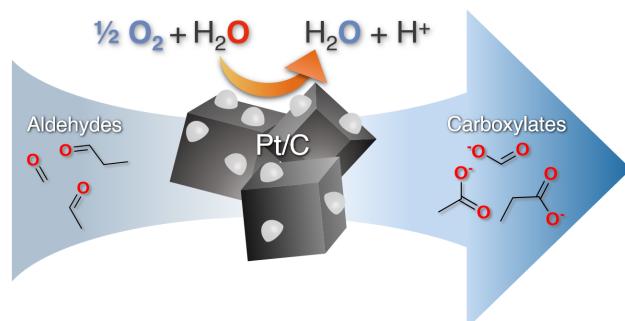


Out of Thin Air? Catalytic Oxidation of Trace Aqueous Aldehydes with Ambient Dissolved Oxygen


Euna Kim¹, Georgia B. Cardosa¹, Katarina E. Stanley², Travis J. Williams³, Daniel L. McCurry^{1*}

¹Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089

²Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089

³Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661

*Corresponding author phone: 213-740-0762; email: dmccurry@usc.edu

27

28

29 **ABSTRACT**

30 Water reuse is expanding due to increased water scarcity. Water reuse facilities treat wastewater
31 effluent to a very high purity level, typically resulting in a product water that is essentially
32 deionized water, often containing less than 100 $\mu\text{g/L}$ organic carbon. However, recent research
33 has found that low molecular weight aldehydes, which are toxic electrophiles, comprise a
34 significant fraction of the final organic carbon pool in recycled wastewater in certain treatment
35 configurations. In this manuscript, we demonstrate oxidation of trace aqueous aldehydes to their
36 corresponding acids using a heterogeneous catalyst (5% Pt on C), with ambient dissolved oxygen
37 serving as the terminal electron acceptor. Mass balances were essentially quantitative across a
38 range of aldehydes, and pseudo-first order reaction kinetics are observed in batch reactors, with
39 k_{obs} varying from 0.6 h^{-1} for acetaldehyde to 4.6 h^{-1} for hexanal, while they were low for
40 unsaturated aldehydes. Through kinetic and isotopic labeling experiments, we demonstrate that
41 while oxygen is essential for the reaction to proceed, it is not involved in the rate-limiting step,
42 and the reaction appears to proceed primarily through a base-promoted beta-hydride elimination
43 mechanism from the hydrated *gem*-diol form of the corresponding aldehyde. This is the first
44 report we are aware of that demonstrates useful abiotic oxidation of a trace organic contaminant
45 using dissolved oxygen.

46

47 **KEYWORDS:** Wastewater Recycling, Reuse, Organic Contaminants, Catalysis

48

49 **SYNOPSIS**

50 Toxic aldehydes have been found as contaminants in recycled water. This study demonstrates
51 catalytic oxidation of aldehydes to non-toxic carboxylates with ambient dissolved oxygen.

52

53 **INTRODUCTION**

54 Increased water scarcity has motivated greater adoption of wastewater recycling to
55 augment potable water sources.^{1–3} The risk from pathogens and hazardous chemicals in
56 wastewater is mitigated by the use of multiple treatment steps including pre-oxidation (typically
57 with ozone or chlorine), reverse osmosis (RO), and advanced oxidation processes (AOPs).⁴
58 Despite the high level of treatment used during wastewater recycling, recent studies have
59 documented the presence of recalcitrant organic carbon in the final effluent, and the majority of
60 these chemicals have not yet been fully identified.^{5–7} Furthermore, some water reuse operations
61 have considered replacing RO-based treatment trains with ozone followed by biological
62 activated carbon (O₃/BAC) due to treatment and disposal concerns for RO concentrates,^{8–11}
63 however higher total organic carbon (TOC) concentrations are expected in the effluent of the
64 O₃/BAC process compared to current practice (e.g., 2.5 mg/L for O₃/BAC and 0.2 mg/L for
65 RO).⁷

66 Despite many studies on the low molecular weight compounds present in potable reuse
67 product water, until recently <35% of the dissolved organic carbon in reverse osmosis permeate
68 had been characterized.^{7,12,13} One fraction, disinfection byproducts including trihalomethanes,
69 haloacetic acids, and *N*-nitrosodimethylamine, accounts for approximately 5–10% of the TOC in
70 the final effluent.¹³ Little of the remaining unknown carbon had been identified, until a recent
71 study demonstrated that carbonyl compounds account for 19–38% of the remaining DOC in
72 recycled wastewater, most of which were saturated and unsaturated aldehydes.⁷ These aldehydes
73 are toxic electrophiles^{14,15} and are difficult to remove with existing reverse osmosis and
74 advanced oxidation treatment systems due to their polarity, low molecular weight, and neutral
75 charge.^{16–22}

76 Catalytic transformation of contaminants with environmentally-relevant, mild, and
77 scalable conditions is a subject of considerable research interest.²³⁻²⁷ Many studies using
78 heterogeneous catalysts for environmental purposes in water have focused on the reduction of
79 inorganic contaminants such as bromate, nitrate, and perchlorate^{23,28,29} or hydrodehalogenation of
80 halogenated organics.²⁹⁻³¹ Oxidative catalysis has been applied to carry out degradation of
81 contaminants on an electrode, or on a membrane surface with the addition of strong electron
82 acceptor such as hydrogen peroxide or persulfate.³²⁻³⁷ Photocatalytic oxidative degradation of
83 micropollutants, largely with TiO₂, has focused on oxidation by surface reactions and generation
84 of hydroxyl radical initiated by UV irradiation.³⁸⁻⁴² However, catalytic oxidation of organic
85 pollutants in water without electrochemistry, addition of electron acceptors, or photochemistry,
86 each of which challenge the potential scalability of the respective methods, has not been
87 demonstrated to the best of our knowledge.

88 In this study, we sought to extend the concept of “Catalytic Converters for Water
89 Treatment”²⁷ from reductive treatment of oxyanions to oxidation of organic pollutants, by
90 oxidizing contaminants with dissolved molecular oxygen as the terminal electron acceptor. We
91 first identified a catalyst in the organic synthesis literature reported to be capable of oxidizing
92 aqueous alcohols and aldehydes to their corresponding acids in the presence of dissolved oxygen
93 and aimed to identify its substrate scope in batch experiments. We determined kinetic parameters
94 for oxidation of a range of low molecular weight aldehydes, aimed to elucidate the reaction
95 mechanism, in particular the role of dissolved oxygen, and to demonstrate preliminary
96 effectiveness in a flow-through column reactor more closely resembling deployment in full-scale
97 water treatment. This study takes a first step toward oxidation of trace aldehyde compounds in

98 final recycled water effluent to generally non-toxic organic acids, using heterogeneous catalysts
99 and ambient molecular oxygen.

100

101 MATERIALS AND METHODS

102 **Materials and Reagents.** Chemical suppliers and purities are listed in Text S1.

103

104 **Catalyst Characterization.** The morphology of the catalyst supporter was observed by scanning
105 electron microscope (SEM) using Thermo Scientific Helios G4 PFIB UXe, and the size
106 distribution of catalyst particles was measured by using dynamic light scattering (DLS) with a
107 Zetasizer Ultra (Malvern Instruments Ltd., UK). A 4-mL of 0.4 g/L suspension of Pt/C was
108 prepared in Milli-Q water and transferred to a polystyrol/polystyrene cuvette for analysis. The
109 light scattering was measured after equilibrating samples at 25 °C for 120 seconds with a
110 refractive index of 1.63 and an absorption of 0.001. The size and dispersion of the platinum
111 supported on the carbon was characterized by measuring scanning transmission electron
112 microscopy (STEM) and transmission electron microscopy (TEM) using JEOL 2100F at 200 kV
113 with high angle annular dark field detector.

114

115 **Batch Experiments to Determine Aldehyde Oxidation Kinetics.** Batch experiments were
116 performed in 100 mL glass syringes to avoid creating headspace while sampling periodically,
117 because several target compounds were semi-volatile and mass balance was not conserved in
118 preliminary tests in open reactors. Within the syringes, 40 mg of heterogeneous 5% Pt on C
119 catalyst particles were suspended in 99 mL of 10 mM buffer solution adjusted to pH 4–12: citrate
120 for pH 4, 5 and 6, phosphate for pH 7, 8 and 12, and carbonate for pH 9, 10 and 11. After adding

121 a magnetic stir bar, the syringe was fitted tightly with a glass plunger and secured to a stir plate.
122 Once the catalyst was dispersed homogeneously in the syringe, 1 mL of concentrated aqueous
123 aldehyde solution was injected to initiate the reaction. Aliquots of 4.5 mL were withdrawn
124 periodically and filtered with a syringe filter (0.2 μ m, PTFE).

125

126 **¹⁸O-labeled Water Experiments.** Batch oxidation reactions were conducted in ¹⁸O-labeled
127 water (H_2^{18}O) to differentiate water-derived oxygen atoms in the reaction products from O_2 -
128 derived oxygen atoms. In 2 mL HPLC vials, 1.6 mg of the catalyst was added along with 400 μ L
129 of ¹⁸O-labeled water containing 97 atom % ¹⁸O. To initiate the reaction, 0.36 μ L of pure
130 butyraldehyde or 0.41 μ L of pure benzaldehyde ($[\text{aldehyde}]_0 = 10 \text{ mM}$) was added to the vials
131 along with a small stir bar. The solutions were then stirred for six hours and filtered through a 0.2
132 μ m syringe filter before analysis. The hydration equilibrium of butyraldehyde was evaluated
133 with 5% v/v of ¹⁸O-labeled water (H_2^{18}O) in 2 mL HPLC vials, and the m/z values were acquired
134 by using GC/MS/MS (Agilent 7890B/7010) at two reaction time intervals, 2 h and 5 d.

