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Abstract—This article considers human-autonomy teams
(HATs) in which two human team members interact and collabo-
rate with an autonomous teammate to achieve a common task while
dealing with unexpected technological failures that were imposed
either in automation or autonomy. A Wizard of Oz methodology
is used to simulate the autonomous teammate. One of the critical
aspects of HAT performance is the trust that develops over time as
team members interact with each other in a dynamic task environ-
ment. For this reason, it is important to examine the dynamic nature
of teammate trust through real-time measures of team interactions.
This article examines team interaction and trust to understand
better how they change under automation and autonomy failures.
Thus, we address two research questions: 1) How does trust in HATs
evolve over time?; and 2) How is the relationship between team
interaction and trust impacted by the failures? We hypothesize that
trust in HATs will decrease as autonomy failures increase. We also
hypothesize that team interaction would be related to the develop-
ment of trust and recovery from the failures. The results implicate
three general trends: 1) team interaction dynamics are linked to the
development of trust in HATs; 2) trust in the autonomous teammate
is only associated with recovery from autonomy failures; 3) team
interaction dynamics are related to both automation and autonomy
failure recovery.

Index Terms—Artificial intelligence, dynamical systems, team
coordination, trust, unmanned air vehicle systems.

I. INTRODUCTION

THANKS to the advancement of computational algorithms,
autonomous agents have become intelligent enough to

be considered a teammate as opposed to a tool [1]. This
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advancement is also reflected in the scientific terminology by
shifting from “automation” to “autonomy.” Automation is de-
fined as: “1) the mechanization and integration of the sensing of
environmental variables (by artificial sensors); 2) data process-
ing and decision making (by computers); and 3) mechanical ac-
tion (by motors or devices that apply forces on the environment)”
[2, p. 9]. In contrast, autonomy is a machine that can carry out
tasks independently and in conjunction with human interactions
[3]. In this article, we focus on autonomy as a teammate that
works with others to control automation, a remotely piloted
aircraft. Autonomy is an intelligent machine (e.g., artificial intel-
ligence - AI, robot, synthetic agent), considered a teammate [3].
Autonomous agents have gotten better at incorporating feedback
and information to make plans and take action towards their
goals [4]. This article also considers human-autonomy teams
(HATs) as teams that include at least one heterogeneous and
interdependent autonomous machine team member. In HATs,
human and autonomous teammates promptly interact with one
another in response to information flow from one team member
to another, adapt to the dynamic task, and achieve common
goals [5].

Automation research focuses on the effects of automation
on user performance and subjective perception. For autonomy,
however, the focus is shifted to interactions (i.e., communica-
tion and coordination) between human and autonomous team
members, and in turn, emotional reactions to the autonomy,
such as trust. Consequently, social and psychological factors
are considered to a greater extent in autonomy than automation
[6]. In HAT, one of the critical psychological aspects is trust
that is defined as “the extent to which a person is confident
in and willing to act on the basis of the words, actions, and
decisions of another” [7]. Trust in HAT is a personal belief
that an autonomous agent with which one is coordinating can
achieve a common goal in a task environment [8]. It is critical
to understand that trusting an autonomous agent is not only
trusting a machine but also trusting it as a team member [9],
which requires several beliefs about others [10]. Specifically,
teammate trust, also called mutual trust, is defined as “the shared
belief that team members will perform their roles and protect the
interests of their teammates,” which also leads to a “willingness
to admit mistakes and accept feedback” [11]. Other team-related
trust studies align trust with “vulnerability” [13], [14], and thus,
a willingness to take risks [13]. Being vulnerable means that
something important can be lost, and making oneself vulnerable
is taking a risk. There is an inherent risk in dynamic, team-based
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tasks attributable to team members’ role interdependency to
accomplish a common goal. For this article, we include questions
regarding human team members’ willingness to take a risk [13]
and commonly used trust and reliability questions in robotics
questionnaires [14].

De Visser et al. [15] developed an interactive model related to
trust calibration (reducing overtrust and increasing undertrust)
and its impact on human-robot team effectiveness. Based on their
interactive model, it is crucial to understand the relationship
between trust calibration and team interaction behaviors and
their relation to team effectiveness. Other studies regarding
trust also emphasize that trust is an interactive process with
multiple influences. In a multiagent team, getting an evidence-
based weighted average of trust in each agent from multiple
directly involved humans may help identify under what cir-
cumstances and contexts autonomous agents tend to fail or
perform below the desired threshold (e.g., human capabilities)
[16]. However, if trust is dynamic and emerges through inter-
action, these ratings should be predicted by interaction-based
real-time physiological and psychological measures. Therefore,
in addition to subjective measures, real-time objective measures
of interaction should also be considered when assessing trust
in HATs.

