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The Impact of Training on Human—-Autonomy Team
Communications and Trust Calibration

Craig J. Johnson®, Mustafa Demir, Arizona State University, Tempe, USA,
Nathan J. McNeese, Clemson University, South Carolina, USA, Jamie C. Gorman,
Georgia Institute of Technology, Atlanta, USA, Alexandra T. Wolff, and

Nancy J. Cooke, Arizona State University, Tempe, USA

Objective: This work examines two human—autonomy team
(HAT) training approaches that target communication and trust cal-
ibration to improve team effectiveness under degraded conditions.

Background: Human—autonomy teaming presents challenges
to teamwork, some of which may be addressed through training.
Factors vital to HAT performance include communication and cal-
ibrated trust.

Method: Thirty teams of three, including one confederate
acting as an autonomous agent, received either entrainment-based
coordination training, trust calibration training, or control training
before executing a series of missions operating a simulated remotely
piloted aircraft. Automation and autonomy failures simulating de-
graded conditions were injected during missions, and measures of
team communication, trust, and task efficiency were collected.

Results: Teams receiving coordination training had higher
communication anticipation ratios, took photos of targets faster,
and overcame more autonomy failures. Although autonomy failures
were introduced in all conditions, teams receiving the calibration
training reported that their overall trust in the agent was more
robust over time. However, they did not perform better than the
control condition.

Conclusions: Training based on entrainment of communica-
tions, wherein introduction of timely information exchange through
one team member has lasting effects throughout the team, was pos-
itively associated with improvements in HAT communications and
performance under degraded conditions. Training that emphasized
the shortcomings of the autonomous agent appeared to calibrate
expectations and maintain trust.

Applications: Team training that includes an autonomous
agent that models effective information exchange may positively im-
pact team communication and coordination. Training that emphasiz-
es the limitations of an autonomous agent may help calibrate trust.

Keywords: human—agent teaming, command and
control, collaboration, intelligent systems, artificial
intelligence
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INTRODUCTION

Future command and control systems will
include more autonomous technologies. Among
these technologies are computer-based entities
that occupy distinct and interdependent roles
as team members, referred to as autonomous
agents (O’Neill et al., 2020). When autonomous
agents team up with one or more humans form-
ing a human—autonomy team (HAT; McNeese
etal., 2018), it may extend team capabilities and
reduce risks to humans. Communication, coor-
dination, and trust are important for HAT per-
formance (Chen & Barnes, 2014; Demir et al.,
2021; de Visser et al., 2020; McNeese et al.,
2021; O’Neill et al., 2020). However, when
autonomous agents are included in a team, the
nature of work changes and the agent may fall
short when the situation is off-nominal or tech-
nology is degraded (Endsley, 2017; Groom &
Nass, 2007; Hollnagel & Woods, 2005; Klein
et al., 2004; Woods, 2016). Automation failures
that impact access to information or function-
ality may require HATs to rapidly alter their
communication and coordination to compen-
sate. HATs are also susceptible to autonomy
failures—failures of an autonomous agent that
results in undesirable behavior, which may also
go undetected if trust is miscalibrated. In some
cases, interventions aimed at team communi-
cation, coordination, and trust may be needed
to improve HAT effectiveness, especially in
response to failures. Team training is one way
to intervene (Entin & Serfaty, 1999; Gorman,
Cooke, et al., 2010; Marks et al., 2002; Salas
et al., 2006, 2008). However, there is a lack of
research examining training on communica-
tion, coordination, and trust in HATs (Cohen &
Imada, 2005; Walliser et al., 2019). The current
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study adds to this area of research by examin-
ing the impact of 2 HAT training approaches on
team communications, coordination, and trust
calibration in the context of automation and
autonomy failures.

Team Communication and Coordination

Interaction is necessary to perform team-
level cognitive activities such as planning,
decision-making, situation assessment, and col-
lective action (e.g., team cognition; Cooke et al.,
2013; Mathieu et al., 2000; Mohammed et al.,
2010; Salas & Fiore, 2004). One of the primary
ways interaction occurs is communication using
natural language (Salas et al., 2005). To com-
municate effectively, team members need to get
the right information to the right place at the
right time, which often requires them to antici-
pate the information requirements of teammates
(Gorman et al., 2006). One way team antici-
pation has been operationalized is the ratio of
information transfers to information requests
(i.e., anticipation ratio). A higher anticipation
ratio may indicate more effective communica-
tion and coordination (Entin & Serfaty, 1999;
MacMillan et al., 2004). However, research
suggests that the behaviors of an autonomous
agent may impact the communication and coor-
dination of their entire team (Demir et al., 2019;
Shah & Breazeal, 2010). One source of this
team-level impact may be entrainment—a spon-
taneously coupling and synchronization of the
timing and content of teammate communication
(McGrath, 1990). For example, one experiment
suggested that an autonomous agent’s limited
communication and coordination capabilities
had a detrimental influence on overall team
communication and coordination—entraining
the rest of the team to share information less
and be less adaptive. In contrast, an “expert”
confederate teammate appeared to entrain more
effective communication and coordination in
their team (Demir et al., 2019; McNeese et al.,
2018). Other research has demonstrated evi-
dence of team entrainment within and between
different levels of analysis, including physiolog-
ical and behavioral (Dias et al., 2019; Gorman
et al., 2017) and in human—robot team commu-
nications (Breazeal, 2002; lio et al., 2015).

