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Objective:  This work examines two  human–autonomy team 
(HAT) training approaches that target communication and trust cal-
ibration to improve team effectiveness under degraded conditions.

Background:  Human–autonomy teaming presents challenges 
to teamwork, some of which may be addressed through training. 
Factors vital to HAT performance include communication and cal-
ibrated trust.

Method:  Thirty teams of three, including one confederate 
acting as an autonomous agent, received either entrainment-based 
coordination training, trust calibration training, or control training 
before executing a series of missions operating a simulated remotely 
piloted aircraft. Automation and autonomy failures simulating de-
graded conditions were injected during missions, and measures of 
team communication, trust, and task efficiency were collected.

Results:  Teams receiving coordination training had higher 
communication anticipation ratios, took photos of targets faster, 
and overcame more autonomy failures. Although autonomy failures 
were introduced in all conditions, teams receiving the calibration 
training reported that their overall trust in the agent was more 
robust over time. However, they did not perform better than the 
control condition.

Conclusions:  Training based on entrainment of communica-
tions, wherein introduction of timely information exchange through 
one team member has lasting effects throughout the team, was pos-
itively associated with improvements in HAT communications and 
performance under degraded conditions. Training that emphasized 
the shortcomings of the autonomous agent appeared to calibrate 
expectations and maintain trust.

Applications:  Team training that includes an autonomous 
agent that models effective information exchange may positively im-
pact team communication and coordination. Training that emphasiz-
es the limitations of an autonomous agent may help calibrate trust.

Keywords: human–agent teaming, command and 
control, collaboration, intelligent systems, artificial 
intelligence

INTRODUCTION

Future command and control systems will 
include more autonomous technologies. Among 
these technologies are computer-based entities 
that occupy distinct and interdependent roles 
as team members, referred to as autonomous 
agents (O’Neill et al., 2020). When autonomous 
agents team up with one or more humans form-
ing a human–autonomy team (HAT; McNeese 
et al., 2018), it may extend team capabilities and 
reduce risks to humans. Communication, coor-
dination, and trust are important for HAT per-
formance (Chen & Barnes, 2014; Demir et al., 
2021; de Visser et  al., 2020; McNeese et  al., 
2021; O’Neill et  al., 2020). However, when 
autonomous agents are included in a team, the 
nature of work changes and the agent may fall 
short when the situation is off-nominal or tech-
nology is degraded (Endsley, 2017; Groom & 
Nass, 2007; Hollnagel & Woods, 2005; Klein 
et al., 2004; Woods, 2016). Automation failures 
that impact access to information or function-
ality may require HATs to rapidly alter their 
communication and coordination to compen-
sate. HATs are also susceptible to autonomy 
failures—failures of an autonomous agent that 
results in undesirable behavior, which may also 
go undetected if trust is miscalibrated. In some 
cases, interventions aimed at team communi-
cation, coordination, and trust may be needed 
to improve HAT effectiveness, especially in 
response to failures. Team training is one way 
to intervene (Entin & Serfaty, 1999; Gorman, 
Cooke, et  al., 2010; Marks et  al., 2002; Salas 
et al., 2006, 2008). However, there is a lack of 
research examining training on communica-
tion, coordination, and trust in HATs (Cohen & 
Imada, 2005; Walliser et al., 2019). The current 
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study adds to this area of research by examin-
ing the impact of 2 HAT training approaches on 
team communications, coordination, and trust 
calibration in the context of automation and 
autonomy failures.