In order to predict the dynamics of teammate trust, some
studies have considered real-time measures, including human
teammates’ physiological processes, such as heart rate [9] and
interaction between team members in all-human team and HAT
contexts [19], [20]. Many of these studies use nonlinear dynam-
ical systems analytical methods, specifically, recurrence quan-
tification analysis (RQA; [21], [22]). A multivariate extension
of RQA investigates interaction patterns between the system
components (in this case, either the heart rate of team members or
their communication flow) and their change over time. Mitkidis
et al. [17] studied how trust modulates the affective links be-
tween team members by applying multivariate RQA to assess the
degree of synchrony in dyadic all-human teams. In general, team
synchrony occurs when two or more systems (or two individuals
in a team) are in behavioral sync, resulting in their recurrent
behaviors being dependent on each other. Mitkidis et al. found
that trust was associated with heart rate synchrony, such that
interpersonal physiological synchrony may be an indicator of
interpersonal trust. Tolson et al. [18] also applied the multivariate
extension of RQA to examine how interpersonal physiological
arousal predicts willingness to trust an autonomous agent in un-
expected conditions for two- or three-member teams. Their find-
ings indicate that interpersonal team-level arousal is a significant
predictor of trusting an autonomous agent during unexpected
events. Another study by Grimm et al. [19] applied multivari-
ate RQA on team interaction to understand if communication
between team members in HATs was synchronized in a remote
pilot aircraft system. Their study increased the workload by im-
posing technological failures. Results indicated that human team
members’ trust and reliance on their autonomous team member
remained relatively constant over time within low-performing
teams. However, in high-performing teams, human team mem-
bers’ trust and reliance on the autonomous team member
diminished.

Failures of automation and autonomy can adversely affect the
operator’s trust [8] and system performance [24], [25]. However,
when the automation and autonomy design is more adaptive
(i.e., adaptive automation), trust increases, and task workload
decreases, resulting in an increment of team performance [25].
One aim of this article is to elucidate further the relationship
between team interaction dynamics and trust to better articulate
how they change in the context of automation and autonomy
failures. Overall, this aim underlines trust as an evolving process
that occurs when human and autonomous team members interact
with each other and adapt to their respective capabilities within
a dynamic task environment.

Consequently, it is important to establish relationships be-
tween subjective trust measures and other real-time objective
measures, including communication, coordination, and physio-
logical measures. We report results from a study investigating
trust in the context of a simulated remotely-piloted aircraft
system (RPAS) task environment. Specifically, we examine
interaction dynamics and perceived trust to understand better
how they change over time in the context of RPAS autonomy
and automation failures. Thus, we address the following two
research questions: 1) How does trust in HATs evolve over time?;
and 2) How is the relationship between team interaction and trust
impacted by failures? We hypothesized that trust in HATs would
decrease as autonomy failures increased. We also hypothesized
that team interaction would be related to the development of
trust and recovery from failures. We hypothesized that trust
would decrease as autonomy failures increase across experimen-
tal sessions. We also hypothesized that team interaction would
be related to trust development and automation and autonomy
failure recovery.

II. CURRENT STUDY

A. Task Environment

The task environment called the Cognitive Engineering Re-
search on Team Tasks RPAS Synthetic Task Environment
(CERTT-RPAS-STE) comprises three task roles: communicat-
ing via text chat. This RPAS-STE was utilized to simulate aspects
of the MQ-1 predator remotely piloted aircraft (RPA), an aircraft
used by the United States Air Force for aerial reconnaissance
military operations related to teamwork [25]. The objective of
the RPAS-STE was to take photographs of color-coded strategic
target waypoints. Three individual, yet interdependent, team
members cooperate to accomplish this goal: 1) a navigator, who
has access to data regarding the location of and any restrictions
on critical waypoints; using this information, the navigator plans
a sequence of waypoints called the mission route and notifies the
pilot regarding the waypoints, including waypoint name, altitude
restrictions, airspeed restrictions, and effective target radius; 2)
a pilot, who controls and monitors the altitude of the RPA,
airspeed, effective radius of the current waypoint, fuel, gears,
and flaps, and also interacts with the photographer to negotiate
regarding altitude and airspeed to obtain a good photograph of
the target waypoint; and 3) a photographer, who monitors and
adjusts camera settings to take the photos of targets and then
sends feedback to the other teammates regarding photo quality.
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To achieve this, the photographer needs to monitor and control
the systems and settings relevant to the RPA sensor equipment
(i.e., infrared and electro-optical photography equipment), and
coordinate with the pilot about the right altitude and airspeed to
take a good photo. In this task, the coordination of communica-
tion between the team members is as follows: the navigator sends
the waypoint information to the pilot. Then, the pilot negotiates
the altitude of the waypoint with the photographer who needs
the correct altitude to take a good photo of the waypoint. Finally,
the photographer takes a good photo and sends feedback to both
team members [26].

