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ABSTRACT: We have conducted an extensive search for nitrogen-,
oxygen-, and sulfur-bearing heterocycles toward Taurus Molecular
Cloud 1 (TMC-1) using the deep, broadband centimeter-wave-
length spectral line survey of the region from the GOTHAM large
project on the Green Bank Telescope. Despite their ubiquity in
terrestrial chemistry, and the confirmed presence of a number of
cyclic and polycyclic hydrocarbon species in the source, we find no
evidence for the presence of any heterocyclic species. Here, we
report the derived upper limits on the column densities of these
molecules obtained by Markov Chain Monte Carlo (MCMC)
analysis and compare this approach to traditional single-line upper
limit measurements. We further hypothesize why these molecules
are absent in our data, how they might form in interstellar space, and
the nature of observations that would be needed to secure their detection.

■ INTRODUCTION

Aromatic compounds are an important class of molecules of
astrophysical and astrobiological interest. In particular,
polycyclic aromatic hydrocarbons (PAHs) are abundant in
interstellar and circumstellar environments, and it has been
estimated that as much as 25% of all interstellar carbon is
sequestered in these species.1 Despite their significance to
terrestrial chemistry, individual five- and six-membered
aromatic rings, as well as PAHs, have only recently been
identified in the interstellar medium (ISM).2−9

Heterocycles are a related class of cyclic molecules with
atoms of at least two different elements as members of its
ring(s). In general, a CH unit in a carbon ring is replaced by a
heavier heteroatom, such as N, O, or S. Among these, N-
heterocycles are of great biological significance as they form
the backbone of nucleobases, that is, subunits of the DNA and
RNA that carry the genetic information in living systems.
The astrophysical relevance of heterocycles has been

appreciated since the discovery of N-, O-, and S-heterocycles
in carbonaceous chondrites.10 For example, a number of S-
heterocycles have been detected in the Yamato-791198
meteorite,11 while N-heterocycles including pyridines, pyr-
imidines, quinolines, and isoquinolines have been detected in
several chondrites, including Orgueil,12 Murchison,13−16 and
Murray.17 Their extraterrestrial origins have been confirmed by

isotopic studies,18 but it remains difficult to ascertain their
chemical origin.19

Following the recent detection of benzonitrile (c-C6H5CN)
in the quiescent molecular cloud Taurus Molecular Cloud 1
(TMC-1),2 both five-membered and bicyclic nitrile species
(hydrocarbons with a cyanide [−CN] functional group) have
been detected using our GOTHAM line survey3−6 and the
QUIJOTE survey of Cernicharo and colleagues.7−9 Benzoni-
trile has also been observed in four additional molecular clouds
in different stages of prestellar evolution, suggesting that
aromatic molecules are ubiquitous in interstellar environ-
ments.20

While these detections have shown that aromatic molecules
are prevalent in TMC-1, these molecules are either pure
aromatic hydrocarbons or functionalized aromatics with a
−CN or C2H group in the place of a hydrogen on the ring.
With the detection of several aromatics now secure,
heterocyclic molecules are the next logical step in chemical

Received: February 28, 2022
Revised: April 4, 2022
Published: April 20, 2022

Articlepubs.acs.org/JPCA

© 2022 American Chemical Society
2716

https://doi.org/10.1021/acs.jpca.2c01435
J. Phys. Chem. A 2022, 126, 2716−2728

D
ow

nl
oa

de
d 

vi
a 

H
A

R
V

A
R

D
 U

N
IV

 o
n 

Ju
ly

 2
9,

 2
02

2 
at

 0
0:

37
:2

0 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+J.+Barnum"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+A.+Siebert"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kin+Long+Kelvin+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryan+A.+Loomis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="P.+Bryan+Changala"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steven+B.+Charnley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steven+B.+Charnley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Madelyn+L.+Sita"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ci+Xue"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anthony+J.+Remijan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+M.+Burkhardt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brett+A.+McGuire"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brett+A.+McGuire"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ilsa+R.+Cooke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.2c01435&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c01435?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c01435?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c01435?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c01435?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c01435?fig=agr1&ref=pdf
https://pubs.acs.org/toc/jpcafh/126/17?ref=pdf
https://pubs.acs.org/toc/jpcafh/126/17?ref=pdf
https://pubs.acs.org/toc/jpcafh/126/17?ref=pdf
https://pubs.acs.org/toc/jpcafh/126/17?ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpca.2c01435?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf


complexity to explore. Yet, to date, no five- or six-membered
ring heterocycles have been detected in TMC-1 nor in any
region of interstellar space.21 For these relatively large
molecules, the number of possible isomers renders prioritiza-
tion difficult, and thus we choose to combine conventional
chemical intuition and recent machine learning work by Lee et
al.22

To illustrate how machine learning can be used to guide
astrochemical studies, Figure 1 represents a “chemical map”,
where the abscissa and ordinate represent the 2D space that
comprises molecules found in TMC-1 and those studied in the
present work. The absolute values are not important; however,
the relative distance between points (i.e., molecules)
corresponds with chemical similarity. To briefly summarize
the technique, the Uniform Manifold Approximation and
Projection (UMAP) method23 is an unsupervised algorithm
that learns an approximate mapping between high-dimensional
datain this case, a 128-dimensional chemical embedding
obtained through natural language models22,24to lower
dimensionality while preserving the topology of the original
manifold as faithfully as possible. The target species comprise
two frontiers: monocyclic (lower right of Figure 1) and bicyclic
(left of Figure 1) rings, which are currently sparsely
represented and for that reason, are among the most
informative to quantify in TMC-1. By constraining the
abundance of these species, we are able to effectively and
precisely place boundary conditions on one edge of chemical
complexity for an exemplary, molecule-rich dark molecular
cloud.

