝜷∗)𝑇𝑇𝑹𝑹−1(𝓜𝓜−𝑺𝑺𝜷𝜷∗) (15) 

𝜷𝜷∗ is generalized least-squares estimate of 𝜷𝜷: 188 
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𝜷𝜷∗ = (𝑺𝑺𝑇𝑇𝑹𝑹−1𝑺𝑺)
−1
𝑺𝑺𝑇𝑇𝑹𝑹−1𝓜𝓜 (16) 

Based on the above equations, the mean and variance of the prediction 𝑔𝑔�(𝒙𝒙𝑡𝑡) conditional on 𝓣𝓣 and 189 
𝓜𝓜 can be formulated as: 190 

𝜇𝜇𝐾𝐾(𝒙𝒙𝑡𝑡) = 𝒔𝒔(𝒙𝒙𝑡𝑡)𝑇𝑇𝜷𝜷∗ + 𝒓𝒓(𝒙𝒙𝑡𝑡)
𝑇𝑇𝑹𝑹−1(𝓜𝓜−𝑺𝑺𝜷𝜷∗) (17) 

𝜎𝜎𝐾𝐾2(𝒙𝒙𝑡𝑡) = 𝜎𝜎2�1 + 𝒖𝒖(𝒙𝒙𝑡𝑡)𝑻𝑻(𝑺𝑺𝑇𝑇𝑹𝑹𝑺𝑺)−1𝒖𝒖(𝒙𝒙𝑡𝑡) − 𝒓𝒓(𝒙𝒙𝑡𝑡)
𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙𝑡𝑡)� (18) 

where 𝒖𝒖(𝒙𝒙𝑡𝑡) can be formulated as: 191 
𝒖𝒖(𝒙𝒙𝑡𝑡) = 𝑺𝑺𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙𝑡𝑡) − 𝒔𝒔(𝒙𝒙) (19) 

 192 
3. Bayesian Updating with Active learning Kriging-based Adaptive Importance Sampling (BUAK-193 
AIS) 194 
This section presents the details of the proposed method. Section 3.1 presents the derivation of the BUS 195 
with Importance Sampling (IS) for Bayesian updating, and Section 3.2 proposes a criterion to measure 196 
whether the number of accepted samples is enough for an accurate posterior estimate. The maximum of the 197 
error introduced by the use of the Kriging surrogate model is derived and discussed in Section 3.3. The 198 
framework of the proposed method, Bayesian updating with Active learning Kriging-based Adaptive 199 
Importance Sampling, called BUAK-AIS, is presented in Section 3.4. 200 
 201 
3.1 BUS with Importance Sampling 202 
A classical approach of reliability analysis is MCS, which is based on repeated random sampling to obtain 203 
statistical results. The application of MCS to the reliability problem formulated in BUS has been illustrated 204 
in Section 2.2. However, in MCS, realizations of 𝑿𝑿 and 𝑃𝑃 are randomly generated from the prior joint PDF 205 
𝑓𝑓(𝒙𝒙) and the uniform distribution. For a rare event estimation, only a very small proportion of points falls 206 
in the failure domain and contributes to the estimation of the posterior distribution. The importance 207 
sampling, which samples from an alternative proposal distribution, can be introduced in the BUS 208 
framework to improve the sampling efficiency.  209 

In the following, the statistical characteristics (e.g., Cumulative Distribution Function (CDF) and 210 
the first and second moments) of the posterior distribution with importance sampling-based BUS are 211 
derived. The rest of the paper uses 𝑓𝑓𝐼𝐼𝐼𝐼 to represent the proposal importance sampling distribution for (𝑿𝑿,𝑃𝑃). 212 
According to Eq. (5), 𝑓𝑓′′(𝒙𝒙) can be formulated as: 213 

𝑓𝑓′′(𝒙𝒙) =
∫ 𝑓𝑓′(𝒙𝒙)𝑃𝑃∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

d𝑝𝑝

∫ 𝑓𝑓′(𝒙𝒙)[𝑿𝑿,𝑃𝑃]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎
d𝑝𝑝d𝒙𝒙

=
∫ 𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑃𝑃∈Ω𝑎𝑎𝑎𝑎𝑎𝑎
d𝑝𝑝

∫ 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)[𝑿𝑿,𝑃𝑃]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

d𝑝𝑝d𝒙𝒙
 (20) 

Subsequently, the estimation of the CDF of the posterior distribution can be formulated as: 214 

𝐶𝐶𝐶𝐶𝐶𝐶(𝝍𝝍) = � 𝐼𝐼(𝒙𝒙 ≤ 𝝍𝝍)𝑓𝑓′′(𝒙𝒙)𝑑𝑑𝒙𝒙
Ω

=
∫ ∫ 𝐼𝐼(𝒙𝒙 ≤ 𝝍𝝍) 𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑃𝑃∈Ω𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙Ω

∫ 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)[𝑿𝑿,𝑃𝑃]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙
 

=
∫ 𝐼𝐼(𝒙𝒙 ≤ 𝝍𝝍)𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)[𝑿𝑿,𝑃𝑃]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎
d𝑝𝑝d𝒙𝒙

∫ 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)[𝑿𝑿,𝑃𝑃]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙
 

≈
∑ 𝐼𝐼(𝒙𝒙𝑘𝑘 ≤ 𝝍𝝍)𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

∑ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

 

(21) 
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where 𝑁𝑁𝐼𝐼𝐼𝐼 is the number of IS samples. The estimates of the first and the second moments of the posterior 215 
distribution with IS-based BUS can be derived as follows: 216 

𝝁𝝁𝑓𝑓′′ =  
∫ 𝒙𝒙𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

=
∫ 𝒙𝒙 𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

 

≈  
∑ 𝒙𝒙𝑘𝑘 ∙ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1 ∙ 𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

∑ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1 ∙ 𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

 

(22) 

𝚺𝚺𝑓𝑓′′ =
∫ �𝒙𝒙 − 𝝁𝝁𝑓𝑓′′�

𝑇𝑇�𝒙𝒙 − 𝝁𝝁𝑓𝑓′′�𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

 

=
∫ �𝒙𝒙 − 𝝁𝝁𝑓𝑓′′�

𝑇𝑇�𝒙𝒙 − 𝝁𝝁𝑓𝑓′′�
𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

 

≈  
∑ �𝒙𝒙 − 𝝁𝝁�𝑓𝑓′′�

𝑇𝑇�𝒙𝒙 − 𝝁𝝁�𝑓𝑓′′�𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) 𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

∑ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

 

(23) 

 217 
3.2 On the Accuracy of the Estimates of the Posterior Distribution 218 
As Eq. (21) - (23) show, the posterior distribution can be estimated with realizations in IS-based BUS. The 219 
number of realizations in the acceptance domain is therefore critical to achieve a reliable estimation. Thus, 220 
this paper proposes a new criterion to check the sufficiency of the number of IS realizations and therefore 221 
guarantee the quality of the estimate for the posterior distribution. 222 
 First, Eq. (22) can be reformulated as: 223 

𝝁𝝁𝑓𝑓′′ =  
∫ 𝒙𝒙𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

=
∫ 𝒙𝒙 𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

∫ 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝑿𝑿,𝑃𝑃]∈Ω𝑓𝑓

 

=  
𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 �𝒙𝒙

𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)�

𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 �
𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)�
 

(24) 

where 𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 represents the expectation with (𝑿𝑿,𝑃𝑃) following the proposal distribution 𝑓𝑓𝐼𝐼𝐼𝐼.  224 
 Considering that 𝑑𝑑 is the dimension of 𝑿𝑿, 𝝁𝝁𝑓𝑓′′ can be defined as the vector [𝜇𝜇𝑓𝑓′′1,⋯ , 𝜇𝜇𝑓𝑓′′𝑑𝑑], where 225 
𝜇𝜇𝑓𝑓′′𝑖𝑖  denotes the mean of the posterior distribution in the dimension 𝑖𝑖  (𝑖𝑖 ∈ [1,⋯ ,𝑑𝑑]). The following 226 
equation can be therefore obtained: 227 