B. Design

This article followed a “Wizard of Oz” (WoZ [27]) paradigm
wherein the navigator and photographer were seated together
in one room and were told that the pilot was an autonomous
agent. In actuality, the pilot was a well-trained experimenter
who was working from a separate room. The “autonomous”
pilot, who used restricted vocabulary and a predetermined script
to simulate that of an autonomous agent, interacted with the
other teammates in a timely manner, similar to a software-based
autonomous pilot used in a previous experiment [28]. Due to the
autonomous pilot’s limited language capabilities, “cheat sheets”
were provided to the human teammates to be used during training
and task performance to assist in effective communication with
the pilot. The main manipulation consisted of three failures as
follows:

1) automation- role-specific display failures that occurred
while processing specific targets;

2) autonomy- autonomous agent behaved abnormally while
processing specific targets (i.e., it provided misinforma-
tion to other team members or demonstrated incorrect
action);

3) cyber attack- the hijacking of the pilot, which led to the
autonomous pilot providing detrimental information to the
team [29].

In the previous study [29], we found that team interaction
between all three team members was necessary for the au-
tomation failure recovery, because when a display fails, team
members (either human or autonomous teammate) exchanged
the information regarding the target waypoint. In turn, they
were able to take a good photo. However, the autonomy failure
and malicious cyber-attack recoveries required continuous and
persistent information given to the autonomous pilot from the
human team members to correct its abnormal behavior. The
current experiment was comprised of ten 40-min missions.
Each failure was imposed on a preselected target waypoint (see
Table I). Automation and autonomy failures were each imposed
once during each mission, beginning with Mission 2. In contrast,
the malicious cyber-attack was imposed only once in Mission
10, and the teams had to find a solution in a limited amount of
time to recover from these failures and take a good photo. The
time limit for each failure was related to the failure’s difficulty
and was determined to be around 400 s, based on pilot testing.
Because the cyber attack only occurred once, we have focused
on automation and autonomy failures.

TABLE I
FAILURE TYPES PER MISSION

Note: Between the two sessions, there was a one- or two-week interval. A 15-min break
was given after each task; a half-hour lunch break was given.

III. METHODOLOGY

A. Participants

In total, 22 teams (44 participants) were recruited for partici-
pation from Arizona State University and the surrounding com-
munity; all teams completed the experiment. Two participants
per team were randomly assigned to the photographer and the
navigator roles, and the pilot position was filled by a well-trained
experimenter who mimicked an autonomous pilot in terms of
communication and coordination [28], the WoZ autonomous
pilot. Participation required normal or corrected-to-normal vi-
sion and fluency in English. Participants ranged in age from
18 to 36 (Mage = 23, SDage = 3.90) with 21 males and 23
females and were undergraduate or graduate students. Each team
participated in two seven-hour sessions, and each participant was
compensated for participation by payment of $10 per hour. This
article was carried out according to The Cognitive Engineering
Research Institute (CERI) Institutional Review Board under the
CERI. The protocol was approved by the Cognitive Engineering
Research Institute Institutional Review Board. All subjects gave
written informed consent by the Declaration of Helsinki.

B. Materials and Apparatus

The CERTT-RPAS-STE hardware consisted of four consoles
for up to four team members and another four consoles for
two experimenters to oversee the simulation, apply failures,
and observe the team. Two of the consoles were actively used
by two experimenters, and the other two were used for data
storage. One of the actively used consoles was called the “texting
experimenter” console. This console had two computers through
which the experimenter could make ratings (for target achieve-
ment, behavior, and situation awareness) and send text messages
via chat to the three teammates (pilot, navigator, and photogra-
pher). This console was also used to turn all the computers and
software in the other consoles on and off via a master control
application. Another actively used console was the “nontexting
experimenter” console, which enabled the experimenter to make
ratings (for coordination, target achievement, and behavior)
and monitor the participants using a camera. In addition, text

Authorized licensed use limited to: ASU Library. Downloaded on July 26,2022 at 23:02:03 UTC from IEEE Xplore.  Restrictions apply. 



DEMIR et al.: EXPLORATION OF TEAMMATE TRUST AND INTERACTION DYNAMICS IN HUMAN-AUTONOMY TEAMING 699

chat capability was provided for communications between team
members.

For this article, there were other materials and equipment
used to collect the measures and train participants. For hands-on
training and the task, the photographer and the navigator had
a communication “cheat sheet,” which showed examples of
how to communicate with the autonomous pilot, which was
necessary due to its limited communication capability. Another
“cheat sheet” and supplemental materials for each role were
displayed at the corresponding workstations. The pilot role in
the experimenter condition had a coordination script in order to
push and pull information to and from other team members in
a timely manner. Supplemental materials included role-specific
rule summaries, screenshots of each station’s displays, a way-
point list for the navigator, and a camera setting list and photo
folder containing comparisons of good and bad photos for the
photographer. Experimenters followed paper checklists for the
experiment set-up (starting the experimenter and participant
consoles, briefing, training, and mission task), and data for each
session was archived on an external hard drive.

C. Experimental Procedure and Measures

The experiment was divided into two seven-hour sessions
with a one- or two-week interval between the sessions. When
participants arrived, they read and signed an informed consent
form and were randomly assigned to one of the two team
member roles, navigator or photographer; the pilot was an expert
confederate who used a role-specific coordination script. The
pilot was isolated in one room and the navigator and photogra-
pher in another. The navigator and photographer were seated in
locations separated by partitions.