135

136 **Flow-through Column Reactor Experiments.** A small-scale column test was conducted to
137 determine the feasibility of aldehyde oxidation by Pt/C catalysts in a flow-through configuration.
138 The borosilicate glass column had a length of 70 mm and an inner diameter of 5.6 mm for a total
139 bed volume of 1.72 cm^3 . The column was packed with a heterogenous mixture of 40 mg of
140 platinum on carbon dispersed in 3 g of Ottawa sand (to increase hydraulic conductivity) and was
141 plugged on each end with glass fiber. A 100 μM formaldehyde solution was pumped from an
142 amber borosilicate bottle with a peristaltic pump at a flow rate of 0.256 mL/min, which led to an
143 empty bed contact time (EBCT) of 6.7 minutes as shown below (eq. (1)):

144

145
$$EBCT = \frac{\text{Bed volume (mL)}}{\text{Flow rate (mL/min)}} = \frac{1.72 \text{ mL}}{0.256 \text{ mL/min}} = 6.7 \text{ min} \quad (1)$$

146

147 **Reactant and Product Analysis.** Depending on the reaction parameters, experiments were
148 conducted at two different ranges of initial concentration. When the initial concentration of
149 reactants was over 100 μM , the analytes (aldehydes and acid products) were analyzed via high
150 pressure liquid chromatography (HPLC; Agilent 1260). Analytes were separated on an Aminex
151 HPX-87H (300 mm \times 7.8 mm \times 9 μm) column without pretreatment. The mobile phase (30%
152 acetonitrile and 70% aqueous sulfuric acid (20 mM)) was pumped through the column at 0.5
153 mL/min at 60 $^{\circ}\text{C}$ with a sample injection volume of 100 μL . The analytes were detected by a
154 photodiode array (Agilent 1260) at 206 nm for aldehydes and 282 nm for carboxylic acids.

155 For initial reactant concentrations below 25 μM , aldehydes were derivatized by adding 20
156 μL of a 3 mg/mL 2,4-dinitrophenylhydrazine solution and 40 μL of 1 M citrate buffer solution
157 adjusted to pH 3 to a 1 mL of sample aliquot.⁴³ After heating the solution at 50 $^{\circ}\text{C}$ for two hours,
158 the aldehyde derivatizes were separated via HPLC (Agilent 1290 or Agilent 1260) on a Kinetex
159 Biphenyl column (100 mm \times 4.6 mm \times 2.6 μm). The mobile phase consisted of an organic
160 channel (50:50 methanol:ethanol) which increased from an initial 60% to 75% over 10 minutes
161 at a constant flowrate of 1.3 mL/min at 40 $^{\circ}\text{C}$, with the remainder of the mobile phase consisting
162 of Milli-Q (Millipore Advantage A10) water. The separated compounds were detected by either
163 high-resolution mass spectrometry (Agilent 6560 ion mobility quadrupole time-of-flight [LC-
164 IM-QTOF]) with negative mode electrospray ionization (details provided in Table S1; all mass
165 errors <3 ppm), or with a UV/visible photodiode array detector (Agilent 1260) at 360 nm for
166 derivatized saturated aldehydes and at 382 nm for derivatized crotonaldehyde. For product

167 analysis, carboxylic acids were separated by a Dionex IonPac AS11-HC column (250 mm × 2
168 mm × 9 μ m) in an aqueous mobile phase of KOH increasing from 1 mM to 9 mM over 8 minutes
169 and measured via ion chromatography (Dionex ICS-2100) with DS6 heated conductivity cell.
170 Platinum was quantified in column experiment permeate via inductively-coupled plasma mass
171 spectrometry (ICP-MS; Agilent 8900).

172 When conducting ^{18}O -labeled water experiments, butyric acid and benzoic acid were
173 separated by an Agilent Extend-C18 column (50 mm × 2.1 mm × 1.8 μ m) in an isocratic mobile
174 phase of 30% acetonitrile and 70% aqueous formic acid (0.1%) at a constant flow rate of 0.5
175 mL/min at 40 °C, and detected by high-resolution MS (Agilent 6560) in positive mode. Mass
176 spectrometry details are provided in Table S2. All measured mass errors were < 10 ppm. For
177 butyraldehyde measurement, 1 mL aqueous samples were placed in 4 mL vials, and 0.4 g of
178 Na_2SO_4 was added. After adding 1 mL of dichloromethane, the vials were vigorously shaken for
179 2 minutes, and the organic solvent phase was transferred to a 2 mL of HPLC vial. Butyraldehyde
180 was analyzed via gas chromatography/triple quadrupole mass spectrometry (GC/MS/MS)
181 (Agilent 7890B/7010, Santa Clara, CA) with a DB-1701 column (60 m × 0.25 mm × 0.25 μ m)
182 Measurement details are provided in Text S2 and Table S3.

183

184 **Dissolved Oxygen Measurement.** Dissolved oxygen concentrations were measured using a
185 modified Winkler method.⁴⁴ To minimize headspace, 2 mL of sample was injected into a 2 mL
186 HPLC vial. 20 μ L of 3.55 M manganese sulfate monohydrate was then added, followed by 20
187 μ L of a solution composed of 8 M sodium hydroxide, 3.34 M potassium iodide, and 0.15 M
188 sodium azide. Finally, 20 μ L of pure sulfuric acid was added to dissolve the precipitate.
189 Dissolved oxygen was quantified as iodine (produced at a 2:1 stoichiometric ratio) by titrating

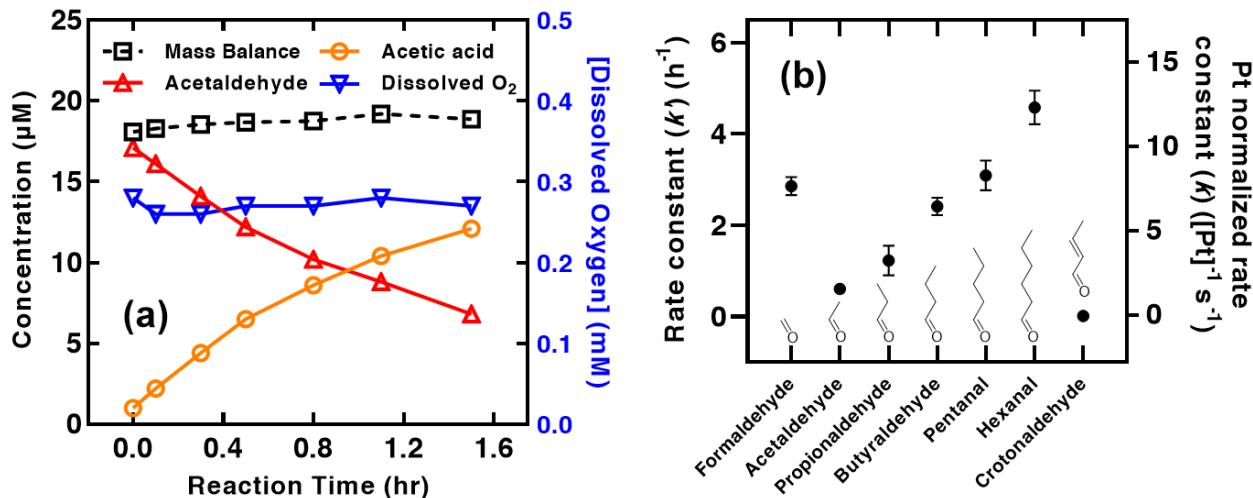
190 with 25 mM sodium thiosulfate and 10 mM sodium hydroxide; starch was added midway
191 through the experiment to visually indicate the completion of the titration as the dark blue
192 solution became transparent. Further details are provided in Text S3.

193

194 **Statistical Analysis.** Experimental results were statistically analyzed using GraphPad Prism 9,
195 with a simple linear regression model and a sum-of-squares F test with 95% confidence intervals.
196 The slopes of logarithm-transformed data sets were compared by analysis of variance (ANOVA).

197

198 **RESULTS AND DISCUSSION**


199 **Catalyst Characterization.** Catalyst particles were rough, consistent with an activated carbon
200 supporter (Figure S1, panels a-d), with a mean particle size of 226 nm and a standard deviation
201 was 31 nm (Figure S2). Platinum sites were approximately uniformly dispersed (Figure S3,
202 panels a-c), with a size of less than 5 nm on the carbon surface (Figure S3, panel d).