Team Communication and Coordination

Interaction is necessary to perform team-
level cognitive activities such as planning, 
decision-making, situation assessment, and col-
lective action (e.g., team cognition; Cooke et al., 
2013; Mathieu et al., 2000; Mohammed et al., 
2010; Salas & Fiore, 2004). One of the primary 
ways interaction occurs is communication using 
natural language (Salas et  al., 2005). To com-
municate effectively, team members need to get 
the right information to the right place at the 
right time, which often requires them to antici-
pate the information requirements of teammates 
(Gorman et  al., 2006). One way team antici-
pation has been operationalized is the ratio of 
information transfers to information requests 
(i.e., anticipation ratio). A higher anticipation 
ratio may indicate more effective communica-
tion and coordination (Entin & Serfaty, 1999; 
MacMillan et  al., 2004). However, research 
suggests that the behaviors of an autonomous 
agent may impact the communication and coor-
dination of their entire team (Demir et al., 2019; 
Shah & Breazeal, 2010). One  source of this 
team-level impact may be entrainment—a spon-
taneously coupling and synchronization of the 
timing and content of teammate communication 
(McGrath, 1990). For example, one experiment 
suggested that an autonomous agent’s limited 
communication and coordination capabilities 
had a detrimental influence on overall team 
communication and coordination—entraining 
the rest of the team to share information less 
and be less adaptive. In contrast, an “expert” 
confederate teammate appeared to entrain more 
effective communication and coordination in 
their team (Demir et al., 2019; McNeese et al., 
2018). Other research has demonstrated evi-
dence of team entrainment within and between 
different levels of analysis, including physiolog-
ical and behavioral (Dias et al., 2019; Gorman 
et al., 2017) and in human–robot team commu-
nications (Breazeal, 2002; Iio et al., 2015).

Trust in Autonomy
For teams to capitalize on their interdepen-

dent relationships and coordinate effectively, 
trust is also needed (Mayer et al., 1995). In this 
work, trust is considered “the attitude that an 
agent will help achieve an individual’s goals in 
a situation characterized by uncertainty and vul-
nerability” (Lee & See, 2004, p. 54). In HATs, 
the perception of an autonomous agent’s trust-
worthiness needs to be aligned with its actual 
trustworthiness. That is, trust needs to be cali-
brated, or team performance may suffer (Chen 
& Barnes, 2014; Hancock et al., 2011; Hoff & 
Bashir, 2015; Hoffman et  al., 2013; McNeese 
et al., 2019; Schaefer et al., 2016). For exam-
ple, over-trusting autonomy can lead to a lack 
of operator awareness when the autonomy fails, 
and too little trust can lead to increased oper-
ator workload and disuse (Endsley, 2017; Lee 
& See, 2004). Trust in autonomy is impacted 
by several factors, such as expectations of reli-
ability, consistency, performance, and commu-
nication behaviors, and trust evolves through 
interaction (Chiou & Lee, 2021; de Visser et al., 
2020; Schaefer et  al., 2016). People tend to 
place high expectations and trust in automated 
systems. However, trust can be rapidly lost and 
is not always easily repaired when violated, 
which may lead to underreliance (de Visser 
et  al., 2018; Madhavan & Wiegmann, 2007). 
Knowledge of an autonomous agent’s reliability 
can increase trust (Fan et al., 2008), and damp-
ening of trust in anticipation of failures has also 
been demonstrated to improve trust calibration 
(de Visser et  al., 2020). HAT performance is 
likely to improve if expectations and trust are 
more accurately calibrated.

THE CURRENT STUDY
The current study builds upon previous work 

examining human–autonomy teaming in the 
Remotely Piloted Aircraft System–Synthetic 
Task Environment (RPAS-STE; Demir, 
McNeese, et  al., 2019). The RPAS-STE pro-
vides a simulation environment to exercise the 
cognitive activities of teams and individuals in 
an RPA (drone) ground station (Cooke et  al., 
2004). In the current study, the participants were 
informed that one of the three team members 
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was a “synthetic” autonomous agent (Myers 
et al., 2018), but it was actually a confederate in 
another room. This represented a version of the 
Wizard of Oz (WoZ) paradigm, in which par-
ticipants are led to believe they are interacting 
with a computer-based entity when it is actually 
controlled by a confederate “behind the cur-
tain” (Kelley, 1984). The WoZ methodology is 
useful for HAT research because it enables the 
study of human interactions with a wide range 
of potential artificial agent behaviors that can 
inform further research and development, with-
out being constrained by the time and resource 
investments associated with developing and 
reconfiguring authentic agents (Cooke et  al., 
2020; Lematta et  al., 2021). In this study, the 
WoZ paradigm also enabled the implementation 
of autonomy failures that would be inconsistent 
and undesirable in an authentic autonomous 
agent. The WoZ assumed the pilot role in the 
RPAS-STE to maximize interaction with the 
other two roles and because it was the role 
for which an authentic autonomous agent has 
been developed (Ball et  al., 2010). The WoZ 
script indicated when and what the confeder-
ate communicated and how the agent should 
make decisions to control the RPA flight path. 
This represented an agent with limited auton-
omy and language capabilities filling a distinct 
peer-like role in the team, in contrast to other 
human–automation paradigms such as supervi-
sory control (Sheridan, 1992).