Participants then received a briefing followed by 30-min of
role-specific skills training using interactive PowerPoint slides.
After the interactive training session, 30-min of hands-on prac-
tice training began. During the practice session, the exper-
imenters used a checklist to ensure that the navigator and
photographer were comfortable performing their roles. Once
experimenters were sure that the participants understood their
individual and team tasks, they started the first mission. Imme-
diately after the practice training and each mission, participants
were shown their performance scores. Participants could see
their team performance score and each individual’s task-related
individual performance score. The performance scores were dis-
played on each participant’s computer and shown in comparison
to the mean scores achieved by all other teams (or roles) who had
participated in the experiment up to that point. After Missions
1, 4, 5, and 10, the NASA-TLX subjective workload assessment
[30] was administered to the navigator and photographer to
measure six workload components: mental, physical, temporal
demand, performance, effort, and frustration. Throughout the
missions, team communication was observed by texting and
nontexting experimenters who checked appropriate boxes on
situation awareness and coordination loggers in real-time. After
visiting each target waypoint, both experimenters independently
rated the team’s process behaviors on a scale from one to five,
five being the best. A short set of anthropomorphism- and

trust-related questions [13] was administered to the navigator
and photographer after Missions 4 and 10. A demographic
questionnaire was administered after Mission 10. At the end
of Session II, a debriefing was provided.

In this experiment, three-team performance measures were
obtained as follows:

1) a mission level performance score (a composite score
calculated based on the overall RPAS team);

2) target processing efficiency (based on the timely and ac-
curate processing of the target);

3) whether or not the teams successfully recovered after the
failures.

In addition, this article aimed to highlight and discuss trust and
team interaction mechanisms to help recover from complex and
dynamic failures. Hence, we focus on the following measures.

Team communication flow was used to quantify team inter-
action dynamics measures, and is hypothesized to be related to
teammate trust. Team communication flow is a multivariate bi-
nary measure recorded once each minute for each team member
to indicate if at least one message was sent (team communication
flow = 1) or not (team communication flow = 0) by each team
member.

Trust was measured subjectively by giving a questionnaire
to the navigator and photographer roles. We considered the
study done by Mayer and Gavin (2005) because of our main
point of interest, i.e., teams. The wording of Mayer and Gavin’s
questionnaire [13], which contains “willingness to take a risk”
questions relating to vulnerability and also included additional
trust questions, was modified for use in this HAT context [31].
The questionnaire had 25 questions with a Likert scale ranging
from “1”=Strongly Agree to “5”=Strongly disagree. To assess
how teammate trust changed over time, the questionnaire was
administered after Sessions I and II.

Automation and autonomy failure recovery scores were sep-
arately calculated for Sessions I and II by taking the proportion
of times that either the automation or autonomy failures were
successfully resolved in each session.

IV. DATA ANALYTICS AND RESULTS

The following analyses were applied to understand the impact
of different characteristics of team interaction dynamics on
human team members’ trust in the autonomous pilot. First, ex-
ploratory factor analysis (EFA) was applied to the 25-item trust
questionnaire to uncover the underlying factor structure, i.e.,
factor scores. Then, Joint Recurrence Quantification Analysis
(JRQA) was applied to the multivariate team communication
flow to calculate the interaction dynamics measures: recurrence
rate (RR), percent determinism (DET), and maximum line length
(MaxL) in each mission [22]. We averaged the interaction dy-
namics measures (DET, RR, and MaxL) across each session to
equalize the data length of trust and team interaction measures.
Z-scores (i.e., standard scores) were calculated for trust factor
scores, RR, DET, and MaxL for purposes of direct and accu-
rate comparisons. Finally, multiple stepwise regression analy-
ses (Akaike information criteria, AIC) were conducted to test
our hypotheses regarding the interaction-trust-failure recovery
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Fig. 1. Scree plot of exploratory factor analysis on 25-item.

relationships. Multiple observations from individuals and teams
were assumed to be independent. JRQA was carried out in R
version 3.2.3 [32] using the “crqa” [33].

A. Exploratory Factor Analysis on Trust

To reduce the dimensionality of the 25-item scale into an
appropriate number of factors, an EFA based on principal axis
factoring with varimax rotation was applied to the 25 trust
items that were collected after the first and second sessions. To
achieve an adequate sample size for the EFA, we used responses
from both sessions in a single analysis [34]. According to the
EFA findings, 58% of the total variance was accounted for by
eight factors. The scree plot, which shows the Eigen-values
for each factor (see Fig. 1), indicates a notable drop after the
second factor, which explains most of the variance (the rest is
“scree”) [35]. Therefore, we retained the first two factors, which
accounted for 17.0% and 15.8% of the variance.