Trust in Autonomy

For teams to capitalize on their interdepen-
dent relationships and coordinate effectively,
trust is also needed (Mayer et al., 1995). In this
work, trust is considered “the attitude that an
agent will help achieve an individual’s goals in
a situation characterized by uncertainty and vul-
nerability” (Lee & See, 2004, p. 54). In HATSs,
the perception of an autonomous agent’s trust-
worthiness needs to be aligned with its actual
trustworthiness. That is, trust needs to be cali-
brated, or team performance may suffer (Chen
& Barnes, 2014; Hancock et al., 2011; Hoff &
Bashir, 2015; Hoffman et al., 2013; McNeese
et al., 2019; Schaefer et al., 2016). For exam-
ple, over-trusting autonomy can lead to a lack
of operator awareness when the autonomy fails,
and too little trust can lead to increased oper-
ator workload and disuse (Endsley, 2017; Lee
& See, 2004). Trust in autonomy is impacted
by several factors, such as expectations of reli-
ability, consistency, performance, and commu-
nication behaviors, and trust evolves through
interaction (Chiou & Lee, 2021; de Visser et al.,
2020; Schaefer et al., 2016). People tend to
place high expectations and trust in automated
systems. However, trust can be rapidly lost and
is not always easily repaired when violated,
which may lead to underreliance (de Visser
et al., 2018; Madhavan & Wiegmann, 2007).
Knowledge of an autonomous agent’s reliability
can increase trust (Fan et al., 2008), and damp-
ening of trust in anticipation of failures has also
been demonstrated to improve trust calibration
(de Visser et al., 2020). HAT performance is
likely to improve if expectations and trust are
more accurately calibrated.

THE CURRENT STUDY

The current study builds upon previous work
examining human—autonomy teaming in the
Remotely Piloted Aircraft System—Synthetic
Task  Environment (RPAS-STE; Demir,
McNeese, et al., 2019). The RPAS-STE pro-
vides a simulation environment to exercise the
cognitive activities of teams and individuals in
an RPA (drone) ground station (Cooke et al.,
2004). In the current study, the participants were
informed that one of the three team members
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was a “synthetic” autonomous agent (Myers
etal., 2018), but it was actually a confederate in
another room. This represented a version of the
Wizard of Oz (WoZ) paradigm, in which par-
ticipants are led to believe they are interacting
with a computer-based entity when it is actually
controlled by a confederate “behind the cur-
tain” (Kelley, 1984). The WoZ methodology is
useful for HAT research because it enables the
study of human interactions with a wide range
of potential artificial agent behaviors that can
inform further research and development, with-
out being constrained by the time and resource
investments associated with developing and
reconfiguring authentic agents (Cooke et al.,
2020; Lematta et al., 2021). In this study, the
WoZ paradigm also enabled the implementation
of autonomy failures that would be inconsistent
and undesirable in an authentic autonomous
agent. The WoZ assumed the pilot role in the
RPAS-STE to maximize interaction with the
other two roles and because it was the role
for which an authentic autonomous agent has
been developed (Ball et al., 2010). The WoZ
script indicated when and what the confeder-
ate communicated and how the agent should
make decisions to control the RPA flight path.
This represented an agent with limited auton-
omy and language capabilities filling a distinct
peer-like role in the team, in contrast to other
human—automation paradigms such as supervi-
sory control (Sheridan, 1992).

Two types of failures were introduced over
multiple missions as a within-subjects manip-
ulation. Autonomy failures were failures of the
synthetic pilot. They included failures of the
autonomous agent’s decision-making, inter-
pretation of communications, or application of
communications to behaviors. Automation fail-
ures were failures of the RPA, including fail-
ures of communication systems and hardware
failures that impacted access to information
or RPA functions (Demir, McNeese, Johnson,
etal., 2019).

RPAS-STE Task Environment

The primary task in the RPAS-STE is to take
photos of ground target waypoints. The three
roles include (1) the pilot who flies the simulated

RPA; (2) the navigator who plans, monitors,
and updates the route; and (3) the photographer
who takes photos. The coordination process for
taking a photo consists of three essential ele-
ments, Information, Negotiation, and Feedback
(INF; Gorman, Amazeen, et al., 2010). First,
the navigator must identify the targets and route
restrictions (e.g., maximum and minimum air-
speed) and provide that information to the pilot
(I). Next, the pilot and photographer negotiate
to align the necessary photo requirements for
a target (i.e., zoom and shutter speed) with the
aircraft state (i.e., current altitude and airspeed)
within the route restrictions (N). Third, once
the target is in range, the photographer takes
a photo, evaluates it, and provides feedback to
the team on the outcome (F), after which the
team proceeds to the next waypoint or tries
again. Closing the loop on the INF process is
essential for photographing each target, and the
faster this process takes place once a target is
identified (i.e., timeliness), the sooner the team
can start processing the next target. Targets are
located within restricted operating zones (ROZ)
marked by entry and exit waypoints. Standard
waypoints allow the team flexibility in navi-
gation, and flying close to a hazard waypoint
incurs a penalty (Figure 1).

