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Abstract
Studied are the hysteretic force–deformation response of large-scale nonlinear viscous 
dampers and model of the response for use in numerical simulations and seismic design. 
The force–deformation response of nonlinear viscous dampers with a force capacity of 600 
kN are characterized under sinusoidal loading. A wide range of amplitudes and frequencies 
are used in the characterization tests. A nonlinear Maxwell model is presented for mod-
eling the force–deformation response of large-scale nonlinear viscous dampers for use in 
nonlinear response history analyses. This paper also presents an equivalent linear model 
for the force–deformation response of a nonlinear viscous damper in-series with the elas-
tic bracing and connection components needed to connect the damper to a building struc-
ture. The equivalent linear model enables the effects of the elastic flexibility of structural 
components on the response of the damper-brace component to be considered in seismic 
design. Results from tests on a 0.6-scale three-story structure with nonlinear viscous damp-
ers validated the predictive accuracy of the equivalent linear model. Also evaluated are 
the effects of the elastic flexibility of structural components (e.g., bracing and connection) 
on the effective stiffness and damping ratio of a building structure with nonlinear viscous 
dampers.
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1  Introduction

Research (e.g., Soong and Spencer 2002; Christopoulos and Filiatrault 2006; Symans et al. 
2008; Dong et al. 2016, 2018) has shown that viscous dampers have the potential to signifi-
cantly improve the seismic response of building structures by adding damping and reduc-
ing inelastic deformation demands on the primary Seismic force-resisting system (SFRS) 
of structures under earthquake shaking. The theoretical force–deformation relationship for 
typical fluid viscous dampers is:

where fd is the damper force; vd is the relative velocity across the damper (i.e., the rate 
of the damper deformation ud ); sgn

(
vd
)
 is the direction of the relative velocity across the 

damper, where sgn
(
vd
)
= 1 for vd ≥ 0 and sgn

(
vd
)
= −1 for vd < 0 ; C� is the damping 

coefficient; and � is the velocity exponent. Linear viscous dampers have the value of � 
equals to 1.0, while nonlinear viscous dampers have the value of � less than 1.0. Figure 1 
illustrates the difference in damper force–deformation response between linear and non-
linear viscous dampers. It can be seen that the nonlinear viscous damper has a smaller 
maximum damper force than the linear viscous damper for the same damper deformation 
and equivalent energy dissipation (i.e., equal-area hysteresis loops). Therefore, an equally 
effective nonlinear viscous damper in energy dissipation as a linear viscous damper would 
generate a smaller damper force amplitude, which is favorable in seismic design to reduce 
stress and deformation in adjacent structural components.

Both the NEHRP Recommended Seismic Provisions FEMA P-750 (BSSC 2009) and 
the building code ASCE/SEI 7–16 (ASCE 2016) have included provisions for seismic 
design of structures with passive damping devices. In these provisions, a damping device 
is defined as a flexible structural element that dissipates energy due to relative motion 
between each end of the device. In developing a realistic force–deformation model for a 
damping device, the pins, bolts, gusset plates, braces, brace extensions, and other compo-
nents required to connect the damping device to the seismic mass of the building structure 
should be considered. Based on which, a damping system is defined as a structure with 
damping devices and all the structural components that transfer forces from the damping 
device to the seismic mass of the structure and the base of the structure.

(1)fd = C� ⋅ sgn
(
vd
)
⋅
||vd||�
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Fig. 1   Theoretical hysteretic response of viscous damper: a damper force–deformation response; b damper 
force–velocity response
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The effects of the elastic flexibility of the structural components on the efficiency of 
dampers in structures for supplemental damping and reduction of earthquake induced 
structural response have been broadly discussed in literature. Sause et  al. (1994) 
revealed the dependence of near-optimal damping for viscoelastic damper on brace 
stiffness and demonstrated that the increase in the brace stiffness increases the level of 
damping and reduction of seismic response of viscoelastic-damped frame structures. Fu 
and Kasai (1998) demonstrated that the magnitude of the added stiffness and damping of 
linear viscoelastic and viscous damper systems depends not only on the damper but also 
on the interaction of the damper with other members of the frame. The added stiffness 
provided by a viscous damper-brace component is negligible under conditions of low 
frequency and a stiff brace, which plays a more important role than damping in reducing 
the peak displacement response for impulse excitation. Takewaki and Yoshitomi (1998) 
showed that the support-member stiffness greatly affects the optimal damper placement 
and the effects in structural response reduction, and accordingly, should be taken into 
account in the design of magnitude and placement of the added dampers. Singh et al. 
(2003) observed that the stiffer the bracing in which a viscous damper is installed, the 
higher the damper effectiveness in structural response reduction, and suggested that a 
brace with five times the story stiffness of the structure will be adequate without signifi-
cantly compromising the damping effectiveness. Chen and Chai (2011) also observed 
that brace stiffness need not be large in order to achieve a significant level of response 
reduction for multi-story shear-type buildings with Maxwell model-based brace-damper 
systems, and concluded that a brace stiffness equal to the first-story stiffness of a struc-
ture would be adequate for the desirable levels of response reduction in applications 
without constraint on the total amount of supplemental damping. Lin and Chopra (2003) 
found the dependence of structural response reduction on the bracing stiffness varies 
with the spectral regions of the pseudo-velocity response spectrum of ground motions 
for structures with nonlinear dampers. Overall, the above research recognized the 
importance of brace stiffness on damping efficiency and structural performance of vis-
coelastic and linear viscous damped structures, and recommended using a pragmatic 
value of brace stiffness in design for compensating for the associated effects of brace 
flexibility. However, it remains unclear on how the brace stiffness influences the effec-
tiveness of nonlinear viscous dampers and the how the effects of a flexible brace should 
be taken into account to produce an integrated design of the damping system with the 
SFRS of structures.