Two types of failures were introduced over 
multiple missions as a within-subjects manip-
ulation. Autonomy failures were failures of the 
synthetic pilot. They included failures of the 
autonomous agent’s decision-making, inter-
pretation of communications, or application of 
communications to behaviors. Automation fail-
ures were failures of the RPA, including fail-
ures of communication systems and hardware 
failures that impacted access to information 
or RPA functions (Demir, McNeese, Johnson, 
et al., 2019).

RPAS-STE Task Environment

The primary task in the RPAS-STE is to take 
photos of ground target waypoints. The three 
roles include (1) the pilot who flies the simulated 

RPA; (2) the navigator who plans, monitors, 
and updates the route; and (3) the photographer 
who takes photos. The coordination process for 
taking a photo consists of three essential ele-
ments, Information, Negotiation, and Feedback 
(INF; Gorman, Amazeen, et  al., 2010). First, 
the navigator must identify the targets and route 
restrictions (e.g., maximum and minimum air-
speed) and provide that information to the pilot 
(I). Next, the pilot and photographer negotiate 
to align the necessary photo requirements for 
a target (i.e., zoom and shutter speed) with the 
aircraft state (i.e., current altitude and airspeed) 
within the route restrictions (N). Third, once 
the target is in range, the photographer takes 
a photo, evaluates it, and provides feedback to 
the team on the outcome (F), after which the 
team proceeds to the next waypoint or tries 
again. Closing the loop on the INF process is 
essential for photographing each target, and the 
faster this process takes place once a target is 
identified (i.e., timeliness), the sooner the team 
can start processing the next target. Targets are 
located within restricted operating zones (ROZ) 
marked by entry and exit waypoints. Standard 
waypoints allow the team flexibility in navi-
gation, and flying close to a hazard waypoint 
incurs a penalty (Figure 1).

Training Manipulation and Hypotheses

To develop the training, an exploratory 
analysis was first conducted to uncover crit-
ical factors for overcoming failures in a prior 
RPAS-STE HAT experiment (Cooke, Demir, 
McNeese, et  al., 2020). Based on a cluster 
analysis of mission performance, target pro-
cessing efficiency, and the number of failures 
overcome, the three  most effective and three 
least effective teams were examined. The find-
ings indicated that automation failures required 
timely communication and coordination to 
share information between team member’s 
workstations to complete the INF targeting 
process. For autonomy failures, human team 
members needed to be persistent in their inter-
actions with the autonomous agent to work 
through the failure. We reasoned that this latter 
process required appropriately calibrated trust, 
such that the human team members identify 
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the failure, but not give up on the autonomy. 
Timely sharing of essential information and 
trust calibration were the intended outcomes of 
the coordination training and calibration train-
ing respectively, which were implemented as 
the between-subjects manipulation in this study 
(Cooke, Demir, McNeese, et al., 2020; Demir, 
McNeese, Johnson, et al., 2019). The develop-
ment of the training protocols is described in the 
following sections.

Coordination Training.  The coordination 
training protocol was modified from another 
RPAS-STE experiment in which a confederate 
following a coordination script (an “expert” 
teammate) subtly coached or modeled effective 
coordination behaviors over multiple missions 
by sharing and requesting INF-related informa-
tion in anticipation of the needs of teammates. 
Coaching appeared to entrain improvements in 
overall team communications and correlated 

with improvements in team responses to 
changes in the mission. In contrast, an autono-
mous agent had a negative impact. Presumably, 
this detrimental impact was not due to the team-
mate being an artificial agent per se, but instead 
due to the limited communication and coordi-
nation capacities embedded within the agent 
(McNeese et al., 2018). In the current study, a 
modified “expert teammate” was implemented 
through the WoZ pilot and for only a single 
training mission rather than the entire study. 
The WoZ sent and requested INF-related infor-
mation significantly sooner than in the standard 
script, which was expected to subtly encourage 
participants to share that information in antici-
pation of when their teammates needed it. The 
intent was to positively influence team commu-
nication and coordination behaviors related to 
the INF targeting process through entrainment 
via the WoZ’s behaviors during training, and 