Training Manipulation and Hypotheses

To develop the training, an exploratory
analysis was first conducted to uncover crit-
ical factors for overcoming failures in a prior
RPAS-STE HAT experiment (Cooke, Demir,
McNeese, et al., 2020). Based on a cluster
analysis of mission performance, target pro-
cessing efficiency, and the number of failures
overcome, the three most effective and three
least effective teams were examined. The find-
ings indicated that automation failures required
timely communication and coordination to
share information between team member’s
workstations to complete the INF targeting
process. For autonomy failures, human team
members needed to be persistent in their inter-
actions with the autonomous agent to work
through the failure. We reasoned that this latter
process required appropriately calibrated trust,
such that the human team members identify
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Figure 1. Diagram of the RPAS-STE. (a) RPAS-STE roles, workstation interfaces, and coordination process;
(b) bird’s-eye view of RPA during photo execution with associated coordination steps 1-3. Arrows indicate the
essential and timely communication events (INF) for each target that were the focus of coordination training.
INF = Information, Negotiation, and Feedback, RPAS-STE = Remotely Piloted Aircraft System—Synthetic

Task Environment.

the failure, but not give up on the autonomy.
Timely sharing of essential information and
trust calibration were the intended outcomes of
the coordination training and calibration train-
ing respectively, which were implemented as
the between-subjects manipulation in this study
(Cooke, Demir, McNeese, et al., 2020; Demir,
McNeese, Johnson, et al., 2019). The develop-
ment of the training protocols is described in the
following sections.

Coordination Training. The coordination
training protocol was modified from another
RPAS-STE experiment in which a confederate
following a coordination script (an “expert”
teammate) subtly coached or modeled effective
coordination behaviors over multiple missions
by sharing and requesting INF-related informa-
tion in anticipation of the needs of teammates.
Coaching appeared to entrain improvements in
overall team communications and correlated

with improvements in team responses to
changes in the mission. In contrast, an autono-
mous agent had a negative impact. Presumably,
this detrimental impact was not due to the team-
mate being an artificial agent per se, but instead
due to the limited communication and coordi-
nation capacities embedded within the agent
(McNeese et al., 2018). In the current study, a
modified “expert teammate” was implemented
through the WoZ pilot and for only a single
training mission rather than the entire study.
The WoZ sent and requested INF-related infor-
mation significantly sooner than in the standard
script, which was expected to subtly encourage
participants to share that information in antici-
pation of when their teammates needed it. The
intent was to positively influence team commu-
nication and coordination behaviors related to
the INF targeting process through entrainment
via the WoZ’s behaviors during training, and
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then assess the reverberating effects in later
missions.

Coordination training was developed as an
alternative to perturbation training, character-
ized by external disruptions of the team coor-
dination process, which has been found to be
effective for equipping all-human teams for
novel task conditions similar to the automation
failures in this study (Gorman, Cooke, et al.,
2010). However, the current study was focused
on investigating training implemented primar-
ily through the autonomous agent’s behavior
and to assess the effectiveness of entrainment-
based training rather than changes in the train-
ing environment or task.

Calibration Training. The other training
protocol implemented in this study, calibration
training, was intended to reduce initial expec-
tations in the agent’s reliability and capability
through pre-planned expectation dampening
behaviors during the training mission while also
including elements that focused on encouraging
persistence in interacting with the agent. The
calibration training was not intended to max-
imize trust, but to set “realistic” expectations,
so that when autonomy failures did happen they
would be identified and overcome, but trust
would not be impacted.

We hypothesized that coordination training
would lead to adaptive coordination and an
increased ability to overcome automation fail-
ures by improving the timely communication of
essential information between team members.
We also hypothesized that calibration training
would adjust human team members’ expec-
tations and calibrate trust in the autonomous
agent and that it would encourage them to com-
municate persistently with the agent, leading
to an increased ability to overcome autonomy
failures.

METHODS
Participants and Power Analysis

An a priori power analysis was conducted
using G*Power3 (Faul et al., 2007) to test the
difference between the means of 3-condition by
5-mission using an F-test, a medium effect size
(77p2 =.06), and an a of 0.05. According to the
results, a total sample of 27 teams with three

equal-sized groups of n =9 is required to achieve
a power of 0.80. We increased the number of
teams per group to n = 10. Accordingly, 60 par-
ticipants, ages 18-33 (M = 22.5, SD = 3.55),
were recruited from Arizona State University
and the surrounding areas and split into 30
teams. In each team, two participants were
randomly assigned to the roles of navigator or
photographer, whereas the pilot was a confed-
erate acting as an autonomous agent (WoZ).
Ten teams were assigned to each of the three
between-subjects conditions: calibration train-
ing, coordination training, and control training.
Each team completed one experimental session,
which lasted approximately 7 hr. Participants
were compensated $10 per hour. This research
complied with the American Psychological
Association Code of Ethics and was approved
by the Cognitive Engineering Research Institute
Institutional Review Board. Informed consent
was obtained from each participant.