In the experimental study of the response of three-story steel frame structures damped 
with large-scale nonlinear viscous dampers subjected to the Design basis earthquake 
(DBE) and the Maximum considered earthquake (MCE) ground motions by Dong et  al. 
(2016, 2018) it was observed that the elastic flexibility in the damper force path of a steel 
frame building structure along with the nonlinearity of a nonlinear viscous damper causes 
the viscous damper forces to be partially in phase with the story drifts. This can result 
in a significant contribution of damper forces to the total story shear force of the struc-
ture at times of peak story drifts. As a result, this adds dynamic stiffness to the structure 
and reduces structural response under transit ground motion excitations. Essentially, this 
in-phase damper force behavior of nonlinear viscous dampers interacting with structural 
members should be considered in the seismic design of such structures. Based on these 
observations, this paper focuses on an in-depth study of the damper force–deformation 
hysteretic response, effects of brace stiffness, and modeling and equivalent linearization of 
damper-bracing for seismic design for structural systems with large-scale nonlinear viscous 
dampers.



	 Bulletin of Earthquake Engineering

1 3

2 � Characterization of large‑scale nonlinear viscous dampers

Large-scale nonlinear viscous dampers with a nominal force capacity of 600 kN and a 
stroke of ± 125  mm were used in the characterization tests. The operating ambient tem-
perature range of the dampers is −  7 to + 55  °C. Characterization tests were conducted 
at the Network for earthquake engineering simulation (NEES) Real time multi directional 
(RTMD) earthquake simulation facility at Lehigh University (Lehigh RTMD Facility 
2014). The characterization test setup is shown schematically in Fig. 2. The actuator is con-
nected to the damper endplate through a short “rigid” transfer beam which is used to adapt 
to the spacing of the anchors in the strong floor. The actuator and “rigid” transfer beam 
are supported vertically by rollers that align the actuator with the damper. The damper is 
connected to a stiff foundation beam using a clevis connection, and the foundation beam 
is attached to the laboratory strong floor with details that prevent movement between the 
foundation beam and the strong floor. Tests were conducted at room temperature that var-
ied between 20 and 25˚C.

The instrumentation layout of the characterization tests is shown in Fig. 3. A load 
cell with a capacity of 667 kN is mounted between the damper and the “rigid” transfer 
beam to measure the damper force. Linear variable displacement transducers (LVDTs) 
were used to measure the damper deformation and the slip and deformation of the 
clevis; LVDT-1 and LVDT-2 measure the displacement of the damper endplate rela-
tive to the strong floor, referred to as Δ1 and Δ2 ; LVDT-3 and LVDT-4 measure the 
relative displacement between the clevis and the strong floor, referred to as Δ3 and 
Δ4 ; LVDT-5 measures the displacement of damper clevis plate relative to the strong 
floor, referred to as Δ5 . The displacements measured by the LVDTs enable two types of 
damper deformation to be determined, namely damper body deformation ubd and over-
all damper deformation ud . ubd is defined as the deformation of the damper body, from 
the damper endplate to the damper clevis plate, which excludes slip and other deforma-
tion in the damper clevis connection. ubd is determined using Eq. (2). ud is defined as 
the deformation from the damper endplate to the clevis plates which are welded to the 
foundation beam. ud includes slip and other deformation of the clevis connection, such 
as the deformation of the clevis pin. ud is determined using Eq. (3). Correspondingly, 

Clevis

Damper
Load cell

“Rigid” steel 
transfer beam

Actuator

Roller support
Foundation 

beam

Fig. 2   Test setup for damper characterization tests
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the damper body relative velocity vbd and the overall damper relative velocity vd are 
determined by the finite difference method applied to ubd and ud , respectively. ubd and 
ud are calculated from the measured displacements data as follows:

The characterization tests used a predefined sinusoidal actuator stroke history 
shown by example in Fig. 4. The loading history has a total of 12 sinusoidal cycles, 
including 2 ramp up cycles, 7 full cycles, and 3 ramp down cycles. Considering damp-
ers within a building structure are loaded at amplitudes and frequencies that depend 
on both the dynamic properties of the structure and the characteristics of earthquake 
ground motions applied to the structure, a wide range of actuator stroke amplitudes 
(12.7–101.6 mm) and frequencies (0.25–4.0 Hz) were used in the characterization tests 
to understand their influence on the response of the nonlinear viscous dampers.