As shown in Table II, Factor 1 represents the trust that human
team members put in the AI pilot role (i.e., the mutual trust of
the autonomous agent). On the other hand, Factor 2 represents
human team members’ willingness to be vulnerable (an aspect
of trust [7]) with each other stemming from the trust placed in
their teammates [13].

B. Trust Across the Roles and Sessions

To address the research questions, we first conducted a uni-
variate Analysis of Variance (ANOVA) to examine how the
trust that human team members put in the autonomous pilot
role (Factor 1: M = 0.00, SD = 0.94) differed across the two
sessions and between the navigator and photographer. Then,
we conducted a separate univariate ANOVA to examine how
willingness to be vulnerable (Factor 2: M = 0.00, SD = 0.95)
differed across the two sessions and between the two roles.
According to Levene’s test, the assumption of homogeneity of
variances was not violated for either of the dependent variables
(for Factor 1, F(3, 80) = 1.01, p = 0.40; for Factor 2, F(3, 80) =
0.72, p= 0.54). The session’s main effects on Factor 1 and Factor
2 showed evidence of statistical reliability (moderate, p= 0.033,
and weak, p = 0.887, evidence, respectively; Table III).

According to Fig. 2, we interpret these results to indicate
that, on average, Factor 1 decreased from Sessions 1 to 2 for
both human team members. Because there was no significant

TABLE II
FACTOR LOADINGS ON THE FIRST TWO FACTORS

TABLE III
ANOVA RESULTS FOR TRUST FACTORS

Fig. 2. Change in Factor Score 1 (trust that human team members put in the
AI pilot) from Session 1 to Session 2 (vertical lines: Standard Error +SE).
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TABLE IV
SUMMARY OF REGRESSION ANALYSIS FOR FACTOR 1 PREDICTING PROPORTION

OF AUTONOMY FAILURE RECOVERY

Note. “B” and “SE B” refer to unstandardized regression coefficient and its Standard
Error, respectively, while “β” refers to standardized coefficient.

Fig. 3. Factor Score: the trust that human team members put in the autonomous
pilot versus proportion of autonomy failures recovery.

difference for trust at the role level, we did not include “role”
as a predictor in the follow-up analyses. Factor 2 did not differ
for the navigator and photographer and did not change across
sessions. The negative direction of change in Factor 1 indicates
the dynamic nature of trust.

C. Trust and Failure Recovery

In order to predict autonomy and automation failure recovery
across sessions using Factor 1 and Factor 2, multiple stepwise
regression analyses (with AIC) were conducted (see Table IV).
Although the results from the first regression indicated that the
linear and quadratic terms of Factor 1 explained 12% of the
variance of autonomy failures recovery, R2 = 0.12, F (4, 79) =
2.60, p < 0.05, in the second regression, the only linear term of
Factor 2 explained a relatively small amount of the variance in
automation failure recovery, R2 = 0.03, F (1, 82) = 2.42, p =
0.12.

Therefore, Factor 2, i.e., willingness to be vulnerable, was
excluded from follow-up stepwise regression analyses because
of its limited statistical evidence. Additionally, the results show
that the session variable was automatically excluded from the
final models. Therefore, we did not continue using the session
variable in the follow-up regression analysis. In the first regres-
sion model, the quadratic term for Factor 1 had strong evidence
of a statistically reliable relationship with the recovery from
autonomy failures (see Fig. 3).

D. Team Interaction Dynamics

We applied Joint Recurrence Quantification Analysis (JRQA)
to the multivariate team communication flow data to investigate
team interaction dynamics. The basis of JRQA is the Recurrence
Plot (RP [21]), which is an illustrative tool for visualizing the

Fig. 4. (a) Example discrete time series, and (b) Discrete recurrence plot
(modified from the study [23]). Recurrent “points” (block boxes) are plotted
whenever “1” repeats at a later time.

temporal evolution of a dynamical system when a system revisits
similar states by identifying all pairs of time points in which
the system returns to the same state [36]. While RPs give a
visual representation of how often a single system revisits certain
states or sequences of states over time, the joint recurrence
RP displays the times when coupled dynamical systems visit
similar states. In this article, we use discrete recurrence analysis
for categorical (symbolic) time series, with symbols 0 = not
messaging and 1=messaging for each team member. Univariate
discrete recurrence analysis has been used successfully to detect
changing team communication dynamics in the past [37]–[39].
Due to its relative simplicity, we illustrate the concept of recur-
rence analysis using a univariate RP. An example RP is shown
in Fig. 4.