Materials and Apparatus

This study utilized the RPAS-STE (Cooke
et al., 2004; Demir, McNeese, et al., 2019). In
this testbed, there are three workstations for the
RPAS team. Each workstation has two moni-
tors displaying role-specific interfaces that are
interacted with using a mouse (Figure 1). The
navigator and photographer workstations were
in the same room and separated by a partition.
The pilot workstation was in a separate room
to ensure the participants could not see or hear
the confederate (WoZ). Each workstation also
had a text chat system with a touchscreen and a
keyboard. Two experimenter workstations were
in another room to allow researchers to monitor
the experiment and code behavioral measures in
real-time (described in Tables 4 and 5).

Procedure

First, participants completed a 30 -min role-
specific interactive slideshow describing con-
trols, responsibilities, as well as individual and
team tasks. This was followed by a 40 -min
training mission where participants trained as a
team and were guided by a researcher following
a script. Participants were provided a checklist
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TABLE 1: Coordination and Calibration Training Manipulations

Training

Description

Control training

Coordination training

Overall. This training was intended to give participants basic proficiency in RPAS-STE
taskwork and teamwork. All the information in this training (except filler material) was
also present in the calibration training and control training.

Slide training. Included information regarding workstation controls, roles,
responsibilities, the basic INF communication process, individual, and team tasks,
and additional filler material. Informed the participants that the pilot was a “synthetic
teammate” computer program with limited language capabilities.

Training mission. A practice mission where a researcher guided participants through
their tasks in real time to ensure proficiency.

Overall. This training aimed to entrain participants to communicate INF information in a
timely manner to improve team communications and responses to automation failures.
Slide training. Participants were exposed to the different types of information they

and their teammates had access to (e.g., altitude, airspeed) and were encouraged to
communicate essential information with their teammates.

Training mission. The autonomous agent (WoZ pilot) followed a modified script in which
the agent modeled effective information exchange by requesting essential information
(INF) from the team if it was not provided in a timely manner, sent information to them
earlier, and had a shorter delay before sending follow-up messages. The delay to send

or request INF-related information was reduced from 60 s in the control training and
calibration training to 20 s in this training.

Calibration training e Overall. This training aimed to calibrate the participant’s trust in the autonomous
agent by dampening expectation and encouraging participants to be persistent in
communicating with the agent, improving responses to autonomy failures.

e Slide training. Participants were told that the autonomous agent was “still in
development” and was prone to mistakes and malfunctions, and that persistence was
required for interacting with the agent.

e Training mission. The autonomous agent (WoZ pilot) experienced a delay in responding
to communications, after which participants were prompted by a researcher to send the
message again as the agent “may be experiencing a malfunction.”

Note. INF = Information, Negotiation, and Feedback; RPAS-STE = Remotely Piloted Aircraft System-Synthetic Task

Environment; WoZ = Wizard of Oz.

related to their roles and how to communicate
with the autonomous agent.

Between-Subjects Training Manipulations.
The training protocol was manipulated between
subjects to assess its impact. The control train-
ing served as a comparison. The manipulations
included variations in the interactive training
slideshow, variations in the pilot’s behavior
during the hands-on training mission, and mod-
ifications to the guiding researcher’s behav-
ior during the training mission as described
in Table 1 (Demir, McNeese, Johnson, et al.,
2019).

Within-Subjects  Missions and Failures.
Following training, each team executed a series
of five identical 40 -min missions. Each mission
contained 11-13 targets. The first mission had
no failures. The remaining four missions had

two failures, classified as either automation,
autonomy, or hybrid (Table 2). Only automa-
tion and autonomy failures were considered in
this study. Mission and failures were the within-
subjects manipulations (Table 3).

After the first and fifth missions, participants
completed questionnaires. Following the fifth
mission, participants were debriefed and com-
pensated (Table 3).

Measures

Several measures were collected, including
mission-level team performance, target processing
efficiency, and team process measures including
process ratings, verbal behaviors, and team situ-
ation awareness. Questionnaires included trust,
workload, and anthropomorphism. Physiological
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TABLE 2: Failure Types, Descriptions, and Solutions

Type and Duration

Description

Solution to Overcome Failure

Autonomy failures

Comprehension Error |
420's

Comprehension Error Il
420 s

Cyberattack
600 s

Automation failures

Photographer Data Failure
420 s

Pilot Data Failure
420 s

Communication Cut
420s

Display Power Failure
330s

Hybrid failure

Hybrid Failure
420 s

A malfunction of the synthetic

pilot’s capacity to understand
messages. When the photographer
or navigator sends the synthetic
pilot a message, the pilot does not
understand and continues to ask for
the information.

A malfunction of the synthetic pilot's

ability to understand messages.
The synthetic pilot applies incorrect
airspeed and altitude settings for
the current target.

A simulated hijacking of the RPA

where the synthetic pilot navigates
the RPA to an enemy waypoint and
communicates deceptive messages
as if it was moving to the correct
waypoint.

The photographer loses display of

flight information, including current
and next waypoint information,
time, distance, bearing, and course
deviation.

The synthetic pilot loses access

to flight information including
airspeed, altitude, time, distance,
bearing, and course deviation

on its screen. The pilot asks the
photographer and navigator for the
status of the RPA, indicating that it
has lost access to flight information.