Figure 1.  Diagram of the RPAS-STE. (a) RPAS-STE roles, workstation interfaces, and coordination process; 
(b) bird’s-eye view of RPA during photo execution with associated coordination steps 1–3. Arrows indicate the 
essential and timely communication events (INF) for each target that were the focus of coordination training. 
INF = Information, Negotiation, and Feedback; RPAS-STE = Remotely Piloted Aircraft System–Synthetic 
Task Environment.
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then assess the reverberating effects in later 
missions.

Coordination training was developed as an 
alternative to perturbation training, character-
ized by external disruptions of the team coor-
dination process, which has been found to be 
effective for equipping all-human teams for 
novel task conditions similar to the automation 
failures in this study (Gorman, Cooke, et  al., 
2010). However, the current study was focused 
on investigating training implemented primar-
ily through the autonomous agent’s behavior 
and to assess the effectiveness of entrainment-
based training rather than changes in the train-
ing environment or task.

Calibration Training.  The other training 
protocol implemented in this study, calibration 
training, was intended to reduce initial expec-
tations in the agent’s reliability and capability 
through pre-planned expectation dampening 
behaviors during the training mission while also 
including elements that focused on encouraging 
persistence in interacting with the agent. The 
calibration training was not intended to max-
imize trust, but to set “realistic” expectations, 
so that when autonomy failures did happen they 
would be identified and overcome, but trust 
would not be impacted.

We hypothesized that coordination training 
would lead to adaptive coordination and an 
increased ability to overcome automation fail-
ures by improving the timely communication of 
essential information between team members. 
We also hypothesized that calibration training 
would adjust human team members’ expec-
tations and calibrate trust in the autonomous 
agent and that it would encourage them to com-
municate persistently with the agent, leading 
to an increased ability to overcome autonomy 
failures.

METHODS
Participants and Power Analysis

An a priori power analysis was conducted 
using G*Power3 (Faul et al., 2007) to test the 
difference between the means of 3-condition by 
5-mission using an F-test, a medium effect size 
(‍η
2
p ‍ = .06), and an α of 0.05. According to the 

results, a total sample of 27 teams with three 

equal-sized groups of n = 9 is required to achieve 
a power of 0.80. We increased the number of 
teams per group to n = 10. Accordingly, 60 par-
ticipants, ages 18–33 (M = 22.5, SD = 3.55), 
were recruited from Arizona State University 
and the surrounding areas and split into 30 
teams. In each team, two participants were 
randomly assigned to the roles of navigator or 
photographer, whereas the pilot was a confed-
erate acting as an autonomous agent (WoZ). 
Ten teams were assigned to each of the three 
between-subjects conditions: calibration train-
ing, coordination training, and control training. 
Each team completed one experimental session, 
which lasted approximately 7  hr. Participants 
were compensated $10 per hour. This research 
complied with the American Psychological 
Association Code of Ethics and was approved 
by the Cognitive Engineering Research Institute 
Institutional Review Board. Informed consent 
was obtained from each participant.

Materials and Apparatus

This study utilized the RPAS-STE (Cooke 
et al., 2004; Demir, McNeese, et al., 2019). In 
this testbed, there are three workstations for the 
RPAS team. Each workstation has two  moni-
tors displaying role-specific interfaces that are 
interacted with using a mouse (Figure 1). The 
navigator and photographer workstations were 
in the same room and separated by a partition. 
The pilot workstation was in a separate room 
to ensure the participants could not see or hear 
the confederate (WoZ). Each workstation also 
had a text chat system with a touchscreen and a 
keyboard. Two experimenter workstations were 
in another room to allow researchers to monitor 
the experiment and code behavioral measures in 
real-time (described in Tables 4 and 5).

Procedure

First, participants completed a 30 -min role-
specific interactive slideshow describing con-
trols, responsibilities, as well as individual and 
team tasks. This was followed by a 40  -min 
training mission where participants trained as a 
team and were guided by a researcher following 
a script. Participants were provided a checklist 
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related to their roles and how to communicate 
with the autonomous agent.