■ PRIOR SEARCHES

Previous searches have predominantly focused on nitrogen-
bearing heterocycles, with the only exceptions being the O-
and Si-bearing species oxirane,25 propylene oxide,26 furan,27−29

and silicon di- and tricarbides.30,31 To the best of our
knowledge, there have not been any searches for sulfur-bearing
heterocyles. The emphasis on N-heterocycles is likely
motivated by their significance in biological molecules,
combined with the availability of spectroscopic data. Below
we outline the prior searches for nitrogen- and oxygen-bearing

heterocycles that have been conducted. For completeness, we
note that two silicon-bearing heterocycles have been detected
toward IRC+10216, silicon dicarbide (silacyclopropynylidene,
SiC2),

30 and silicon tricarbide (SiC3).
31

Detections. Oxirane, c-C2H4O. Oxirane (ethylene oxide) is
the simplest oxygen-bearing heterocycle. It was first detected
by Dickens et al. using lines from the Nobeyama 45-m,
Haystack 140-ft, and SEST 15-m telescope observed toward
Sagittarius B2 (Sgr B2).25 It has since been detected in various
interstellar environments including low mass protostars32 and
prestellar cores.33

2-Methyloxirane, c-CH3C2H2O. The functionalized hetero-
cycle, 2-methyloxirane (propylene oxide) was detected by
McGuire et al. in GBT 100-m and Parkes 64-m observations of
Sgr B2.26

Tentative Detections. 2H-Azirine, C2H3N. 2H-Azirine, c-
C2H3N, and its reduced form aziridine (ethylenimine), c-
C2H5N, are the simplest N-heterocyclic compounds. 2H-
Azirine has been previously searched for in Sgr B2(N-LMH)
and Orion KL, and a tentative detection was reported.34−36

Aziridine, C2H5N. Two groups have reported tentative
detections of aziridine. Dickens et al.28 reported two detected
lines toward hot cores G327.3, G10.47, and possible weak
emissions toward G34.3, Sgr B2(N), and NGC6334. Kuan et
al. also reported a tentative detection of aziridine toward hot
cores Orion KL and W51 e1/e2.34,35

Nondetections. Pyrrole, C4H4NH. Pyrrole, or more
specifically 1H-pyrrole, is a five-membered ring analogous to
cyclopentadiene, in which a carbon is substituted for a nitrogen
atom. Two other tautomers of pyrrole exit: 2H-pyrrole, which
has the double bonds at positions 1 and 3, and 3H-pyrrole,
which has the double bonds at positions 1 and 4. Pyrrole has
been searched for toward the hot core Sgr B2(N)27,37 as well
as the cold molecular cloud TMC-1.27 Toward TMC-1, Kutner
et al.27 derived an upper limit of 4 × 1012 cm−2.

Imidazole, C3N2H4. Imidazole is a diazole (five-membered
aromatic heterocycle with two nitrogen atoms) of particular
biological relevance. This ring system is present in important
biological building blocks, such as histidine and the related
hormone histamine. In addition, many pharmaceutical drugs

Figure 1. Visualizations of a two-dimensional projection of the chemical embedding space spanned by the current chemical inventory of TMC-1
(blue) and of the proposed heterocyclic species (orange). Representative structures of indicative molecules annotate how chemical complexity in
this source is traversed and divided: molecules such as the cyanopolyynes extend from the top to the bottom on the right, connecting with single-
ring heterocycles such as furan toward the bottom. On the left, two-ring species such as cyanonaphthalene (not pictured) and their heterocyclic
analogues.
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contain an imidazole ring.38 When fused to a pyrimidine ring,
it forms a purine, which is the most widely occurring nitrogen-
containing heterocycle in nature.39 Despite its relevance on
earth, imidazole has only been searched for toward Sgr A and
Sgr B2(N).40,41 Giuliano et al.41 recently searched for
imidazole in Sgr B2(N), following their improved laboratory
spectroscopy, and reported a nondetection.
Pyridine, C5H5N. Pyridine is a six-membered heterocycle,

structurally related to benzene, with one CH replaced by a
nitrogen atom. The pyridine ring occurs in many important
compounds, including agrochemicals, pharmaceuticals, and
vitamins.42 Pyridine has been searched for toward hot cores
Sgr B2,43,44 Sgr A,44 Orion A,44 and the circumstellar
envelopes of carbon-rich stars, IRC+10216 and CRL 618.45

Pyrimidine, C4H4N2. Pyrimidine is an aromatic heterocycle
similar to pyridine. One of the three diazines (six-membered
aromatic heterocycles with two nitrogen atoms) has the
nitrogen atoms at positions 1 and 3 in the ring. The other
diazines are pyrazine (nitrogen atoms at the 1 and 4 positions)
and pyridazine (nitrogen atoms at the 1 and 2 positions),
which have not been previously searched for in the ISM.
Pyrimidine occurs widely in nature, including in the
nucleotides cytosine, thymine and uracil, and thiamine
(vitamin B1) and alloxan, as well as in many synthetic
drugs.46 Pyrimidine was first searched for in 1973 by Simon
and Simon toward the hot core Sgr B2(N).43 Following the
nondetection in Sgr B2(N), Irvine et al.47 searched for
pyrimidine in a handful of sources: TMC-1, L134N, W3 C, W3
(OH), Orion A, DR 21 (OH), S140, and IRC+10216. They
reported an upper limit of 6 × 1012 cm−2 toward TMC-1. Kuan

et al.34 later conducted a search for pyrimidine toward Sgr
B2(N), Orion KL and W51 e1/e1.