(2)ubd =
Δ1 + Δ2

2
− Δ5

(3)ud =
Δ1 + Δ2

2
−

Δ3 + Δ4

2
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Fig. 3   Instrumentation layout for damper characterization tests: a front view; b top view
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3 � Damper force–deformation response

The damper force–deformation response and damper force–velocity response from the 
characterization tests are compared based on two types of damper deformation ubd and 
ud and the associated damper velocity vbd and vd . Figure 5 shows the fd−ubd and fd−vbd 
response, and Fig.  6 shows the fd−ud and fd−vd response under harmonic loading at 
various frequencies with actuator stroke amplitude of 50.8 mm. In these figures, fd is 
the measured damper force from the tests. As can be seen, the shape of fd−ubd hysteresis 

Fig. 4   Typical actuator stroke 
loading history for damper char-
acterization tests

2 ramp up cycles 7 stable full cycles 3 ramp down cycles
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Fig. 5   fd-ubd and fd-vbd hysteretic response of damper under actuator stroke with various frequencies at 
amplitude of 50.8 mm: a fd-ubd; b fd-vbd
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Fig. 6   fd-ud and fd-vd hysteretic response of damper under actuator stroke with various frequencies at ampli-
tude of 50.8 mm: a fd-ud; b fd-vd
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loop at a lower frequency is more elliptical than that at a higher frequency, which dem-
onstrates the force response of a nonlinear viscous damper depends on loading fre-
quency for a fixed deformation amplitude. Figure 5 indicates the damper force–defor-
mation response of large-scale nonlinear viscous dampers is not purely viscous in two 
ways: (1) the fd−ubd hysteresis loops are slightly inclined (i.e., fd goes toward zero near 
the peak values of ubd with a slope) in comparison to the theoretical hysteresis loops of a 
purely viscous damper shown in Fig. 1; and (2) the fd−vbd response contains a hysteresis 
loop (i.e., the fd−vbd response is “inflated” when the relative velocity vbd is near zero) in 
contrast to the theoretical force–velocity response of a purely viscous damper shown in 
Fig. 1. The inflation of the fd−vbd response is most clear in the region when vbd is small, 
where fd is not zero when vbd is zero and the slope of fd−vbd curves are steeper for 
unloading than loading. A small jump in vbd is observed when fd goes to zero, which is 
related to minor slips within the damper body. The jump is more noticeable in the fd−vd 
response shown in Fig.  6 due to considerable slips in the damper clevis connection. 
This observed damper response can be explained by the elastic flexibility effect of the 
damper body (e.g., components including damper cylinder, damper piston, damper end-
plate and clevis plate). The elastic flexibility effect is more visible when damper force 
reverses its direction from unloading to reverse loading and diminishes when damper 
force is near the force peak.

Figure 7a compares the fd−ud response with the fd−ubd response in the same plot, 
and Fig. 7b compares the fd−vd response with the fd−vbd response in the same plot. It is 
seen that the fd−ud hysteresis loops are slightly more inclined than the fd−ubd hysteresis 
loops, and the fd−vd response has more inflation than the fd−vbd response. Compared to 
ubd , the deformation of the clevis connection and slips in the connection are included 
in ud , which increases the elastic flexibility of the damping device and affects damper 
force–deformation response. The overall slip in ud is 4.0 mm, which leads to a velocity 
jump up to 0.02 m/s in vd for loading frequency up to 2.0 Hz. As the clevis connection 
is a part of the damping device to be installed in a structure, it is preferable to use the 
fd−ud and fd−vd response for the large-scale nonlinear viscous dampers.
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Fig. 7   Comparison of hysteretic response of damper under actuator stroke with frequencies of 2.0 Hz and 
amplitude of 50.8 mm: a damper force–deformation; b damper force-relative velocity
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4 � Nonlinear Maxwell model

Based on the damper force–deformation response observed from the characterization tests, 
a nonlinear Maxwell model, shown schematically in Fig.  8a, is proposed for modeling the 
force–deformation response of large-scale nonlinear viscous dampers. This nonlinear Max-
well model comprises of a nonlinear elastic spring and a nonlinear dashpot which are con-
nected in series. The nonlinear elastic spring simulates the nonlinear elastic flexibility in the 
damper body (e.g., components including damper cylinder, damper piston, damper endplate 
and clevis plate). Illustrated in Fig. 8b, the nonlinear elastic spring has a stiffness ks1 when 
relative velocity is less than vd1 , a stiffness ks2 which is greater than ks1 when relative velocity 
is greater than vd2 , and a stiffness ks which linearly varies between ks1 and ks2 over vd1 and vd2 . 
The nonlinear dashpot, which simulates the nonlinear viscous behavior of the damper, has a 
damping coefficient C� and velocity exponent � , as shown in Fig. 8c. The parameters C� , � , ks1
,ks2 , vd1 , and vd2 of the model were identified using the force–deformation and force–velocity 
response from the characterization tests.

As the nonlinear elastic spring and nonlinear dashpot are connected in series in the nonlin-
ear Maxwell model, the force of the model equals to the force in the spring and the dashpot as 
expressed in Eq. (4), and the total deformation and relative velocity of the model are the sums 
of the deformations and relative velocities in the spring and dashpot, as expressed in Eq. (5) 
and Eq. (6), respectively.