Between-Subjects Training Manipulations. 
The training protocol was manipulated between 
subjects to assess its impact. The control train-
ing served as a comparison. The manipulations 
included variations in the interactive training 
slideshow, variations in the pilot’s behavior 
during the hands-on training mission, and mod-
ifications to the guiding researcher’s behav-
ior during the training mission as described 
in Table  1 (Demir, McNeese, Johnson, et  al., 
2019).

Within-Subjects Missions and Failures. 
Following training, each team executed a series 
of five identical 40 -min missions. Each mission 
contained 11–13 targets. The first mission had 
no failures. The remaining four missions had 

two failures, classified as either automation, 
autonomy, or hybrid (Table  2). Only automa-
tion and autonomy failures were considered in 
this study. Mission and failures were the within-
subjects manipulations (Table 3).

After the first and fifth missions, participants 
completed questionnaires. Following the fifth 
mission, participants were debriefed and com-
pensated (Table 3).

Measures

Several measures were collected, including 
mission-level team performance, target processing 
efficiency, and team process measures including 
process ratings, verbal behaviors, and team situ-
ation awareness. Questionnaires included trust, 
workload, and anthropomorphism. Physiological 

TABLE 1: Coordination and Calibration Training Manipulations

Training Description

Control training •	 Overall. This training was intended to give participants basic proficiency in RPAS-STE 
taskwork and teamwork. All the information in this training (except filler material) was 
also present in the calibration training and control training.

•	 Slide training. Included information regarding workstation controls, roles, 
responsibilities, the basic INF communication process, individual, and team tasks, 
and additional filler material. Informed the participants that the pilot was a “synthetic 
teammate” computer program with limited language capabilities.

•	 Training mission. A practice mission where a researcher guided participants through 
their tasks in real time to ensure proficiency.

Coordination training •	 Overall. This training aimed to entrain participants to communicate INF information in a 
timely manner to improve team communications and responses to automation failures.

•	 Slide training. Participants were exposed to the different types of information they 
and their teammates had access to (e.g., altitude, airspeed) and were encouraged to 
communicate essential information with their teammates.

•	 Training mission. The autonomous agent (WoZ pilot) followed a modified script in which 
the agent modeled effective information exchange by requesting essential information 
(INF) from the team if it was not provided in a timely manner, sent information to them 
earlier, and had a shorter delay before sending follow-up messages. The delay to send 
or request INF-related information was reduced from 60 s in the control training and 
calibration training to 20 s in this training.

Calibration training •	 Overall. This training aimed to calibrate the participant’s trust in the autonomous 
agent by dampening expectation and encouraging participants to be persistent in 
communicating with the agent, improving responses to autonomy failures.

•	 Slide training. Participants were told that the autonomous agent was “still in 
development” and was prone to mistakes and malfunctions, and that persistence was 
required for interacting with the agent.

•	 Training mission. The autonomous agent (WoZ pilot) experienced a delay in responding 
to communications, after which participants were prompted by a researcher to send the 
message again as the agent “may be experiencing a malfunction.”

Note. INF = Information, Negotiation, and Feedback; RPAS-STE = Remotely Piloted Aircraft System–Synthetic Task 
Environment; WoZ = Wizard of Oz.
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TABLE 2: Failure Types, Descriptions, and Solutions

Type and Duration Description Solution to Overcome Failure

Autonomy failures

Comprehension Error I
420 s

A malfunction of the synthetic 
pilot’s capacity to understand 
messages. When the photographer 
or navigator sends the synthetic 
pilot a message, the pilot does not 
understand and continues to ask for 
the information.

The photographer and navigator must 
provide accurate information to the 
synthetic pilot until it understands 
(persistence), and then the team 
must get a good photo.

Comprehension Error II
420 s

A malfunction of the synthetic pilot’s 
ability to understand messages. 
The synthetic pilot applies incorrect 
airspeed and altitude settings for 
the current target.

The photographer and navigator must 
provide accurate information to the 
synthetic pilot until it understands 
(persistence), and then the team 
must get a good photo.

Cyberattack
600 s

A simulated hijacking of the RPA 
where the synthetic pilot navigates 
the RPA to an enemy waypoint and 
communicates deceptive messages 
as if it was moving to the correct 
waypoint.