Quinoline, C9H7N. Quinoline is one of the simplest
polycyclic aromatic nitrogen heterocycles (PANHs), with a
similar structure to naphthalene’s but with one CH substituted
for a nitrogen. Quinoline was searched for by Charnley et al.45

toward the circumstellar envelopes IRC+10216, CRL 618, and
CRL 2688.

Isoquinoline, i-C9H7N. Isoquinoline is a structural isomer of
quinoline, with CH substituted for a nitrogen atom at the 2
position in the ring. Isoquinoline was likewise searched for by
Charnley et al. toward the circumstellar envelopes IRC+10216,
CRL 618 and CRL 2688.45

Furan, C4H4O. Furan is a five-membered aromatic hetero-
cycle with four carbon atoms and one oxygen. It was first
searched for by Kutner et al.27 toward hot cores Sgr B2(N) and
Orion A. Dickens et al.28 searched for furan toward a number
of sources: TMC-1(CP), Orion KL, Orion 3′N, G327.3-0.6,
L134N(C), IRS 16293, NGC 6334F, Sgr B2(N), and W33A.
Toward TMC-1(CP) they reported an upper limit of (1−2) ×
1013 cm−2. Most recently, Barnum et al.29 reported an upper
limit of 1 × 1012 cm−2 using the GOTHAM line survey.

■ OBSERVATIONS
We performed a search toward TMC-1 using the third data
reduction of the GOTHAM collaboration survey, hereafter
referred to as DR3. Details of the source, observations, and
data reduction methods can be found in McGuire et al.4,48

Here, we provide a brief summary. Observations were
performed with the 100-m Robert C. Byrd Green Bank

Figure 2. Chemical structures of the heterocycles included in our analysis.
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Telescope with the project codes GBT17A-164, GBT17A-434,
GBT18A-333, and GBT18B-007, and data from project
GBT19B-047.
The first and second data release of GOTHAM (hereafter

referred as DR1 and DR2) comprise observations obtained
between February 2018 and May 2019 (DR1) and until June
2020 (DR2).4,48 The GOTHAM observations used here are
DR3, which comprises observations made through April 2021.
DR3 extends the frequency coverage to 7.906−35.434 GHz
with a few gaps and improved the sensitivity in some frequency
coverage already covered by DR2.
The pointing was centered on TMC-1 CP at (J2000) α =

04h41m42.50s δ = +25°41′26.8″. The spectra were obtained
through position-switching to an emission-free position 1°
away. Pointing and focusing was refined every 1−2 h on the
calibrator J0530+1331. Flux calibration was performed with an
internal noise diode and Very Large Array (VLA) observations
(Project TCAL0003) of the same calibrator used for pointing,
resulting in a flux uncertainty of ∼20%.48
Our search includes 19 heterocycles whose chemical

structures are shown in Figure 2. The molecules chosen
include small, single-ring heterocycles, as well as two-ring
species and those with two heteroatoms in the ring. Factors
influencing our choice of molecules included chemical
complexity (i.e., starting with small, single-heteroatom
species), prior searches, the availability of spectroscopic data,
and the recommendations produced by the unsupervised
machine learning model of Lee et al.49 Our search is heavily
biased toward nitrogen heterocycles, which is perhaps not
surprising given the prevalence of nitrogen-containing
molecules already detected in TMC-1, their dominance in
previous searches, and their biological relevance.
Figure 1 shows a visualization of the chemical space we have

chosen to prioritize for this work: many heterocycles were not
explored, including some unsubstituted heterocycles for which
sufficient spectroscopic data could not be sourced. This list
includes the four-membered rings azete, 2H-oxete, and 2H-
thiete (and their saturated counterparts azetidine, oxetane, and
thietane) and six-membered rings containing sulfur or oxygen
(pyrans and thiopyrans) as well as oxygen and sulfur
containing polycyclic heterocyles (chromene, thiochromene).
Polycylic heterocycles containing more than one heteroatom
were likewise not considered in this study. Structural isomers
and/or tautomers may also be considered in future studies, for
example, 2H-pyrrole, isobenzofuran, isoindole, and isoquino-
line.

■ RESULTS AND DISCUSSION
Upper Limits Analysis. In the third data release from the

GOTHAM collaboration, we could not identify individual lines
belonging to the heterocycles in Table 1. Without individual
line detections, we applied Bayesian forward modeling with
Markov chain Monte Carlo (MCMC) sampling to establish
upper limits to the column density of these molecules in TMC-
1. These methods have been described in detail previously71

and have been used in combination with spectral line stacking
to positively identify new species in TMC-1 without individual
observable transitions.
These methods are implemented in molsim,72 wrapping

the affine-invariant sampler emcee73 and uses ArviZ74 for
analysis and visualization. Here, we encode knowledge about
the physical conditions of TMC-1 and the heterocyclic species
through the choice of prior distributions. For all species, we

used Gaussian priors consistent with the posterior distributions
derived from our earlier analysis of benzonitrile,48 which
includes four velocity components with individual source sizes
and radial velocities, as well as a shared excitation temperature
and line width parameter. The excitation temperature prior was
adjusted upward from that earlier analysis to a mean value of
Tex = 8.0 K, in better agreement with more recent analyses in
TMC-1 by both the GOTHAM and QUIJOTE projects.75−77