203

204 **Aldehyde Oxidation Reaction Rate Order and Rate Constants.** Based on previous research
205 identifying the presence of certain toxic aldehydes in the final recycled water effluent,⁷ six
206 saturated aldehydes and one unsaturated aldehyde were chosen as oxidation targets:
207 formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, pentanal, hexanal and
208 crotonaldehyde. Initial aldehyde oxidation experiments were performed with relatively low
209 initial aldehyde concentrations to ensure approximately constant dissolved oxygen
210 concentrations for determination of rate constants. Aldehyde concentrations decreased while
211 corresponding acid product concentrations increased, following apparent first-order kinetics
212 (representative dataset in Figure 1a; complete set in Figure S4; log-transformed data to obtain

213 rate constants in Figure S5). Mass balances were approximately complete except for with
 214 hexanal (Figure S4, panel e), which is discussed below. The nearly 100% mass balance indicates
 215 that aldehyde oxidation by Pt/C/O₂ produces the corresponding acids as an exclusive product
 216 under the evaluated experimental conditions.

217

218 **Figure 1.** (a) Representative reaction profile for acetaldehyde oxidation including acetaldehyde, acetic acid, and dissolved oxygen concentrations, and mass balance (sum of aldehyde and acid).
 219 (b) Aldehyde oxidation first-order rate constants (h^{-1}) and rate constants normalized by platinum
 220 atom concentration ($[\text{Pt}]^{-1} \text{ s}^{-1}$). Error bars indicate the standard deviation of the rate constants
 221 determined by linear regression of replicate values. Experimental values without error bars indicate
 222 that the error bars are smaller than the data marker. Experimental conditions: 40 mg/100 mL of
 223 Pt/C catalyst, 20 μM nominal initial aldehyde concentration, pH 7, 10 mM phosphate buffer, T =
 224 $24 \pm 0.5^\circ\text{C}$.

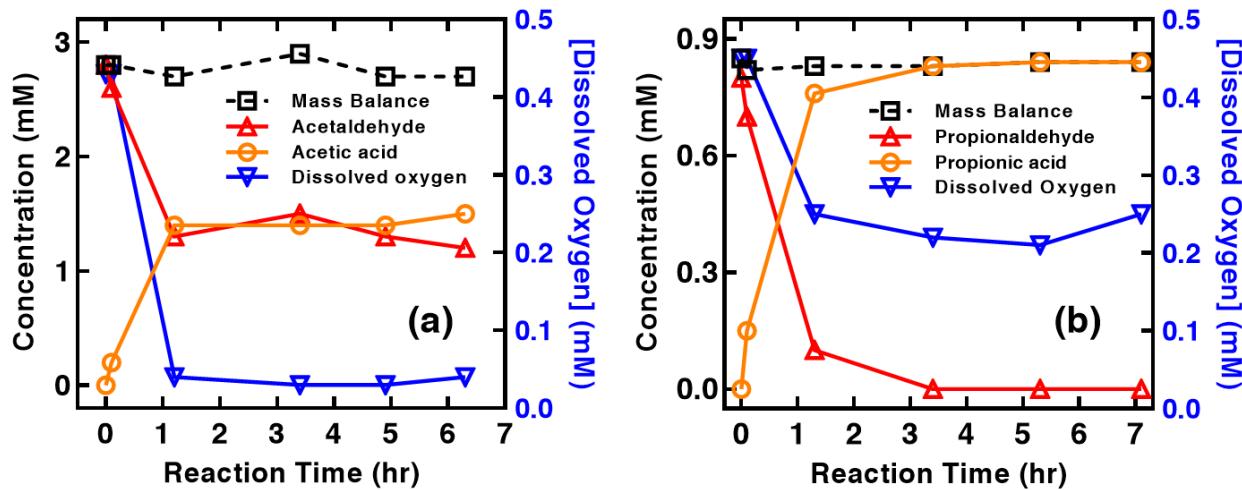
227

228 For saturated aldehydes, observed first-order oxidation rate constants (k_{obs}) increased as
 229 the length of the carbon chain increased: $0.61 \pm 0.06 \text{ h}^{-1}$ for acetaldehyde, $1.23 \pm 0.32 \text{ h}^{-1}$ for
 230 propionaldehyde, $2.42 \pm 0.19 \text{ h}^{-1}$ for butyraldehyde, $3.09 \pm 0.32 \text{ h}^{-1}$ for pentanal, and $4.58 \text{ h}^{-1} \pm$
 231 0.37 h^{-1} for hexanal. Corresponding rate constants normalized by molar concentration of
 232 platinum, as previously treated for other noble metal catalysts,²³ ranged from 1.7 to 12.4 ($[\text{Pt}]^{-1} \text{ s}^{-1}$
 233 1), and are provided on the secondary y-axis of Figure 1b. When oxidizing hexanal, the hexanal

234 concentration in the first sample was measured to be less than half of the initial concentration,
235 resulting in a poor mass balance at that time point (Figure S4, panel e). As the reaction
236 progressed, the mass balance recovered as the concentration of the product increased and
237 eventually plateaued. Because hexanal is relatively hydrophobic (e.g., $K_{ow} = 1.80$ for hexanal;
238 $K_{ow} = 0.82$ for butyraldehyde⁴⁵) the hexanal rapidly absorbed to the syringe filter used for
239 separating the catalyst and aqueous solution, resulting in an apparent rapid decrease in aqueous
240 concentration. As sorbed hexanal was oxidized to produce hexanoic acid, the mass balance
241 recovered. To account for the phenomenon, the reaction rate of hexanal oxidation was calculated
242 by using the concentration of hexanoic acid assuming a single rate-limiting step (derivation of
243 integrated rate law provided in Text S4).

244 Longer chain saturated aldehydes generally reacted faster, with observed first order rate
245 constants increasing monotonically from acetaldehyde to hexanal, potentially suggesting a rate-
246 limiting mass transfer step aided by the higher hydrophobicity of the longer aldehydes. However,
247 formaldehyde was oxidized approximately five times faster than acetaldehyde with an observed
248 rate constant of $2.86 \pm 0.20 \text{ h}^{-1}$. Crotonaldehyde, which contains the same number of carbons as
249 butyraldehyde but is unsaturated at the 2-position, reacted with the slowest observed rate
250 constant of $0.0102 \text{ h}^{-1} \pm 0.0012 \text{ h}^{-1}$. We sought explanations for the apparent relationship
251 between structure and reactivity for oxidation of aldehydes by Pt/C/O₂, by probing the reaction
252 mechanism, as discussed below.

253 First, to determine the reaction rate order of aldehydes in the rate-limiting step, initial rate
254 kinetics experiments were performed with acetaldehyde. Acetic acid concentration was
255 monitored during approximately the first 10% of the reaction, during which the concentrations of
256 acetaldehyde and dissolved oxygen changed negligibly. These reactions were performed at three


257 different acetaldehyde concentrations, and logarithmic transformation of a generic rate law (Text
258 S5), gives an equation which can be plotted to give the rate order as the slope of a linear
259 regression (Figure S5). In this case, the slope was statistically significantly indistinguishable
260 from 1.0 ($p = 0.5966$), indicating that the rate-limiting step of the reaction is first-order in
261 aldehyde concentration (Figure S6). This observation is consistent with the results of
262 experiments performed at low initial concentration, in which the reaction appeared to remain first
263 order, even at concentrations below 1 μM , close to the aldehyde concentration observed in the
264 product water of some reuse facilities (Figure S5).

265 Next, we evaluated the rate order of the catalyst in the reaction. While catalytic reactions
266 are often zero-order in catalyst (if the catalyst is saturated), a first-order rate dependence on
267 catalyst dose may occur if the reactants do not saturate the catalyst. To determine the reaction
268 rate order for the available Pt sites, initial rate experiments were conducted at different catalyst
269 loadings, analogously to the aldehyde rate order determination above. The reaction order for
270 available Pt sites also followed first-order kinetics, with a slope statistically indistinguishable
271 from 1.0 ($p = 0.2139$) (Figure S7).

272
273 **Role of Dissolved Oxygen in Catalytic Oxidation of Aldehydes.** To confirm that oxygen is
274 required for the reaction to proceed (e.g., ruling out evolution of hydrogen gas or Cannizzaro
275 disproportion as the mechanism of oxidation, that are known to occur in late-metal catalyzed
276 alcohol-to-carboxylate oxidation⁴⁶), superstoichiometric initial acetaldehyde concentrations were
277 applied in a closed system containing the catalyst, to deliberately deplete dissolved oxygen and
278 observe whether the reaction continued in the absence of oxygen. Once oxygen was depleted,
279 aldehyde oxidation ceased (Figure 2a). In a second experiment performed under similar
280 conditions but with a much lower propionaldehyde concentration, once the aldehyde oxidation

281 was complete, the dissolved oxygen concentration remained approximately constant (Figure 2b),
282 indicating that the catalyst does not consume oxygen on its own. Both experiments suggest that
283 molecular oxygen is essential for oxidizing aldehydes with the Pt/C catalyst. To further verify
284 that oxygen is essential for the reaction to occur, a batch experiment was performed
285 butyraldehyde and the catalyst in N₂-purged solution to minimize the dissolved oxygen
286 concentration, and the reaction rate slowed dramatically ($0.17 \pm 0.08 \text{ h}^{-1}$ versus $2.42 \pm 0.13 \text{ h}^{-1}$
287 with ambient dissolved oxygen levels) (Figure S8). In a final experiment at an intermediate
288 starting aldehyde concentration, the aldehyde oxidation rate remained approximately constant,
289 continuing to follow first-order kinetics, while oxygen concentration was decreasing (Figure S9),
290 suggesting that while oxygen is essential for the reaction to proceed, the reaction rate does not
291 depend on the dissolved oxygen concentration, as further investigated below.