The photographer or navigator must 
contact Intel (an external message 
channel) and inform them that the 
RPA is headed toward an enemy 
waypoint and return to course to 
take a good photo.

Automation failures

Photographer Data Failure
420 s

The photographer loses display of 
flight information, including current 
and next waypoint information, 
time, distance, bearing, and course 
deviation.

The team must communicate 
the missing information to the 
photographer from someone else’s 
workstation and take a good photo 
of the target.

Pilot Data Failure
420 s

The synthetic pilot loses access 
to flight information including 
airspeed, altitude, time, distance, 
bearing, and course deviation 
on its screen. The pilot asks the 
photographer and navigator for the 
status of the RPA, indicating that it 
has lost access to flight information.

The team must communicate the 
missing information to the pilot 
from someone else’s interface and 
take a good photo of the target.

Communication Cut
420 s

One-way communication cut 
between photographer and pilot. 
The photographer cannot send 
messages to the synthetic pilot 
and receives an error message 
whenever they attempt to.

The team must reroute 
communications through another 
teammate and take a good photo 
of the target.

Display Power Failure
330 s

Sequential power-down and 
subsequent power-up of all six 
participant workstation screens.

The team must quickly recognize 
the error as impacting everyone, 
coordinate the necessary target 
settings early, and take a good 
photo of the target.

Hybrid failure  �   �

Hybrid Failure
420 s

A combination of autonomy and 
automation failures. The synthetic 
pilot loses access to altitude and 
airspeed, and moves on to the 
next target without allowing the 
photographer to take a good 
photo.

The team must communicate the 
missing information to the pilot 
from someone else’s interface, 
recognize and correct the synthetic 
pilot’s error, and take a good photo 
of the target.

Note. Failure durations and timing were predetermined based on pilot testing to maximize the chance that each failure 
would be encountered without overlap. RPA = Remotely Piloted Aircraft.
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measures included facial expression and elec-
trocardiogram. To address the hypotheses in this 
study, we focused on a subset of measures, includ-
ing performance under degraded conditions, target 
processing efficiency, team communication antici-
pation ratio, and two trust questionnaires detailed 
in Table 4.

RESULTS
Performance Under Degraded Conditions

We conducted a repeated-measures logistic 
regression to examine the effects of failure type, 
training condition, and mission on the likelihood 
that teams overcome failures. For automation fail-
ures, the tests were statistically significant for the 
main effect of mission, χ2 (4) = 19.7, p = .001, but 
the condition effect was not significant, χ2 (2) = .32, 
p = .853. Across the missions, teams had a higher 
probability of failing to overcome automation fail-
ures from Mission 2 to Mission 4 as they encoun-
tered more complex failures, χ2 (1) = 9.53, p = .002. 
For autonomy failures, test results were statistically 
significant for the main effect of condition, χ2 (2) = 
6.66, p = .036, but not mission, χ2 (2) = 2.41, p = 
.300. In this analysis, we chose the control train-
ing condition as a reference group. Teams in the 
coordination training condition had a higher prob-
ability of overcoming autonomy failures than the 
control group, χ2 (1) = 5.08, p = .024 (Figure 2). 

These results do not support our hypothesis that 
coordination training would improve responses 
to automation failures or that calibration training 
would improve responses to autonomy failures. On 
the contrary, they suggest that coordination training 
improved responses to autonomy failures.

Target Processing Efficiency
The TPE scores were analyzed using a three-

level nested mixed ANOVA with training condi-
tion as a between-subjects manipulation, mission 
as a within-subject manipulation, and target nested 
within mission. There were significant condition 
effects, F(2, 934) = 3.20, p = .041, ‍η

2
p ‍ = .07, and 

target effects, F(44, 934) = 3.43, p = .001, ‍η
2
p ‍ = .14. 

However, there was no significant interaction effect 
of training condition by target, F(80, 934) = .89, p 
= .735, ‍η

2
p ‍ = .71, and training condition by mission, 

F(8, 934) = .69, p = .705, ‍η
2
p ‍ = .01. There was no 

significant mission main effect, F(4, 934) = 1.69, p 
= .150, ‍η

2
p ‍ = .01.