Uniform priors spanning 16 orders of magnitude for the four
column densities were used to minimize the influence of the
prior choice on the derived column density upper limits. In all
cases, sampling of 200 Markov chains with 10 000 steps led to
acceptable convergence (r ̂≲ 1.1) of all parameters. In Table 1,
we report the 2σ upper limit log column densities for all
species, corresponding to the 97.5th percentile of the highest
density credible interval of the resultant posterior distributions.
A representative corner plot of the column density posterior
distributions for the species 1H-pyrrole appears in Figure 3.
The diagonal traces correspond with the marginalized
likelihood for each column density, while the off-diagonal
contour plots show the covariance between each parameter.
The upper limit is indicated by the break in the marginalized 1-
D distributions, and its value appears above each plot. The
long-tailed distributions toward zero column densities are
characteristic of posterior distributions representing upper
limits.
For those species previously searched for in TMC-1 (1H-

pyrrole, pyrimidine, furan),27,28,47 we find that our data provide
a more stringent upper limit. In the case of furan, which was
previously searched for in TMC-1 by some of us, the upper

Table 1. Upper Limit Column Densities for All Investigated
Heterocycles Determined as the 97.5th Percentile of the
Highest Posterior Density Credible Interval Summed over
All Four Components of TMC-1a

species formula

column
density

upper limit
(log10 cm

−2)

dipole
moment
(D)

no. of
lines refs

aziridine C2H5N 13.29 1.36 155 50
2H-azirine C2H3N 12.10 2.07 34 51
thiirane C2H4S 12.33 1.84 46 52
oxirane C2H4O 12.26 1.88 6 53, 54
1H-pyrrole C4H5N 12.00 1.74 382 55, 56
thiophene C4H4S 13.10 0.55 68 57
furan C4H4O 12.93 0.66 103 29
imidazole C3H4N2 12.09 3.60 1456 41
thiazole C3H3NS 12.85 1.29 372 58, 59
pyridine C5H5N 11.88 2.22 775 60
pyridazine C4H4N2 12.33 4.22 1503 61, 62
pyrimidine C4H4N2 12.62 2.33 659 63−65
1H-indole C8H7N 11.60 1.59 4203 66
benzo[b]
thiophene

C8H6S 13.11 0.64 1562 67

1-benzofuran C8H6O 12.01 0.72 1147 68
quinoline C9H7N 12.38 2.01 9022 69
quinoxaline C8H6N2 13.06 0.59 1128 70
quinazoline C8H6N2 10.61 2.89 10487 70
phthalazine C8H6N2 10.94 5.45 5189 70
aThe upper limits are reported as log column densities in units of
cm−2. The table also reports the largest dipole moment component in
the principal axis system of each molecule in units of Debye and the
total number of lines included in the analysis.
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limit presented here represents a more conservative determi-
nation. The difference between our previous and current values
is attributed to a difference in assumptions between the two
analyses. Here, we allow the source size to vary and use
uniform column density priors, rather than fixing the source
sizes and using Gaussian column density priors.
To facilitate comparison with other upper limit determi-

nations in the literature, we also derived upper limits for four
heterocycles using a more traditional, frequentist single-line
analysis. For each molecule, we used molsim to simulate a
spectrum at the column density and excitation conditions of
benzonitrile (Tex = 8 K) using a single velocity component
with a width of 0.5 km/s at vlsr = 5.85 km/s.78 We then
identified the brightest line covered by our spectra, prioritizing
transitions that lie in regions where the root-mean-square
(RMS) noise is low and applied the formalism of Hollis et al.79

to determine the upper limit column density.
Here, Tex is the assumed 8 K excitation temperature (K); Tbg

is the background continuum temperature and assumed to be
2.7 K; k is Boltzmann’s constant (J K−1); h is Planck’s constant
(J s); Q is the rotational partition function at Tex; Eu is the
upper state energy of the transition (K); ∫ T dV is the upper
limit velocity-integrated line area (K·km/s), which is taken as
the product of the 2σ rms noise level and the assumed 0.5 km/
s line width; Sijμ

2 is the transition line strength (Debye2); and
B and ηB are the beam filling factor and beam efficiency, which
are both assumed to be 1.0 for this analysis.

N
k Q T V

B S
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For furan, the brightest expected line is the JKa,Kc
= 21,2 → 11,1

transition at 23 259.2 MHz (see Figure 4). Using the sensitivity

of our survey at this frequency, we calculate an upper limit log
column density of 13.68 cm−2 for furan based on this line. The
order of magnitude difference between this approach and the
MCMC analysis can be attributed to our consideration of the
full spectrum. For furan, 103 individual lines were used in the
MCMC analysis, after removing any lines from the analysis
that appear near interloping lines of another species within a

Figure 3. Corner plot of the marginal posterior distribution of the four column densities for 1H-pyrrole. Tick marks on all axes represent orders of
magnitude of the column density in units of cm‑2. In all four velocity components, a long-tailed distribution toward low column densities indicates a
nondetection of this species in the data. The derived upper limit is indicated by the gap in the marginalized 1-D distribution for each component,
and the upper limit value appears above.