292

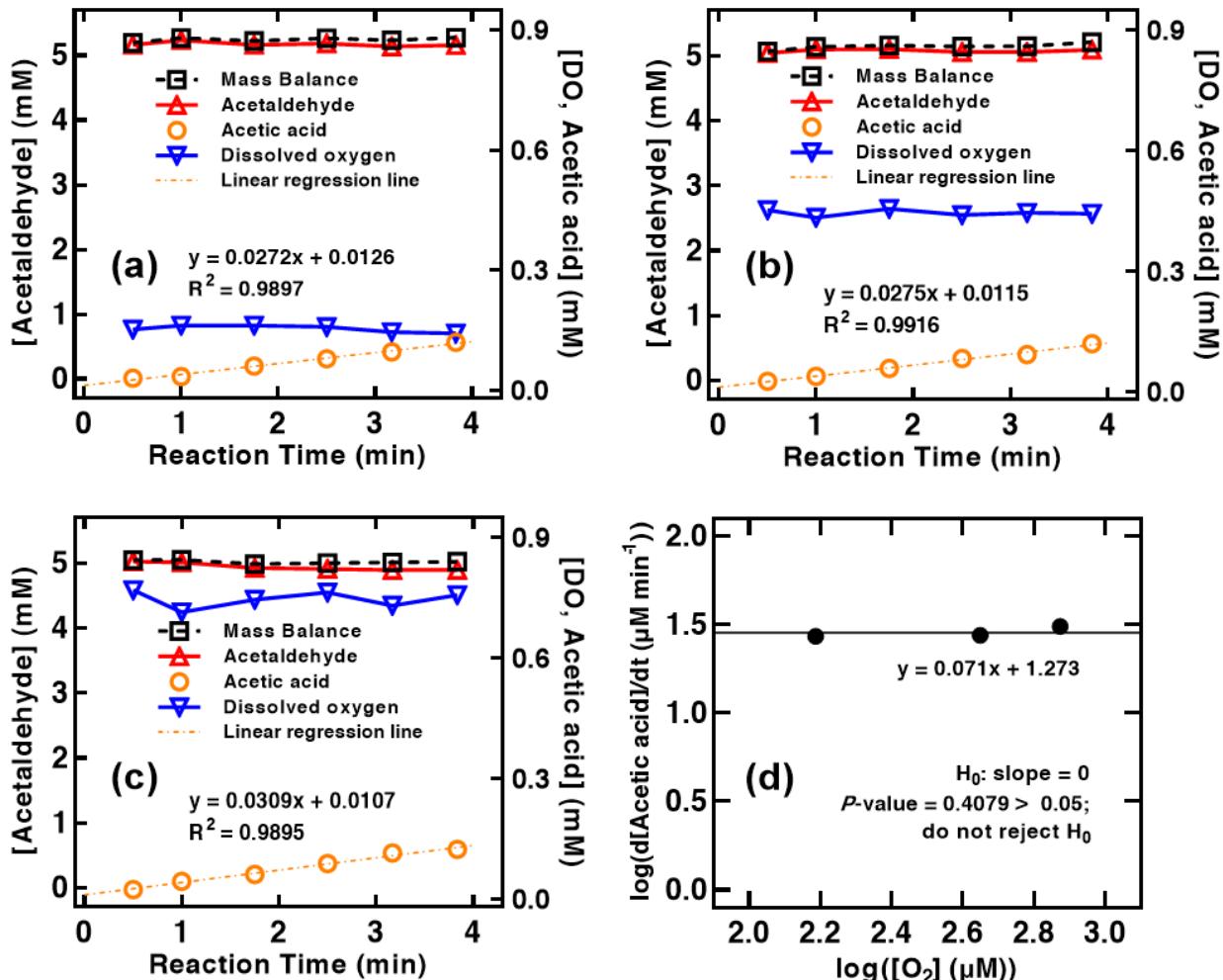
293

294

295

296

297


298

299

Figure 2. Reaction profiles for aldehyde oxidation including aldehyde, carboxylic acid, and dissolved oxygen concentrations, and mass balance (sum of aldehyde and acid concentrations). Experimental conditions: 40 mg/100 mL of Pt/C catalyst, initial concentrations of 3 mM and 1 mM, pH 7, 10 mM phosphate buffer, T = $24 \pm 0.5 \text{ }^\circ\text{C}$. (a) Acetaldehyde, (b) Propionaldehyde.

To test directly whether oxygen is involved in the rate-determining step of aldehyde oxidation, initial rate kinetics experiments were performed to determine the reaction rate order in oxygen. Formation of acetic acid during aldehyde oxidation was monitored during approximately the first 10% of conversion, during which the concentrations of acetaldehyde and dissolved oxygen change negligibly. These reactions were performed at three different dissolved oxygen concentrations (Figure 3, panels (a)-(c)) and analyzed as described previously to determine the rate order in oxygen, which was statistically indistinguishable from zero ($p = 0.4079$) (Figure 3d), indicating that dissolved oxygen is not involved in the rate-limiting step of the reaction.

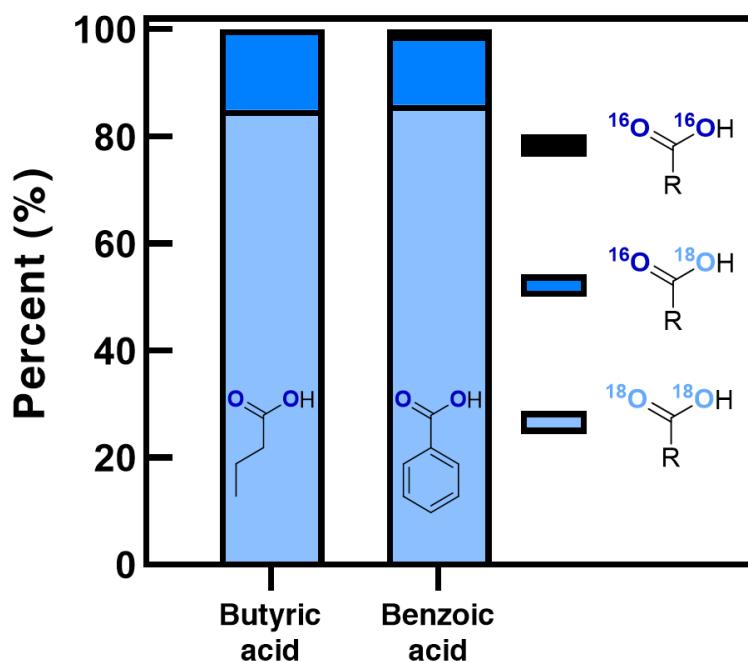
314

315

316 **Figure 3.** Aldehyde oxidation to respective products under initial rate conditions (at three different
317 fixed oxygen concentrations [panels (a)-(c)]) to determine reaction rate order in oxygen [panel (d)].
318 Reactions were performed at pH 7 in 10 mM phosphate buffer with 400 mg/L of Pt/C catalyst,
319 temperature: 24 ± 0.5 °C.

320

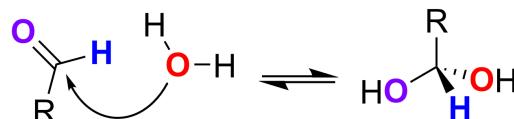
321 Last, to evaluate whether reactive oxidative species (ROS), such as hydroxyl radical and
322 singlet oxygen, are involved in the reaction pathway, kinetics experiments were conducted in the
323 presence of ROS scavengers: 1 mM of *tert*-butanol for scavenging hydroxyl radical, and 1 mM
324 of 2-furoic acid for scavenging singlet oxygen, respectively. Furoic acid was chosen over
325 furfuryl alcohol⁴⁷ to avoid scavenger oxidation by the catalyst, which is capable of oxidizing
326 primary alcohols.⁴⁸ Butyraldehyde oxidation was not slowed by the presence of *t*-butanol (p =


327 0.3552), ruling out a role for hydroxyl radical (Figure S10). 2-furoic acid slowed the
328 butyraldehyde oxidation rate slightly but statistically significantly (from 0.57 h^{-1} to 0.40 h^{-1} ; $p =$
329 0.0021). However, the slight decline suggests that singlet oxygen generation is not the primary
330 oxidation pathway, and it is possible that the addition of the 2-furoic acid scavenger to the
331 system affected the reaction rate in some other way, e.g., by blocking catalyst active sites.

332

333 **Aldehyde Oxidation Mechanism by Pt/C in Aqueous Solution.** To begin probing the reaction
334 mechanism, acetaldehyde oxidation experiments were conducted at a range of pH values (4 - 12)
335 different buffer concentrations to determine whether the rate-limiting step might be acid- or
336 base-catalyzed. As pH increased, the observed oxidation rate of aldehydes increased from $0.14 \pm$
337 0.06 h^{-1} at pH 4 to $7.76 \pm 0.26 \text{ h}^{-1}$ at pH 12 (Figure S11 and S12). However, the reaction rate
338 was not significantly affected by buffer concentration ($p = 0.7422$) (Figure S13). These
339 experimental results suggest the intuitive conclusion that aldehyde oxidation is base-promoted
340 but not buffer-catalyzed. Reaction rate dependence on ionic strength was evaluated by varying
341 ionic strength with NaCl and pure Milli-Q water while maintaining otherwise identical
342 conditions, and no significant relationship was found in different NaCl concentrations ($p =$
343 0.5815) (Figure S14), but the formaldehyde oxidation rate in pure water was calculated as 11.2 h^{-1}
344 (Figure S15), which was considerably faster than the reaction rate acquired with buffered
345 solution at nearly the same pH (4.95 h^{-1} at pH 7).