𝜇𝜇𝑓𝑓′′𝑖𝑖 =
𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 �𝑥𝑥

𝑖𝑖 𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)�

𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 �
𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)�
 (25) 

where 𝒙𝒙 = [𝑥𝑥1,⋯ , 𝑥𝑥𝑑𝑑] and the superscript denotes the dimension number. 228 
Let 𝒜𝒜𝑖𝑖  denote the function 𝑥𝑥𝑖𝑖 𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)
𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)  and ℬ  denote 𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝)
𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝) . With 𝑁𝑁𝐼𝐼𝐼𝐼 229 

realizations, the mean and the variance of 𝒜𝒜𝑖𝑖 and ℬ can be estimated as: 230 
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𝜇̂𝜇𝒜𝒜𝑖𝑖 ≈
1
𝑁𝑁𝐼𝐼𝐼𝐼

� 𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)
𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (26) 

𝜇̂𝜇ℬ ≈
1
𝑁𝑁𝐼𝐼𝐼𝐼

�
𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)
𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (27) 

𝑣𝑣𝑣𝑣𝑣𝑣� 𝒜𝒜𝑖𝑖 ≈
1

𝑁𝑁𝐼𝐼𝐼𝐼 − 1
� �𝑥𝑥𝑘𝑘𝑖𝑖

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) − 𝜇̂𝜇𝒜𝒜𝑖𝑖�
2𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (28) 

𝑣𝑣𝑣𝑣𝑣𝑣� ℬ ≈
1

𝑁𝑁𝐼𝐼𝐼𝐼 − 1
� �

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) − 𝜇̂𝜇ℬ�
2𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (29) 

According to the Central Limit Theorem, the variances for the estimates of 𝜇̂𝜇𝒜𝒜𝑖𝑖  and 𝜇̂𝜇ℬ  can be 231 
obtained as 

𝑣𝑣𝑣𝑣𝑟𝑟𝒜𝒜𝑖𝑖
𝑁𝑁𝐼𝐼𝐼𝐼

 and 𝑣𝑣𝑣𝑣𝑟𝑟ℬ
𝑁𝑁𝐼𝐼𝐼𝐼

. Here, 𝑣𝑣𝑣𝑣𝑣𝑣� 𝒜𝒜𝑖𝑖 and 𝑣𝑣𝑣𝑣𝑣𝑣� ℬ are considered to approximate 𝑣𝑣𝑣𝑣𝑟𝑟𝒜𝒜𝑖𝑖 and 𝑣𝑣𝑣𝑣𝑟𝑟ℬ; and 𝜇̂𝜇𝒜𝒜𝑖𝑖 232 
and 𝜇̂𝜇ℬ are considered to approximate 𝜇𝜇𝒜𝒜𝑖𝑖 and 𝜇𝜇ℬ. The variances for the estimates of 𝜇̂𝜇𝒜𝒜𝑖𝑖  and 𝜇̂𝜇ℬ can thus 233 

be determined as 
𝑣𝑣𝑣𝑣𝑣𝑣� 𝒜𝒜𝑖𝑖

𝑁𝑁𝐼𝐼𝐼𝐼
 and 𝑣𝑣𝑣𝑣𝑣𝑣� ℬ

𝑁𝑁𝐼𝐼𝐼𝐼
; and the coefficients of variation for the mean estimates can be determined 234 

as 𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�𝒜𝒜𝑖𝑖 = �
𝑣𝑣𝑣𝑣𝑣𝑣� 𝒜𝒜𝑖𝑖

𝑁𝑁𝐼𝐼𝐼𝐼
/𝜇̂𝜇𝒜𝒜𝑖𝑖  and 𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�ℬ = �𝑣𝑣𝑣𝑣𝑣𝑣� ℬ

𝑁𝑁𝐼𝐼𝐼𝐼
/𝜇̂𝜇ℬ. 235 

 Given a significance level 𝛼𝛼 and the corresponding z-value 𝛾𝛾𝛼𝛼, the estimates 𝜇̂𝜇𝒜𝒜𝑖𝑖  and 𝜇̂𝜇ℬ will be 236 
inside the following intervals according to the Central Limit Theorem: 237 

𝜇𝜇𝒜𝒜𝑖𝑖 ∈ [𝜇̂𝜇𝒜𝒜𝑖𝑖 − 𝛾𝛾α�
𝑣𝑣𝑣𝑣𝑣𝑣� 𝒜𝒜𝑖𝑖

𝑁𝑁𝐼𝐼𝐼𝐼
, 𝜇̂𝜇𝒜𝒜𝑖𝑖 + 𝛾𝛾α�

𝑣𝑣𝑣𝑣𝑣𝑣� 𝒜𝒜𝑖𝑖

𝑁𝑁𝐼𝐼𝐼𝐼
] (30) 

𝜇𝜇ℬ ∈ [𝜇̂𝜇ℬ − 𝛾𝛾α�
𝑣𝑣𝑣𝑣𝑣𝑣� ℬ

𝑁𝑁𝐼𝐼𝐼𝐼
, 𝜇̂𝜇ℬ + 𝛾𝛾α�

𝑣𝑣𝑣𝑣𝑣𝑣� ℬ

𝑁𝑁𝐼𝐼𝐼𝐼
] (31) 

Therefore, controlling the values of  𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�𝒜𝒜𝑖𝑖  and 𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�ℬ  can help to narrow the bounds for 𝜇𝜇𝒜𝒜𝑖𝑖  and 238 
𝜇𝜇ℬ, therefore yielding a more reliable estimate of 𝜇𝜇𝑓𝑓′′𝑖𝑖 with one simulation. Let 𝝐𝝐𝝁𝝁𝑓𝑓′′ denote the vector 239 

�𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�𝒜𝒜1 ,⋯ ,𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�𝒜𝒜𝑑𝑑 ,𝐶𝐶𝐶𝐶𝑉𝑉𝜇𝜇�ℬ�. In this paper, the maximum value of entries of vector 𝝐𝝐𝝁𝝁𝑓𝑓′′ is adopted as the 240 
stopping criterion in the framework to guarantee that the number of realizations is enough to achieve a 241 
reliable estimate of the posterior distribution.  242 

As this section focuses on whether the number of accepted samples can accurately describe the 243 
posterior distribution, which is considered as a deterministic result from the BUS method, the concept of 244 
confidence intervals is adopted. However, note that when the bound for the true parameters of the 245 
distribution is of interest, the credible interval should be employed according to Bayesian statistics, and 246 
typically more observed samples can help to reduce uncertainties and narrow the credible interval. 247 

 248 
3.3 Quantification for the Accuracy of Kriging 249 
The Kriging surrogate model has recently received much attention for reliability analysis problems as it has 250 
offered a viable substitute for expensive-to-evaluate limit state functions. Recent studies on Kriging-based 251 
reliability analysis include, among others, the development of learning functions [39-43] and quantification 252 
of the maximum error, which is introduced by the use of Kriging, for the estimation of the failure probability 253 
[44-46]. However, using this maximum error as the stopping criterion for the Kriging surrogate model when 254 
estimating posterior distributions may not be adequate [47], as the probability of failure is not identical to 255 
the posterior distribution, which BUS aims to estimate. Studies in [34] found that the use of 𝑈𝑈 learning 256 
function [40], which measures the probability of wrong classification for each realization, as a stopping 257 
criterion in Bayesian updating problems can lead to a large number of unnecessary calls of the limit state 258 
function. Thus, a more effective stopping criterion is needed for the active learning of Kriging in the 259 
proposed Bayesian updating framework. To address this gap, the rest of this section discusses the maximum 260 
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error for the estimation of the first moment of the posterior distribution and proposes a new stopping 261 
criterion. 262 

When Kriging is applied as a substitute of the original limit state function 𝑔𝑔(∙) , the Kriging 263 
predictor can be denoted as 𝑔𝑔𝐾𝐾(∙). As mentioned in Section 2.3, Kriging assumes that the response for a 264 
test point follows a Gaussian distribution with mean 𝜇𝜇𝐾𝐾  and 𝜎𝜎𝐾𝐾2. In this setting, 𝜇𝜇𝐾𝐾 is often used as 𝑔𝑔𝐾𝐾. The 265 
failure domain with Kriging model can be defined as follows: 266 

Ω𝑓𝑓,𝐾𝐾 = [𝑔𝑔𝐾𝐾(𝒙𝒙,𝑝𝑝) ≤ 0] (32) 

The first order moment of the posterior distribution can therefore be reformulated as: 267 

𝝁𝝁𝑓𝑓′′,𝐾𝐾 =  
𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 �𝒙𝒙

𝑓𝑓′(𝒙𝒙)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙,𝑝𝑝)�

𝔼𝔼𝑓𝑓𝐼𝐼𝐼𝐼 �
𝑓𝑓′(𝒙𝒙)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙,𝑝𝑝) 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙,𝑝𝑝)�
≈  
∑ 𝒙𝒙𝑘𝑘𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