Fig. 4(a) is a simple binary time series of length N= 11, x(t)=
[1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0] and Fig. 4(b) is a visual representation
(RP) of the time series. Discrete RPs are constructed by placing
a symbolic time series on both the horizontal and vertical axes
of a graph and plotting a recurrent point (black box) whenever
a symbol repeats. In this case, the value at x(1) is repeated at
x(3), x(4), and x(8); likewise, the value at x(3) is repeated at x(4)
and x(8). The RP in Fig. 4(b) gives a visual summary of these
patterns, as well as repetitions involving zeros. The example
concerning points, x(1), x(3), x(4), and x(8), is visually depicted
in Fig. 4(b) by tracing upwards from the bottom-left corner to
the top-left corner of the plot, where “points” (black boxes) are
plotted each time the value at x(1) repeats at a later time in the
series. The red line from the lower left-hand corner to the upper
right-hand corner indicates the main diagonal. Only the upper
triangle of the RP is analyzed because the matrix is symmetrical
around the main diagonal. Recurrent points forming diagonals
off the main diagonal indicate patterns that form when data seg-
ments match segments from earlier or later times. Construction
of JRPs follows directly from this univariate case, because the
JRP is the pointwise product of all respective univariate RPs
[37], i.e., RPs of each teammate. In this article, we used JRPs
to examine the change in the following three commonly used
JRQA measures across different window sizes: RR, DET, and
MaxL. We selected a window of one minute (60-s) based on the
average window size in which those three JRQA measures no
longer decreased.

1) “RR” measures the overall tendency for the coupled dy-
namical systems (here, team members speaking) to visit the
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Fig. 5. Example JRPs for interactions of two RPAS teams: The high perform-
ing team recovered from all failures (left: RR = %36, DET = 56%, MaxL =
4); the low performing team only recovered from the automation failure (right:
RR = 31%, DET = 51%, MaxL = 6).

same state as the proportion of recurrent points to possible re-
current points. RR is also an index of coupling strength, defined
as the amount of information exchanged between individuals
[40]–[42]. Here, RR corresponds to the coupling strength of
team communication behavior; 2) “DET” measures the pre-
dictability of coupled systems by measuring how frequently
recurrent points form repeating patterns (diagonal lines) off
the main diagonal [22]. Here, DET characterizes the degree of
organization of a team’s communication behaviors [37], [38]:
a DET of 100% indicates the input time series are perfectly
repeating patterns, whereas a DET of 0% indicates the time series
never repeat. In this task, DET indicates the degree to which
all three team members communicated or did not communicate
simultaneously in repeating patterns. We interpret DET as the
predictability of team communication behavior; and 3) “MaxL”
measures the stability of coupled systems by measuring the
length of the longest off-diagonal sequence (pattern) of recurrent
points in the RP [43]. MaxL corresponds to the stability of team
communication behavior. For a binary series, it is just the longest
diagonal line above the main diagonal, which is an index of
attractor stability [44]–[46]. An example of two RPAS teams’
JRPs for team communication flow is shown in Fig. 5, which
correspond to high (see Fig 4, left) and low (see Fig. 5, right)
performing RPAS teams during Mission 10 (three time series of
40-min length for each member).

The values of the three metrics for Fig. 5 plots for the high
performing team are, RR = 36%, DET = 56%, MaxL = 4,
and for the low performing team are, RR = 31%, DET = 51%,

TABLE V
SUMMARY OF REGRESSION ANALYSIS FOR INTERACTION DYNAMICS

PREDICTING FACTOR 1

Note. “B” and “SE B” refer to unstandardized regression coefficient and its Standard
Error, respectively, while “β” refers to standardized coefficient.

MaxL = 6. Each RR, DET, and MaxL was calculated based on
team communication flow from each team member’s message
sent times, depicted in the top panel of Fig. 5. The y-axis shows
if a message was sent by each role in a given minute: “1”
for “message sent” and “0” for “no message sent.” In Fig. 5
(left), the high-performing team demonstrated slightly higher
coupling strength (more interaction between the team members)
and more predictability in team communication behavior but
was less stable than the low-performing team. According to the
high coupling strength in the high-performing team, each team
member communicated more frequently during each failure, and
the team recovered from all of the failures. To adapt to the
failures, the team also demonstrated less stable behavior than
the low-performing team.

On the other hand, the low-performing team showed lower
coupling strength because of a lack of interaction during the
autonomy failure and cyber attack. The low-performing team
members communicated more frequently during the automa-
tion failure and recovered from the failure (see Fig. 5, right).
However, the same team did not demonstrate a similar commu-
nication pattern during the autonomy failure or malicious cyber
attack. During the autonomy failure, the navigator did not partic-
ipate, and during the malicious cyber-attack, the photographer
failed to anticipate team members’ needs or was unaware of the
failure. In the low-performing team, higher team communication
stability did not help them to recover from the failures because
of a lack of team interaction.