346 To further investigate the mechanism, butyraldehyde and benzaldehyde, representatives
347 of aliphatic and aromatic aldehydes respectively, were oxidized by Pt/C in ^{18}O -labeled water to
348 differentiate oxygen atoms originating from dissolved oxygen ($^{16}\text{O}_2$) from those derived from
349 water (H_2^{18}O). The majority of the carboxylic acid products (85.0% of butyric acid and 85.9% of


350 benzoic acid) were doubly-labeled with two ^{18}O atoms, meaning that both oxygens were derived
 351 from water (Figure 4). 15.0% of butyric acid and 13.0% of benzoic acid are labeled with one ^{18}O
 352 atom and one ^{16}O atom, suggesting that one oxygen atom from H_2^{16}O , the product of Pt-
 353 catalyzed $^{16}\text{O}_2$ reduction, incorporated into the carboxylic acid product. While it might not fully
 354 explain 14% ^{16}O incorporation, ^{18}O atom exchange with ^{16}O silicates in the glass may have
 355 contributed. Regardless, only a small portion of unlabeled acids was found, indicating that
 356 dissolved oxygen did not react directly with dissolved organics in this reaction. In the gas phase,
 357 platinum is known to dissociate molecular oxygen into two oxygen atoms that incorporate into
 358 the aldehyde to form a carboxylate on the surface,^{49–52} but this reaction is inconsistent with our
 359 observation on the origin of the oxygen atoms in the product.

360
 361
 362 **Figure 4.** Isotopic distribution of acid products from butyraldehyde and benzaldehyde oxidation.
 363 Reactions were performed in 97 atom % ^{18}O -labeled water with 4 g/L of Pt/C catalyst for 6 hours,
 364 temperature: 24 ± 0.5 °C.
 365

366 Aldehydes in aqueous solution rapidly hydrate to the corresponding *gem*-diol in a
367 reversible equilibrium (Scheme 1), replacing the oxygen atom in the carbonyl group with oxygen
368 from water. The replacement of oxygen atoms in aldehydes by water was confirmed by
369 measuring m/z of butyraldehyde in 1 mL of 5% v/v of ^{18}O -labeled heavy water (H_2^{18}O) at two
370 reaction time intervals, 2 hours and 5 days. GC/MS/MS analysis indicated that the m/z
371 distribution of ^{18}O -labeled butyraldehyde ($\text{C}_4\text{H}_8^{18}\text{O}$) relative to total butyraldehyde was 5% at
372 both reaction times (Figure S16), indicating that aldehyde had fully exchanged its oxygen atom
373 with water within 2h. The hydration equilibrium constant between the two species ($K_{\text{hyd}} =$
374 $\text{RCH}(\text{OH})_2/\text{RCHO}$) is a function of chemical structure, generally decreasing for primary
375 aldehydes as chain length increases (2000 for formaldehyde, 1.20 for acetaldehyde, 0.85 for
376 propionaldehyde, 0.60 for butyraldehyde, 0.55 for pentanal, 0.50 for hexanal, 1.13 for
377 crotonaldehyde).^{53,54} In contrast, aromatic aldehydes such as benzaldehyde are predominantly
378 present as the aldehydic form ($K_{\text{hyd}} = 0.008$).⁵⁵ Regardless of the value of the equilibrium
379 constant, all aldehydes dissolved in ^{18}O -labeled water with sufficient time to reach equilibrium
380 will have fully-labeled oxygens in both forms: aldehydes with one ^{18}O atom and *gem*-diols with
381 two ^{18}O atoms.

382

384 **Scheme 1:** Aldehyde equilibrium with hydrated *gem*-diol.

385

386 Given that aldehydes exist in aqueous solution as both the free carbonyl and the *gem*-diol,
387 we anticipated that each form must either proceed through a pre-equilibrium scenario or through

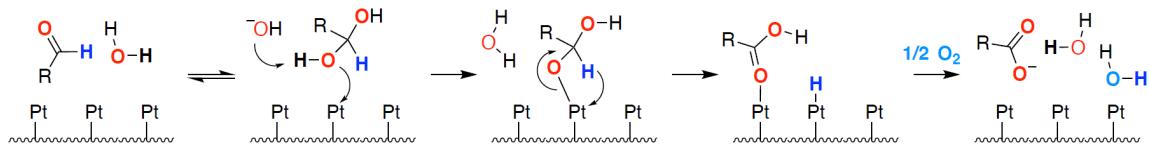
388 a different reaction mechanism. We find the latter unlikely, because equal isotope ratios of the
389 products of butyraldehyde (large K_{hyd}) and benzaldehyde (small K_{hyd}) imply that $^{16}\text{O}_2$, or an R^{16}OS
390 therefrom, is not reacting directly, as might be proposed for transformation of the free carbonyl
391 form of the aldehyde. Moreover, alcohol oxidation on Group 8-10 metal catalysts in aqueous
392 solution is known to proceed through a dehydrogenation mechanism.⁵⁶⁻⁵⁹ A similar mechanism
393 explains oxidation of primary alcohols to carboxylic acids (or esters), via a Tishchenko-like
394 pathway involving hydration (or alcoholysis) of the intermediate aldehyde.⁴⁶ A mechanism
395 proceeding through the diol is also consistent with kinetic observations: 1) the reaction rate of
396 formaldehyde, which is overwhelmingly hydrated, is five times faster than acetaldehyde which is
397 hydrated to a lesser degree at equilibrium. 2) benzaldehyde, despite a similar hydrophobicity (K_{ow}
398 = 1.71) to hexanal ($K_{\text{ow}} = 1.80$),⁴⁵ is oxidized much more slowly ($0.19 \pm 0.14 \text{ h}^{-1}$ (Figure S17)
399 compared to $4.58 \pm 0.37 \text{ h}^{-1}$). This is consistent with the reaction proceeding primarily through the
400 *gem*-diol, and the extent of hydration driving reactivity, as benzaldehyde is present primarily as
401 the aldehyde ($K_{\text{hyd}} = 0.008$),⁵⁵ while hexanal is hydrated to a greater extent ($K_{\text{hyd}} = 0.50$).⁵³

402 To further understand the rate-limiting step of the reaction, aldehyde oxidation experiments
403 were conducted at different temperatures, and the reaction rates were calculated to determine
404 activation parameters. Transition state enthalpy (ΔH^\ddagger), entropy (ΔS^\ddagger), and activation energy were
405 calculated using Eyring and Arrhenius plots (Table 1, Figure S18).⁶⁰ Negative values of ΔS^\ddagger
406 suggest that two molecules are combining in the rate-limiting step (i.e., it is a bimolecular
407 reaction).⁶¹

408

409 **Table 1.** Calculated activation terms from data in Figure S18. The experiments were conducted at
410 10, 25 and 40 °C in 10 mM pH 7 phosphate buffer with 400 mg/L of Pt/C catalyst.

	Formaldehyde	Acetaldehyde	Propionaldehyde
--	--------------	--------------	-----------------

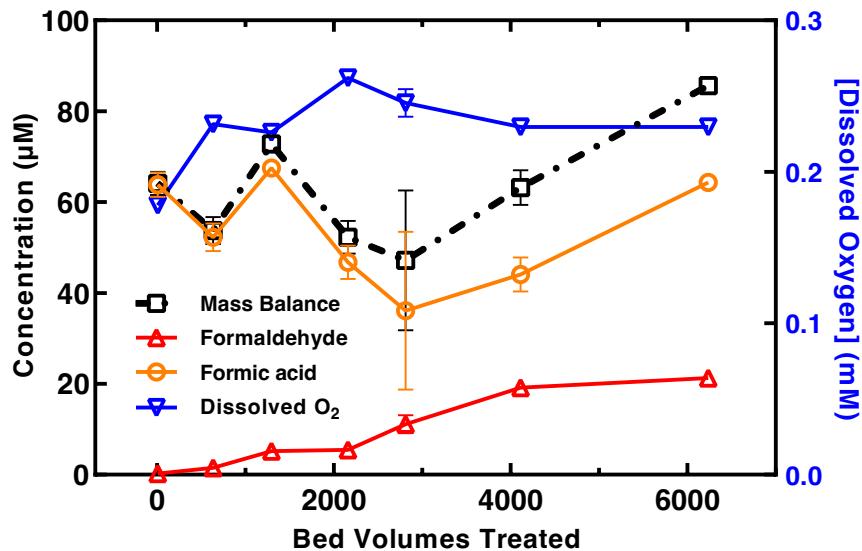

ΔH^\ddagger (kJ/mol)	22.18 \pm 3.81	19.77 \pm 5.53	26.54 \pm 5.98
ΔS^\ddagger (kJ/mol-K)	-0.23 \pm 0.01	-0.24 \pm 0.02	-0.22 \pm 0.02
Ea (kJ/mol)	24.63	22.22	28.97

