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ABSTRACT

Bayesian updating provides a sound mathematical framework for probabilistic calibration as new
information emerges. Bayesian Updating with Structural reliability methods (BUS) reformulates the
acceptance domain in rejection sampling as a failure domain in reliability analysis, offering considerable
potential for higher efficiency and accuracy. Kriging-based Monte Carlo Simulation has been studied to
facilitate the application of BUS for problems with expensive-to-evaluate likelihood functions.
Nevertheless, as the implementation of BUS often involves a rare event, the number of required Monte
Carlo samples can become unaffordable. This gap is addressed here through Bayesian Updating with Active
learning Kriging-based Adaptive Importance Sampling (BUAK-AIS). An importance sampling density
based on Gaussian mixture distribution is introduced, and the discrepancy between the adopted and
theoretically best sampling densities is measured through the Kullback—Leibler cross entropy. The proposed
method includes an active learning framework that adaptively extends the training set and optimizes the
parameters of the Gaussian mixture distribution based on the cross entropy and the current Kriging model.
As BUS uses accepted samples to estimate the posterior distribution, the present work discusses the estimate
for the first moment of the posterior distribution, and proposes a criterion to check the sufficiency of the
number of accepted samples to guarantee robust estimations. A new stopping criterion is also developed by
quantifying the error introduced by Kriging. Three numerical examples and an engineering application
concerning model updating of cable-stayed bridges in the construction process are investigated,
demonstrating the efficiency and accuracy of the proposed method.

Key words: Bayesian updating, Calibration, Reliability Analysis, Importance sampling, Active learning
Kriging
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A constant required to formulate the acceptance domain in rejection sampling
The dimension of the variable space
The expectation with (X, P) following f;s

The prior joint PDF of X

The posterior joint PDF of X

The importance sampling distribution for (X, P)

The joint PDF of €

The limit state function

The limit state function predicted by Kriging

The indicator function that equals one when the realization satisfies g < 0 and zero

otherwise

The indicator of the wrong classification event [, (x,p) = |Igso(x, p) — lgp<o(X, p)|

The number of Gaussian distributions for the quasi-optimal Gaussian mixture

distribution

The likelihood function

The number of independent observations

The number of calls of the performance function

The number of samples to update the IS distribution

The number of low-discrepancy samples in the design space

The number of initial training samples for Kriging

The number of IS samples

The number of MCS samples

The number of samples in each subset for Subset Simulation

The number of training points for Kriging

The augmented variable introduced by rejection sampling

A realization of the variable P

The random vector representing the system uncertainty

A realization of the random vector X

x = [x1,---,x%], the superscript i denotes the dimension number

The vector representing the observation

A realization of the observation ¥

The deviation of the observation

The probabilistic domain of X

The acceptance domain in rejection sampling

The failure domain in BUS

The first moment of the posterior distribution

The first moment of the posterior distribution estimated with Kriging

The estimation of the first moment of the posterior distribution with realizations

The second moment of the posterior distribution

The estimation of the second moment of the posterior distribution with realizations

i _f'e0
fis(xp)
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fis(xp
: "(x)
Denoting I, (X, px) %

) f,(xk)
Fis(k.PK)
The sum of J,, for the IS realizations, i.c., ngl Ik, also denoted as D,

Denoting x ly<o(x,p)

Denoting

Denoting x:1,, (xy, P
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The sum of P} for the IS realizations, i.c., 21:;51 PL, also denoted as D},
The vector that equals [COVﬁﬂl, -, COVy ., CO VﬁB]

B a’

The vector representing the maximum relative error for estimating
f ,(xk) I

fis(xp) 9=0

The maximum relative error for estimating Ef,

(x, p)] with the Kriging surrogate model

f'(xx) I
fis(xp) 90

IEf s [%
(x, p)] with the Kriging

surrogate model
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1. Introduction

In the design and management of structures and infrastructure systems, a multitude of uncertainties (e.g.,
various environmental or load conditions, workmanship, human error and occurrence of future events [1-
3]) exist that must be characterized and considered when designing or maintaining systems. Collecting new
information for model calibration and system identification can reduce these uncertainties and facilitate
effective decisions [4-7]. Bayesian updating provides a coherent framework for probabilistic calibration,
where a posterior joint probability density function (PDF) is derived using the prior joint PDF and the
observed data. With the advancements in sensing and monitoring technologies, Bayesian updating has
recently received much attention and been successfully applied in various fields [8-15].

The Kalman filter [16] is one of the most popular algorithms for Bayesian updating. As the Kalman
filter adopts the linear Gaussian assumption, only the first and second moments are required to describe a
distribution. However, this assumption is not applicable for nonlinear and non-Gaussian problems. Many
studies [17-22] have attempted relaxing these assumptions to extend the Kalman filter. For instance,
Extended Kalman Filter, the Assumed Density Filter and the Unscented Kalman Filter consist of
linearizing the state-space using Taylor series expansion, moments matching and weighted statistical linear
regression process, respectively [23]. On the other hand, approximating posterior distribution via sampling
realizations has received much attention, as a parametric assumption (e.g., the Gaussian assumption) is not
required a priori. The rejection sampling [24] is a basic technique to generate samples from the posterior
distribution considering the likelihood function as a filter. However, the acceptance rate of the simple
rejection sampling can be very low in high-dimensional problems or with multiple observations, resulting
in low sampling efficiency. Markov chain Monte Carlo (MCMC), which allows sampling directly from
the posterior distribution, has been widely investigated for Bayesian updating. To avoid the convergence
issue, Beck and Au [25] proposed an adaptive Metropolis—Hastings method (AMH), which utilized a series
of intermediate PDF to approach the target posterior PDF. Subsequently, Ching and Chen [26] proposed a
TMCMC method, which adopted a resampling technique instead of the kernel density in AMH to improve
the efficiency. However, the gained efficiency may not be significant with the increase of the dimension
of the variable space [27].

As an alternative, Straub and Papaioannou [28] proposed performing Bayesian Updating with
Structural reliability methods (BUS), by transforming the acceptance domain in rejection sampling as the
failure domain in reliability analysis. The significant advantage of BUS lies in exploring the possibility of
using reliability methods to solve the Bayesian updating problem. The performance of BUS highly depends
on the adopted reliability method. The subset simulation, which calculates the failure probability with
MCMC through a series of intermediate events, has been applied to BUS in [28]. On the other hand,
surrogate model-based reliability analysis, which uses the surrogate model as a substitute of original
performance function has become popular in recent years due to its high efficiency. Compared with
traditional sampling methods, the computational cost can be reduced by several orders of magnitude, as
noticed in reliability analysis with Artificial Neural Networks (ANN) [27], Polynomial Chaos Expansion
[29, 30], and Support Vector Regression [31, 32]. Among these, Kriging-based adaptive reliability analysis
[33] has become one of the most popular approaches, as Kriging can provide the uncertainty of prediction
to guide the selection of the training point and quantify the accuracy of the surrogate model. Wang and
Shafieezadeh [34] proposed implementing adaptive Kriging with Monte Carlo Simulation (MCS) in the
framework of BUS, called BUAK, which shows high efficiency, especially with expensive-to-evaluate
likelihood functions. However, as the implementation of BUS often involves a rare event estimation, the
BUAK-MCS may not be computationally affordable in some applications due to the low convergence rate
of MCS.