Figure 4. GOTHAM DR3 spectrum (black trace) at the brightest line
expected for furan (JKa,Kc

= 21,2 → 11,1). Simulations plotted in blue
and orange correspond to the upper limit column densities derived
using the single-line and Bayesian stacking analyses employed in this
work. Both simulations were made with Tex = 8 K and vlsr = 5.85 km/
s.
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±0.5 km/s window in velocity space. Under the assumptions
that all transitions are similarly bright and that we only have
white noise present in our data, we would expect the RMS of a
stacked spectrum containing all of these lines (and thereby, the
derived upper limit column density) to go approximately as

n1/ where n is the number of stacked lines. The single line
analysis of furan is representative of this behavior.
When we apply this method to imidazole, we find that a

bright blend of three hyperfine components of the JKa,Kc
= 31,3

→ 21,2 transition is expected at 33 397.38 MHz. Using this
single feature, we derive an upper limit log column density of
12.86 cm−2 for imidazole, which is almost 1 order of
magnitude larger than the upper limit we place using the
MCMC approach. In contrast to furan, however, a total of
1456 lines were used in the MCMC analysis, so this does not
follow the n1/ scaling law discussed above. This is likely due
to the inclusion of hyperfine structure in our catalog for this
molecule, which often produces blended lines that contribute
the same information despite being counted as individual lines.
For quinazoline, we calculate a log upper limit of 12.50 cm−2

based on nine blended lines of the JKa,Kc
= 140,14 → 130,13 at

26 536.73 MHz. This is almost 2 orders of magnitude larger
than what we obtain from a Bayesian analysis of all 10 487
covered transitions, meaning a large fraction of those
transitions contribute unique information to the MCMC
analysis. Finally, for 1H-pyrrole, we analyzed the JKa,Kc

(F) =
30,3(4) → 20,2(3) line at 31 727.38 MHz to obtain a log upper
limit column density of 13.43 cm−2.
As expected, we found that all upper limits derived using a

frequentist single-line analysis were larger than those from the
MCMC results. The degree by which these upper limits varies
is largely determined by the number of lines included in the
analysis, the fraction of lines that are not blended, and the
fraction that are expected to have significant emission at an
excitation temperature of 8 K.
To describe the relationship between physical properties of

molecules and their derived upper limit, Figure 5 plots the
column density upper limits as a function of the largest dipole
moment component in the principal axis system of each
molecule. The fitted model shows that with few exceptions, the

upper limit determinations for heterocycles are a function of
their physical properties: barring abnormal chemical dynamics
(e.g., preferred reactions), one can predict the expected upper
limit of other heterocycles bounded by a credible interval,
simply from the dipole moment.
We can compare the upper limits of the heterocycles to the

derived column densities for the carbocyclic molecules that
have been detected in TMC-1 thus far. Pyridine is found to be
depleted compared to benzonitrile,5 its closest detected
carbocyclic counterpart (log column density of 11.88 versus
12.24 cm‑2), suggesting that pyridine is at most half as
abundant as benzonitrile. We would therefore expect the CN-
substituted pyridine isomers to be substantially lower in
abundance than benzonitrile. In the case of the five-membered
rings, cyclopentadiene has been detected recently by
Cernicharo et al.7 who derived a log column density of 13.08
cm‑2. This suggests that 1H-pyrrole, thiophene, and furan are
at least 12, 9.5, and 1.4 times less abundant than their
carbocyclic counterpart, further confirming the depletion of
heterocycles in TMC-1. Another interesting comparison is
between the N-, S-, and O-substituted counterparts of indene:
indole, benzo[b]thiophene, and 1-benzofuran. Indole and
benzofuran are at least ∼20 times and 10 times less abundant
than indene, respectively, while the upper limit for benzo[b]
thiophene is similar to the detected abundance of indene.5 As
discussed above, molecules with low dipole moments generally
have less well constrained upper limits, partially explaining the
higher upper limit of benzo[b]thiophene. Our results suggest a
significant depletion of heterocycles relative to pure carbo-
cycles in TMC-1.
It is noteworthy that for several of the species considered, we

observe a distinct peakedness to the column density posterior
distributions for one or more velocity components. Manual
inspection of the spectral windows used in the MCMC analysis
confirms the absence of interloper lines from other detectable
species, which could be responsible for these peaked
distributions. Instead, we hypothesize that correlated (i.e.,
“red”) noise in the frequency spectrum is the origin of these
unexpected posterior distributions. In the calculation of the log
likelihood function, our current MCMC implementation
assumes only white noise in the data set, namely, that the
measurement uncertainty of any single channel in the
frequency spectrum is uncorrelated with noise in a neighboring
channel. While this assumption captures most of the noise in
the astronomical data, it is a first approximation to the noise
only. As a result of aperiodic fluctuations in the source
brightness over the course of the observational time, red (

f
1
2)

noise also contributes to the noise floor. Beyond intrinsic
sources of noise, polynomial baseline fitting in the data
reduction step has the potential to introduce additional
correlations between channels in the frequency spectrum.
Neglecting these correlations in the noise can introduce bias
into our inferences, especially as the signals of interest
approach and go below the noise floor. For this reason, we
do not interpret any peaks in the column density posterior
distributions as meaningful and instead interpret all column
densities as upper limits only. In a future implementation, we
plan to increase the sophistication of our MCMC analysis with
noise modeling. By explicit consideration of the off-diagonal
components of the covariance matrix used to calculate the
likelihood function, we can account for correlated noise in the