(4)fd = fs = fc

(5)ud = us + uc

(6)vd = vs + vc
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Fig. 8   Nonlinear Maxwell damper model: a schematic of model; b nonlinear elastic spring model; c nonlin-
ear dashpot model
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where fd,fc, and fs are the damper force, dashpot force, and spring force, respectively; 
ud,uc, and us are the total damper deformation, dashpot deformation, and spring deforma-
tion, respectively; and vd,vc, and vs are the total damper relative velocity, dashpot relative 
velocity, and spring relative velocity, respectively. The dashpot force and the spring force 
can be expressed as:

Accordingly, Eq. (5) and Eq. (6) can be written as:

Equation  (9) indicates that when ks → ∞ , ud ≈ uc . For ks with a finite stiffness, when 
vc > 0 , uc is increasing but smaller than ud ; and when vc < 0 , uc is decreasing but greater 
than ud . Therefore, the dashpot relative velocity is not zero when at the peak damper defor-
mation ud , which leads to nonzero dashpot force and damper force. This model behavior 
explains the inclination of the fd−ud hysteresis loops of the characterized nonlinear vis-
cous dampers near the peak values of ubd and ud , where the rate of damper force decreases 
toward zero (i.e., unloading) is more rapid than the rate of damper fore increases from zero 
(i.e., loading).

Equation (10) indicates that when ks → ∞ , vd ≈ vc , which suggests that the fd−vd hys-
teresis loops of the damper is equivalent to that of a nonlinear viscous dashpot. For ks with 
a finite stiffness, vd is smaller than vc when fd is decreasing (i.e., 𝛿fd

𝛿t
< 0 ), and vd is greater 

than vc when fd is increasing (i.e., 𝛿fd
𝛿t

> 0 ). This model behavior explains the inflation of 
the fd−vd hysteresis loops in Fig. 6, where the slope of the hysteresis loops are steeper for 
unloading than loading near zero velocity region.

The nonlinear elastic spring in the nonlinear Maxwell model accounts for the effect 
of varied spring stiffness over damper relative velocity. To demonstrate this effect, 

(7)fs = ks ⋅ us

(8)fc = Cα ⋅ sgn
(
vc
)
⋅
||vc||�

(9)ud =
Cα ⋅ sgn

(
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)
⋅
||vc||�
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Fig. 9   Effect of nonlinear elastic spring on damper response: a fd-ud; b fd-vd
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Fig. 9 shows the comparison of hysteretic response of damper models with rigid spring, 
linear elastic spring, and nonlinear elastic spring, respectively. The linear elastic spring 
has a constant stiffness ks = 175 × 103 kN/m, while the nonlinear elastic spring has 
ks1 = 175 × 103 kN/m, ks2 = 10ks1 , vd1 = 0.05  m/s, and vd2 = 0.20  m/s. It can be seen 
that, unlike the model with rigid spring, the hysteretic response of the model with lin-
ear and nonlinear springs have inclination in the fd−ud hysteresis loops and inflation in 
the fd−vd hysteresis loops. Compared to the model with linear elastic spring, the model 
with the nonlinear elastic spring better captures the inclination in the fd−ud hysteresis 
loops and inflation in the fd−vd hysteresis loops.

The damping coefficient C� and velocity exponent � can be identified using test data 
with fd measured from characterization tests and vbd derived by finite difference of ubd . 
The theoretical damper force–velocity relationship for a viscous damper in the form of 
Eq. (1) was used to identify C� and � by curve fitting the test data using the least-squares 
method. The data with fd at pick vbd in each characterization test was used for the iden-
tification. This identification of C� and � using Eq. (1) essentially neglects the effect of 
elastic flexibility on damper response when damper force is large, which is valid based 
on two facts: (i) the elastic flexibility effect diminishes with the increase of damper 
force as observed from the characterization tests; (ii) the spring deformation and damper 
deformation (i.e., us and ud ) of the model are at their minimums when damper force is 
large. The values of C� = 696 kN − (s/m)0.44 and � = 0.44 were identified for the damp-
ers. Subsequently, the values of ks1 , ks2 , vd1 , and vd2 were identified by minimizing the 
discrepancy between the response predicted by the model and the response measured 
from the characterization tests. The identified parameters are ks1 = 219 × 103 kN/m, 
ks2 = 10ks1 , vd1 = 0.07 m/s, and vd2 = 0.21 m/s. Figure 10 compares the damper hyster-
etic response predicted by the nonlinear Maxwell model with the identified parameters 
with that measured from the characterization tests. Hysteretic responses of the complete 
five loops that begin with the third loop and end with the eighth loop under the full sinu-
soidal cycle of actuator stroke loading history are plotted in the figure for comparison. 
As shown, the nonlinear Maxwell model overall predicts accurate damper force–defor-
mation response with inclusions of the inclination of the fd−ud hysteresis loops and the 
inflation of the fd−vd hysteresis loops.
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Fig. 10   Comparison of damper response from test and damper model prediction at actuator stroke ampli-
tude of 50.8 mm
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5 � Equivalent linearization of damper response

5.1 � Equivalent linear elastic‑viscous model for damper‑brace component

The equivalent linearization of nonlinear viscous damper response aims to include the 
two primary features of the damper response in structural response prediction for seis-
mic design, i.e., (i) damper nonlinearity, and (ii) damper interaction with the elastic 
structural components in the complete damper force path. Demonstrated by results from 
the real-time hybrid earthquake simulations (Dong et al. 2016), the elastic flexibility of 
the structural components in the complete damper force path have   notable effects on 
structural response, which should be considered in the seismic design of structures with 
large-scale nonlinear viscous dampers. The equivalent linearization of the nonlinear vis-
cous damper force–deformation response is enabled using an equivalent elastic-viscous 
model. Fan (1998) and Lee et al. (2005) used the equivalent elastic-viscous model for 
analysis of reinforced concrete frame with viscoelastic dampers. To model a Single 
degree-of-freedom (SDOF) system damped with a viscoelastic damper, the equivalent 
elastic-viscous model contains a spring to model the equivalent elastic stiffness of the 
system and a dashpot to model the equivalent viscous damping based on the concept of 
equivalent energy dissipation for the SDOF system.