 (33) 

Note that the error caused by approximating the original model with Kriging stems from the wrong 268 
classification of samples, namely 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) ≠ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)  for the realizations with wrong sign 269 
estimation. For the numerator of Eq. (33), the sum of the absolute difference between each realization 270 
estimated by the original limit state function and that by the Kriging surrogate model can be expressed as: 271 

𝑫𝑫𝑛𝑛 =  � 𝒙𝒙𝑘𝑘
𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

�𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) − 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)� (34) 

where 𝑫𝑫𝑛𝑛 = [𝐷𝐷𝑛𝑛1,⋯ ,𝐷𝐷𝑛𝑛𝑑𝑑] is a vector containing the absolute error caused by Kriging in each dimension and 272 
𝑑𝑑 denotes the number of dimensions of 𝑿𝑿. 𝐷𝐷𝑛𝑛𝑖𝑖  (𝑖𝑖 ∈ [1,⋯ ,𝑑𝑑]) can be expressed as: 273 

𝐷𝐷𝑛𝑛𝑖𝑖 =  � 𝑥𝑥𝑘𝑘𝑖𝑖
𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

�𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) − 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)� (35) 

The same applies to the denominator of Eq. (33); therefore, the sum of the absolute error can be formulated 274 
as: 275 

𝐷𝐷𝑑𝑑 =  �
𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)
�𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) − 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)�

𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (36) 

However, the exact value of �𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) − 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)� is unknown, as Kriging aims at replacing the 276 
original limit state function 𝑔𝑔(∙), which can be expensive-to-evaluate. Thus, in the following, the estimation 277 
of 𝐷𝐷𝑛𝑛𝑖𝑖  and 𝐷𝐷𝑑𝑑 based on the Gaussian process assumption of Kriging is presented. 278 

For an arbitrary test point (𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) with predicted mean 𝜇𝜇𝐾𝐾 and variance 𝜎𝜎𝐾𝐾2 provided by Eq. (17) 279 
and Eq. (18), the probability of providing a wrong sign estimation for this point can be formulated as follows: 280 

𝑃𝑃𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤 =  𝛷𝛷 �−
|𝜇𝜇𝐾𝐾(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)|
𝜎𝜎𝐾𝐾(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) � (37) 

Let 𝐼𝐼𝑤𝑤(∙)  denote the function �𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) − 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)� , which is the indicator of the wrong 281 
classification event. When Kriging provides a wrong sign estimation for (𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) , 𝐼𝐼𝑤𝑤(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)  is 1; 282 
otherwise, 𝐼𝐼𝑤𝑤(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) is 0. Therefore, 𝐼𝐼𝑤𝑤(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) follows a Binomial distribution. The same applies to 283 
𝑥𝑥𝑘𝑘𝑖𝑖 𝐼𝐼𝑤𝑤(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) 𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘,𝑝𝑝𝑘𝑘)
, denoted as 𝒫𝒫𝑘𝑘𝑖𝑖 , and 𝐼𝐼𝑤𝑤(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘) 𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘,𝑝𝑝𝑘𝑘)
, denoted as 𝒥𝒥𝑘𝑘, where 𝑘𝑘 ∈ [1,⋯ ,𝑁𝑁𝐼𝐼𝐼𝐼] and 284 

𝑖𝑖 ∈ [1,⋯ ,𝑑𝑑]. The means for 𝒫𝒫𝑘𝑘𝑖𝑖  and 𝒥𝒥𝑘𝑘 can be formulated as: 285 

𝜇𝜇𝒫𝒫𝑘𝑘𝑖𝑖 = 𝑃𝑃𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤  𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)
 (38) 

𝜇𝜇𝒥𝒥𝑘𝑘 = 𝑃𝑃𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤  
𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)
 (39) 

The variances for 𝒫𝒫𝑘𝑘𝑖𝑖  and 𝒥𝒥𝑘𝑘 can be formulated as: 286 
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𝑣𝑣𝑣𝑣𝑣𝑣𝒫𝒫𝑘𝑘𝑖𝑖 = 𝑃𝑃𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤(1 − 𝑃𝑃𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤) �𝑥𝑥𝑘𝑘𝑖𝑖
𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)
�
2

 (40) 

𝑣𝑣𝑣𝑣𝑣𝑣𝒥𝒥𝑘𝑘 = 𝑃𝑃𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤(1 − 𝑃𝑃𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤) �
𝑓𝑓′(𝒙𝒙𝑘𝑘)

𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)
�
2

 (41) 

Assuming that the wrong classification events are independent for these realizations, the sum of 287 
independent Binomial distributions follows the Poisson Binomial distribution [44-46]. Let Ξ𝒫𝒫𝑖𝑖  denote 288 
∑ 𝒫𝒫𝑘𝑘𝑖𝑖
𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1  and Ξ𝒥𝒥 denote ∑ 𝒥𝒥𝑘𝑘

𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1 . The mean and variance for Ξ𝒫𝒫𝑖𝑖 can be expressed as: 289 

𝜇𝜇Ξ𝒫𝒫𝑖𝑖 = � 𝜇𝜇𝒫𝒫𝑘𝑘𝑖𝑖
𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (42) 

𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒫𝒫𝑖𝑖 = � 𝑣𝑣𝑣𝑣𝑣𝑣𝒫𝒫𝑘𝑘𝑖𝑖
𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (43) 

The mean and variance for Ξ𝒥𝒥 can be formulated as: 290 

𝜇𝜇Ξ𝒥𝒥 = � 𝜇𝜇𝒥𝒥𝑘𝑘
𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (44) 

𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒥𝒥 = � 𝑣𝑣𝑣𝑣𝑣𝑣𝒥𝒥𝑘𝑘
𝑁𝑁𝐼𝐼𝐼𝐼

𝑘𝑘=1
 (45) 

Given the significance level α, the confidence intervals for Ξ𝒫𝒫𝑖𝑖 and Ξ𝒥𝒥 can be estimated with the Central 291 
Limit Theorem as: 292 

Ξ𝒫𝒫𝑖𝑖 ∈ �𝜇𝜇Ξ𝒫𝒫𝑖𝑖 − 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒫𝒫𝑖𝑖 ,𝜇𝜇Ξ𝒫𝒫𝑖𝑖 + 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒫𝒫𝑖𝑖� (46) 

Ξ𝒥𝒥 ∈ �𝜇𝜇Ξ𝒥𝒥 − 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒥𝒥 , 𝜇𝜇Ξ𝒥𝒥 + 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒥𝒥� (47) 

Thus, the confidence interval for 𝐷𝐷𝑛𝑛𝑖𝑖  is estimated as: 293 

𝐷𝐷𝑛𝑛𝑖𝑖 = Ξ𝒫𝒫𝑖𝑖 ∈ �𝜇𝜇Ξ𝒫𝒫𝑖𝑖 − 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒫𝒫𝑖𝑖 ,𝜇𝜇Ξ𝒫𝒫𝑖𝑖 + 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒫𝒫𝑖𝑖� (48) 

And the confidence interval for 𝐷𝐷𝑑𝑑 is estimated as: 294 

𝐷𝐷𝑑𝑑 = Ξ𝒥𝒥 ∈ �𝜇𝜇Ξ𝒥𝒥 − 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒥𝒥 , 𝜇𝜇Ξ𝒥𝒥 + 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒥𝒥� (49) 

Subsequently, the maximum relative error for estimating the numerator of Eq. (33) with the Kriging 295 
surrogate model can be approximated as: 296 

𝜖𝜖𝐷𝐷𝑛𝑛𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚

⎝

⎛��
𝜇𝜇Ξ𝒫𝒫𝑖𝑖 − 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒫𝒫𝑖𝑖

∑ 𝑥𝑥𝑘𝑘𝑖𝑖 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

�� , ��
𝜇𝜇Ξ𝒫𝒫𝑖𝑖 + 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒫𝒫𝑖𝑖

∑ 𝑥𝑥𝑘𝑘𝑖𝑖 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

��

⎠

⎞ (50) 

The same applies for 𝐷𝐷𝑑𝑑: 297 

𝜖𝜖𝐷𝐷𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚 ��
𝜇𝜇Ξ𝒥𝒥 − 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒥𝒥

∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

� , �
𝜇𝜇Ξ𝒥𝒥 + 𝛾𝛾α�𝑣𝑣𝑣𝑣𝑣𝑣Ξ𝒥𝒥

∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)𝑁𝑁𝐼𝐼𝐼𝐼
𝑘𝑘=1

𝑓𝑓′(𝒙𝒙𝑘𝑘)
𝑓𝑓𝐼𝐼𝐼𝐼(𝒙𝒙𝑘𝑘 ,𝑝𝑝𝑘𝑘)

�� (51) 

Note that for accurately estimating the first moment of the posterior distribution with the Kriging surrogate 298 
model, both the numerator and the denominator should be accurately quantified. Thus, the maximum value 299 
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among the vector 𝝐𝝐𝑫𝑫𝑛𝑛 = [𝜖𝜖𝐷𝐷𝑛𝑛1 ,⋯ , 𝜖𝜖𝐷𝐷𝑛𝑛𝑑𝑑] and 𝜖𝜖𝐷𝐷𝑑𝑑  is checked as the stopping criterion for the active learning 300 
of Kriging in the proposed method. 301 
 302 
3.4 The Proposed Method: BUAK-AIS 303 
Based on the above formulations in Section 3.1 to 3.3, this section presents the proposed method: Bayesian 304 
Updating with adaptive Kriging-based Adaptive Importance Sampling, BUAK-AIS. The flowchart of the 305 
proposed method is shown in Fig. 1. In the first stage, 𝑁𝑁F low-discrepancy samples are generated within 306 
the sampling region with a sampling technique, such as Sobol Sequence [48]. A fraction of these generated 307 
samples are selected as the initial training data for the Kriging surrogate model in the second step. Let 𝑁𝑁𝐼𝐼 308 
denote the number of initial samples. Then, in the third step of the proposed method, the Kriging surrogate 309 
model is established based on the current training data. Subsequently, the fourth step of the proposed 310 
method concentrates on determining the importance sampling distribution. The optimal proposal 311 
distribution in importance sampling can be theoretically derived as [49]: 312 

𝑓𝑓𝐼𝐼𝐼𝐼∗ (𝒙𝒙,𝑝𝑝) =
𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)𝑓𝑓′(𝒙𝒙)

∫ ∫ 𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)𝑓𝑓′(𝒙𝒙)1
0 d𝑝𝑝d𝒙𝒙Ω

 (52) 

As directly sampling from 𝑓𝑓𝐼𝐼𝐼𝐼∗  is challenging, a Gaussian mixture distribution, which consists of 313 
multiple multivariate Gaussian distribution components, is introduced as the quasi-optimal importance 314 
sampling distribution in this paper. Let 𝐾𝐾 denote the number of Gaussian distributions; 𝝁𝝁𝑖𝑖, 𝚺𝚺𝑖𝑖 and 𝜋𝜋𝑖𝑖 denote 315 
the mean, covariance matrix and the likelihood of selecting the 𝑖𝑖th Gaussian distribution (𝑖𝑖 ∈ [1,⋯ ,𝐾𝐾]). 316 
Thus, a Gaussian mixture distribution can be parametrized by 𝒖𝒖 = {𝜋𝜋1,⋯ ,𝜋𝜋𝐾𝐾 ,𝝁𝝁1,⋯ ,𝝁𝝁𝐾𝐾 ,𝚺𝚺1,⋯ ,𝚺𝚺𝐾𝐾}. The 317 
optimality of the established Gaussian mixture distribution can be measured by the Kullback–Leibler-based 318 
cross-entropy as follows [50]: 319 

KL(𝒖𝒖) = � � 𝑓𝑓𝐼𝐼𝐼𝐼∗ (𝒙𝒙,𝑝𝑝)𝐼𝐼𝐼𝐼𝑓𝑓𝐼𝐼𝐼𝐼∗ (𝒙𝒙,𝑝𝑝)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙
1

0Ω
− � � 𝑓𝑓𝐼𝐼𝐼𝐼∗ (𝒙𝒙,𝑝𝑝)𝐼𝐼𝐼𝐼ℎ(𝒙𝒙,𝑝𝑝,𝒖𝒖)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙

1

0Ω
 (53) 

where ℎ(𝒙𝒙,𝑝𝑝,𝒖𝒖) is the Gaussian mixture distribution with the set of parameters 𝒖𝒖. As only the second part 320 
of KL depends on 𝒖𝒖, the determination of 𝒖𝒖 can be considered as an optimization problem to minimize the 321 
discrepancy: 322 

𝒖𝒖∗ = argmax
𝒖𝒖

� � 𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)𝑓𝑓′(𝒙𝒙)𝐼𝐼𝐼𝐼ℎ(𝒙𝒙,𝑝𝑝,𝒖𝒖)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙
1

0Ω
= argmax

𝒖𝒖
𝔼𝔼𝑓𝑓′[𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)𝐼𝐼𝐼𝐼ℎ(𝒙𝒙,𝑝𝑝,𝒖𝒖)] (54) 

where 𝔼𝔼𝑓𝑓′[∙] denotes the mathematical expectation with respect to the original joint PDF of (𝑿𝑿,𝑃𝑃).  323 
 For more efficient estimation, an alternative density can be introduced to reformulate the above 324 
equation as follows: 325 

𝒖𝒖∗ = argmax
𝒖𝒖

� � 𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)𝑓𝑓′(𝒙𝒙)𝐼𝐼𝐼𝐼ℎ(𝒙𝒙,𝑝𝑝,𝒖𝒖)
ℎ(𝒙𝒙,𝑝𝑝,𝒘𝒘)
ℎ(𝒙𝒙,𝑝𝑝,𝒘𝒘)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙

1

0Ω
 

= argmax
𝒖𝒖

𝔼𝔼𝑤𝑤[𝐼𝐼𝑔𝑔≤0(𝒙𝒙,𝑝𝑝)𝐼𝐼𝐼𝐼ℎ(𝒙𝒙,𝑝𝑝,𝒖𝒖)
𝑓𝑓′(𝒙𝒙)

ℎ(𝒙𝒙,𝑝𝑝,𝒘𝒘)] 

≈ argmax
𝒖𝒖

�
1
𝑁𝑁𝐸𝐸

𝐼𝐼𝑔𝑔≤0(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖)𝐼𝐼𝐼𝐼ℎ(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝒖𝒖)
𝑓𝑓′(𝒙𝒙𝑖𝑖)

ℎ(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝒘𝒘)
𝑁𝑁𝐶𝐶𝐶𝐶

𝑖𝑖=1
 

(55) 

where 𝑁𝑁𝐶𝐶𝐶𝐶  denotes the number of realizations to estimate expectation, and ℎ(𝒙𝒙,𝑝𝑝,𝒘𝒘)  represents the 326 
alternative sampling distribution. 𝒘𝒘 is not optimal but facilitates more efficient sampling compared with 327 
the original PDF of (𝑿𝑿,𝑃𝑃).  328 
 Then, in the fifth step of the proposed method, 𝑁𝑁𝐼𝐼𝐼𝐼  realizations are sampled from the obtained 329 
distribution ℎ(𝒙𝒙,𝑝𝑝,𝒖𝒖∗) for estimating the posterior distribution with the current Kriging model, shown by 330 
Eq. (21) to Eq. (23). The accuracy of the Kriging surrogate model is checked in the sixth step. As discussed 331 
in Section 3.3, if the maximum value among the vector 𝝐𝝐𝑫𝑫𝑛𝑛 = [𝜖𝜖𝐷𝐷𝑛𝑛1 ,⋯ , 𝜖𝜖𝐷𝐷𝑛𝑛𝑑𝑑] and 𝜖𝜖𝐷𝐷𝑑𝑑  does not exceed the 332 
threshold (𝜖𝜖𝐾𝐾, set as 0.05 in this paper), the algorithm enters the seventh step where the next training point 333 
is selected from the sampling pool with the 𝑈𝑈 learning function [40]. Otherwise, the algorithm goes to the 334 
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eighth step where the maximum value of 𝝐𝝐𝝁𝝁𝑓𝑓′′ is checked to guarantee that the number of realizations is 335 
enough for a robust estimation. If the maximum value of 𝝐𝝐𝝁𝝁𝑓𝑓′′ does not exceed the threshold (𝜖𝜖𝑇𝑇, set as 0.05 336 
in this paper), the algorithm ends. Otherwise, the algorithm goes to ninth step to increase the value of 𝑁𝑁𝐼𝐼𝐼𝐼, 337 
and then enters the fifth step again. 338 

 339 
Fig. 1 Flowchart of the proposed method: BUAK-AIS  340 

  341 
A more detailed algorithm table is also provided as follows for the readability: 342 

Algorithm 1. The proposed BUAK-AIS algorithm 
1. Generate 𝑁𝑁𝐹𝐹  low-discrepancy samples within the sampling space. This paper generates 

these samples with the Sobol sequence.  
2. A fraction of the generated samples are selected as the initial training data for the Kriging 

surrogate model. In this paper, (𝑑𝑑+1)(𝑑𝑑+2)
2

+ 1 initial samples are selected from the pool as 
the initial database, where 𝑑𝑑 denotes the dimension of problems. 