To address this gap, this paper proposes an efficient Bayesian updating method with active learning
Kriging-based adaptive importance sampling, called BUAK-AIS. The main contributions of the paper can
be summarized as follows. First, this work proposes an active learning Kriging-based adaptive importance
sampling framework for efficient Bayesian updating. In the framework, the training database is expanded
in each iteration and the importance sampling distribution is optimized sequentially based on the cross
entropy. Moreover, the estimate for the first moment of the posterior distribution is discussed. A criterion
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is proposed and checked in the framework to guarantee that the realizations in the accepted domain can
provide a robust estimate for the posterior distribution. A new stopping criterion for the active learning of
Kriging is also proposed by quantifying the error caused by the Kriging surrogate model in the estimation
of the posterior distribution. Three numerical examples and an engineering application regarding model
updating of cable-stayed bridges in the construction process are selected to illustrate the accuracy and
efficiency of the proposed methods.

The rest of the paper is organized as follows. Section 2 presents an overview of the fundamental
theory of Bayesian updating, BUS and Kriging. Section 3 presents the details of the proposed method,
BUAK-AIS. Section 4 provides three numerical examples and an engineering application to illustrate the
performance of the proposed method. Concluding remarks are presented in Section 5.

2. Preliminaries

This section provides a brief overview of Bayesian updating, Bayesian Updating with Structural reliability
methods (BUS), and Kriging. More information about these techniques can be found in [28, 34], [28], and
[35], respectively.

2.1 Bayesian updating

Uncertainties stemming from external environments and internal conditions may pose significant challenge
to design and maintaining the functionality and integrity of systems in their service life. Following the
classical reliability framework, let the random vector X represent the uncertainty of the system associated
with the phenomena of interest. Given the probabilistic model of X and the formulation of the system
performance function, risk and reliability analysis can help with the assessment of the system state and
facilitate risk-informed decision making. However, the background knowledge, where the prior
probabilistic model of X is established, may not perfectly describe the actual system. This deviation can
yield inaccurate assessments and predictions, therefore resulting in decisions that are not most cost-effective
and even threatening the safety of the system. Thus, collecting new information through Structural Health
Monitoring (SHM) becomes essential in the management of critical structures and infrastructure systems,
as the observed data can be used for system identification and probabilistic calibration. For this purpose,
Bayesian updating provides a sound mathematical framework.

Let f'(x) and Y denote the prior PDF of X and the vector of observations, respectively. L(x)
denotes the likelihood function, which is proportional to the conditional probability of receiving a
realization of ¥ given a realization of X, i.e., L(x) « Pr(Y = y|X = x). The Bayesian updating can be
formulated as:

i) = LS
fy LOOS (x)dx

where ( is the probabilistic domain of the random variables X, and f''(x) is the posterior distribution
which is the aim of Bayesian updating.

Let h(-) denote the function describing the responses of observed phenomena. Considering a
realization of observations y of equality type and a realization of the random vector x, the deviation
between the observation and the prediction can be expressed as y — h(x). The deviation can be caused by
measurement errors or model errors. Let € denote the deviation of the observation, and f, denote the joint
PDF of &. The likelihood function can be formulated as:

(1)

L(x) = fe(y = h(x)) )

With m mutually independent observations (y = [yq, ", ¥m]), the likelihood function can be
decomposed as:

1@ = [ [0 =] [fon - he) ®)
i=1 i=1
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where L; denotes the likelihood function of receiving the observation y;, h;(-) denotes the function
describing the prediction of the observation y;, €; denotes the deviation of y;, and f;; denotes the PDF of
&;.

2.2 Bayesian updating with structural reliability methods (BUS)

The rejection sampling is a basic sampling method to estimate the posterior distribution. The idea of
rejection sampling consists of extending the space of random variables to [X, P] by introducing an
augmented variable P, and defining the accepted domain as:

Qaec =1[p < CL(.X)] 4)

where p is a realization of P and c is a constant. The distribution of P can be defined as a standard uniform
distribution, and c can be therefore defined as 1/max (L(x)) to satisfy cL(x) < 1. An adaptive approach
for determining c is discussed in [36, 37]. DiazDelaO et al. [8] also presented a fundamental discussion on
the role of ¢ and developed an adaptive BUS-based formulation to approach the posterior distribution
without ¢ a prior. When sampling P and X from the standard uniform distribution and prior distribution,
respectively, the PDF for the realizations of X in the acceptance domain can approach the posterior
distribution. This can be guaranteed by:

fpenaccf’(x)dp _ fOCL(x)f'(x)dP _cL(0f'(x)

Jxrea, f@dpdx  [o [P F@)dpdx [, cL(Of (x)dx
However, as mentioned in [28], the acceptance rate for the simple rejection sampling can be
extremely low. With m independent and identically distributed measurements, the average acceptance ratio
is proportional to 1/+/m. This limits the application of rejection sampling for complex engineering
problems. To address this limitation, the Bayesian updating with structural reliability methods (BUS) is
proposed by Straub and Papaioannou [28]. The core idea is to reformulate the rejection sampling as a
reliability problem. The acceptance domain .. can also be considered as the failure domain in reliability
analysis, as shown by Eq. (6).

=f"(x) )

O = [g(x,p) < 0] (6)

where g(x,p) = p — cL(x), which is known as the limit state function in reliability analysis. Thus, existing
reliability analysis methods, e.g., MCS and subset simulation, can be implemented in the framework of
BUS to solve this reliability problem. However, unlike reliability analysis which focuses on the probability
of failure, BUS concentrates on estimating the posterior distribution with the samples in the failure domain.
The estimation of the Cumulative Distribution Function (CDF), and the first and second moments of the
posterior distribution with MCS-based BUS can be formulated as follows:

coFW) = | 16 < W @
Q
_ Jixien, 1 S WIFCIPAX. 50 1, < ) - [y (o1 P) @
Jixprea, f'@)dpdx et Iyso (X Pi)
I c xf'(x)dpdx Nmes o L]
By = f Xf'(x)dx = XY ~ ij}]M:Sk Ig<o (X1, Pr) &
o fixprea, f'@dpdx e lgso(xipi)
f (x - ﬂfﬂ)T(x - ﬂfu)f,(x)dpdx
zfu = L (x - ”fﬂ)T(x - ﬂfn)f”(x)dx = [X'P]Eﬂf (9)

f[X,P]Eﬂf f’(x) dpdx
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Mcs

~ EIILI:l (xk - ﬁfu)T(xk - ﬁfn) ' Igso(xk' pk)

N
Zkffs Igso(xk' Pk)

where Ny cs is the number of MCS samples, I;<,(-) is an indicator function that equals one when the

realization satisfies g < 0 and zero otherwise, and I(x < ) is also an indicator function that equals one
when the realization satisfies x < 1 and zero otherwise.

2.3 Kriging

As an exact interpolation method that can provide the uncertainty information based on the Gaussian
process assumption, Kriging has received much attention recently. A Kriging surrogate model assumes that
the true prediction of a point consists of a regression part and a random part:

gx) =Sx,p) +z(x) (10

where g(x) is the prediction of the performance, S(x, 8) = s(x)T B is the regression part and z(x) is the
zero-mean Gaussian process. s(x) is identical to {s;(x), -, st(x)}T, and B = {f, ---,,BNS}T is the set of
regression parameters. For instance, when the trend has a constant yet unknown value, the Kriging model
is known as the Ordinary Kriging, and in this case, both Ng and s;(x) are identical to 1.