Figure 11a shows a SDOF system, representing a one-story frame structure equipped 
with a nonlinear viscous damper. The SDOF system includes the floor mass m, the initial 
stiffness of the structure without the damper k0 , and the brace stiffness in the horizon-
tal direction kb . The brace stiffness represents the elastic flexibility of all the structural 
components which connect the damper to the floor mass of the structure, i.e., kb repre-
sents all the elastic flexibility in the damper force path. The nonlinear viscous damper 
has damping coefficient C� and velocity exponent � . This system can be idealized as an 
SDOF model as shown in Fig. 11b. In this model, the frame structure without damper is 
represented by the elastic Spring-1, and the damper-brace component (i.e., the nonlinear 
viscous damper and associated brace) is represented by the nonlinear Maxwell damper 
model which consists of the elastic Spring-2 for the brace and the nonlinear dashpot for 
the nonlinear viscous damper in series.

In the time domain, the relationship between story drift u(t) , damper deformation 
ud(t) , and brace deformation ub(t) for the damper-brace component shown in Fig.  12a 
can be expressed as:

(a)
(b)

Fig. 11   SDOF analytical model of one-story structure with nonlinear viscous damper
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In the frequency domain, the damper velocity can be expressed as the derivative of 
damper deformation as follows:

where ud(i�) is the Fourier transform of the damper deformation ud(t) and i is the imagi-
nary unit of frequency � . The damper force in the frequency domain can be expressed as:

Let,

Then,

where kd(i�) is the dynamic stiffness of the damper that varies with loading frequency � 
and damper deformation ud(i�).

The combined stiffness for the damper-brace component is as follows:

(11)u(t) = ub(t) + ud(t)

(12)u̇d(i𝜔) = i𝜔 ⋅ ud(i𝜔)

(13)fd(i�) = iC��
�
⋅

(
ud(i�)

)�

(14)kd(i�) = iC��
�
⋅

(
ud(i�)

)�−1

(15)fd(i�) = kd(i�) ⋅ ud(i�)

(a)

(b)

(c)

Fig. 12   Equivalent linear elastic-viscous model for damper-brace component
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k∗
c
(i�) is the complex stiffness for the equivalent viscoelastic model, as shown in 

Fig. 12(b), which can be expressed as follows:

kc(i�) and �c(i�) are the storage stiffness and loss factor of the equivalent viscoelastic 
model, which are dependent on the brace stiffness and the frequency and amplitude of 
damper deformation. For rigid brace 

(
kb → ∞

)
 , kc(i�) would approach zero and �c(i�) 

would approach infinity, so that the equivalent viscoelastic model for the damper-brace 
component would not have an elastic storage stiffness and would have an infinitely large 
loss factor. For a linear viscous damper with � = 1 , kc(i�) and �c(i�) become:

For a given C1, kc1(i�) and �c1(i�) are only dependent on the frequency and brace 
stiffness.

The equivalent linear elastic-viscous model, as shown in Fig.  12c, includes a lin-
ear elastic spring and a linear dashpot. The stiffness of the linear elastic spring keq 
and the viscous damping coefficient of the linear dashpot Ceq can be determined for a 
selected frequency �s , and a selected damper deformation amplitude uds . In practice, 
�s can be selected as the natural frequency of a structure, and uds can be estimated 
from the maximum story drift u0 which can be estimated as the design story drift limit. 
With selected �s and uds , the dynamic stiffness of the damper kd can be determined as 
kd = C��

�
s
⋅

(
uds

)�−1 . Since the damper deformation is not equal to the story drift as 
usual, iteration is required to determine uds from u0 based on the stiffness ratio kb∕kd , 
i.e., uds = kb

/(
kb + kd

)
⋅ u0 . The equivalent stiffness keq equals kc (i.e., the real part of 

the combined complex stiffness k∗
c
 ) evaluated at �s and uds , as Eq. (19). By equating the 

energy dissipation per harmonic cycle of the damper-brace component to the energy 
dissipation per harmonic cycle of the equivalent linear elastic-viscous model, Ceq is 
obtained as Eq. (20).
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Similar to the stiffness Kdamper due to the in-phase behavior of damper force with story 
drift, which adds story stiffness to the structure, as observed from the experimental results 
by Dong et al. (2016), keq adds stiffness to the SDOF system. As a result, the equivalent 
model for the SDOF system, shown in Fig. 11, has an effective stiffness keff and effective 
equivalent damping ratio �eff as follows:

where �eff =
√
keff∕m is the natural frequency of the SDOF system with the damper.

The equivalent linearization of the damper response using the equivalent linear elastic-
viscous model has an underlying assumption that the damper force output from this model 
has the same frequency content as the damper deformation input. This assumption is made 
when going from Eq. (13), where the damper force and damper deformation are expressed 
as functions of a continuous frequency variable � , to Eq.  (19) and Eq.  (20), where the 
equivalent properties (i.e., keq and Ceq ) are expressed as functions of a single frequency 
�s , even though an applied damper deformation at a single frequency will produce force 
output at multiple frequencies. The assumption of single frequency response is not strictly 
true due to the nonlinearity of the damper-brace component, however, makes sense for the 
equivalent linearization of the nonlinear viscous damper force–deformation response using 
the equivalent linear elastic-viscous model, as the dominant component of the damper 
response is at the frequency of the story drift input, as demonstrated below.