3. Establish the Kriging surrogate model. The present work adopts the DACE package 
embedded in the platform of MATLAB software. The leave-one-out cross validation is 
used to select the trend that provides the minimum error (from the constant, linear and 
quadratic trends).  
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4. 
 

Determine the IS distribution based on the current Kriging model. The following steps are 
executed: 
(a) Initialize the IS distribution (defining 𝒘𝒘): 𝐾𝐾 samples are randomly selected from the 
failure samples predicted by the current Kriging model. These 𝐾𝐾 samples are adopted as 
the initial center of the Gaussian mixture distribution with uniform weights with unit-
standard deviations and zero correlations. If the number of failure points is smaller than 𝐾𝐾, 
the sample that minimizes the performance function is added to the training data and used 
as the center of a standard Gaussian distribution to generate more realizations for enriching 
the pool until 𝐾𝐾 failure samples are found. 
(b) Generate IS samples: 𝑁𝑁𝐶𝐶𝐶𝐶 realizations are generated from the initial IS distribution.  

(c) Update IS distribution (estimating 𝒖𝒖∗ ): introduce 𝛾𝛾𝑖𝑖,𝑗𝑗 =
𝜋𝜋𝑗𝑗
0𝑁𝑁(𝒙𝒙𝑖𝑖|𝝁𝝁𝑗𝑗

0,𝜮𝜮𝑗𝑗
0)

∑ 𝜋𝜋𝑘𝑘
0𝑁𝑁(𝒙𝒙𝑖𝑖|𝝁𝝁𝑘𝑘

0 ,𝜮𝜮𝑘𝑘
0)𝐾𝐾

𝑘𝑘=1
 and 

𝑊𝑊(𝒙𝒙,𝑝𝑝,𝒘𝒘) = 𝑓𝑓′(𝒙𝒙)
ℎ(𝒙𝒙,𝑝𝑝,𝒘𝒘) , where ℎ(𝒙𝒙,𝑝𝑝,𝒘𝒘)  is the joint PDF for the Gaussian mixture 

distribution parametrized by 𝒘𝒘, and 𝒘𝒘 = {𝜋𝜋10,⋯ ,𝜋𝜋𝐾𝐾0 ,𝝁𝝁10,⋯ ,𝝁𝝁𝐾𝐾0 ,𝜮𝜮10,⋯ ,𝜮𝜮𝐾𝐾0 } is defined in 
part (a) of this step, where  𝑖𝑖 ∈ [1,⋯ ,𝑁𝑁𝐶𝐶𝐶𝐶], 𝑗𝑗 ∈ [1,⋯ ,𝐾𝐾]. The following equations are 
used to update the IS distribution according to [50]: 

𝝁𝝁𝑗𝑗∗ =
∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖)𝑊𝑊(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝒘𝒘)𝛾𝛾𝑖𝑖,𝑗𝑗[𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖]
𝑁𝑁𝐶𝐶𝐶𝐶
𝑖𝑖=1

∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖)𝑊𝑊(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝒘𝒘)𝛾𝛾𝑖𝑖,𝑗𝑗
𝑁𝑁𝐶𝐶𝐶𝐶
𝑖𝑖=1

 (56) 

𝚺𝚺𝑗𝑗∗ =
∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖)𝑊𝑊(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝒘𝒘)𝛾𝛾𝑖𝑖,𝑗𝑗�[𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖] − 𝝁𝝁𝑗𝑗∗��[𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖] − 𝝁𝝁𝑗𝑗∗�

T𝑁𝑁𝐶𝐶𝐶𝐶
𝑖𝑖=1

∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖)𝑊𝑊(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝒘𝒘)𝛾𝛾𝑖𝑖,𝑗𝑗
𝑁𝑁𝐶𝐶𝐶𝐶
𝑖𝑖=1

 (57) 

𝜋𝜋𝑗𝑗∗ =
∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖)𝑊𝑊(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝒘𝒘)𝛾𝛾𝑖𝑖,𝑗𝑗
𝑁𝑁𝐶𝐶𝐶𝐶
𝑖𝑖=1

∑ 𝐼𝐼𝑔𝑔𝐾𝐾≤0(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖)𝑊𝑊(𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,𝒘𝒘)𝑁𝑁𝐶𝐶𝐶𝐶
𝑖𝑖=1

 (58) 

Note that [𝒙𝒙𝑖𝑖 ,𝑝𝑝𝑖𝑖] denotes the vector in the augmented space, and 𝑁𝑁𝐶𝐶𝐶𝐶  is the number of 
samples used to estimate the optimal IS distribution. 𝐾𝐾 is set as 40 for Example Three; and 
10 otherwise.  

5. Generate 𝑁𝑁𝐼𝐼𝐼𝐼 realizations from the updated IS distribution. This paper defines the initial 
𝑁𝑁𝐼𝐼𝐼𝐼 as 104 for Case Two in Example Two and Example Three; and 103, otherwise.  

6. Calculate 𝝐𝝐𝑫𝑫𝒏𝒏  and 𝜖𝜖𝐷𝐷𝑑𝑑  according to Eq. (50) and Eq. (51), respectively. Check if 
𝑚𝑚𝑚𝑚𝑚𝑚�𝝐𝝐𝑫𝑫𝒏𝒏 , 𝜖𝜖𝐷𝐷𝑑𝑑� ≤ 𝜖𝜖𝐾𝐾 (defined as 0.05 here): 
(a) True, go to Step 8; 
(b) False, go to Step 7.  

7. Select the next training point based on the 𝑈𝑈 learning function; then, go to Step 3. 
8. Calculate 𝝐𝝐𝝁𝝁𝑓𝑓′′ according to Section 3.2. Check if max �𝝐𝝐𝝁𝝁𝑓𝑓′′� ≤ 𝜖𝜖𝑇𝑇 (defined as 0.05 here): 

(a) True, go to Step 10; 
(b) False, go to Step 9. 

9. Increase the IS realizations 𝑁𝑁𝐼𝐼𝐼𝐼. This work increases 𝑁𝑁𝐼𝐼𝐼𝐼 by 103 in this step.  
10. End the calculation. 

 343 
The proposed framework adaptively explores the vicinity of the limit state function by active 344 

learning, and refines the importance sampling distribution, i.e., optimizing 𝒖𝒖, in each step based on the 345 
current Kriging model. As demonstrated in the next section, the proposed framework and stopping criteria 346 
can considerably improve both efficiency and accuracy of Bayesian updating. In particular, the sampling 347 
efficiency is significantly improved with the implementation of the adaptive importance sampling. 348 

 349 
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4. Numerical Examples 350 
In this section, three numerical examples with increasing complexities and an engineering application are 351 
selected to demonstrate the efficiency and accuracy of the proposed method. The results are compared with 352 
other state-of-the-art Bayesian updating methods, and detailed discussions are presented. 353 
 354 
4.1 Example One: One-dimensional Illustrative Example 355 
A toy example from [28, 34] is selected as the first example for illustration purposes. The problem involves 356 
only one random variable, denoted by 𝑋𝑋. The prior distribution of 𝑋𝑋 follows a standard normal distribution, 357 
and the likelihood function can be expressed by: 358 

L(𝑥𝑥) =
1

0.5√2𝜋𝜋
𝑒𝑒−

1
2

(𝑥𝑥−2)2
0.52  (59) 

According to Eq. (6), the limit state function is formulated as: 359 
𝑔𝑔(𝑝𝑝,𝒙𝒙) = 𝐼𝐼𝐼𝐼(𝑝𝑝) − 𝐼𝐼𝐼𝐼(𝑐𝑐) − 𝐼𝐼𝐼𝐼(𝐿𝐿(𝑥𝑥)) (60) 

where 𝑝𝑝 follows a uniform standard distribution, and 𝑐𝑐 is determined as 1
max�L(𝑥𝑥)�

= 0.5√2𝜋𝜋. 360 

An analytical solution is derived and used as the benchmark. The posterior is calculated as a normal 361 
distribution with mean 1.6 and standard deviation √0.2. The proposed method, BUAK-AIS, is compared 362 
with two different BUS methods: BUS with Monte Carlo Simulation, called BUS-MCS, and BUS with 363 
Subset Simulation, called BUS-SuS. Two existing Kriging-based Bayesian updating methods including 364 
BUAK-MCS and BUAK-SuS [34] are also compared here. Table 1 lists the number of MCS samples 365 
(𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀), the number of IS samples (𝑁𝑁𝐼𝐼𝐼𝐼), the number of samples in each subset in Subset Simulation (𝑁𝑁𝑆𝑆𝑆𝑆), 366 
the required number of calls of the limit state function (𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), the required number of training points for 367 
the Kriging model (𝑁𝑁𝑇𝑇) and the estimates of the posterior distribution (𝜇̂𝜇, σ�) for these methods. 368 
 369 
Table 1 Bayesian updating results of Example One 370 
Method* 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 / 𝑁𝑁𝐼𝐼𝐼𝐼 / 𝑁𝑁𝑆𝑆𝑆𝑆 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 / 𝑁𝑁𝑇𝑇 𝜇̂𝜇 σ� 𝜇̂𝜇/𝜇𝜇 σ�/σ 
BUS-MCS 1×105 1×105 1.6000 0.4471 1.0000 0.9996 
BUS-SuS 1×103 2,543 1.5511 0.4574 0.9695 1.0228 
BUAK-MCS 1×105

 14.15 1.6066 0.4528 1.0041 1.0125 
BUAK-SuS 1×103 14 1.5560 0.4699 0.9725 1.0508 
BUAK-AIS 1×103 12.1 1.6003 0.4352 1.0002 0.9731 

* Results are averaged over 20 runs. 371 
 372 

As Table 1 shows, BUS-MCS can achieve high accuracy for estimating the posterior distribution, 373 
with 𝜇̂𝜇/𝜇𝜇=1.0000 and σ�/σ=0.9996. However, as the acceptance rate is relatively low and about 9%, the 374 
required number of samples is considerably larger than the other methods. BUS-SuS can generate around 375 
1,000 accepted samples through two intermediate sets. With 2,543 calls of the limit state function, BUS-376 
SuS can also provide accurate results with 𝜇̂𝜇/𝜇𝜇=0.9695 and σ�/σ=1.0228. Using the Kriging surrogate 377 
model, the required calls of the limit state function can be significantly reduced. With 14.15 calls of the 378 
limits state function on average, BUAK-MCS can provide accurate estimates with 𝜇̂𝜇/𝜇𝜇=1.0041 and 379 
σ�/σ=1.0125. Similarly, the required calls for BUAK-SuS are 14 with 𝜇̂𝜇/𝜇𝜇=0.9725 and σ�/σ=1.0508. It is 380 
noted that the proposed method, BUAK-AIS, requires fewer calls of the limit state function compared with 381 
BUAK-MCS and BUAK-SuS, while the accuracy of BUAK-AIS (𝜇̂𝜇/𝜇𝜇=1.0002 and σ�/σ=0.9731) is higher 382 
than the results of BUAK-MCS and BUAK-SuS. The efficiency and accuracy of the proposed method are 383 
therefore evident. 384 
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(a) The proposed method: BUAK-AIS (b) The existing method: BUAK-MCS 

Fig. 2 Illustration of the realizations in Example one 385 

Fig. 2 shows the boundary of the limit state predicted by Kriging and realizations for the proposed 386 
method, BUAK-AIS, and the existing method, BUAK-MCS. The Kriging models in both methods achieve 387 
high accuracy and the predicted limit state boundary is close to the true limit state boundary in the design 388 
space. It is also noted that the acceptance rate for the proposed method BUAK-AIS (87.1%) is considerably 389 
higher than the rate for BUAK-MCS (8.8%). Thus, fewer realizations are required by the proposed method 390 
to achieve a robust estimation, therefore reducing the computational costs. Moreover, as only the 391 
importance area is focused by the proposed method, the number of required calls of the limit state function 392 
has reduced from 14.15 to 12.1 on average using the proposed method compared to BUAK-MCS. 393 

4.2 Example Two: Unimodal Distribution Problem 394 
The second example is selected to demonstrate the proposed methods for higher dimensional problems [28, 395 
34, 51]. The prior distribution is constructed as the product of 𝑛𝑛 independent standard normal distributions, 396 
denoted as 𝑓𝑓′(𝒙𝒙) = ∏ 𝜑𝜑(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 . The likelihood function can be expressed as: 397 

L(𝒙𝒙) = �
1
𝜎𝜎𝑙𝑙
𝜑𝜑(
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑙𝑙
𝜎𝜎𝑙𝑙

)
𝑛𝑛

𝑖𝑖=1

 (61) 

where 𝜎𝜎𝑙𝑙 is a constant value 0.2, and 𝜇𝜇𝑙𝑙 can be obtained by: 398 

𝜇𝜇𝑙𝑙 = �−2(1 + 𝜎𝜎𝑙𝑙2)In �𝑐𝑐𝐸𝐸1/𝑛𝑛�2𝜋𝜋�1 + 𝜎𝜎𝑙𝑙2� (62) 

where 𝑐𝑐𝐸𝐸 is the model evidence. Two cases are considered in this paper: case one: 𝑛𝑛 = 2 and 𝑐𝑐𝐸𝐸 = 10−4 399 
and case two: 𝑛𝑛 = 10 and 𝑐𝑐𝐸𝐸 = 10−5. 400 

As both the prior and likelihood distributions are normal distributions, an analytical solution can 401 
be obtained, which is treated as the benchmark: for case one, the mean and standard deviation of the 402 
posterior distribution are 2.659 and 0.1961 and for case two, the mean and standard deviation of the 403 
posterior distribution are 0.6542 and 0.1961. The methods mentioned in example one are also applied here 404 
(MCS is not applied to case two because of the extremely low failure probability). Table 2 lists the number 405 
of MCS samples (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀), the number of IS samples (𝑁𝑁𝐼𝐼𝐼𝐼), the number of samples in each subset in Subset 406 
Simulation (𝑁𝑁𝑆𝑆𝑆𝑆), the required number of calls of the limit state function (𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), the required number of 407 
training points for the Kriging model (𝑁𝑁𝑇𝑇) and the estimates of the posterior distribution (𝜇̂𝜇, σ�) for case one. 408 
The results for case two are listed in Table 3.  409 
 410 
Table 2 Bayesian updating results of Example Two (Case One) 411 
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Method* 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 / 𝑁𝑁𝐼𝐼𝐼𝐼 / 𝑁𝑁𝑆𝑆𝑆𝑆 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 / 𝑁𝑁𝑇𝑇 𝜇̂𝜇 σ� 𝜇̂𝜇/𝜇𝜇 σ�/σ 
BUS-MCS 2×107 2×107 2.6612 0.1936 1.0008 0.9870 
BUS-SuS 5×103 28,384 2.6765 0.2061 1.0066 1.0510 
BUAK-MCS 2×107

 31 2.6674 0.1853 1.0032 0.9446 
BUAK-SuS 5×103 31 2.7310 0.2068 1.0271 1.0544 
BUAK-AIS 1×103 12.9 2.6670 0.2004 1.0030 1.0226 

* Results for the proposed method are averaged over 20 runs. Other result can be found in [34]. 412 
 413 
Table 3 Bayesian updating results of Example Two (Case Two) 414 
Method* 𝑁𝑁𝐼𝐼𝐼𝐼 / 𝑁𝑁𝑆𝑆𝑆𝑆 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 / 𝑁𝑁𝑇𝑇 𝜇̂𝜇 σ� 𝜇̂𝜇/𝜇𝜇 σ�/σ 

BUS-SuS 1×104 64,886 0.6778 0.1811 1.0360 0.9236 
BUAK-SuS 1×104 103 0.6222 0.1751 0.9511 0.8961 
BUAK-AIS 1×104 90.5 0.6532 0.1965 0.9985 1.0026 