Subsequently, with N training points T = {x4, ---,xNT}T and their noise-free responses M =
{g(x1),, g(xNT)}T, the prediction §(x;) of an arbitrary test point x; and M are assumed to follow a
joint Gaussian distribution:

§(x S(xe, B) 1 rT(x
{ggvtt )} = Nr+1 ({S(T, ﬁ)}’az {r(xt) Ez t)}) (D

where S(x;, B) has been explained above, S(T, B) = SB, and S is a matrix with the element in the row i
and column j being s;(x;), i € [1,---,N7], j € [1,-++, Ng]. Thus, the size of matrix § is Np X Ns. 7(x;) is
the vector representing the correlation between x; and T, R is the covariance matrix with the elements R;;
in the row i and column j describing the correlation between x; and x; (i,j € [1,-+,Nr]), and
o? represents the generalized mean square error (MSE) from the regression.

Linear, spline or Gaussian correlation models, among others, can be applied to define R;; and r(x;).

For instance, with Gaussian correlation model, the R;; and r(x;) will have the following form:
d

Rij =R(x;,x) = | |exp[-0,(xf — x[)?] (12)
j j g j
r(xy) = {R(x1, X1), =, R(XN,, x)}" (13)

where d denotes the dimension of the input variable, i.e., x;, = [x£,--,x{] with the subscript k denoting
the sample number and the superscript denoting the dimension number, and 8 = [0,,--,8,] is the set of
correlation parameters.

As pointed out in [38], @ can significantly influence the performance of Kriging in reliability
analysis. Approaches such as Maximum Likelihood Estimation (MLE) and Cross-validation Estimation
have been proposed to determine the optimal 8, called 8*. Note that as 8" is determined based on the
training database, 8* can typically change in the active learning process, and with limited samples, the
parameters that provide the most accurate reliability result may not be the ones obtained by optimization
[38]. To keep consistent with the existing work [34], MLE is adopted in this paper:

1

0" = argmin(|S|Vro?) (14)
0
where a2 can be formulated as:
1
0% = —(M ~ SR (M ~ SB") (15)
t

B is generalized least-squares estimate of f3:
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B =(S'R's) S'TR'm (16)
Based on the above equations, the mean and variance of the prediction §(x;) conditional on I and
M can be formulated as:

g (x) = s(x)"B" +r(x)" R (M - SB") (17)
og(x) = 0%(1 +u(x)" (STRS) u(x,) — r(x)" R 'r(x) (18)

where u(x;) can be formulated as:
u(x) = SR 'r(x) — s(x) (19)

3. Bayesian Updating with Active learning Kriging-based Adaptive Importance Sampling (BUAK-
AIS)

This section presents the details of the proposed method. Section 3.1 presents the derivation of the BUS
with Importance Sampling (IS) for Bayesian updating, and Section 3.2 proposes a criterion to measure
whether the number of accepted samples is enough for an accurate posterior estimate. The maximum of the
error introduced by the use of the Kriging surrogate model is derived and discussed in Section 3.3. The
framework of the proposed method, Bayesian updating with Active learning Kriging-based Adaptive
Importance Sampling, called BUAK-ALIS, is presented in Section 3.4.

3.1 BUS with Importance Sampling

A classical approach of reliability analysis is MCS, which is based on repeated random sampling to obtain
statistical results. The application of MCS to the reliability problem formulated in BUS has been illustrated
in Section 2.2. However, in MCS, realizations of X and P are randomly generated from the prior joint PDF
f (x) and the uniform distribution. For a rare event estimation, only a very small proportion of points falls
in the failure domain and contributes to the estimation of the posterior distribution. The importance
sampling, which samples from an alternative proposal distribution, can be introduced in the BUS
framework to improve the sampling efficiency.

In the following, the statistical characteristics (e.g., Cumulative Distribution Function (CDF) and
the first and second moments) of the posterior distribution with importance sampling-based BUS are
derived. The rest of the paper uses f;s to represent the proposal importance sampling distribution for (X, P).
According to Eq. (5), f'(x) can be formulated as:

' S
f”(x) _ fPEQacc f,(x) dp _ fPEQacc f[;((x §)) fIS(x p) dp 20)
Sixpreng, S Y APAX [ o ey fis(p) dpdx
Subsequently, the estimation of the CDF of the posterior distribution can be formulated as:
fo Frean, 16 < ) 7805 fisCup) dpdx
COFW) = [ 16x < W)z = e
Q 1 <) ) o gy =P 85
x < "(x
3 f[X,P]EQacc 1s(x,p) fis(x,p) dpdx @

p) dpdx

f (xx)
s Xk, Pi)

Zkl 1 lg<o (X1, Di) %

fe
f[XP]EQacc f[s(x, p) fIS(x
TG < oo PO 7 5y
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where N;s is the number of IS samples. The estimates of the first and the second moments of the posterior
distribution with IS-based BUS can be derived as follows:

fixrieay ¥ CIAPAX Sy picq, ¥ 7LD fis G p)dpix

e = I} "(x)dpdx - f'(x)
[X'P]Efo P f[xp]enffs(x )fIS(x ,p)dpdx o
Nis x (X1, Pi) * f(xk)
o et R T CTN D)
f'(xi)
DV RICH AN mewm
5. = [x,P]eaf(x—”fu) (x — pp)f' (x)dpdx
" f[X’P]EQf f'(x)dpdx
I N )

J [X,Pleqs %fm (x,p)dpdx

f (xx)

~ T ~
1=51(x - ufu) (x - l"f/l) <X P) S Frs Xrr D)

f (xx)
s Xk, Pi)

Q

ZNIS LycoXi Vi) 7y 7i

3.2 On the Accuracy of the Estimates of the Posterior Distribution
As Eq. (21) - (23) show, the posterior distribution can be estimated with realizations in IS-based BUS. The
number of realizations in the acceptance domain is therefore critical to achieve a reliable estimation. Thus,
this paper proposes a new criterion to check the sufficiency of the number of IS realizations and therefore
guarantee the quality of the estimate for the posterior distribution.

First, Eq. (22) can be reformulated as:

Sixprca, X1 @dpdx  fiypicq, x% fis(x, p)dpdx

fixpieay f')dpx

I’lfll 3

f[X,P]enf ]% fis(x, p)dpdx
E [ f'x) (24)

_ By

[EfIS flf(gc 1,) gso(x:p)]

where Ef  represents the expectation with (X, P) following the proposal distribution fis.

Considering that d is the dimension of X, ps,, can be defined as the vector [,uf,,l, T ,uf,,d], where
,uf,,i denotes the mean of the posterior distribution in the dimension i (i € [1,:-,d]). The following
equation can be therefore obtained:
_f'(x)
s [ e o)
U =

7 (25)
fx)

s oy lo=0 (5 P)

where x = [x1,---,x%] and the superscript denotes the dimension number.