One-way communication cut

between photographer and pilot.
The photographer cannot send
messages to the synthetic pilot
and receives an error message
whenever they attempt to.

Sequential power-down and

subsequent power-up of all six
participant workstation screens.

A combination of autonomy and

automation failures. The synthetic
pilot loses access to altitude and
airspeed, and moves on to the
next target without allowing the
photographer to take a good
photo.

The photographer and navigator must

provide accurate information to the
synthetic pilot until it understands
(persistence), and then the team
must get a good photo.

The photographer and navigator must

provide accurate information to the
synthetic pilot until it understands
(persistence), and then the team
must get a good photo.

The photographer or navigator must

contact Intel (an external message
channel) and inform them that the
RPA is headed toward an enemy
waypoint and return to course to
take a good photo.

The team must communicate

the missing information to the
photographer from someone else’s
workstation and take a good photo
of the target.

The team must communicate the

missing information to the pilot
from someone else’s interface and
take a good photo of the target.

The team must reroute

communications through another
teammate and take a good photo
of the target.

The team must quickly recognize

the error as impacting everyone,
coordinate the necessary target
settings early, and take a good
photo of the target.

The team must communicate the

missing information to the pilot
from someone else’s interface,
recognize and correct the synthetic
pilot’s error, and take a good photo
of the target.

Note. Failure durations and timing were predetermined based on pilot testing to maximize the chance that each failure
would be encountered without overlap. RPA = Remotely Piloted Aircraft.
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TABLE 3: Sequence of Events During Experiment Session and Failure Order

Duration # of Possible

Event (min) 1st Failure 2nd Failure Mission Targets
Slide training 30 - - -
Training mission 40 - - -
Mission 1 40 - - 11
Questionnaire Session 10 - - -

1
Mission 2 40 Photographer Data Comprehension Error | 12

Failure

Mission 3 40 Pilot Data Failure Comprehension Error Il 12
Mission 4 40 Hybrid Failure Communication Cut 13
Mission 5 40 Display Failure Cyberattack (N
Questionnaire Session 10 - - -

2

Note. Participants were given 5 to 10-min breaks between each mission.

measures included facial expression and elec-
trocardiogram. To address the hypotheses in this
study, we focused on a subset of measures, includ-
ing performance under degraded conditions, target
processing efficiency, team communication antici-
pation ratio, and two trust questionnaires detailed
in Table 4.

RESULTS
Performance Under Degraded Conditions

We conducted a repeated-measures logistic
regression to examine the effects of failure type,
training condition, and mission on the likelihood
that teams overcome failures. For automation fail-
ures, the tests were statistically significant for the
main effect of mission, x* (4) = 19.7, p = .001, but
the condition effect was not significant, x* (2) =.32,
p = .853. Across the missions, teams had a higher
probability of failing to overcome automation fail-
ures from Mission 2 to Mission 4 as they encoun-
tered more complex failures, y* (1)=9.53, p=.002.
For autonomy failures, test results were statistically
significant for the main effect of condition, 3 (2) =
6.66, p = .036, but not mission, x> (2) = 2.41, p =
.300. In this analysis, we chose the control train-
ing condition as a reference group. Teams in the
coordination training condition had a higher prob-
ability of overcoming autonomy failures than the
control group, ¥ (1) = 5.08, p = .024 (Figure 2).

These results do not support our hypothesis that
coordination training would improve responses
to automation failures or that calibration training
would improve responses to autonomy failures. On
the contrary, they suggest that coordination training
improved responses to autonomy failures.

Target Processing Efficiency

The TPE scores were analyzed using a three-
level nested mixed ANOVA with training condi-
tion as a between-subjects manipulation, mission
as a within-subject manipulation, and target nested
within mission. There were signiﬁcant condition
effects, F(2, 934) = 3.20, p = .041, n =.07, and
target effects, F(44,934)=343,p= 001 172— 14.
However, there was no significant i interaction effect
of training condition by target, (80, 934) = .89, p
=735, 17 =71, and training condition by mission,
F(8, 934) = .69, p = 705, 1% = .01. There was no
significant mission main eﬂect F(4,934)=1.69, p
=.150, 7> =01

According to the significant condition main
effect, univariate test statistics (simple main
effects) indicate that the linearly independent pair-
wise comparisons among the estimated marginal
means were statistically significant, F(2, 934) =
3.75, p=.024, 773 =.01. We applied Fisher’s Least
Significant Difference (LSD) pairwise compar-
isons to each pair of conditions where the use of
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TABLE 4: Measures Collected

Measure

Description

Relation to Hypotheses

Performance under degraded This measure captured whether a team

conditions

Target processing efficiency

(TPE)

Team communication

anticipation ratio

overcame an automation or autonomy
failure within the prespecified time. See
Table 2 for failure durations, descriptions,
and solutions to overcome each failure.
Failures were coded as a binary variable:
either “overcome” or “not overcome”
(Demir, McNeese, Johnson, et al., 2019).