E. Team Interaction Dynamics and Trust

To predict the relationship between team interaction dynamics
and trust that human team members put in the autonomous pilot
(i.e., Factor 1), stepwise regression analysis (AIC) was used.
The results are summarized in Table V. The regression model ex-
plained 16% of the variance of human team members’ trust, R 2 =
0.16, β(4, 79) = 3.75, p < 0.05. All four predictors in this model
had statistically reliable associations with Factor 1: linear and
quadratic terms for DET, the linear term for RR, and the quadratic
term for MaxL, centered at their means. DET had a negative
linear effect and a positive quadratic effect (after controlling
for RR and maxL2). There is a U-shaped relationship between
DET and trust in the autonomous pilot. A moderate amount of
interaction predictability was associated with the lowest levels
of trust, with a minimum of trust, around 19% DET, beyond
which the relationship changes from negative to positive. In other
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TABLE VI
SUMMARY OF REGRESSION ANALYSES FOR INTERACTION DYNAMICS

PREDICTING PROPORTION OF FAILURE RECOVERY

Note. “B” and “SE B” refer to unstandardized regression coefficient and its Standard
Error, respectively, while “β” refers to standardized coefficient.

words, increasingly predictable team interaction dynamics were
negatively associated with the development of human trust in
the pilot up to a point. However, there was an inflection point,
beyond, which further increases in predictability was positively
associated with the trust.

RR, or coupling strength, had a significant positive linear
effect on trust development across the range of observed values.
When human team members interact with each other and the
autonomous pilot continuously during the task, the trust was also
increased. MaxL, or stability, had a significant negative quadratic
effect on the trust development (although the linear effect was
not significant). Increasingly stable team coordination dynamics
were not associated with trust put in the pilot, but an inflection
point beyond which further increases stability was negatively
related to the trust.

F. Team Interaction Dynamics and Failure Recovery

Model 1 from stepwise regression analysis (AIC) examines
the relationship between interaction dynamics and recovery
from autonomy failure (see Table VI). Overall, the model ex-
plained 28% of the variance in the proportion of autonomy
failures recovery, R2 = 0.28, β(4, 83) = 7.91, p < 0.001. The
linear relationship for DET (holding constant other variables) in-
dicates when team members had more predictable coordination,
they tended to recover from autonomy failures successfully. The
negative linear RR relationship indicates that decreases in cou-
pling strength were associated with successfully recovering from
autonomy failures. Finally, the positive quadratic relationship
between MaxL2 and autonomy failure recovery was positive,
indicating that increasingly stable team interaction dynamics
were positively associated with recovery from autonomy fail-
ures. One interpretation of this pattern of findings is based on the
observation that the autonomous pilot did not interact effectively
with the human team members during the autonomy failure.
Therefore, the human team members either did not talk, and
the human team members did not notice the autonomous pilot’s
abnormal behavior in time. This abnormal interaction during
the autonomy failure was unstable than the routine conditions.
The human team members demonstrated stable and persistent
behavior to correct the autonomous team pilot’s behavior, and
an inflection point beyond which further increases stability was
associated with positively related to autonomy failure recovery.

To predict the relationship between the interaction dynamics
measures and automation failure recovery, stepwise regression
analysis (AIC) was used (see Model 2 in Table VI). Overall,
the model explained 11% of the variance in the proportion
of automation failure recovery, R2 = 0.11, β(3, 84) = 3.28,
p < 0.05. The linear relationship shows a positive association
between DET (holding constant other variables) and automation
failure recovery, such that predictable coordination between
the team members had a positive relationship with autonomy
failure recovery. The significant negative quadratic DET effect
replicates an earlier finding that dynamics should not be too
predictable nor too random but should be in-between to adapt
to novel task events [37]. Another significant finding from the
model shows that the linear relationship between MaxL and
automation failure recovery was negative. That is, too much sta-
bility in HAT members’ interaction dynamics during automation
failures was associated with a decreased ability to recover from
automation failures.

V. DISCUSSION AND CONCLUSION

From the results of this article, we see two general trends. The
first trend is that team interaction dynamics measures are linked
to the development of different aspects of trust in HATs. This
finding also verifies that team interaction dynamics measures
can also be considered as objective trust measures. Specific to
team interaction dynamics, aspects of coupling strength (RR),
predictability (DET), and stability (MaxL) did not change from
Session 1 to 2. The reason might be that Missions 2 to 10 all
had failures at about the same rate, so if participants acclimated
quickly, there was no change between Sessions 1 and 2 related
to team interaction dynamics.

Regarding RR, the building of trust in the autonomous team-
mate was related to greater coupling strength. Because dynamic
task environments require interaction between team members,
teams need to have strong coordination through timely inter-
action, which will help build trust between team members to
adapt to dynamic changes in the task environment. However, this
interaction aspect did not help to successfully recover from the
autonomy failures, because the communication between team
members was not accurate due to the autonomous pilot’s abnor-
mal behavior. Being an effective team requires the exchanging
of information among members in a timely manner. During the
autonomy failures, the pilot either did not anticipate the human
teammates’ needs or demonstrated a lack of comprehension of
the task.

According to the findings regarding the relationship between
DET and trust, strong team communication predictability im-
proved the human trust put in the autonomous pilot. However,
moderate level predictable behavior was required for both au-
tomation and autonomy failure recovery. It makes sense because
continuous and persistent interaction from the human to the
autonomous teammate was also predictable. However, some
amount of predictability helped teams to recover from autonomy
failures. Behavioral interactions in novel conditions (during the
failures) differ from routine conditions. If teams demonstrate
the same predictable coordination dynamics across the task (too

Authorized licensed use limited to: ASU Library. Downloaded on July 26,2022 at 23:02:03 UTC from IEEE Xplore.  Restrictions apply. 