Let A! denote the function x! ff (( ;)

realizations, the mean and the variance of A and B can be estimated as:

f'(x)
fi1s(xp)

lg<o(x,p) and B denote lg<o(x,p) . With Nig
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LN e
fai = 5= ) M sz P 6)

Nis f1s (X, Pk
Ap = NLBZ:I_SU%@SO(M'PR) 27)
2
Var i ~ — 1ZNIS < if;:(;k.k;k) Lg<o(Xk, DK) — ﬁm) (28)
2
vars X g 1 21:151 (ﬁs(ij:.k ;k) fgso(¥iePe) ~ ﬁB) @

According to the Central Limit Theorem, the variances for the estimates of /i ;i and fig can be

i var
obtained as —4* and Y22
Nis Nis
and fiz are considered to approximate u ;i and ug. The variances for the estimates of /1 ;i and fig can thus
var i varg . _ . .
and ; and the coefficients of variation for the mean estimates can be determined
1S IS

. Here, var ;i and varg are considered to approximate var ;i and varg; and i ;i

be determined as

var

as COVy , = ﬂ‘/ I, and COVy, = [372 /.

Given a 51gn1ﬁcance level a and the corresponding z-value y,, the estimates fi ;i and iz will be
inside the following intervals according to the Central Limit Theorem:

ti
S)
«“e

- var cﬂl

By € [Agi = Va Nis ' Api + Va (30)
. varg varB

Us € [ — Va N g+ YV N 3D
Is 15

Therefore, controlling the values of CO VAﬂi and COVy,, can help to narrow the bounds for y 4 and

Ug, therefore yielding a more reliable estimate of ,uf,,i with one simulation. Let €, for denote the vector

[cov cov,

B A ya
stopping criterion in the framework to guarantee that the number of realizations is enough to achieve a
reliable estimate of the posterior distribution.

As this section focuses on whether the number of accepted samples can accurately describe the
posterior distribution, which is considered as a deterministic result from the BUS method, the concept of
confidence intervals is adopted. However, note that when the bound for the true parameters of the
distribution is of interest, the credible interval should be employed according to Bayesian statistics, and
typically more observed samples can help to reduce uncertainties and narrow the credible interval.

co VﬁB]' In this paper, the maximum value of entries of vector €, . is adopted as the

3.3 Quantification for the Accuracy of Kriging

The Kriging surrogate model has recently received much attention for reliability analysis problems as it has
offered a viable substitute for expensive-to-evaluate limit state functions. Recent studies on Kriging-based
reliability analysis include, among others, the development of learning functions [39-43] and quantification
of the maximum error, which is introduced by the use of Kriging, for the estimation of the failure probability
[44-46]. However, using this maximum error as the stopping criterion for the Kriging surrogate model when
estimating posterior distributions may not be adequate [47], as the probability of failure is not identical to
the posterior distribution, which BUS aims to estimate. Studies in [34] found that the use of U learning
function [40], which measures the probability of wrong classification for each realization, as a stopping
criterion in Bayesian updating problems can lead to a large number of unnecessary calls of the limit state
function. Thus, a more effective stopping criterion is needed for the active learning of Kriging in the
proposed Bayesian updating framework. To address this gap, the rest of this section discusses the maximum
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error for the estimation of the first moment of the posterior distribution and proposes a new stopping
criterion.

When Kriging is applied as a substitute of the original limit state function g(-), the Kriging
predictor can be denoted as gi (-). As mentioned in Section 2.3, Kriging assumes that the response for a
test point follows a Gaussian distribution with mean piy and 0. In this setting, pix is often used as gg. The
failure domain with Kriging model can be defined as follows:

Qr k= [gx(x,p) < 0] (32)
The first order moment of the posterior distribution can therefore be reformulated as:
B [ )] B Al p) 7
u = s P Tistr gy lanso D] 2m BelasoCike P 7 Gy ) 5
fk f'x) f'Cxi)

]E [—I < x, ] < X )

ris [FsCepy lonso P Tl laesoCio PO i s
Note that the error caused by approximating the original model with Kriging stems from the wrong
classification of samples, namely Iy, <o(Xk, Pk) # Ig<o(Xk,P) for the realizations with wrong sign

estimation. For the numerator of Eq. (33), the sum of the absolute difference between each realization
estimated by the original limit state function and that by the Kriging surrogate model can be expressed as:

D =ZNISx MU (e Di0) — Lgyoco (Ko D) (34)
n k=1 kﬁs(xk,pk) g<0 k' Pk gg<0 k' Pk

where D,, = [D}, -+, D%] is a vector containing the absolute error caused by Kriging in each dimension and
d denotes the number of dimensions of X. D}, (i € [1,-+,d]) can be expressed as:

i Nis X f'(xx)
bn = z fIS(kakpk)l <0 (¥ Pi) = g0 (X i) | (35)

The same applies to the denommator of Eq. (33); therefore, the sum of the absolute error can be formulated
as:

— Nis f'(xy)
Dd a Ek 1f15(xk'pk)| <0(xk; pk) gK<0(xk,pk)| (36)

However, the exact value of | <0 (X1, Dx) — Lg<0 (X, pk)| is unknown, as Kriging aims at replacing the
original limit state function g (- ), which can be expensive-to-evaluate. Thus, in the following, the estimation
of D} and D, based on the Gaussian process assumption of Kriging is presented.

For an arbitrary test point (x, py) with predicted mean py and variance o provided by Eq. (17)
and Eq. (18), the probability of providing a wrong sign estimation for this point can be formulated as follows:

pYse = & (_ |#K(xk:29k)|> (37)

ok (X, Pi)
Let I,,(-) denote the function | <0(Xp, D) — gK<0(xk,pk)| which is the indicator of the wrong
classification event. When Kriging provides a wrong sign estimation for (xj,px), Ly (Xk, pr) is 1;
otherwise, I,,(xy,py) is 0. Therefore, I, (x), p;) follows a Binomial distribution. The same applies to

iI f’(xk) f’(xk) t h k € 1 . N
Xy W(xk’pk)f—zs(Xk.pk)’ T en)’ denoted as [, where [1,-+,N;s] and

i € [1,++,d]. The means for P} and J) can be formulated as:

denoted as P}, and I, (xy, py)

; f'(xk)
wse l 38
Mot = P e g e ) 38)
f'(xx)
— wse 39
Mo =P e ) @9

The variances for P} and J can be formulated as:
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299

wse wse i f,(xk) 2
varle = Pk (1 - Pk ) [Xk m] (40)

e wses [ f @) 77 41
vary, =P (1= )[f,s(xk.pk) 4D

Assuming that the wrong classification events are independent for these realizations, the sum of
independent Binomial distributions follows the Poisson Binomial distribution [44-46]. Let Z,: denote

1v
Is P} and E; denote s k=1 Jk- The mean and variance for E,: can be expressed as:

Nis
Mz, = Zkzluga,g (42)
Nis
varg ; = Zk=1 varpi (43)
The mean and variance for E5 can be formulated as:
Nis
Hzy = zk=1ﬂgk (44)
Nis
varg, = Z vary, (45)
k=1

Given the significance level a, the confidence intervals for £,: and £ can be estimated with the Central

Limit Theorem as:
E}"i E [#E?i - }/(X ’vaTEPi, HE?,: + YOK ’varE:Pi] (46)
— Ya /var Mz, + Va ’va% ] (47)

Thus, the confidence interval for D}, is estimated as:

— Y /var e+ Ve /var— ] (48)

And the confidence interval for Dy is estimated as:

Dy=Ej5€ [#EJ - Va\/?rig’#aﬂ + Va%] “

Subsequently, the maximum relative error for estimating the numerator of Eq. (33) with the Kriging
surrogate model can be approximated as:

#E?i _YOK ’Uars i ‘uE;Di +YO( ’Uars i
(50)

Nys f'(xx) Nis f'(x)

XLl <o(Xp P xtl, <o(Xp, D
=1 Ficlgyeso (X k)ils(xk Pl [Fk=1 ilgeso (i k)hs(xk 29
T'he same applies for DdI

Eg € |u

Dl :.._‘?LE

€Dl = max

Uz, — Yo /VaTE, pz, + Yo fvars,

s JCTNN S ()
T lgeso (o i) fIS(xkkpk) Tt 1IgK<0(xk'pk)f15(xkkPk)

Note that for accurately estimating the first moment of the posterior distribution with the Kriging surrogate
model, both the numerator and the denominator should be accurately quantified. Thus, the maximum value

€p, = max

(51

12



300

301
302
303
304
305
306
307
308
309
310
311
312

313
314
315
316
317
318
319

320
321
322

323

324
325

326
327
328
329
330
331
332

333
334

among the vector €p, = [€p1, -, ED;{] and €p , is checked as the stopping criterion for the active learning
of Kriging in the proposed method.

3.4 The Proposed Method: BUAK-AIS

Based on the above formulations in Section 3.1 to 3.3, this section presents the proposed method: Bayesian
Updating with adaptive Kriging-based Adaptive Importance Sampling, BUAK-AIS. The flowchart of the
proposed method is shown in Fig. 1. In the first stage, Ng low-discrepancy samples are generated within
the sampling region with a sampling technique, such as Sobol Sequence [48]. A fraction of these generated
samples are selected as the initial training data for the Kriging surrogate model in the second step. Let N;
denote the number of initial samples. Then, in the third step of the proposed method, the Kriging surrogate
model is established based on the current training data. Subsequently, the fourth step of the proposed
method concentrates on determining the importance sampling distribution. The optimal proposal
distribution in importance sampling can be theoretically derived as [49]:

b om0
IS\ -

Jo Iy IpsoGe.p)f () dpdx

As directly sampling from f5 is challenging, a Gaussian mixture distribution, which consists of
multiple multivariate Gaussian distribution components, is introduced as the quasi-optimal importance
sampling distribution in this paper. Let K denote the number of Gaussian distributions; g;, X; and mr; denote
the mean, covariance matrix and the likelihood of selecting the ith Gaussian distribution (i € [1,---, K]).
Thus, a Gaussian mixture distribution can be parametrized by u = {m, -, g, U1, ***, Ug» 1, "+, 2 }- The
optimality of the established Gaussian mixture distribution can be measured by the Kullback—Leibler-based
cross-entropy as follows [50]:

1 1
KL(u) = fﬂ fo fi5(o ) Infis (x, p)dpdx — fﬂ fo fr5(x p)Inh(x, p, w)dpdx (53)

where h(x, p, u) is the Gaussian mixture distribution with the set of parameters u. As only the second part
of KL depends on u, the determination of u can be considered as an optimization problem to minimize the
discrepancy:

1
ut = argmaxf f Iy<o(x,p)f'(x)Inh(x, p,w)dpdx = argmax Ep[ly<o(x, p)Inh(x,p,u)] (54)
u o Jo u

where Eg[-] denotes the mathematical expectation with respect to the original joint PDF of (X, P).
For more efficient estimation, an alternative density can be introduced to reformulate the above
equation as follows:

(52)

1 h ) )
ut = argmaxf f Iy<o(x, ) f'(x)Inh(x, p, u)hg—mdpdx
u Q 0 ) )
f'(x)

R pw) &)

= argmax E,, [I5<o(x, p)Inh(x,p, u)
u

~ Nce 1 B f'(x;)

~ arglrlnaxzizl N, Ig<o(xi, D) Inh(x;, p;, u) hCxg, py, W)
where N denotes the number of realizations to estimate expectation, and h(x,p, w) represents the
alternative sampling distribution. w is not optimal but facilitates more efficient sampling compared with
the original PDF of (X, P).

Then, in the fifth step of the proposed method, N;s realizations are sampled from the obtained
distribution h(x, p, u*) for estimating the posterior distribution with the current Kriging model, shown by
Eq. (21) to Eq. (23). The accuracy of the Kriging surrogate model is checked in the sixth step. As discussed
in Section 3.3, if the maximum value among the vector €p, = [€ps, -, EDg] and €p, does not exceed the

threshold (eg, set as 0.05 in this paper), the algorithm enters the seventh step where the next training point
is selected from the sampling pool with the U learning function [40]. Otherwise, the algorithm goes to the
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335  eighth step where the maximum value of €, o is checked to guarantee that the number of realizations is
336 enough for a robust estimation. If the maximum value of €, o does not exceed the threshold (e, set as 0.05

337  in this paper), the algorithm ends. Otherwise, the algorithm goes to ninth step to increase the value of N,
338  and then enters the fifth step again.

(1) Generate N low-discrepancy samples

:

(2) Select N; initial training data

A

(3) Establish the Kriging model

|

(4) Determine the set of parameters for the quasi-optimal Gaussian
mixture distribution

!

(5) Sample N realizations for estimating the posterior distribution

N

Y (7) Add the next training point
with U learning function

(®) maX(Gu i) SQ‘>7
f
N Y

— (9) Increase N;g (10) End
339
340 Fig. 1 Flowchart of the proposed method: BUAK-AIS
341
342 A more detailed algorithm table is also provided as follows for the readability:

Algorithm 1. The proposed BUAK-AIS algorithm
1. Generate N low-discrepancy samples within the sampling space. This paper generates
these samples with the Sobol sequence.

2. A fraction of the generated samples are selected as the initial training data for the Kriging
(d+1)(d+2)

surrogate model. In this paper, + 1 initial samples are selected from the pool as

the initial database, where d denotes the dimension of problems.

3.  Establish the Kriging surrogate model. The present work adopts the DACE package
embedded in the platform of MATLAB software. The leave-one-out cross validation is
used to select the trend that provides the minimum error (from the constant, linear and
quadratic trends).
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4.  Determine the IS distribution based on the current Kriging model. The following steps are
executed:
(a) Initialize the IS distribution (defining w): K samples are randomly selected from the
failure samples predicted by the current Kriging model. These K samples are adopted as
the initial center of the Gaussian mixture distribution with uniform weights with unit-
standard deviations and zero correlations. If the number of failure points is smaller than K,
the sample that minimizes the performance function is added to the training data and used
as the center of a standard Gaussian distribution to generate more realizations for enriching
the pool until K failure samples are found.
(b) Generate IS samples: N realizations are generated from the initial IS distribution.
)N (xi|uf 2 and
The1 TRN (i} 23)

, where h(x,p,w) is the joint PDF for the Gaussian mixture

(c) Update IS distribution (estimating u* ): introduce y;; =

100
W (x,p,w) = h(x,p}‘,tw)

distribution parametrized by w, and w = {m?, -, w2, u?,---, u%, £9,---, £%} is defined in
part (a) of this step, where i € [1,-:+,N¢g],j € [1,--+,K]. The following equations are
used to update the IS distribution according to [50]:

i ZlivffIngo(xi:pi)W(xi'pi'W)Vi,j[xi'pi]

K= N (56)
! 25 Ige<o (X, D)W (X, 03, W)Y

N . AT
5 = Ziff IgKSO(xi'pi)W(xi;pi:W)Vi,j([xi;pi] - Mj)([xi,Pi] - Mj) 57)
! Z?]:Cf Ige<o(Xi, DOW (X1, 01, W)Y j
N
o Yict Igeco(xi, D)W (X, 01, W)Y (58)
j N
! it Ige<o (X0, DOW (x5, 0, W)
Note that [x;, p;] denotes the vector in the augmented space, and N is the number of
samples used to estimate the optimal IS distribution. K is set as 40 for Example Three; and
10 otherwise.
5. Generate N;g realizations from the updated IS distribution. This paper defines the initial
N as 10* for Case Two in Example Two and Example Three; and 10°, otherwise.
6. Calculate €p and €p, according to Eq. (50) and Eq. (51), respectively. Check if
max(eDn, eDd) < €k (defined as 0.05 here):
(a) True, go to Step &;
(b) False, go to Step 7.
7. Select the next training point based on the U learning function; then, go to Step 3.