* Results for the proposed method are averaged over 20 runs. Other result can be found in [34]. 415 
 416 

The results of the first case are summarized in Table 2. BUS-MCS and BUAK-SuS can both 417 
achieve high accuracy. However, the computational cost of these methods is substantially large. BUS-SuS 418 
requires 28,234 calls of the limit state function and BUS-MCS requires 2×107 calls on average. With the 419 
implementation of the Kriging surrogate model, the required number of calls shows a significant drop. 420 
BUAK-MCS and BUAK-SuS both require 31 calls of the limit state function on average. The proposed 421 
method, BUAK-AIS, which requires only 12.9 calls, is the most efficient approach. The estimates of the 422 
posterior distribution from BUAK-AIS are also more accurate (𝜇̂𝜇/𝜇𝜇=1.0030 and σ�/σ=1.0226) compared 423 
with the ones from BUAK-MCS ( 𝜇̂𝜇/𝜇𝜇=1.0032 and σ�/σ=0.9446) and BUAK-SuS ( 𝜇̂𝜇/𝜇𝜇=1.0271 and 424 
σ�/σ=1.0544). Results in Table 3 for case two also point to the high efficiency and accuracy of the proposed 425 
method, BUAK-AIS. The number of required calls of the limit state function is reduced by 13% compared 426 
with BUAK-SuS, while the accuracy of the proposed method (𝜇̂𝜇/𝜇𝜇=0.9985 and σ�/σ=1.0026) is noticeably 427 
higher than BUAK-SuS (𝜇̂𝜇/𝜇𝜇=0.9511 and σ�/σ=0.8961). 428 

  
(a) The proposed method: BUAK-AIS (b) The existing method: BUAK-MCS 

Fig. 3 Illustration of the realizations in Example two 429 

Fig. 3 illustrates the distribution of realizations for the proposed method, BUAK-AIS, and the 430 
existing method, BUAK-MCS, for case one. The acceptance rate for BUAK-AIS (73%) is substantially 431 
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higher than the rate for BUAK-MCS (0.001%). Thus, the proposed method can provide higher sampling 432 
efficiency compared with the existing method, thus further reducing the computational costs. 433 

4.3 Example Three: A Dynamic Problem 434 
A two degree of freedom structural dynamic problem is selected as the third example [25, 28, 34]. The 435 
configuration of the system is shown in Fig. 4. The masses of the first and second story are considered as 436 
𝑚𝑚1 = 16,531 kg and 𝑚𝑚2 = 16,131 kg. The stiffness between stories is modeled as 𝑘𝑘1 = 𝑋𝑋1𝑘𝑘0 and 𝑘𝑘2 =437 
𝑋𝑋2𝑘𝑘0, where 𝑋𝑋1 and 𝑋𝑋2 are stiffness factors and 𝑘𝑘0 = 29,700 kN/m. The prior distributions of 𝑋𝑋1 and 𝑋𝑋2 438 
are uncorrelated lognormal distributions with modes 1.3 and 0.8 and standard deviations σ𝑋𝑋1 = σ𝑋𝑋2 = 1. 439 

m1

m2

k1

k2

 440 
Fig. 4 Illustration of the dynamic system 441 

The first two frequencies are used for updating the distribution, and the observations are 𝑓𝑓𝑟𝑟1 = 3.13 442 
Hz and 𝑓𝑓𝑟𝑟2 = 9.83 Hz. The likelihood function can be expressed as: 443 

L(𝒙𝒙) ∝ exp (
−∑ 𝜆𝜆𝑖𝑖

22
𝑖𝑖=1 [𝑓𝑓𝑟𝑟𝑟𝑟(𝒙𝒙)

𝑓𝑓𝑟𝑟𝑟𝑟
]2

2𝜎𝜎𝜀𝜀2
) (63) 

where 𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2] is a realization of 𝑿𝑿 = [𝑋𝑋1,𝑋𝑋2], 𝑓𝑓𝑟𝑟𝑟𝑟(∙) is the prediction function for the 𝑖𝑖th frequency, 444 
𝜆𝜆1 and 𝜆𝜆2 are the means of the prediction error for the first and second frequencies, respectively, and 𝜎𝜎𝜀𝜀 is 445 
the standard deviation of the prediction error. In this example, 𝜆𝜆1 = 𝜆𝜆2 = 1 and 𝜎𝜎𝜀𝜀 = 1/16. 446 

The proposed method, BUAK-AIS, is compared with BUS-MCS, BUS-SuS, BUAK-MCS and 447 
BUAK-SuS. Table 4 lists the number of MCS samples (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀), the number of IS samples (𝑁𝑁𝐼𝐼𝐼𝐼), the number 448 
of samples in each subset in Subset Simulation (𝑁𝑁𝑆𝑆𝑆𝑆), the required number of calls of the limit state function 449 
(𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), the required number of training points for the Kriging model (𝑁𝑁𝑇𝑇) and the estimated means and 450 
standard deviations for the left and right clusters of 𝑋𝑋1. Fig. 5 shows the distribution of the accepted samples 451 
for the proposed method. Since the analytical solution is not easily obtained in this example, the results 452 
from BUS-MCS can be taken as the benchmark. 453 
 454 
Table 4 Bayesian updating results of Example Three 455 
Method* 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 / 𝑁𝑁𝐼𝐼𝐼𝐼 / 𝑁𝑁𝑆𝑆𝑆𝑆 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 / 𝑁𝑁𝑇𝑇 𝜇̂𝜇(𝐿𝐿) σ�(𝐿𝐿) 𝜇̂𝜇(𝑅𝑅) σ�(𝑅𝑅) 
BUS-MCS 2×105 2×105 0.502 0.038 1.817 0.141 
BUS-SuS 1×103 3,674.52 0.505 0.044 1.824 0.137 
BUAK-MCS 2×105 252.68 0.502 0.038 1.816 0.143 
BUAK-SuS 1×103 252.68 0.498 0.049 1.829 0.135 
BUAK-AIS 10,100 67.8 0.5025 0.0380 1.8144 0.1399 

* Results for the proposed method are averaged over 20 runs. Other result can be found in [34]. 456 
 457 
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As Table 4 illustrates, the estimated mean and standard division on the left side using BUS-MCS 458 
are 𝜇̂𝜇(𝐿𝐿)= 0.502 and σ�(𝐿𝐿)= 0.038, and the ones on the right side are 𝜇̂𝜇(𝑅𝑅)= 1.817 and σ�(𝑅𝑅)= 0.141. BUAK-459 
MCS can achieve high accuracy, while reducing the number of calls to 252.68. The acceptance rate of MCS 460 
is only about 0.16%. Thus, 2×105 realizations are required by MCS to achieve reliable estimation of the 461 
posterior distribution. The mean and standard deviation estimated by BUAK-SuS are 𝜇̂𝜇(𝐿𝐿)=0.498, σ�(𝐿𝐿)= 462 
0.049, 𝜇̂𝜇(𝑅𝑅)= 1.829 and σ�(𝑅𝑅)= 0.135. It is noted that the estimated standard deviation for the left cluster of 463 
𝑋𝑋1 by BUAK-SuS (0.049) is considerably higher than that obtained by the MCS (0.038). The proposed 464 
method, BUAK-AIS, is the most efficient approach. Only 67.8 calls of the limit state function are required 465 
on average. And the results obtained by the proposed method (𝜇̂𝜇(𝐿𝐿)=0.5025, σ�(𝐿𝐿)= 0.0380, 𝜇̂𝜇(𝑅𝑅)= 1.8144, 466 
σ�(𝑅𝑅)= 0.1399) are highly accurate.  467 

 468 
Fig. 5 The accepted samples in BUAK-AIS 469 

4.4 Example Four: Model Updating of a Cable-stayed Bridge during Construction 470 
Cable-stayed bridges have received much attention and been applied widely around world in the last few 471 
decades in part due to the advantages they offer in terms of mechanistic performance, construction, 472 
maintenance and aesthetic characteristics [52-54]. The cantilever method is the most common approach for 473 
the construction of cable-stayed bridges [55]. After the construction of the tower and the first segment of 474 
the girder, the general erection procedure of the cantilever method consists of three steps. First, the next 475 
segment of girder is installed symmetrically in each side of the tower. Second, the stay cables are installed, 476 
and then the cranes move to the end of the constructed girder for the installation of the next segment. These 477 
three steps continue until the closure of the girder in the side span or in the main span. Fig. 6 illustrates 478 
basic procedures of the cantilever method.  479 