Figure 13 shows the frequency response amplitudes of damper deformation and damper 
force determined from the nonlinear Maxwell model using a predefined harmonic story 
drift as the input. The predefined harmonic story drift has an amplitude of 12 mm and a 
frequency of 1.0 Hz. The frequency response amplitude of the predefined story drift is also 
shown in Fig. 13. The frequency response amplitudes of story drift, damper deformation, 
and damper force were obtained from the Fast fourier transform (FFT) of the responses. 
Here, the nonlinear Maxwell model represents the damper and associated brace in the 
damper force path. The damping coefficient C� = 696 kN - (s/m)0.44 and velocity expo-
nent � = 0.44 , and a practical brace flexibility with kb = 135 × 103 kN/m were used in this 
model. As shown in Fig. 13, the damper force has components at frequencies higher than 
1.0 Hz (e.g., 3.0 Hz, 5.0 Hz, 7.0 Hz, etc.), while the first story drift has significant fre-
quency response amplitude at only 1.0 Hz. The damper deformation also has components 
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at frequencies higher than 1.0 Hz, which is expected because the damper force has compo-
nents at these higher frequencies. The higher frequencies in the damper deformation can 
be understood as follows: (1) the damper force components at higher frequencies require 
that force components at higher frequencies develop in the spring (i.e., the brace) of the 
damper-brace component to provide force equilibrium; (2) the force components at higher 
frequencies in the spring require spring deformation components at higher frequencies due 
to the linear elastic constitutive property of the spring; (3) the spring deformation compo-
nents at higher frequencies require damper deformation components at higher frequencies 
so that the sum of the spring and damper deformation is compatible with the harmonic 
story drift.

The effect of damper nonlinearity on the damper force frequency response can be 
observed by the comparison between Fig. 13 and Fig. 14, where the frequency response 
amplitude of the story drift, damper deformation, and damper force from the nonlinear 
Maxwell model with different values for velocity exponent � within the damper-brace com-
ponent are shown. Figure 14a and Fig. 14b show the frequency response amplitudes of the 
story drift, damper deformation, and damper force from the model with � = 0.2 (more non-
linearity) and � = 0.8 (less nonlinearity), respectively. It is seen that the frequency response 
amplitudes of damper force and damper deformation in Fig. 14a are greater than those in 

Fig. 13   Frequency response of 
damper deformation and damper 
force from model prediction with 
α = 0.44 using predefinded story 
drift input

(a) Damper model prediction with α=0.2 (b) Damper model prediction with α=0.8

Fig. 14   Frequency response of damper deformation and damper force from model prediction for different 
damper nonlinearity in damper-brace component
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Fig. 13, while the frequency response amplitudes of damper force and damper deformation 
in Fig. 14b are smaller than those in Fig. 13, which indicates that the frequency response 
amplitudes of damper force and damper deformation components at higher frequencies 
increase as the nonlinearity in the damper-brace component increases.

These results show that, although the damper force response has components at higher 
frequencies and the amplitudes of these components increase with the increase of non-
linearity in the damper-brace component, the dominant component of the damper force 
response is at the frequency of the story drift input. These results justify the assumption 
that a single frequency can be used in the equivalent linearization of the nonlinear viscous 
damper force–deformation response using the equivalent linear elastic-viscous model for � 
values in the range that was studied.

5.2 � Validation of equivalent linear elastic‑viscous model

The equivalent linear elastic-viscous model is validated using results from harmonic tests 
on a 0.6-scale three-story structure with one nonlinear viscous damper and the associated 
brace in each story, see Fig. 15a. The test structure is referred to as the Damped braced 
frame (DBF). The elevation and plan views of the test structure in the test setup are shown 
in Fig. 15b, c, respectively. The DBF is laterally braced by an external bracing frame which 
is fixed to the reaction wall. During the test, loading is applied to the DBF at the loading 
plates through pretensioned loading beams connected to actuators. The dampers installed 
in the DBF have damping coefficient C� = 696 kN  −  (s/m)0.44 and velocity exponent 
� = 0.44 . The complete force path for the damper in each story includes columns, beams, 
brace, brace extensions, gusset plates, clevises, damper attachment plates, pins, bolts, and 
other components required to connect the damper to the mass of the floor levels (i.e., seis-
mic mass degrees of freedom) of the structure. The elastic flexibility of each component 
in the force path contributes the total flexibility of the complete force path for the damper.

During the harmonic tests, the DBF was subjected to predefined harmonic floor dis-
placement histories with frequencies of 1.0 and 2.0  Hz, respectively. The amplitudes of 
the predefined floor displacements were the same for each test, with values of 12, 24, and 
36 mm for the first, second, and third floor, respectively. Figure 16 shows the predefined 
floor displacement time histories as the input for the actuators. Figure 17 shows the instru-
mentation for the floor displacement and damper deformation measurements in the DBF. 
During the tests, temposonic displacement transducers with a range of ± 380 mm were used 
to measure floor displacements. Each temposonic is attached to the external bracing frame 
and attached to the top flange of the DBF floor beam at midspan, as shown in Fig. 17a. 
The floor displacement measurements were used to determine the story drifts of the DBF. 
LVDTs were mounted on each damper between damper clevis and the damper end plate to 
measure the damper deformation, as shown in Fig. 17b. The damper deformation is defined 
as the total of the deformation measured by LVDT-1 and LVDT-2. A load cell with a force 
capacity of ± 660 kN was placed in the damper-brace connection to measure the damper 
force in each story.