The TPE provides a target-level measure of
team performance. TPE accounts for the
time spent inside the radius surrounding
each target when taking a photo (Figure 1).
The score starts at 1000, and one point
is deducted for each second inside the
radius. A 200-point penalty is deducted for
missed photos (Cooke et al., 2007). The
minimum score is zero.

Ten verbal behaviors were coded in real-time
as counts by two experimenters. Five of
them were categorized as either a push
(sending information to a teammate)
or a pull (requesting information from a
teammate (Johnson et al., 2020; McNeese
et al., 2018; Table 5). The remaining five
behaviors (positive communications,
negative communication, unclear
communications, anthropomorphism, and
objectivity) were not considered for this
study. The anticipation ratio was calculated
by dividing the number of pushes by
the number of pulls. An anticipation
ratio greater than one indicates a higher
proportion of information sharing to
requests.

Single-item trust questionnaire A single-item questionnaire was administered

to assess overall impressions of trust in
each teammate (1 per teammate): “I
trusted the [teammate]” (Koérber, 2019).

All questions used a 5-point Likert-scale
ranging from Strongly disagree to Strongly
agree. To assess how trust changed across
time, the questionnaires were administered
after Mission 1 and Mission 5 (McNeese

et al., 2019).

Coordination training will improve
responses to automation failures.

Calibration training will improve
responses to autonomy failures.

Coordination training will increase
target processing efficiency.

Coordination training will increase
the team communication
anticipation ratio.

Calibration training will dampen
expectations in the autonomous
agent, resulting in more robust
trust over time.

(Continued)
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TABLE 4 (Continued)

Measure

Description Relation to Hypotheses

Multidimensional trust
questionnaire

A multidimensional questionnaire consisting

of 16 questions (8 per teammate) was
also administered. It considered the
dimensions of benevolence, ability, and
integrity (characteristics influential to trust;
Mayer & Gavin, 2005). Only the subset

of the questions from each questionnaire
assessing trust in the autonomous

agent are considered in this study (See
Supplemental Materials). All questions
used a 5-point Likert-scale ranging from
Strongly disagree to Strongly agree. To
assess how trust changed across time, the
questionnaires were administered after
Mission 1 and Mission 5 (McNeese et al.,

2019).
100 1 707
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Figure 2. Failures across the training conditions. Error bars indicate +/-95% CI of the mean.

three conditions controls the family-wise alpha at
the per contrast alpha. Additionally, Fisher’s LSD
assumes reasonably good homogeneity of variance
(Howell, 2011; Meier, 2006). Pairwise compari-
sons (LSD) revealed that teams in the coordination
training condition performed significantly better
than the teams in the control training condition (p

=.007), but not significantly better than teams in
the calibration training condition (p = .160). There
was no significant difference in the performance of
teams in the control and calibration training con-
ditions (p = .173; Figure 3). This finding indicates
that the coordination training improved target pro-
cessing efficiency.
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Figure 3. Target processing efficiency between
training conditions. Error bars indicate +/-95% CI of
the mean.

TABLE 5: Team Verbal Behavior Codes

significant condition, F(2, 30) = 4.73, p = .016,
and mission main effects, F(4, 120) = 3.63, p =
.008. However, the condition by mission interac-
tion effect was not significant, F(8, 120) = 1.60,
p = .131. Based on the significant condition main
effect, simple main effects were statistically signif-
icant, F(2, 30) =4.73, p = .016. Pairwise compari-
sons (LSD) indicated that teams in the coordination
training condition had a higher anticipation ratio
than those in both the calibration training (p = .0006)
and control training conditions (p = .030). The cal-
ibration and control training conditions were not
significantly different (p = .517; see Figure 4).
This finding supports the hypothesis that coordina-
tion training would improve team communication
behaviors. Based on the significant mission main
effect, simple main effects were statistically signif-

Verbal Behavior Code

Push/Pull Code

Description

General status updates Push

Suggestions Push

Planning ahead Push

Inquiries about the status of Pull
others

Repeated requests Pull

Informing other team members about the
current status

Making suggestions to other team members
Creating rules or plans for future encounters

Inquiring about the current status of others

Requesting the same information or action
from a team member

Team Communication Anticipation Ratio

Cohen’s k was computed to assess inter-rater
reliability between two trained experimenters on
the push and pull verbal behavior codes (Tables 4
and 5). There was substantial agreement between
the two experimenters on for both push (k = 0.834;
95% CI [0.824, 0.844]) and pull (x = 0.867; 95%
CI[0.859, 0.876]). Therefore, ordinal measure rat-
ings from both experimenters were averaged for
each message and summed for each mission. For
each mission, the team-level anticipation ratio was
calculated by dividing the number of pushes by the
number of pulls (Entin & Serfaty, 1999).

We used a 3 (training condition) X 5 (mission)
split-plot analysis of variance (ANOVA) to ana-
lyze the team-level anticipation ratio. There were

icant, F(4, 120) = 3.63, p = .008. The significant
mission main effect indicates that the anticipation
ratio increased over time in all three training con-
ditions (Missions 1 to 5, p = .001). This is to be
expected as teams develop more effective implicit
coordination strategies as they become more famil-
iar with the task and their teammates. This finding
supports the hypothesis that coordination training
would improve team communication behaviors.
Based on the significant mission main effect, sim-
ple main effects were statistically significant, F(4,
120) =3.63, p =.008. The significant mission main
effect indicates that the anticipation ratio increased
over time in all three training conditions (Missions
1 to 5, p =.001). This is to be expected as teams
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Figure 4. Team anticipation ratio (a) across training conditions and (b) across missions. Error bars indicate +/-

95% CI of the mean.

develop more effective implicit coordination strat-
egies as they become more familiar with the task
and their teammates.