412

413

414 Based on the results from Figures 3, S11, and 4, and Table 1, two possible reaction
 415 pathways of aldehyde oxidation are suggested in Scheme 2 and Scheme S1. Each incorporates
 416 oxygen from either H₂O (major pathway) or O₂ (minor pathway) into the carboxylate, respectively
 417 involving a β -hydride elimination from *gem*-diol or platinum insertion into aldehyde C–H bond.
 418 For the first pathway, we suspect that platinum binds a hydroxyl group of the *gem*-diol. The
 419 aldehyde C–H group is then cleaved by β -hydride elimination to form the product carboxylate and
 420 an intermediate platinum hydride. The latter is oxidized by O₂ in a subsequent step. We suspect
 421 that if a second, direct aldehyde oxidation pathway occurs, it involves aldehyde C–H insertion as
 422 shown in Scheme S1. The apparent rate-limiting step is consistent with the slow reaction rates of
 423 crotonaldehyde and benzaldehyde in which the compound contains multiple carbons with low
 424 electron density, potentially serving as alternative targets for the Lewis acid sites of platinum rather
 425 exclusively reacting with the *gem*-diol.^{14,62} The significantly faster reaction rate for formaldehyde
 426 relative to acetaldehyde is also consistent with the reaction proceeding through the *gem*-diol form,
 427 as almost all formaldehyde exists in aqueous solution as the hydrated geminal diol form.

428



429 **Scheme 2.** Proposed aldehyde oxidation reaction pathway through β -hydride elimination.

430

431 **Aldehyde Oxidation in a Flow-through Column.** To make a preliminary evaluation of the
432 ability of the Pt/C/O₂ system to serve as a flow-through “catalytic convertor” for oxidizing
433 aldehydes in recycled wastewater, a column experiment was performed continuously pumping
434 100 μM formaldehyde, which was the most abundant aldehyde found in RO permeate at reuse
435 plants,⁷ through glass tubes filled with homogenously mixed Pt/C catalyst and Ottawa sand.
436 Formaldehyde concentrations in the aliquots collected from the outlet of the glass tubes indicated
437 that the initial conversion rate of the formaldehyde was > 99% at the catalyst loading and EBCT
438 evaluated (23 mg/cm³ and 6.7 min), and remained at 90% after treating 2162 bed volumes,
439 corresponding to oxidation of 6.4 mmol C/g-Pt⁻¹ (24.8 mol-formaldehyde mol-Pt⁻¹) (Figure 5).
440 At the end of the experiment after 6239 bed volumes, the conversion rate was 68.5%. The
441 consistent mass balance suggests that oxidation to formic acid was the dominant removal
442 mechanism of formaldehyde. The incomplete mass balance relative to nominal initial
443 formaldehyde concentration may be attributable to loss of formaldehyde, which is semi-volatile,
444 to the atmosphere during feed solution preparation. In a second column experiment, platinum
445 concentration and particle size distribution were measured in column permeate by ICP-MS and
446 DLS over 1600 bed volumes, to assess whether catalyst loss may explain declining reactivity.
447 The permeate contained a small amount of Pt (~1 ppb) (Figure S19), and DLS measurements
448 found particles in the permeate with an average size of 226 nm, consistent with our prior
449 measurements of catalyst particle size. These results suggest that particle escape, rather than Pt
450 leaching or loss of catalyst potency, may explain declining reactivity. Future work should
451 evaluate the possibility of better retaining the Pt/C particles, and possibly regenerating catalysts.
452 Finally, the dissolved oxygen concentration at the outlet of the column with Pt/C catalyst was

453 consistently lower than the control column filled only with the sand (Figure S20), confirming
454 that oxygen is consumed during the reaction in the column.

455
456 **Figure 5.** Reaction profile of flow-through reactor for aldehyde oxidation including formaldehyde,
457 formic acid, and dissolved oxygen concentrations and mass balance. Experimental conditions: 40
458 mg of Pt/C catalyst mixed with 3 g of Ottawa sand, pH 7 in 10 mM phosphate buffer, temperature:
459 24 ± 0.5 °C.

460
461
462 **Implications.** Platinum and palladium catalysts, while costly, are present at gram scale in virtually
463 every truck and automobile in the United States in a catalytic converter, the function of which is
464 to fully oxidize dilute, partially-oxidized organic compounds, especially CO, in a fluid containing
465 oxygen. A recent article used the term “Catalytic Converters for Water Treatment” somewhat
466 figuratively to refer to oxyanion reduction in water using rare metal catalysts and an electron
467 source. Herein, we have taken the first step toward applying this term literally and demonstrated
468 oxidative catalytic water treatment with noble metal catalysts and ambient molecular oxygen.
469 Future work should examine catalyst robustness in dirtier matrices, regeneration of spent catalysts,
470 whether similar reactivity to Pt could be obtained with cheaper materials (e.g., Ni, Cu), whether

471 the poor reactivity for unsaturated aldehydes could be improved, and whether practical scale-up is
472 achievable in a flow-through passive treatment step at the end of a reuse treatment train.

473

474 **Acknowledgements:** E.K. was partially supported by a USC Provost Fellowship. We
475 acknowledge additional funding from the National Science Foundation (Award Nos. CBET-
476 1944810 (D.L.M.) and CHE-1856395 (T.J.W.)).

477

478 **Supporting Information:** The Supporting Information is available free of charge on the
479 ACS Publications website at DOI:

480

481 Supporting Information: Chemical suppliers and purities; analytical details; additional kinetics
482 data; Eyring and Arrhenius plots.

483

484 **References**

- 485 (1) Khan, S. J. Potable Reuse of Water. *Environ. Sci. Water Res. Technol.* **2015**, *1* (5), 550–
486 553. <https://doi.org/10.1039/c5ew90021b>.
- 487 (2) National Research Council. *Water Reuse: Potential for Expanding the Nation's Water*
488 *Supply through Reuse of Municipal Wastewater*; National Academies Press, 2012.
489 <https://doi.org/10.17226/13303>.
- 490 (3) Sedlak, D. L. *Water 4.0: The Past, Present, and Future of the World's Most Vital*
491 *Resource*; New Haven: Yale University Press, 2014.
- 492 (4) Marron, E. L.; Mitch, W. A.; Gunten, U. Von; Sedlak, D. L. A Tale of Two Treatments:
493 The Multiple Barrier Approach to Removing Chemical Contaminants during Potable

494 Water Reuse. *Acc. Chem. Res.* **2019**, *52* (3), 615–622.

495 <https://doi.org/10.1021/acs.accounts.8b00612>.

496 (5) Abbott. 2020 Annual Report. *Mitsubishi Annu. Rep.* **2020**, No. March, 90.

497 (6) Kali, S.; Khan, M.; Ghaffar, M. S.; Rasheed, S.; Waseem, A.; Iqbal, M. M.; Bilal khan
498 Niazi, M.; Zafar, M. I. Occurrence, Influencing Factors, Toxicity, Regulations, and
499 Abatement Approaches for Disinfection by-Products in Chlorinated Drinking Water: A
500 Comprehensive Review. *Environ. Pollut.* **2021**, *281*, 116950.
<https://doi.org/10.1016/j.envpol.2021.116950>.

501 (7) Marron, E. L.; Prasse, C.; Buren, J. Van; Sedlak, D. L. Formation and Fate of Carbonyls
503 in Potable Water Reuse Systems. *Environ. Sci. Technol.* **2020**, *54* (17), 10895–10903.
<https://doi.org/10.1021/acs.est.0c02793>.

504 (8) Joo, S. H.; Tansel, B. Novel Technologies for Reverse Osmosis Concentrate Treatment: A
506 Review. *J. Environ. Manage.* **2015**, *150*, 322–335.
<https://doi.org/10.1016/j.jenvman.2014.10.027>.

508 (9) Gerrity, D.; Owens-Bennett, E.; Venezia, T.; Stanford, B. D.; Plumlee, M. H.; Debroux,
509 J.; Trussell, R. S. Applicability of Ozone and Biological Activated Carbon for Potable
510 Reuse. *Ozone Sci. Eng.* **2014**, *36* (2), 123–137.
<https://doi.org/10.1080/01919512.2013.866886>.

512 (10) Hooper, J.; Funk, D.; Bell, K.; Noibi, M.; Vickstrom, K.; Schulz, C.; Macheck, E.; Huang,
513 C. H. Pilot Testing of Direct and Indirect Potable Water Reuse Using Multi-Stage Ozone-
514 Biofiltration without Reverse Osmosis. *Water Res.* **2020**, *169*, 115178.
<https://doi.org/10.1016/j.watres.2019.115178>.

516 (11) Gerrity, D.; Snyder, S. Review of Ozone for Water Reuse Applications: Toxicity,

517 Regulations, and Trace Organic Contaminant Oxidation. *Ozone Sci. Eng.* **2011**, *33* (4),
518 253–266. <https://doi.org/10.1080/01919512.2011.578038>.

519 (12) Linge, K. L.; Blair, P.; Busetti, F.; Rodriguez, C.; Heitz, A. Chemicals in Reverse
520 Osmosis-Treated Wastewater: Occurrence, Health Risk, and Contribution to Residual
521 Dissolved Organic Carbon. *J. Water Supply Res. Technol. - AQUA* **2012**, *61* (8), 494–505.
522 <https://doi.org/10.2166/aqua.2012.047>.