Figure 5. Relationship between molecular properties (dipole
moment) and the derived upper limit. The blue line and shaded
band correspond to the mean and ±1σ uncertainty of a Bayesian ridge
regression model. Scatter points are color coded on the basis of their
training/test split.
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data set and begin to peer below the noise floor of the
GOTHAM data.
Discussion on the Formation and Stability of Hetero-

cycles in Cold Molecular Clouds. The quantitative
visualization of chemical space in Figure 1 underscores the
structural similarities between the unobserved heterocycles and
previously observed molecules in TMC-1. While the hetero-
cycles do overlap with newly observed aromatic carbocycles,
they cluster toward the boundaries of known chemical space in
TMC-1. Despite their structural similarity, our null detections
for a wide range of heterocycles point to a unique chemistry of
these species relative to the pure carbocylic species, which
suggests chemically defined bounds on the complexity of
molecules found in TMC-1. Given that these heterocycles are
highly stable terrestrially, it is likely a matter of dynamics that
dictates their absence, and lends importance to finding
kinetically viable pathways to their formation.
The formation of heterocycles in TMC-1 would require

either chemical pathways that can operate at temperatures
below 10 K or their inheritance from high-temperature sources,
such as circumstellar envelopes. While a number of aromatic
molecules have now been detected in TMC-1, it remains
unclear whether these molecules form in situ by bottom-up
mechanisms from small precursors or by top-down mecha-
nisms through the destruction of large PAHs or interstellar
dust grains.5 It is expected that PAHs composed of less than
∼20−30 atoms do not survive transport from the diffuse ISM
to cold molecular clouds due to their degradation by ultraviolet
photons.80 While work from the combustion chemistry
community has shown that high-temperature routes can
produce PAHs and nitrogen- and oxygen-substituted PAHs
(PANHs and PAOHs), several low-temperature routes have
also been proposed that may operate in TMC-1. Below, we
summarize potential formation routes to heterocycles that
could operate under the conditions of TMC-1.
Formation of the First Heterocyclic Rings. Single-ring

heterocycles are expected to be building blocks for larger N-,
O-, and S-substituted PAHs, thus understanding their
formation is the first step in determining whether biological
precursor heterocycles can exist at the early stages of star
formation. Formation routes to the smallest heterocycles,
aziridine, 2H-azirine, oxirane, and thiirane, have not been well
explored. Crossed-beam experiments suggest the reaction of
N(2D) with ethylene (C2H4) can form 2H-azirine; however,
isomerization to the more stable isomer acetonitrile (CH3CN)
is expected, even under collision-free conditions.81 Recent
work has shown the formation of 2H-azirine in interstellar ice
analogues of acetylene and ammonia after irradiation with
energetic electrons.82 The suggested mechanism involves the
reaction of imidogen (NH(a1Δ)) with acetylene through
addition to the carbon−carbon triple bond leading to 1H-
azirine, which may isomerize via a hydrogen shift to 2H-azirine
via a barrier of 108 kJ mol−1.
Oxirane formation has been explored in more detail,

motivated by its astronomical detection in the ISM.83 Similar
to azirine, oxirane has been shown to form in electron84 and
photon85 irradiated ices, this time containing carbon dioxide (a
source of suprathermal O atoms) and ethylene. Oxirane has
also been shown to form ethylene oxide during the coaccretion
of thermalized atomic oxygen and ethylene onto a solid
substrate. In the gas phase, oxirane has been proposed to form
by the dissociative recombination of C2H5O

+ with electrons,25

where C2H5O
+ is formed by

CH C H OH C H O CH3 2 5 2 5 4+ → ++ +
(2)

hH O C H C H O3 2 2 2 5 ν+ → ++ +
(3)

The importance of this reaction has been difficult to quantify
due to the lack of detections of ethanol, H3O

+, C2H2, and
CH3

+ in cold cores, combined with uncertainties in the
experimental branching ratios. Another plausible gas-phase
source of oxirane at low temperature is the reaction between O
atoms and the ethyl radical (C2H5), but the branching ratio
compared to those of its more stable isomers, acetaldehyde and
vinyl alcohol, is unknown.
A reaction mechanism to form thiirane, S(1D) + C2H4, has

been inferred by Balucani due to its similarity to N(1D)
reactions.86 The electrophilic S(1D) atom adds, without a
barrier, to the double bond of ethylene, forming the internally
excited cyclic intermediate thiirane. Various ring-opening and
isomerization pathways exist to convert thiirane into more
stable products, and thus it is unclear if this reaction can
produce thiirane under dense cloud conditions. Lastly, while
this reaction has been found to be rapid down to 23 K, thiirane
was not identified experimentally.87

Limited experimental and theoretical data exist for the
formation of the five-membered oxygen, nitrogen, and sulfur
heterocycles. Furan has been shown to form in the reaction
between CH and acrolein at room temperature.88 The major
products were found to be 1,3-butadienal (60 ± 12)% and
furan (17 ± 10)%. Reactions of OH and NH with 1,3-
butadiene have been proposed to form furan and pyrrole but
more data are needed on the reaction rate constants and
products at low temperature.3,89

The formation of the six-membered nitrogen heterocycle,
pyridine, in the interstellar medium has been an active area of
research. Chemical models of Titan’s atmosphere have
proposed that pyridine may form by radical-mediated reactions
of hydrogen cyanide (HCN) with acetylene (C2H2);

90

however, this mechanism has not been experimentally verified
and may not operate under dense cloud conditions. A similar
mechanism involving sequential reactions of HCN with the
acetylene radical cation has been shown experimentally to
produce the pyrimidine ion.91 In addition, recent ab initio
molecular dynamics simulations and density functional theory
computations have shown that pyridine ions can form during
the ionization of van der Waals clusters of HCN and C2H2.