Trust in the Autonomous Agent

To test the hypothesis related to trust in the
autonomous agent, an analysis was conducted on
responses to the single-item query “I trusted the
pilot” The single-item responses were averaged
for each team and session. Scores were analyzed
using a 3 (training condition) x 2 (session) split-plot
ANOVA. There was a significant condition by ses-
sion interaction, F(2, 25)=6.67, p=.005, 773 =.35.
Simple effects analysis indicated that there was a
significant difference in trust between training con-
ditions for Session 2, F(2,25)=6.35, p =.006, npz =
.38. Pairwise comparisons (LSD) indicated that for
teams that received calibration training, trust was
significantly higher than teams that received either
coordination training (p = .049) or control training
(p = .002). The coordination training and control
training conditions were not significantly differ-
ent (p = .164; Figure 5). These results support our
hypothesis that calibration training would calibrate
trust by lowering expectations in the autonomous
agent, suggesting that the training mitigated the
impact of trust violations due to autonomy failures.

A separate analysis was conducted on the mul-
tidimensional trust questionnaire responses. We
used a 3 (training condition) x 2 (session) split-plot
ANOVA to analyze these responses. Responses
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Figure 5. Average responses to “I trusted the AVO
(pilot)” across sessions.

were averaged for each team. Results were not
statistically significant for the session by condition
interaction effect, F(2, 25) = 1.638, p = 214, 1> =
.116, the session main effect, F(1, 25) =3.44, p =
075, npz =.121, or the training condition main effect
F(2, 25) = 1.66, p = 210, n? = .153. Unlike the
single-item trust questionnaire, these results from
the multidimensional questionnaire did not sup-
port our hypothesis that trust would be more robust
to failures in the calibration training condition.
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Overall, these findings suggest that the calibration
training may have impacted perceptions or beliefs
of trust put in the autonomous agent without nec-
essarily having a significant impact on summative
perceptions of benevolence, ability, or integrity.

DISCUSSION

This study evaluated the impact of coordination
training and calibration training over a series of
missions that included automation and autonomy
failures. Here, we discuss the findings and provide
recommendations for implementing HAT training.

Outcomes of Coordination and Trust
Calibration Training

Coordination  Training. We hypothesized
that coordination training would lead to adaptive
coordination and better performance in response
to automation failures by improving the timely
communication of essential information. However,
we found that teams who received the coordina-
tion training overcame automation failures at rates
similar to those observed with control and trust
calibration training. These teams did have higher
anticipation ratios than those in both the calibration
training and control training conditions, indicat-
ing these teams shared information more effec-
tively (Entin & Serfaty, 1999; MacMillan et al.,
2004; Shah & Breazeal, 2010), and they also had
improved target processing efficiency compared to
the control training condition. In the coordination
training condition, the change in communication
behavior of a single team member (the artificial
agent pilot) resulted in significant improvement in
anticipation ratios and processing efficiency of the
team as a whole. Thus, we propose that the coordi-
nation training had an entrainment effect on team
communication and coordination behaviors, sug-
gesting the behaviors of an autonomous agent can
have more widespread impacts on the behaviors of
its teammates, impacting emergent team-level pro-
cesses and performance beyond the human—agent
dyadic interaction level.

Coordination training was beneficial for over-
coming autonomy failures in this study; however,
overcoming automation failures appears to have
required teams to do more than share information
efficiently. It also required them to coordinate flexi-
bly, such as routing information through a different

teammate or retrieving missing information from
someone who does not routinely provide it. The
coordination training did not appear to improve
team adaptability and flexibility, which literature
suggests is necessary for overcoming complex
challenges like the automation failures in this study
(Bowers et al., 2017; Burke et al., 2006; Maynard
et al., 2015). One possible explanation is that the
coordination training focused on entraining a
narrow set of routine communications (i.e., the
INF sequence), but did not include elements that
increased the variety of team interactions that a
team experienced outside of that routine process.
Thus, when teams were faced with an automation
failure, they were no more experienced with imple-
menting novel coordination solutions than teams in
the other training conditions.

Trust Calibration Training. We hypothe-
sized that calibration training would adjust human
team members’ expectations and calibrate trust in
the autonomous agent and also encourage them
to communicate persistently with the agent, lead-
ing to an increased ability to overcome autonomy
failures. Teams who received calibration training
did not show a significant decrease in agreement
with the question “I trusted the pilot.” Instead,
their responses remained similar between the first
and final mission. This suggests that the calibra-
tion training prepared them to expect the agent to
fail during later missions and reduced the impact
of trust violations caused by autonomy failures.
However, the multidimensional trust questionnaire
responses failed to uncover a similar pattern, indi-
cating that it may not have substantially impacted
all of the dimensions considered.