523 (13) Zeng, T.; Plewa, M. J.; Mitch, W. A. N-Nitrosamines and Halogenated Disinfection
524 Byproducts in U.S. Full Advanced Treatment Trains for Potable Reuse. *Water Res.* **2016**,
525 *101*, 176–186. <https://doi.org/10.1016/j.watres.2016.03.062>.

526 (14) Lopachin, R. M.; Gavin, T. Molecular Mechanisms of Aldehyde Toxicity: A Chemical
527 Perspective. *Chem. Res. Toxicol.* **2014**, *27* (7), 1081–1091.
528 <https://doi.org/10.1021/tx5001046>.

529 (15) Cho, Y.; Song, M. K.; Kim, T. S.; Ryu, J. C. DNA Methylome Analysis of Saturated
530 Aliphatic Aldehydes in Pulmonary Toxicity. *Sci. Rep.* **2018**, *8* (1), 1–10.
531 <https://doi.org/10.1038/s41598-018-28813-z>.

532 (16) Breitner, L. N.; Howe, K. J.; Minakata, D. Effect of Functional Chemistry on the
533 Rejection of Low-Molecular Weight Neutral Organics through Reverse Osmosis
534 Membranes for Potable Reuse. *Environ. Sci. Technol.* **2019**, No. 2, 1DUMMY.
535 <https://doi.org/10.1021/acs.est.9b03856>.

536 (17) Agenson, K. O.; Oh, J. I.; Urase, T. Retention of a Wide Variety of Organic Pollutants by
537 Different Nanofiltration/Reverse Osmosis Membranes: Controlling Parameters of Process.
538 *J. Memb. Sci.* **2003**, *225* (1–2), 91–103. <https://doi.org/10.1016/j.memsci.2003.08.006>.

539 (18) Xu, P.; Drewes, J. E.; Bellona, C.; Amy, G.; Kim, T.-U.; Adam, M.; Heberer, T. Rejection

540 of Emerging Organic Micropollutants in Nanofiltration-Reverse Osmosis Membrane
541 Applications. *Water Environ. Res.* **2005**, *77* (1), 40–48.
542 <https://doi.org/10.2175/106143005x41609>.

543 (19) Albergamo, V.; Blankert, B.; Cornelissen, E. R.; Hofs, B.; Knibbe, W. J.; van der Meer,
544 W.; de Voogt, P. Removal of Polar Organic Micropollutants by Pilot-Scale Reverse
545 Osmosis Drinking Water Treatment. *Water Res.* **2019**, *148*, 535–545.
546 <https://doi.org/10.1016/j.watres.2018.09.029>.

547 (20) Tackaert, R. A.; Pisarenko, A. N.; Chen, E. C.; Kolakovský, A.; Pecson, B. M.; Drewes, J.
548 E.; Trussell, R. R.; Trussell, R. S. Demonstrating Process Robustness of Potable Reuse
549 Trains during Challenge Testing with Elevated Levels of Acetone, Formaldehyde,
550 NDMA, and 1,4-Dioxane. *J. Water Supply Res. Technol. - AQUA* **2019**, *68* (5), 313–324.
551 <https://doi.org/10.2166/aqua.2019.134>.

552 (21) Marron, E. L.; Buren, J. Van; Cuthbertson, A. A.; Darby, E.; Gunten, U. Von; Sedlak, D.
553 L. Reactions of α,β -Unsaturated Carbonyls with Free Chlorine, Free Bromine, and
554 Combined Chlorine. *Environ. Sci. Technol.* **2021**, *55* (5), 3305–3312.
555 <https://doi.org/10.1021/acs.est.0c07660>.

556 (22) Kajitvichyanukul, P.; Lu, M. C.; Liao, C. H.; Wirojanagud, W.; Koottatep, T. Degradation
557 and Detoxification of Formaline Wastewater by Advanced Oxidation Processes. *J.
558 Hazard. Mater.* **2006**, *135* (1–3), 337–343. <https://doi.org/10.1016/j.jhazmat.2005.11.071>.

559 (23) Marks, R.; Seaman, J.; Perez-Calleja, P.; Kim, J.; Nerenberg, R.; Doudrick, K. Catalytic
560 Hydrogel Membrane Reactor for Treatment of Aqueous Contaminants. *Environ. Sci.
561 Technol.* **2019**, *53* (11), 6492–6500. <https://doi.org/10.1021/acs.est.9b01667>.

562 (24) Michael, I.; Frontistis, Z.; Fatta-Kassinos, D. *Removal of Pharmaceuticals from*

563 *Environmentally Relevant Matrices by Advanced Oxidation Processes (AOPs)*, 2nd ed.;
564 Elsevier B.V., 2013; Vol. 62. <https://doi.org/10.1016/B978-0-444-62657-8.00011-2>.

565 (25) Rao, D.; Chen, J.; Dong, H.; Qiao, J.; Zhou, B.; Sun, Y.; Guan, X. Enhanced Oxidation of
566 Organic Contaminants by Mn(VII)/CaSO₃ Under Environmentally Relevant Conditions:
567 Performance and Mechanisms. *Water Res.* **2021**, *188*, 116481.
568 <https://doi.org/10.1016/j.watres.2020.116481>.

569 (26) Loeb, S. K.; Alvarez, P. J. J.; Brame, J. A.; Cates, E. L.; Choi, W.; Crittenden, J.;
570 Dionysiou, D. D.; Li, Q.; Li-Puma, G.; Quan, X.; Sedlak, D. L.; David Waite, T.;
571 Westerhoff, P.; Kim, J. H. The Technology Horizon for Photocatalytic Water Treatment:
572 Sunrise or Sunset? *Environ. Sci. Technol.* **2019**, *53* (6), 2937–2947.
573 <https://doi.org/10.1021/acs.est.8b05041>.

574 (27) Heck, K. N.; Garcia-Segura, S.; Westerhoff, P.; Wong, M. S. Catalytic Converters for
575 Water Treatment. *Acc. Chem. Res.* **2019**, *52* (4), 906–915.
576 <https://doi.org/10.1021/acs.accounts.8b00642>.

577 (28) Hurley, K. D.; Shapley, J. R. Efficient Heterogeneous Catalytic Reduction of Perchlorate
578 in Water. *Environ. Sci. Technol.* **2007**, *41* (6), 2044–2049.
579 <https://doi.org/10.1021/es0624218>.

580 (29) Chaplin, B. P.; Reinhard, M.; Schneider, W. F.; Schüth, C.; Shapley, J. R.; Strathmann, T.
581 J.; Werth, C. J. Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants
582 in Water. *Environ. Sci. Technol.* **2012**, *46* (7), 3655–3670.
583 <https://doi.org/10.1021/es204087q>.

584 (30) Park, J.; An, S.; Jho, E. H.; Bae, S.; Choi, Y.; Choe, J. K. Exploring Reductive
585 Degradation of Fluorinated Pharmaceuticals Using Al₂O₃-Supported Pt-Group Metallic

586 Catalysts: Catalytic Reactivity, Reaction Pathways, and Toxicity Assessment. *Water Res.*
587 **2020**, *185*, 116242. <https://doi.org/10.1016/j.watres.2020.116242>.

588 (31) Lowry, G. V.; Reinhard, M. Hydrodehalogenation of 1- to 3-Carbon Halogenated Organic
589 Compounds in Water Using a Palladium Catalyst and Hydrogen Gas. *Environ. Sci.
590 Technol.* **1999**, *33* (11), 1905–1910. <https://doi.org/10.1021/es980963m>.

591 (32) Zhang, S.; Hedtke, T.; Zhu, Q.; Sun, M.; Weon, S.; Zhao, Y.; Stavitski, E.; Elimelech, M.;
592 Kim, J. H. Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient
593 Heterogeneous Fenton Water Treatment. *Environ. Sci. Technol.* **2021**, *55* (13), 9266–
594 9275. <https://doi.org/10.1021/acs.est.1c01391>.

595 (33) Sutherland, A. J.; Ruiz-Caldas, M. X.; de Lannoy, C. F. Electro-Catalytic Microfiltration
596 Membranes Electrochemically Degrade Azo Dyes in Solution. *J. Memb. Sci.* **2020**, *611*
597 (June), 118335. <https://doi.org/10.1016/j.memsci.2020.118335>.

598 (34) Zheng, J.; Wang, Z.; Ma, J.; Xu, S.; Wu, Z. Development of an Electrochemical Ceramic
599 Membrane Filtration System for Efficient Contaminant Removal from Waters. *Environ.
600 Sci. Technol.* **2018**, *52* (7), 4117–4126. <https://doi.org/10.1021/acs.est.7b06407>.

601 (35) Lee, H.; Lee, H. J.; Seo, J.; Kim, H. E.; Shin, Y. K.; Kim, J. H.; Lee, C. Activation of
602 Oxygen and Hydrogen Peroxide by Copper(II) Coupled with Hydroxylamine for
603 Oxidation of Organic Contaminants. *Environ. Sci. Technol.* **2016**, *50* (15), 8231–8238.
604 <https://doi.org/10.1021/acs.est.6b02067>.