92

Formation of pyridine through ring expansion of pyrrole by
methylidyne (CH) has been observed in the gas phase by
Soorkia et al. (2010):93

CH C H N c C H N H4 5 5 5+ → ‐ + (4)

However, since pyrrole has likewise not been detected in the
ISM, the formation of interstellar pyridine from pyrrole cannot
be observationally constrained. Another neutral−neutral route
to pyridine, the reaction of CN with 1,3-butadiene, has been
explored in a combined experimental and theoretical study.94

The formation of the aliphatic product cyano-1,3-butadiene,
however, was shown to be the major product.

CN C H c C H N H4 6 5 5+ → ‐ + (5)

CN C H CN C H H4 6 4 5+ → − + (6)

The reaction of the cyano vinyl radical with vinyl cyanide is a
promising route to pyridine at low temperature and has been
verified experimentally, albeit at high temperatures in a
pyrolytic reactor.95
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C H CN C H CN C H N CN2 3 2 2 5 5+ → + (7)

Supporting electronic structure calculations indicate that this
reaction is exoergic and proceeds without an entrance barrier;
therefore, it is likely to operate at low temperature. Future
explorations of this reaction under low-temperature thermal
conditions are desirable, especially to determine the branching
ratio of pyridine and other potential products such as 1,4-
dicyano-1,3-butadiene.
Fondren et al.96 studied the reaction of pyridine and

pyrimidine with a series of ions in a selected ion flow tube.
They inferred from these experiments that efficient ion−
molecule radiative association reactions with HCN could form
pyridine (and pyrimidine) from smaller ions:

hC H HCN c C H N4 4 5 5 ν+ → ‐ ++ +
(8)

hC H N HCN c C H N3 3 4 4 2 ν+ → ‐ ++ +
(9)

However, such radiative association reactions are challenging
to measure in the laboratory, and it remains unclear if the
reactions above are efficient at low temperature. Balucani et
al.97 investigated a pathway to pyridine via N(2D) reaction
with C6H6, leading to a chain of unstable intermediate
products that may decay to c-C5H5N. However, more recent
computational work indicates that this reaction produces
pyrrole, rather than pyridine, and that the major product
channel is hydrogen cyanide plus a cyclopentadienyl radical
(∼90%).98
Krasnopolsky99 suggested another a neutral−neutral path-

way to form pyridine; however, it is considered more likely that
this reaction forms the aliphatic isomer C2H5C3N:

100

C N C H c C H N H3 2 6 5 5+ → ‐ + (10)

N- and O-heterocyclic molecules have been identified in the
room-temperature residues resulting from the ultraviolet
irradiation of the carbocyclic aromatic molecules benzene or
naphthalene mixed in ices containing H2O and NH3.

101

Nitrogen heterocycles identified include some of those
searched for in our data: pyridine and quinoline. The
oxygen-bearing heterocycles detected include the lactones
phthalide (C8H6O2), coumarin (C9H6O2), and isocoumarin
(C9H6O2); however, it was noted that small O-heterocycles
like furan could not be detected with their technique.
Formation of Heterocyclic PAHs and Nucleobases. Like

pure hydrocarbon PAHs, heterocyclic PAHs have been
thought traditionally to form in high-temperature environ-
ments through barriered reactions. One route suggested to
operate in circumstellar envelopes is the reaction between the
meta-pyridyl radical with two acetylene molecules via a
hydrogen abstraction/acetylene addition (HACA) type re-
action mechanism.102 Following the formation of single-ring
heterocyles, it has been suggested that formation of subsequent
rings resulting in PANHs, PAOHs, and PASHs should be
efficient in the cold ISM. Pyridine has been suggested to be an
important building block in the formation of more complex
PANHs. Pyridine can be photolyzed to form pyridyl radicals
(C5H4N),

103 which have been shown to react without an
entrance barrier with 1,3-butadiene to form the PANHs 1,4-
dihydroquinoline, and quinoline (as well as the iso-isomers),
respectively.102,104

Ricca et al.90 proposed a route involving radical-mediated
addition reactions of HCN and acetylene to form a pure
aromatic ring. If hydrogen cyanide is abundant, the acetylene

polymerization chemistry that leads to PAH formation in the
circumstellar envelopes of AGB/post-AGB carbon stars can
lead to the incorporation of nitrogen into the PAH backbone.
They show that inclusion of a nitrogen atom into a PAH could
promote the formation of additional hydrocarbon rings by
lowering the ring closing barrier. Ultimately, these molecules
could contribute to the formation of much larger PANHs that
are believed to play an important role in interstellar chemistry.
The astrochemical link between simple, unsubstituted

heterocycles and the more complex purine and pyrimidine
nucleobases has not yet been made. Oba et al.105 have detected
all three pyrimidine (cytosine, uracil, and thymine) and three
purine nucleobases (adenine, xanthine, and hypoxanthine) in
the organic residue of interstellar ices composed of H2O, CO,
NH3, and CH3OH after exposure to UV photons. It is clear
that heterocycles and even prebiotic nucleobases can form
under conditions expected to be present in some regions of
interstellar space, but the chemical mechanisms linking small
molecules to the molecules of life remain unknown and will
motivate future studies.