For the validation of the equivalent linear elastic-viscous model, the story drifts of 
the DBF were used as the deformation input (u) to the model for the force output. The 
story drift amplitudes determined from the floor displacement measurements during the 
tests with predefined floor displacement histories were fairly uniform over the height 
of the building and used as the deformation input (um) to the equivalent linear elastic-
viscous model for the damper-brace component in each story of the DBF. Given um 
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and frequency � of the loading, the deformation amplitude uds and dynamic stiffness 
kd = C��

�
⋅

(
uds

)�−1 of the damper were estimated iteratively, which were used to cal-
culate keq and Ceq for the equivalent linear elastic-viscous model. To demonstrate the 
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accuracy of the equivalent linear elastic-viscous model, the predicted damper forces 
using the equivalent linear elastic-viscous model are compared with the damper forces 
measured from the harmonic tests, as shown in Fig. 18 for the damper force time his-
tories and Fig. 19 for the damper force-story drift hysteresis loops. In these plots, the 
story drifts were calculated from the measured floor displacement histories from the 
harmonic tests. As can be seen, for the loops with story drift amplitudes matching the 
amplitudes used in the linearization of the model, the damper force-story drift hyster-
esis loops from the equivalent linear elastic-viscous model agree well with the damper 
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force-story drift hysteresis loops obtained from the tests, which validates that the equiv-
alent linear elastic-viscous model is suitable for preliminary analysis of a structure with 
nonlinear viscous dampers.

6 � Effects of brace stiffness on effective stiffness and equivalent 
damping ratio

Using the equivalent linear elastic-viscous model, the effects of elastic flexibility of 
brace on the effective stiffness and equivalent damping ratio of a 0.6-scaled three-story 
test structure with a Moment resisting frame (MRF) and a DBF with nonlinear viscous 
dampers are studied, see Fig. 20a. The MRF represents the Lateral force-resisting sys-
tem (LFRS) while the DBF represents the supplemental damping energy dissipation 
system for a prototype office building, see Fig. 20b. The pair of MRF and DBF work in 
parallel through the action of the floor diaphragm and represents the LFRS and damping 
system in one horizontal direction of one-quarter of the total floor area of the building. 
The design philosophy of the prototype building was that the MRFs are designed to 
satisfy the strength criterion of ASCE 7–16 and the DBFs with dampers are added to 
achieve design performance objectives, including limiting story drift at prescribed haz-
ard levels in order to control story drift. The design details of the members of the MRF 
and DBF can be found in Dong (2016). In the test structure, the brace stiffness ( kb ) is 
defined as the combined stiffness of the complete force path for the damper in each 
story of the DBF, which include the pins, bolts, clevises, gusset plates, braces, brace 
extensions, and other components required to connect the damper to the seismic mass 
Degree-of-freedom (DOF) at each floor of the structure. The story stiffness matrix K0 
and mass matrix M of the structure without dampers are as:

(a) frequency = 1.0 Hz

(b) frequency = 2.0 Hz

Fig. 19   Comparison of damper force-story drift hysteresis behavior from tests and equivalent linear elastic-
viscous model
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where k01 , k02 , and k03 is the story stiffness of the first, second, and third story of the test 
structure including the MRF and DBF without dampers, respectively; m1 , m2 , and m3 is 
the floor mass of the first, second, and third floor of the structure, respectively. The 
ratio of brace stiffness kb per story in the global direction to the first story stiffness k01 is 
expressed as �b = kb

/
k01 , and the ratio of dynamic stiffness of damper kd to k01 is expressed 

as �d = kd
/
k01 , where kd is determined based on �s and uds as kd = C��

�
s
⋅

(
uds

)�−1 . And 
keff

/
k01 and Teff

/
T0 are expressed as follows:

Figure  21 shows the trend of keff
/
k01 over the loading frequency ( �∕2� ) for varied 

story drift amplitudes ( um ) for the first story of the structure. A larger value of keff
/
k01 

indicates a greater increase in the overall structure stiffness due to the contribution of the 
real part of the complex stiffness of the damper-brace component. For a structure with a 
given story drift amplitude, keff

/
k01 increases with the increasing of the loading frequency 
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and decreases with the decreasing of brace stiffness. For a structure subjected to harmonic 
displacement loading with a given story drift amplitude, the ratio of keff

/
k01 increases 

with an increase in loading frequency. Increasing the brace stiffness, e.g., from kb = k01 
to kb = 10k01 substantially reduces the ratio of keff

/
k01 over the entire range of loading fre-

quency. For a structure with identical brace stiffness, keff
/
k01 decreases with an increase 

in story drift amplitude. For a structure with rigid brace (i.e., �b = kb
/
k01 → ∞ ), keff

/
k01 

approaches 1.0, which suggests the effects of complex stiffness of the damper-brace com-
ponent is less significant for a structure with stiffer braces.