) < €7 (defined as 0.05 here):

8. Calculate €usp according to Section 3.2. Check if max (eu £

(a) True, go to Step 10;

(b) False, go to Step 9.
9.  Increase the IS realizations N;s. This work increases N;g by 10° in this step.
10. End the calculation.

The proposed framework adaptively explores the vicinity of the limit state function by active
learning, and refines the importance sampling distribution, i.e., optimizing u, in each step based on the
current Kriging model. As demonstrated in the next section, the proposed framework and stopping criteria
can considerably improve both efficiency and accuracy of Bayesian updating. In particular, the sampling
efficiency is significantly improved with the implementation of the adaptive importance sampling.
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4. Numerical Examples

In this section, three numerical examples with increasing complexities and an engineering application are
selected to demonstrate the efficiency and accuracy of the proposed method. The results are compared with
other state-of-the-art Bayesian updating methods, and detailed discussions are presented.

4.1 Example One: One-dimensional Illustrative Example

A toy example from [28, 34] is selected as the first example for illustration purposes. The problem involves
only one random variable, denoted by X. The prior distribution of X follows a standard normal distribution,
and the likelihood function can be expressed by:

1 _1(x—2)* (59)
L(x) = e 2 052 59
(x) 0.5v2m
According to Eq. (6), the limit state function is formulated as:
9@, x) = In(p) — In(c) — In(L(x)) (60)

where p follows a uniform standard distribution, and c is determined as m = 0.5V2m.

An analytical solution is derived and used as the benchmark. The posterior is calculated as a normal
distribution with mean 1.6 and standard deviation v/0.2. The proposed method, BUAK-AIS, is compared
with two different BUS methods: BUS with Monte Carlo Simulation, called BUS-MCS, and BUS with
Subset Simulation, called BUS-SuS. Two existing Kriging-based Bayesian updating methods including
BUAK-MCS and BUAK-SuS [34] are also compared here. Table 1 lists the number of MCS samples
(Nycs), the number of IS samples (Ns), the number of samples in each subset in Subset Simulation (Nsg),
the required number of calls of the limit state function (N4;;), the required number of training points for
the Kriging model (N;) and the estimates of the posterior distribution ({i, ) for these methods.

Table 1 Bayesian updating results of Example One

Method* Nycs ! Nis / Nss — Neau / Ny f G i/ G/o

BUS-MCS 1x10° 1x10° 1.6000 0.4471 1.0000 0.9996
BUS-SuS 1x10° 2,543 1.5511 0.4574 0.9695 1.0228
BUAK-MCS 1x10° 14.15 1.6066 0.4528 1.0041 1.0125
BUAK-SuS 1x10° 14 1.5560 0.4699 0.9725 1.0508
BUAK-AIS 1x10° 12.1 1.6003 0.4352 1.0002 0.9731

* Results are averaged over 20 runs.

As Table 1 shows, BUS-MCS can achieve high accuracy for estimating the posterior distribution,
with f/pu=1.0000 and 6/0=0.9996. However, as the acceptance rate is relatively low and about 9%, the
required number of samples is considerably larger than the other methods. BUS-SuS can generate around
1,000 accepted samples through two intermediate sets. With 2,543 calls of the limit state function, BUS-
SuS can also provide accurate results with fi/u=0.9695 and 6/0=1.0228. Using the Kriging surrogate
model, the required calls of the limit state function can be significantly reduced. With 14.15 calls of the
limits state function on average, BUAK-MCS can provide accurate estimates with fi/u=1.0041 and
6/0=1.0125. Similarly, the required calls for BUAK-SuS are 14 with fi/u=0.9725 and 6/0=1.0508. It is
noted that the proposed method, BUAK-AIS, requires fewer calls of the limit state function compared with
BUAK-MCS and BUAK-SuS, while the accuracy of BUAK-AIS (i/u=1.0002 and 6/0=0.9731) is higher
than the results of BUAK-MCS and BUAK-SuS. The efficiency and accuracy of the proposed method are
therefore evident.
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(a) The proposed method: BUAK-AIS (b) The existing method: BUAK-MCS

Fig. 2 Illustration of the realizations in Example one

Fig. 2 shows the boundary of the limit state predicted by Kriging and realizations for the proposed
method, BUAK-AIS, and the existing method, BUAK-MCS. The Kriging models in both methods achieve
high accuracy and the predicted limit state boundary is close to the true limit state boundary in the design
space. It is also noted that the acceptance rate for the proposed method BUAK-AIS (87.1%) is considerably
higher than the rate for BUAK-MCS (8.8%). Thus, fewer realizations are required by the proposed method
to achieve a robust estimation, therefore reducing the computational costs. Moreover, as only the
importance area is focused by the proposed method, the number of required calls of the limit state function
has reduced from 14.15 to 12.1 on average using the proposed method compared to BUAK-MCS.

4.2 Example Two: Unimodal Distribution Problem
The second example is selected to demonstrate the proposed methods for higher dimensional problems [28,
34, 51]. The prior distribution is constructed as the product of n independent standard normal distributions,

denoted as f'(x) = [IL; ¢(x;). The likelihood function can be expressed as:
n
1 x;—u
L@ = | [coEHh (61)
i=1 % %

where o is a constant value 0.2, and y; can be obtained by:

U = \]—2(1 + 0;%)In [cEl/" /Zmll + crlz] (62)

where ¢ is the model evidence. Two cases are considered in this paper: case one: n = 2 and ¢y = 10™*
and case two: n = 10 and ¢z = 107>,

As both the prior and likelihood distributions are normal distributions, an analytical solution can
be obtained, which is treated as the benchmark: for case one, the mean and standard deviation of the
posterior distribution are 2.659 and 0.1961 and for case two, the mean and standard deviation of the
posterior distribution are 0.6542 and 0.1961. The methods mentioned in example one are also applied here
(MCS is not applied to case two because of the extremely low failure probability). Table 2 lists the number
of MCS samples (Ny¢s), the number of IS samples (N;s), the number of samples in each subset in Subset
Simulation (Ngs), the required number of calls of the limit state function (N¢,;;), the required number of
training points for the Kriging model (N7) and the estimates of the posterior distribution ({i, G) for case one.
The results for case two are listed in Table 3.