Destruction of Heterocycles and the Effect on Their
Detectability. Peeters et al.106 compared the photolytic
stabilities of benzene and pyridine (as well as pyrimidine and
s-triazine) in matrix isolation experiments. Their results
indicate N-heterocycles photolyze rapidly and their stability
decreases with the increasing number of N atoms in the ring.
The authors calculated that these N-heterocycles in the gas
phase would be destroyed in 10−100 years in the diffuse ISM,
while in the Solar System 1 AU from the Sun they would not
survive beyond several hours. They suggested that the only
environment where small N-heterocycles could survive is in
dense clouds that are shielded from intense UV radiation.
Pyridine and pyrimidine, but not the triply N-substituted ring
s-triazine, could survive the average lifetime of a dense cloud.
Photolytic stability data do not exist for the doubly N-
substituted PANHs that we searched for here, so it is unclear
whether molecules like the C8H6N2 isomers could survive.
Extrapolating from their data on pyrimidine, we expect that
imidazole and pyridazine could likely survive destruction by
UV photons in dense clouds, but more data are required to
confirm this. It has not yet been reported how long these
molecules and other heterocycles can survive in ices. In
addition, the radiolytic stability of heterocycles to cosmic rays
should be quantitatively investigated.
Destruction of heterocycles through reactions are important

to consider not only because they can potentially help explain
their nondetection in TMC-1 but also because they can help
determine molecules that may serve as detectable chemical
proxies. Cyano-substituted aromatics have been shown to be
good chemical proxies for small aromatics and PAHs due to
the fact that CN radicals are likely to react without barriers
with the double bonds of the aromatic ring.107,108 Because
heterocycles typically lack the symmetry present in unsub-
stituted aromatics, the multiple CN-substitution sites decrease
the chances of detecting a specific isomer.
Recent theoretical work has suggested hydrogenated

versions of heterocycles may serve as potential chemical
proxies in dense clouds, due to the high H abundance, the
ability of H to react via tunnelling, and the efficient diffusion of
H on interstellar dust grains.109 The authors show that many
heterocycles react slowly with H and suggest that hydro-
genated derivatives of furan (2,3-dihydrofuran, 2,5-dihydrofur-
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an) and pyrrole (2,3-dihydropyrrole, 2,5-dihydropyrrole) are
promising candidates for future interstellar searches.
Suggested Follow-Up Observations. Our comparison of

the upper limits derived from the single line and the MCMC
analyses suggests that consideration of all lines within the
spectral window of our broadband survey considerably
constrain the upper limit determination. This suggests that
the detectability of particular molecules depends not only on
intrinsic molecular properties like the dipole moment (Figure
5) but also on the spectral coverage and hence the total
integrated line intensity for a molecule. Broadband line surveys
thus serve an even more essential role in the search for new
species in the ISM. Observations at higher frequencies would
be beneficial, as the brightest lines for most molecules lie
outside of our GOTHAM spectral coverage. For example, the
brightest lines are expected to fall between 100−200 GHz for
the three-membered rings and ∼50−70 GHz for the five- and
six-membered rings.
In addition to broadband surveys as a tool to search for any

heterocyclic species, targeted searches for chemically related
molecules will serve an important role in constraining the
chemistry of heterocycles in the ISM. As summarized in the
preceding discussion, extensive experimental and theoretical
studies have suggested plausible low-temperature heterocycle
formation routes. While direct observation of the target
heterocycles would provide the strongest support for proposed
mechanisms, observations of the key reactive species en route
to heterocycle formation can help to bolster or constrain these
mechanisms. Some of these key molecules do not possess
dipole moments (e.g., 1,3-butadiene), making their detection
in TMC-1 challenging. Chemical proxies may be invoked, but
only after careful validation through a combination of
laboratory studies and kinetic models.
CN-substituted species have proven to be good choices as

proxies, since the reaction between CN and unsaturated
hydrocarbons is typically rapid,110 and CN imparts a strong
dipole moment on the resulting reaction product(s). The use
of benzonitrile as a proxy for benzene has been confirmed
through laboratory measurements of CN + C6H6 down to
temperatures close to those in TMC-1.108 C2H-substituted
aromatic heterocycles may likewise serve as good chemical
proxies. Ethynyl has been shown to react rapidly with
unsaturated hydrocarbons,111,112 including benzene,113 and
C2H-substituted cylic molecules, ethynyl cyclopentadiene and
cyclopropenylidene, both of which have been recently detected
toward TMC-1.7,9

Individual observations of key intermediate species in
proposed chemical pathways will serve to motivate new
experimental and theoretical studies and refocus observational
efforts. Direct observations in other sources of aromatic and/or
heterocyclic solid-phase vibrational modes with the James
Webb Space Telescope (JWST) would be particularly useful in
constraining the gas-ice partitioning of these molecules.

■ CONCLUSIONS
In this study, we have applied a Bayesian inference analysis to
the third data reduction of the GOTHAM collaboration survey
of TMC-1 to constrain the upper limit column densities for a
large selection of one- and two-ring heterocycles. For those few
species previously searched for in TMC-1, our new analysis
improves the upper limit constraint on these species. We
compare our upper limits derived from the MCMC analysis
with those derived from a single line analysis and find that, for

all species, the consideration of all lines in the spectral window
of the survey provides tighter constraints on the upper limit
than consideration of only the single strongest line. In sum, our
analysis confirms the peculiar depletion of heterocyclic species
relative to the previously detected pure hydrocarbon cycles.
Improvements to our MCMC analysis, as well as comple-
mentary observations of chemically related species, will help to
further constrain the chemistry of heterocycles in the ISM.
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