The variations of the normalized first mode period ( Teff
/
T0 ) of the structure versus the 

loading frequency ( �∕2� ) for specified story drift amplitudes ( um ) are shown in Fig. 22. 
As illustrated, the shortening of the period increases as the loading frequency increases, 
and the shortening under a smaller story drift amplitude is more obvious than that under 
a larger story drift amplitude. For a specified brace stiffness kb = 5k01 for instance, as the 
story drift amplitude increases from 0.5 to 2.0% radians, Teff

/
T0 increases from 0.94 to 0.98 

at a loading frequency of 1.0 Hz while increases from 0.83 to 0.95 at a loading frequency 
of 5.0 Hz. For this reason, the periods of the structure with nonlinear viscous dampers are 
variable rather than predetermined, due to the effect of the complex stiffness of the nonlin-
ear viscous dampers in the structure under dynamic loading. The range of variation of the 
periods of the structure depends on the brace stiffness as well as the loading frequency and 
amplitude.

Figure 23 shows the effects of brace stiffness on the effective damping ratio �eff over a 
range of loading frequency ( �∕2� ) for the structure with different story drift amplitude 
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( um ). It can be seen that: (1) the effect of brace stiffness on �eff is more significant for a 
smaller story drift amplitude, e.g., with the increase of brace stiffness, the increase in �eff 
under the story drift amplitude of 0.5% radians is greater than that under the story drift 
amplitude of 2.0% radians; (2) the effect of brace stiffness on �eff diminishes with the 
decreasing of the loading frequency, e.g., the effective damping ratios are nearly the same 
for the structure with story drift amplitude of 1.0% radians when the loading frequency is 
less than 2.0 Hz and kb ≥ 5k01 ; (3) a higher effective damping ratio can be achieved for a 
loading with higher frequency and lower amplitude, e.g., an effective damping ratio of 50% 
can be achieved for the structure under the loading with frequency of 5.0 Hz and story drift 
amplitude of 0.5% radians when kb ≥ 5k01 ; and (4) the effect of brace stiffness on �eff is 
more pronounced for flexible braces, e.g., a flexible brace stiffness with kb = k01 caps the 
maximum level of damping that can be added to the structure over the entire loading fre-
quency range, thereby, limiting the efficiency of the dampers in the structure. As a result, 
the effect of brace stiffness on damping ratio of a structure is not predetermined, rather it 
quantitatively depends on the frequency and amplitude of the dynamic loading that the 
structure is subjected to. A satisfactory design of the damper-brace components for struc-
tures with nonlinear viscous dampers is required to enable specified performance objec-
tives to be met. Overall, a design with stiffer brace will increase the effectiveness of the 
damper-brace component in providing an effective damping ratio for a structural system. 
For instance, as indicated in Fig. 23, for a structure subjected to dynamic loading with a 
loading frequency equal to the fundamental frequency of the structure, a brace design with 
kb = 10k01 enables compelling efficacy of the dampers in adding damping for various story 
drift amplitudes ranging from 0.5% to 2.0% radians.

7 � Summary and conclusions

This paper presented the hysteretic damper force–deformation responses of large-scale 
nonlinear viscous dampers from characterization tests. The obtained damper response 
showed elastic flexibility exists in the damper body and clevis connection that connect the 
damper to the test setup. Due to the effect of the elastic flexibility, the damper force–defor-
mation response is not purely viscous, in terms that damper force–deformation hysteretic 
loops have inclinations and the damper force–velocity hysteretic loops have inflations. A 
nonlinear Maxwell model was proposed for modeling the damper response. The nonlin-
ear Maxwell model, which consists of a nonlinear elastic spring and a nonlinear dashpot 
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Fig. 23   Effect of brace stiffness on equivalent damping ratio of structure with nonlinear viscous damper
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connected in series, was validated to provide simulated damper response that match well 
with the damper response obtained from the characterization tests.

An equivalent linearization of the damper response of a nonlinear viscous damper and 
associated elastic flexibility in the damper force path was also presented. The linearization 
used an equivalent linear elastic-viscous model that includes a linear elastic spring and 
a linear viscous dashpot. Using the equivalent linear elastic-viscous model, the effects of 
the elastic flexibility of brace (i.e., brace stiffness) on the effective stiffness and equivalent 
damping ratio of a SDOF system was investigated. Results showed that a more flexible 
brace (i.e., more flexible damper force path) is more likely to increase the stiffness and 
decrease the equivalent damping ratio of the system.

In conclusion, the study in this paper shows: (1) the elastic flexibility in the damper body 
and the components in the complete damper force path (such as braces, brace extensions, 
gusset plates, clevises, connections, etc.) have remarkable effects on damper response, 
which causes the non-purely viscous behavior of large-scale nonlinear viscous dampers; 
(2) the nonlinear Maxwell model provides reliable prediction of damper force–deformation 
response for nonlinear viscous dampers with or without associated elastic flexibility; (3) 
the equivalent linearization of nonlinear viscous damper response includes the effects of 
the elastic flexibility on damper response and enables simplified seismic design of struc-
tures with nonlinear viscous dampers; (4) a brace stiffness of greater than five times of the 
story stiffness (i.e., kb ≥ 5k01 ) is encouraged to use in practice to compromise the effects 
of elastic flexibility on the effective stiffness and equivalent damping ratio of the structure.
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