Table 2 Bayesian updating results of Example Two (Case One)
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Method* Nycs / Nis ! Nss Neau ! N /L G a/u o/c
BUS-MCS 2x10’ 2x10’ 2.6612 0.1936 1.0008 0.9870
BUS-SuS 5%10° 28,384 2.6765 0.2061 1.0066 1.0510
BUAK-MCS 2x10’ 31 2.6674 0.1853 1.0032 0.9446
BUAK-SuS 5%x10° 31 2.7310 0.2068 1.0271 1.0544
BUAK-AIS 1x10° 12.9 2.6670 0.2004 1.0030 1.0226
* Results for the proposed method are averaged over 20 runs. Other result can be found in [34].
Table 3 Bayesian updating results of Example Two (Case Two)
Method* N;s / Ngg Neau ! Ny J1i o aju G/o
BUS-SuS 1x10* 64,886 0.6778 0.1811 1.0360 0.9236
BUAK-SuS 1x10* 103 0.6222 0.1751 0.9511 0.8961
BUAK-AIS 1x10* 90.5 0.6532 0.1965 0.9985 1.0026

* Results for the proposed method are averaged over 20 runs. Other result can be found in [34].

The results of the first case are summarized in Table 2. BUS-MCS and BUAK-SuS can both
achieve high accuracy. However, the computational cost of these methods is substantially large. BUS-SuS
requires 28,234 calls of the limit state function and BUS-MCS requires 2x 107 calls on average. With the
implementation of the Kriging surrogate model, the required number of calls shows a significant drop.
BUAK-MCS and BUAK-SuS both require 31 calls of the limit state function on average. The proposed
method, BUAK-AIS, which requires only 12.9 calls, is the most efficient approach. The estimates of the
posterior distribution from BUAK-AIS are also more accurate ({/¢=1.0030 and 6/0=1.0226) compared
with the ones from BUAK-MCS ({i/1t=1.0032 and 6/6=0.9446) and BUAK-SuS ({i/u=1.0271 and
6/0=1.0544). Results in Table 3 for case two also point to the high efficiency and accuracy of the proposed
method, BUAK-AIS. The number of required calls of the limit state function is reduced by 13% compared
with BUAK-SuS, while the accuracy of the proposed method (£1/u=0.9985 and 6/0=1.0026) is noticeably
higher than BUAK-SuS (j1/u=0.9511 and 6/0=0.8961).

<+ T ‘ ‘ 6 ‘ ‘ ‘
Rejected Samples Rejected Samples
+  Accepted Samples + Accepted Samples| = .-
35+ 1 4t PETT A TILE > RS
v L)
- : %
3r 2r .l “
+ -:' ':J':".
" M.,
B 2.5 s 0F . .}-:
i g
2 2 F - %
s !
15 4t - hateh
1 ' : ‘ ' ' -6 ‘ ' ' ' )
1 1.5 2 2.5 3 35 4 -6 -4 -2 0 2 4 6
X 1 X 1

(a) The proposed method: BUAK-AIS (b) The existing method: BUAK-MCS
Fig. 3 Illustration of the realizations in Example two

Fig. 3 illustrates the distribution of realizations for the proposed method, BUAK-AIS, and the
existing method, BUAK-MCS, for case one. The acceptance rate for BUAK-AIS (73%) is substantially
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higher than the rate for BUAK-MCS (0.001%). Thus, the proposed method can provide higher sampling
efficiency compared with the existing method, thus further reducing the computational costs.

4.3 Example Three: A Dynamic Problem

A two degree of freedom structural dynamic problem is selected as the third example [25, 28, 34]. The
configuration of the system is shown in Fig. 4. The masses of the first and second story are considered as
my = 16,531 kg and m, = 16,131 kg. The stiffness between stories is modeled as k; = X;ky and k, =
X, kg, where X; and X, are stiffness factors and ky = 29,700 kN/m. The prior distributions of X; and X,
are uncorrelated lognormal distributions with modes 1.3 and 0.8 and standard deviations oy, = oy, = 1.

my

ky

Fig. 4 Illustration of the dynamic system
The first two frequencies are used for updating the distribution, and the observations are f,, = 3.13
Hz and f,, = 9.83 Hz. The likelihood function can be expressed as:
—y2, A2 Xy

S ) (63)
20,2

L(x) « exp (

where x = [x, x,] is a realization of X = [X;, X5], f;(*) is the prediction function for the ith frequency,
A4 and A, are the means of the prediction error for the first and second frequencies, respectively, and o is
the standard deviation of the prediction error. In this example, ; =1, = 1 and g, = 1/16.

The proposed method, BUAK-AIS, is compared with BUS-MCS, BUS-SuS, BUAK-MCS and
BUAK-SuS. Table 4 lists the number of MCS samples (Ny;¢cs), the number of IS samples (N;s), the number
of samples in each subset in Subset Simulation (Ngs), the required number of calls of the limit state function
(Ncai), the required number of training points for the Kriging model (N7) and the estimated means and
standard deviations for the left and right clusters of X;. Fig. 5 shows the distribution of the accepted samples
for the proposed method. Since the analytical solution is not easily obtained in this example, the results
from BUS-MCS can be taken as the benchmark.

Table 4 Bayesian updating results of Example Three

Method” Nycs / Nis ! Nsg Neay / Ny AcL) G(L) A(R) G(R)
BUS-MCS 2x10° 2x10° 0.502 0.038 1.817 0.141
BUS-SuS 1x10° 3,674.52 0.505 0.044 1.824 0.137
BUAK-MCS  2x10° 252.68 0.502 0.038 1.816 0.143
BUAK-SuS 1x10° 252.68 0.498 0.049 1.829 0.135
BUAK-AIS 10,100 67.8 0.5025 0.0380 1.8144 0.1399

* Results for the proposed method are averaged over 20 runs. Other result can be found in [34].
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As Table 4 illustrates, the estimated mean and standard division on the left side using BUS-MCS
are 1(L)=0.502 and 6(L)=0.038, and the ones on the right side are fi(R)=1.817 and G(R)=0.141. BUAK-
MCS can achieve high accuracy, while reducing the number of calls to 252.68. The acceptance rate of MCS
is only about 0.16%. Thus, 2x 10° realizations are required by MCS to achieve reliable estimation of the
posterior distribution. The mean and standard deviation estimated by BUAK-SuS are (i(L)=0.498, 6(L)=
0.049, fi(R)=1.829 and G(R)= 0.135. It is noted that the estimated standard deviation for the left cluster of
X, by BUAK-SuS (0.049) is considerably higher than that obtained by the MCS (0.038). The proposed
method, BUAK-AIS, is the most efficient approach. Only 67.8 calls of the limit state function are required
on average. And the results obtained by the proposed method ({1(L)=0.5025, 5(L)=0.0380, fi(R)=1.8144,
6(R)=0.1399) are highly accurate.

1.2

L +  Accepted Samples

08
b 0.6 F

04

0.2+

0 0.5 1 1.5 2 2.5
X
Fig. 5 The accepted samples in BUAK-AIS

4.4 Example Four: Model Updating of a Cable-stayed Bridge during Construction

Cable-stayed bridges have received much attention and been applied widely around world in the last few
decades in part due to the advantages they offer in terms of mechanistic performance, construction,
maintenance and aesthetic characteristics [52-54]. The cantilever method is the most common approach for
the construction of cable-stayed bridges [55]. After the construction of the tower and the first segment of
the girder, the general erection procedure of the cantilever method consists of three steps. First, the next
segment of girder is installed symmetrically in each side of the tower. Second, the stay cables are installed,
and then the cranes move to the end of the constructed girder for the installation of the next segment. These
three steps continue until the closure of the girder in the side span or in the main span. Fig. 6 illustrates
basic procedures of the cantilever method.