 480 
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Fig. 6 The illustration of the cantilever construction method: (a) installation of a girder segment, (b) 481 
installation of the stay cables, (c) movement of the crane 482 

As a highly redundant structure, the deformations and the internal force distribution of a cable-483 
stayed bridge depends on the cable pretension forces. Many studies have focused on the deterministic 484 
optimization of the pretension forces for the stay cables [52-54, 56-59]. However, uncertainties, especially 485 
those stemming from the weight of the girder and applied cable forces, may pose challenge to sequential 486 
construction as segments have to be aligned very accurately. For instance, when the weight of the girder is 487 
underestimated, the desired configuration cannot be achieved with the predefined optimal cable forces. 488 
Moreover, the deviation of the applied cable forces can also significantly influence the configuration, 489 
yielding a considerably large deflection. Collecting information during the construction process therefore 490 
becomes essential for model updating and therefore optimizing the later construction procedures. For 491 
example, forces in the cables that have been constructed can be modified in order to adjust for deviations 492 
from the design plans. This paper investigates the performance of the proposed method for determining the 493 
posterior distribution of key parameters of a 1210-m long-span cable-stayed bridge based on the 494 
observations in the construction process. 495 
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 496 
Fig. 7 Span arrangement of the cable-stayed bridge (cm) 497 

The span arrangement of the cable-stayed bridge is shown in Fig. 7. There are 168 cables with a 498 
semi-fan design. The main span and side span are 620 m and 320 m long, respectively. The total height of 499 
the tower is 203.5 m, and the deck is placed 45 m above the foundation. The construction process is modeled 500 
in ANSYS. Note that as the stiffness of the girder is relatively small considering the long span of the bridge, 501 
the applied cable forces and the weight of the girder become crucial to the configuration of the bridge during 502 
the construction process. Thus, this example only considers the density of the girder and the applied cable 503 
force as random variables to investigate the performance of the proposed method. The manufacturing error 504 
in the girder welding, the wind-induced vibration and the difference between the temperature inside and 505 
outside the girder are not considered here. Table 5 lists parts of the section properties, material properties 506 
and the construction load of the bridge. More details of the bridge and the optimization of cable forces can 507 
be found in [54]. 508 

 509 
Table 5 Parameters of the cable-stayed bridge 510 

Variable Distribution Mean Standard 
deviation 

The mass density of girder Normal 7850 (kg/m3) 785 

The cable pretension forces Normal 1859.5 (kN) 185.95 
The moment of inertia of girder* Deterministic 3.468 (m3) - 

The section area of girder Deterministic 1.1811 (m2) - 
The moment of inertia of tower (top)* Deterministic 131.830 (m3) - 
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The section area of tower (top) Deterministic 21.821 (m2) - 
The moment of inertia of tower (bottom)* Deterministic 769.899 (m3) - 

The section area of tower (bottom) Deterministic 44.535 (m2) - 
Elasticity modulus of the steel Deterministic 2.05×1011 (Pa) - 

* The moment of inertia to the lateral direction of the bridge 511 
 512 

During the construction of the first segment using the cantilever construction method, the relative 513 
deflection of the end of the installed girder can be measured. As the installation of a segment consists of 514 
three steps as shown in Fig. 6, there are totally 3 observed deflections. Hypothetical observations of these 515 
defections are: 𝑜𝑜1=-3.52 cm, 𝑜𝑜2=8.24 cm and 𝑜𝑜3=-2.46 cm. The errors of the observations are assumed to 516 
follow a normal distribution with zero mean and 𝜎𝜎𝜀𝜀=1 mm standard deviation. Thus, the likelihood function 517 
can be formulated as: 518 

L(𝒙𝒙) ∝� exp �
[𝑜𝑜𝑖𝑖 − 𝑂𝑂𝑖𝑖(𝒙𝒙)]2

2𝜎𝜎𝜀𝜀2
�

3

𝑖𝑖=1
 (64) 

where 𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2] is a realization of 𝑿𝑿 = [𝑋𝑋1,𝑋𝑋2], 𝑋𝑋1 represents the mass density of girder, 𝑋𝑋2 represents 519 
the pretension force for the stay cables of the first segment, 𝑜𝑜𝑖𝑖  (𝑖𝑖 = [1,2,3]) is the observed deflection, and 520 
𝑂𝑂𝑖𝑖(∙) is the predicted deflection from the finite element analysis in ANSYS. 521 

The proposed method, BUAK-AIS, is compared with the existing method BUAK-MCS for 522 
illustrating the performance. As the evaluation of the limit state function is time-consuming, BUS with the 523 
original limit state function is not applied here. Table 6 lists the number of MCS samples (𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀), the 524 
number of IS samples (𝑁𝑁𝐼𝐼𝐼𝐼), the required number of training points for the Kriging model (𝑁𝑁𝑇𝑇), and the 525 
estimated mean and standard deviation for the posterior distribution.  526 
 527 
Table 6 Bayesian updating results of Example Four 528 
Method* 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 / 𝑁𝑁𝐼𝐼𝐼𝐼  𝑁𝑁𝑇𝑇 𝜇̂𝜇(𝑋𝑋1) σ�(𝑋𝑋1) 𝜇̂𝜇(𝑋𝑋2) σ�(𝑋𝑋2) 
BUAK-MCS 1×107 35.1 8570.63 219.61 1769.34 25.90 
BUAK-AIS 1×103 11.5 8571.80 214.08 1769.96 25.24 

* Results are averaged over 20 runs. 529 
 530 

As Table 6 illustrates, the estimated mean and standard division for the posterior distribution of 𝑋𝑋1 531 
with BUAK-MCS are 8570.63 and 219.61, respectively. In addition, the estimated mean and standard 532 
division for the posterior distribution of 𝑋𝑋2 with BUAK-MCS are 1769.34 and 25.90, respectively. The 533 
proposed method BUAK-AIS can achieve very close results, which demonstrates its high accuracy. 534 
Moreover, the proposed method can reduce the number of calls from 35.1 to 11.5 on average, showing 535 
around 67% improvement in efficiency. Fig. 8 illustrates the distribution of the realizations in BUAK-AIS 536 
and BUAK-MCS. The acceptance rate of the proposed method is about 77%, while that for BUAK-MCS 537 
is only 2.1%. The sampling efficiency of the proposed method in this practical application can thus be 538 
illustrated. 539 

 540 
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(a) The proposed method: BUAK-AIS (b) The existing method: BUAK-MCS 

Fig. 8 Illustration of the realizations in Example four 541 

5. Conclusion 542 
Reformulating the rejection sampling into reliability analysis, Bayesian Updating with Structural reliability 543 
methods (BUS) has shown high potential to improve computational efficiency of Bayesian updating. 544 
However, the transformed reliability problem may face the challenge of characterizing the probability of a 545 
rare event. To address this issue, this paper proposes an efficient Bayesian Updating method with Active 546 
learning Kriging-based Adaptive Importance Sampling, called BUAK-AIS. In the proposed framework, the 547 
vicinity of the limit state function is adaptively explored by the 𝑈𝑈 learning function. A Gaussian mixture 548 
distribution is utilized as the quasi-optimal importance sampling distribution, and the parameters of the 549 
Gaussian mixture distribution are optimized in each iteration based on the current Kriging model. The 550 
estimate for the first moment of the posterior distribution is discussed, and a stopping criterion is proposed 551 
accordingly for a robust estimate of the posterior distribution using importance sampling. A new stopping 552 
criterion for the active learning process of Kriging is also developed by quantifying the error in the 553 
estimation of the posterior distribution. Three numerical examples and an application regrading model 554 
updating of a cable-stayed bridge during the construction process are investigated to examine the 555 
performance of the proposed methods. Results indicate that the proposed method, BUAK-AIS, can provide 556 
highly accurate estimates of the posterior distribution, while reducing the required calls of expensive-to-557 
evaluate likelihood functions compared with existing approaches. A path for future research is to address 558 
limitations of Kriging for high-dimensional problems, which subsequently prevents the application of the 559 
proposed method to such cases. As the performance of the proposed method also depends on the quality of 560 
the proposal IS distribution, investigating and improving the performance of the cross-entropy-based IS can 561 
also be studied in the future. Some or all data, models, or code generated or used during the study are 562 
available from the corresponding author upon reasonable request. 563 
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