Although the calibration training did appear to
impact trust, it did not improve responses to auton-
omy failures. Research suggests other factors that
may increase recognition of autonomy failures. For
example, if an operator can predict how an algo-
rithm works under what conditions, they can lever-
age that information (Bass & Pritchett, 2008). Other
work demonstrates that calibrated trust isn’t always
sufficient for improved performance (Zhang et al.,
2020). Task context determines if trust is necessary
for performance and to what degree (Chiou & Lee,
2021). In this study, only the autonomous pilot
could control the flight path of the RPA, so partic-
ipants had no alternative but to rely on the pilot or
to give up completely during autonomy failures.
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However, other autonomy failure contexts may
include multiple options for task completion, and
calibrated trust could improve decisions between
relying on the autonomy or pursuing a different
course of action. Even if the calibration training
impacted the identification of autonomy failures,
it did not appear to equip teams to communicate
to overcome the failure. In contrast, teams in the
coordination training condition reported lower
overall trust after encountering multiple autonomy
failures, but their training emphasized the timely
pushing of communications, and this may have
been what helped them coordinate to overcome the
autonomy failures—which required less complex
coordination than automation failures.

Implications for Human-Autonomy Team
Training

HAT performance depends on many factors,
some of which may be impacted by training
(O’Neill etal., 2020). This study demonstrates that
training can address some challenges with com-
munication, coordination, and trust calibration in
HATs and improve responses to autonomy fail-
ures. The coordination training focused on improv-
ing team communication and coordination with
interaction-based coordination coaching. Rather
than employing coaching with explicit instruc-
tion or feedback (e.g., Hackman & Wageman,
2005), the autonomous agent teammate modeled
aspects of team interactions which changed how
the rest of the team’s behaviors were constrained
(Harrison et al., 2003). This effect appeared to per-
sist after those constraints were relaxed, and also
equipped teams to coordinate to overcome auton-
omy failures.

In contrast, the calibration training emphasized
imperfect autonomy by providing explicit instruc-
tion and first-hand experience with shortcomings.
This training was a form of HAT trust dampening
that focused on lowering expectations and chang-
ing perceptions of the autonomous agent (de Visser
et al., 2020), rather than directly influencing the
constraints of the team’s behaviors. Calibration
training appeared to make overall perceptions
of trust in the autonomous agent more robust to
failures. Notably, both training approaches in this
study took a short amount of time to implement
and included only minor alterations to the control

protocol but had lasting effects. Our findings sug-
gest the following for implementing training in
HATs:

1. Training should consider the impacts of entrain-
ment on team communication and coordination.
Training with an agent that is programmed to
model aspects of good information exchange may
be useful for improving team communication and
coordination.

2. The capabilities and limitations of autonomy
should be made known to human team members,
and training scenarios should include examples of
agent shortcomings to help calibrate trust. Other
research suggests that this is particularly import-
ant when the operational context dictates that cal-
ibrated trust is strongly linked with performance.

Limitations and Future Research

This study had some limitations. It may have
had low power for detecting certain effects, a com-
mon challenge in team studies (Bing & Burroughs,
2001; Brodbeck et al., 2021). Because the primary
aim was to target team-level relationships, many of
the analyses were conducted only at the team level.
Future research may benefit from assessing more
individual- or dyad-level variables. Additionally,
generalizations from one instantiation of a HAT
can be challenging because agents and teams vary
drastically between contexts. For instance, the WoZ
agent in this study did not learn over time, whereas
some types of autonomous agents can. Future
research in HAT could benefit from considering
the impact of different types of artificial agents and
team configurations on HAT training. Also, there
was a clear distinction between automation and
autonomy failures as they were designed for this
study, but those categories may not always be gen-
eralizable. Other contexts may include both types
of failures, possibly in combination with other
failures. Finally, future research should explore the
integration of coordination and calibration training
and other approaches such as cross-training and
perturbation training to develop a comprehensive
HAT training framework. Such a framework may
help to fill an important gap in our understanding of
training effective HATs.

ACKNOWLEDGMENTS

This research is supported by ONR Award
NO000141712382 (Program Managers: Marc



Human—-Autonomy TEAM TRAINING

15

Steinberg, Micah Clark). We acknowledge the
assistance of Steven M. Shope who developed
the testbed; Garrett M. Zabala, Sophie He, Cody
Radigan, and Tanvi G. Tendoklar who assisted
with data collection; and David A. Grimm who
assisted with the study design.

KEY POINTS

e Communication and trust are essential for effec-
tive human—autonomy teaming.

e Two training approaches based on entraining
effective communication behaviors (coordina-
tion training) and calibrating trust (calibration
training) were assessed in a human—autonomy
teaming command and control task using a
Wizard of Oz paradigm.

e Coordination training improved
exchange through communications, target
processing efficiency, and improved team
responses when the autonomous agent failed.

e Calibration training appeared to influence expec-
tations and trust in the artificial agent, but this
did not result in a concomitant improvement in
responses to autonomy failures.

e HAT training should consider the impacts of
entrainment, make the capabilities of autonomy
known, and other interventions may be needed to
equip teams to adapt to complex disruptions.
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