Si RSN =

77777
@ ®) ©




481
482

483
484
485
486
487
488
489
490
491
492
493
494
495

496
497

498
499
500
501
502
503
504
505
506
507
508
509
510

Fig. 6 The illustration of the cantilever construction method: (a) installation of a girder segment, (b)
installation of the stay cables, (¢) movement of the crane

As a highly redundant structure, the deformations and the internal force distribution of a cable-
stayed bridge depends on the cable pretension forces. Many studies have focused on the deterministic
optimization of the pretension forces for the stay cables [52-54, 56-59]. However, uncertainties, especially
those stemming from the weight of the girder and applied cable forces, may pose challenge to sequential
construction as segments have to be aligned very accurately. For instance, when the weight of the girder is
underestimated, the desired configuration cannot be achieved with the predefined optimal cable forces.
Moreover, the deviation of the applied cable forces can also significantly influence the configuration,
yielding a considerably large deflection. Collecting information during the construction process therefore
becomes essential for model updating and therefore optimizing the later construction procedures. For
example, forces in the cables that have been constructed can be modified in order to adjust for deviations
from the design plans. This paper investigates the performance of the proposed method for determining the
posterior distribution of key parameters of a 1210-m long-span cable-stayed bridge based on the
observations in the construction process.
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Fig. 7 Span arrangement of the cable-stayed bridge (cm)

The span arrangement of the cable-stayed bridge is shown in Fig. 7. There are 168 cables with a
semi-fan design. The main span and side span are 620 m and 320 m long, respectively. The total height of
the tower is 203.5 m, and the deck is placed 45 m above the foundation. The construction process is modeled
in ANSYS. Note that as the stiffness of the girder is relatively small considering the long span of the bridge,
the applied cable forces and the weight of the girder become crucial to the configuration of the bridge during
the construction process. Thus, this example only considers the density of the girder and the applied cable
force as random variables to investigate the performance of the proposed method. The manufacturing error
in the girder welding, the wind-induced vibration and the difference between the temperature inside and
outside the girder are not considered here. Table 5 lists parts of the section properties, material properties
and the construction load of the bridge. More details of the bridge and the optimization of cable forces can
be found in [54].

Table 5 Parameters of the cable-stayed bridge

Variable Distribution Mean Stal.lde.lrd
deviation
The mass density of girder Normal 7850 (kg/m®) 785
The cable pretension forces Normal 1859.5 (kN) 185.95
The moment of inertia of girder* Deterministic 3.468 (m?) -
The section area of girder Deterministic 1.1811 (m?) -
The moment of inertia of tower (top)* Deterministic 131.830 (m?) -
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The section area of tower (top) Deterministic 21.821 (m?) -

The moment of inertia of tower (bottom)* Deterministic 769.899 (m?) -
The section area of tower (bottom) Deterministic 44.535 (m%) -
Elasticity modulus of the steel Deterministic 2.05x10'! (Pa) -

* The moment of inertia to the lateral direction of the bridge

During the construction of the first segment using the cantilever construction method, the relative
deflection of the end of the installed girder can be measured. As the installation of a segment consists of
three steps as shown in Fig. 6, there are totally 3 observed deflections. Hypothetical observations of these
defections are: 0,=-3.52 cm, 0,=8.24 cm and 03=-2.46 cm. The errors of the observations are assumed to
follow a normal distribution with zero mean and o.=1 mm standard deviation. Thus, the likelihood function

can be formulated as:
1—[3 [o; — 0:(0))?
L -t v\ 64
(x) & i=1 eXp < 20—52 ( )

where x = [x4, x,] is a realization of X = [X, X;], X; represents the mass density of girder, X, represents
the pretension force for the stay cables of the first segment, o; (i = [1,2,3]) is the observed deflection, and
0; (%) is the predicted deflection from the finite element analysis in ANSYS.

The proposed method, BUAK-AIS, is compared with the existing method BUAK-MCS for
illustrating the performance. As the evaluation of the limit state function is time-consuming, BUS with the
original limit state function is not applied here. Table 6 lists the number of MCS samples (Nycs), the
number of IS samples (Njs), the required number of training points for the Kriging model (Nr), and the
estimated mean and standard deviation for the posterior distribution.

Table 6 Bayesian updating results of Example Four

Method” Nycs / Nis Ny A(X1) 6(Xy) A(X2) G(X2)
BUAK-MCS 1x10’ 35.1 8570.63 219.61 1769.34  25.90
BUAK-AIS 1x10° 11.5 8571.80 214.08 1769.96 25.24

* Results are averaged over 20 runs.

As Table 6 illustrates, the estimated mean and standard division for the posterior distribution of X;
with BUAK-MCS are 8570.63 and 219.61, respectively. In addition, the estimated mean and standard
division for the posterior distribution of X, with BUAK-MCS are 1769.34 and 25.90, respectively. The
proposed method BUAK-AIS can achieve very close results, which demonstrates its high accuracy.
Moreover, the proposed method can reduce the number of calls from 35.1 to 11.5 on average, showing
around 67% improvement in efficiency. Fig. 8 illustrates the distribution of the realizations in BUAK-AIS
and BUAK-MCS. The acceptance rate of the proposed method is about 77%, while that for BUAK-MCS
is only 2.1%. The sampling efficiency of the proposed method in this practical application can thus be
illustrated.
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Fig. 8 Illustration of the realizations in Example four

5. Conclusion

Reformulating the rejection sampling into reliability analysis, Bayesian Updating with Structural reliability
methods (BUS) has shown high potential to improve computational efficiency of Bayesian updating.
However, the transformed reliability problem may face the challenge of characterizing the probability of a
rare event. To address this issue, this paper proposes an efficient Bayesian Updating method with Active
learning Kriging-based Adaptive Importance Sampling, called BUAK-AIS. In the proposed framework, the
vicinity of the limit state function is adaptively explored by the U learning function. A Gaussian mixture
distribution is utilized as the quasi-optimal importance sampling distribution, and the parameters of the
Gaussian mixture distribution are optimized in each iteration based on the current Kriging model. The
estimate for the first moment of the posterior distribution is discussed, and a stopping criterion is proposed
accordingly for a robust estimate of the posterior distribution using importance sampling. A new stopping
criterion for the active learning process of Kriging is also developed by quantifying the error in the
estimation of the posterior distribution. Three numerical examples and an application regrading model
updating of a cable-stayed bridge during the construction process are investigated to examine the
performance of the proposed methods. Results indicate that the proposed method, BUAK-AIS, can provide
highly accurate estimates of the posterior distribution, while reducing the required calls of expensive-to-
evaluate likelihood functions compared with existing approaches. A path for future research is to address
limitations of Kriging for high-dimensional problems, which subsequently prevents the application of the
proposed method to such cases. As the performance of the proposed method also depends on the quality of
the proposal IS distribution, investigating and improving the performance of the cross-entropy-based IS can
also be studied in the future. Some or all data, models, or code generated or used during the study are
available from the corresponding author upon reasonable request.
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