704 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 51, NO. 6, DECEMBER 2021

much predictability), they could not adapt to the dynamic task
environment. Therefore, teams demonstrated different types of
predictable behavior, which consists of persistent behavior to
the autonomous pilot, i.e., the phase transition from the routine
conditions to novel conditions (i.e., autonomy and automation
failures). Yet, too much predictable coordination dynamics im-
proves trusting the autonomous team member. However, too
much predictability of team coordination dynamics adversely
affects team performance because of the autonomous team
member’s unpredictable nature in an unpredictable dynamic task
environment. This opposite relationship between the team inter-
action predictability with human mutual trust in an autonomous
team member and overcoming novel situations is clear evidence
of human trust calibration needed for adaptation to the dynamic
task environment.

Similarly, the automation failure recovery also required some
amount of predictable coordination between the team members.
That moderate predictability helped because the autonomous
agent was also interacting with the human team members for
automation failure recovery. This finding is logical because the
autonomous pilot demonstrated unpredictable behaviors (“au-
tonomy failures”) during team performance. Future work should
explore whether human team members expect more predictable
behavior to build trust in the autonomous pilot or not. This
finding also confirmed the previous findings from the same task
[37] and human-robot teaming in urban search and rescue task
[47], which underlined the inverted U-Shape model: a moderate
level predictable behavior (neither too much nor too little) is
required to adapt to the novel events.

According to the MaxL findings, excessive stability between
team members was not beneficial in regard to increasing the trust
that human team members put in the autonomous teammate,
but it helped in recovering from the autonomy failures. One of
the reasons for this might be that the teams demonstrated more
stable communication behavior when the human team members
continuously and persistently interacted with the autonomous
teammate in order to recover from its abnormal behavior. In
this experiment, this was the solution for autonomy failure
recovery [29]. Therefore, when human team members demon-
strated stability by means of continuous and persistent behavior,
the team successfully recovered from autonomy failure. At the
same time, they lost their trust in the autonomous pilot due to
the autonomous pilot’s abnormal behavior. Perturbations and
team interaction dynamic measures showed us the dynamic
characteristics of trust calibration. For future research in the HAT
context, trust calibration characteristics need to be examined by
other dynamical systems methods and measures. For instance,
layered dynamics [48] is one way to examine how dynamic
characteristics of trust calibration evolve based on the interaction
of all the system’s cognitive and technological aspects.

The second trend based on this article’s findings underlines
that trust and team interaction are related to autonomy and
automation failure recovery. In reviewing our research questions
and related hypotheses regarding how trust in HATs evolves
over time, it is clear that the trust that human team members
put in the autonomous pilot decreases as time progresses and
teams continue to encounter technology failures (from Session

I to Session II in our study). This finding was expected due
to the nature of the overall experimental design concerning the
incremental introduction of various failures.

It is possible that loss of trust over time was related to
autonomy failures and not automation failures. As humans were
introduced to autonomy failures caused by the autonomous pilot,
their level of trust decreased. If either a human or autonomous
pilot performs poorly over time in a teamwork context, a human
teammate will lose trust in either entity. This reflects appropriate
trust calibration over time, whether team members are human or
autonomous. That being said, the exact nature of how this loss of
trust occurs/develops may be different due to numerous factors
(e.g., social, psychological). From this article, we can only con-
clude that there is a loss of trust that develops over time, which
has also been seen in human-human teaming studies. Additional
research is needed to compare/contrast the specific manner in
how trust is lost between both types of teams. Digging deeper
into the issue of loss of trust over time and interaction, we see that
the development of too much or too little trust is dependent on
the performance of the autonomous pilot in relation to autonomy
failures. More specifically, if autonomous agent failures increase
over time, the human team member naturally places less trust in
the agent (again, this is similar to all-human trust dynamics), but
the situation would be more complicated if the human initially
overtrusted the autonomous agent. As indicated in Table IV,
moderate trust was positively related to autonomy failure re-
covery. Previous research has brought to light the necessity
that human team members understand an autonomous agent’s
strengths and limitations in order to maintain appropriate levels
of trust, and that an agent’s past performance is one of the
strongest predictors of the trust that human team members will
put in the autonomous agent [49]. This finding supports much of
the work in the area of trust calibration and repair that indicates
it is important for humans to have an appropriately calibrated
amount of trust in the autonomous agent, neither too much nor
too little [6].

In conclusion, team-level trust in HATs is tied to team inter-
action, and both are tied to failure recovery. Based on the current
results, we think it is a dynamic, interaction-based process that
should be measured not only through surveys but also real-time
sensor-based, behavior-based, and, in general, interaction-based
methods. In the future, trust development mechanisms in HATs
can be envisioned that capitalize on real-time interactions be-
tween the system components.
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