605 (36) Zhang, J.; Sun, B.; Guan, X.; Wang, H.; Bao, H.; Huang, Y.; Qiao, J.; Zhou, G.
606 Ruthenium Nanoparticles Supported on CeO₂ for Catalytic Permanganate Oxidation of
607 Butylparaben. *Environ. Sci. Technol.* **2013**, *47* (22), 13011–13019.
608 <https://doi.org/10.1021/es402118v>.

609 (37) Lee, H.; Kim, H. Il; Weon, S.; Choi, W.; Hwang, Y. S.; Seo, J.; Lee, C.; Kim, J. H.
610 Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic
611 Compounds. *Environ. Sci. Technol.* **2016**, *50* (18), 10134–10142.
612 <https://doi.org/10.1021/acs.est.6b02079>.

613 (38) Weon, S.; Suh, M.-J.; Chu, C.; Huang, D.; Stavitski, E.; Kim, J.-H. Site-Selective
614 Loading of Single-Atom Pt on TiO₂ for Photocatalytic Oxidation and Reductive
615 Hydrodefluorination. *ACS ES&T Eng.* **2021**, *1* (3), 512–522.
616 <https://doi.org/10.1021/acsestengg.0c00210>.

617 (39) Zhao, L.; An, H.; Zhao, X.; Wang, Y. TiO₂-Catalyzed n-Valeraldehyde Self-
618 Condensation Reaction Mechanism and Kinetics. *ACS Catal.* **2017**, *7* (7), 4451–4461.
619 <https://doi.org/10.1021/acscatal.7b00432>.

620 (40) Deng, H.; Li, Z. J.; Wang, X. C.; Wang, L.; Liu, K.; Yuan, L. Y.; Chang, Z. Y.; Gibson, J.
621 K.; Zheng, L. R.; Chai, Z. F.; Shi, W. Q. Efficient Photocatalytic Reduction of Aqueous
622 Perrhenate and Pertechnetate. *Environ. Sci. Technol.* **2019**, *53* (18), 10917–10925.
623 <https://doi.org/10.1021/acs.est.9b03199>.

624 (41) Paul, T.; Miller, P. L.; Strathmann, T. J. Visible-Light-Mediated TiO₂ Photocatalysis of
625 Fluoroquinolone Antibacterial Agents. *Environ. Sci. Technol.* **2007**, *41* (13), 4720–4727.
626 <https://doi.org/10.1021/es070097q>.

627 (42) Hu, L.; Flanders, P. M.; Miller, P. L.; Strathmann, T. J. Oxidation of Sulfamethoxazole
628 and Related Antimicrobial Agents by TiO₂ Photocatalysis. *Water Res.* **2007**, *41* (12),
629 2612–2626. <https://doi.org/10.1016/j.watres.2007.02.026>.

630 (43) Richardson, S. D.; Caughran, T. V.; Poiger, T.; Guo, Y.; Gene Crumley, F. Application of
631 DNPH Derivatization with LC/MS to the Identification of Polar Carbonyl Disinfection by-

632 Products in Drinking Water. *Ozone Sci. Eng.* **2000**, 22 (6), 653–675.

633 <https://doi.org/10.1080/01919510009408805>.

634 (44) Rodger B. Baird, Chair Eugene W. Rice, A. D. E. *Standard Methods for the Examination*
635 *of Water and Wastewater*, 23rd ed.; Water Environment Federation, American Public
636 Health Association , American Water Works Association, 2017.

637 (45) Dimitrov, S.; Koleva, Y.; Schultz, T. W.; Walker, J. D.; Mekyan, O. Interspecies
638 Quantitative Structure-Activity Relationship Model for Aldehydes: Aquatic Toxicity.
639 *Environ. Toxicol. Chem.* **2004**, 23 (2), 463–470. <https://doi.org/10.1897/02-579>.

640 (46) Cherepakhin, V.; Williams, T. J. Iridium Catalysts for Acceptorless Dehydrogenation of
641 Alcohols to Carboxylic Acids: Scope and Mechanism. *ACS Catal.* **2018**, 8 (5), 3754–
642 3763. <https://doi.org/10.1021/acscatal.8b00105>.

643 (47) Appiani, E.; Ossola, R.; Latch, D. E.; Erickson, P. R.; McNeill, K. Aqueous Singlet
644 Oxygen Reaction Kinetics of Furfuryl Alcohol: Effect of Temperature, PH, and Salt
645 Content. *Environ. Sci. Process. Impacts* **2017**, 19 (4), 507–516.
646 <https://doi.org/10.1039/c6em00646a>.

647 (48) Keresszegi, C.; Burgi, T.; Mallat, T.; Baiker, A. On the Role of Oxygen in the Liquid-
648 Phase Aerobic Oxidation of Alcohols on Palladium. *J. Catal.* **2002**, 211 (1), 244–251.
649 <https://doi.org/10.1006/jcat.2002.3723>.

650 (49) Torres, J. Q.; Royer, S.; Bellat, J. P.; Giraudon, J. M.; Lamonier, J. F. Formaldehyde:
651 Catalytic Oxidation as a Promising Soft Way of Elimination. *ChemSusChem* **2013**, 6 (4),
652 578–592. <https://doi.org/10.1002/cssc.201200809>.

653 (50) Ma, Y.; Zhang, G. Sepiolite Nanofiber-Supported Platinum Nanoparticle Catalysts toward
654 the Catalytic Oxidation of Formaldehyde at Ambient Temperature: Efficient and Stable

655 Performance and Mechanism. *Chem. Eng. J.* **2016**, *288*, 70–78.

656 <https://doi.org/10.1016/j.cej.2015.11.077>.

657 (51) Guo, J.; Lin, C.; Jiang, C.; Zhang, P. Review on Noble Metal-Based Catalysts for

658 Formaldehyde Oxidation at Room Temperature. *Appl. Surf. Sci.* **2019**, *475* (December

659 2018), 237–255. <https://doi.org/10.1016/j.apsusc.2018.12.238>.

660 (52) Ye, J.; Zhu, B.; Cheng, B.; Jiang, C.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. Synergy

661 between Platinum and Gold Nanoparticles in Oxygen Activation for Enhanced Room-

662 Temperature Formaldehyde Oxidation. *Adv. Funct. Mater.* **2022**, *32* (15), 1–10.

663 <https://doi.org/10.1002/adfm.202110423>.

664 (53) Doussin, J. F.; Monod, A. Structure-Activity Relationship for the Estimation of OH-

665 Oxidation Rate Constants of Carbonyl Compounds in the Aqueous Phase. *Atmos. Chem.*

666 *Phys.* **2013**, *13* (23), 11625–11641. <https://doi.org/10.5194/acp-13-11625-2013>.

667 (54) Winstein, S.; Lucas, H. J. The Hydration of Unsaturated Compounds. VI. The Rate of

668 Hydration of Trans-Crotonaldehyde. The Equilibrium between Trans-Crotonaldehyde and

669 Aldol in Dilute Aqueous Solution. *J. Am. Chem. Soc.* **1937**, *59* (8), 1461–1465.

670 <https://doi.org/10.1021/ja01287a015>.

671 (55) Thus, H.; McClelland, R. A.; Coe, M. Structure-Reactivity Effects in the Hydration of

672 Benzaldehydes. *1983*, *11* (4), 4005–4012.

673 (56) Grunwaldt, J. D.; Caravati, M.; Baiker, A. Oxidic or Metallic Palladium: Which Is the

674 Active Phase in Pd-Catalyzed Aerobic Alcohol Oxidation? *J. Phys. Chem. B* **2006**, *110*

675 (51), 25586–25589. <https://doi.org/10.1021/jp066949a>.

676 (57) Iwasa, N.; Takezawa, N. New Supported Pd and Pt Alloy Catalysts for Steam Reforming

677 and Dehydrogenation of Methanol. *Top. Catal.* **2003**, *22* (3–4), 215–224.

678 https://doi.org/10.1023/A:1023571819211.

679 (58) Mallat, T.; Baiker, A. Catalyst Potential: A Key for Controlling Alcohol Oxidation in
680 Multiphase Reactors. *Catal. Today* **1995**, *24* (1–2), 143–150.
681 https://doi.org/10.1016/0920-5861(95)00016-9.

682 (59) Cherepakhin, V.; Williams, T. J. Direct Oxidation of Primary Alcohols to Carboxylic
683 Acids. *Synth.* **2021**, *53* (6), 1023–1034. https://doi.org/10.1055/s-0040-1706102.

684 (60) Williams, T. J.; Kershaw, A. D.; Li, V.; Wu, X. An Inversion Recovery NMR Kinetics
685 Experiment. *J. Chem. Educ.* **2011**, *88* (5), 665–669. https://doi.org/10.1021/ed1006822.

686 (61) Eric V. Anslyn and Dennis A. Dougherty. *Modern Physical Organic Chemistry*;
687 University science books, 2006.

688 (62) Wang, X. X.; Zheng, H. Y.; Liu, X. J.; Xie, G. Q.; Lu, J. Q.; Jin, L. Y.; Luo, M. F. Effects
689 of NaCl on Pt/ZrO₂ Catalysts for Selective Hydrogenation of Crotonaldehyde. *Appl.*
690 *Catal. A Gen.* **2010**, *388* (1–2), 134–140. https://doi.org/10.1016/j.apcata.2010.08.044.

691