According to the significant condition main 
effect, univariate test statistics (simple main 
effects) indicate that the linearly independent pair-
wise comparisons among the estimated marginal 
means were statistically significant, F(2, 934)  = 
3.75, p = .024, ‍η

2
p ‍ = .01. We applied Fisher’s Least 

Significant Difference (LSD) pairwise compar-
isons to each pair of conditions where the use of 

TABLE 3: Sequence of Events During Experiment Session and Failure Order

Event
Duration

(min) 1st Failure 2nd Failure
# of Possible

Mission Targets

Slide training 30 - - -

Training mission 40 - - -

Mission 1 40 - - 11

Questionnaire Session 
1

10 - - -

Mission 2 40 Photographer Data 
Failure

Comprehension Error I 12

Mission 3 40 Pilot Data Failure Comprehension Error II 12

Mission 4 40 Hybrid Failure Communication Cut 13

Mission 5 40 Display Failure Cyberattack 11

Questionnaire Session 
2

10 - - -

Note. Participants were given 5 to 10-min breaks between each mission.
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TABLE 4: Measures Collected

Measure Description Relation to Hypotheses

Performance under degraded 
conditions

This measure captured whether a team 
overcame an automation or autonomy 
failure within the prespecified time. See 
Table 2 for failure durations, descriptions, 
and solutions to overcome each failure. 
Failures were coded as a binary variable: 
either “overcome” or “not overcome” 
(Demir, McNeese, Johnson, et al., 2019).

Coordination training will improve 
responses to automation failures.

Calibration training will improve 
responses to autonomy failures.

Target processing efficiency 
(TPE)

The TPE provides a target-level measure of 
team performance. TPE accounts for the 
time spent inside the radius surrounding 
each target when taking a photo (Figure 1). 
The score starts at 1000, and one point 
is deducted for each second inside the 
radius. A 200-point penalty is deducted for 
missed photos (Cooke et al., 2007). The 
minimum score is zero.

Coordination training will increase 
target processing efficiency.

Team communication 
anticipation ratio

Ten verbal behaviors were coded in real-time 
as counts by two experimenters. Five of 
them were categorized as either a push 
(sending information to a teammate) 
or a pull (requesting information from a 
teammate (Johnson et al., 2020; McNeese 
et al., 2018; Table 5). The remaining five 
behaviors (positive communications, 
negative communication, unclear 
communications, anthropomorphism, and 
objectivity) were not considered for this 
study. The anticipation ratio was calculated 
by dividing the number of pushes by 
the number of pulls. An anticipation 
ratio greater than one indicates a higher 
proportion of information sharing to 
requests.

Coordination training will increase 
the team communication 
anticipation ratio.

Single-item trust questionnaire A single-item questionnaire was administered 
to assess overall impressions of trust in 
each teammate (1 per teammate): “I 
trusted the [teammate]” (Körber, 2019). 
All questions used a 5-point Likert-scale 
ranging from Strongly disagree to Strongly 
agree. To assess how trust changed across 
time, the questionnaires were administered 
after Mission 1 and Mission 5 (McNeese 
et al., 2019).

Calibration training will dampen 
expectations in the autonomous 
agent, resulting in more robust 
trust over time.

(Continued)
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three conditions controls the family-wise alpha at 
the per contrast alpha. Additionally, Fisher’s LSD 
assumes reasonably good homogeneity of variance 
(Howell, 2011; Meier, 2006). Pairwise compari-
sons (LSD) revealed that teams in the coordination 
training condition performed significantly better 
than the teams in the control training condition (p 

= .007), but not significantly better than teams in 
the calibration training condition (p = .160). There 
was no significant difference in the performance of 
teams in the control and calibration training con-
ditions (p = .173; Figure 3). This finding indicates 
that the coordination training improved target pro-
cessing efficiency.

Measure Description Relation to Hypotheses

Multidimensional trust 
questionnaire

A multidimensional questionnaire consisting 
of 16 questions (8 per teammate) was 
also administered. It considered the 
dimensions of benevolence, ability, and 
integrity (characteristics influential to trust; 
Mayer & Gavin, 2005). Only the subset 
of the questions from each questionnaire 
assessing trust in the autonomous 
agent are considered in this study (See 
Supplemental Materials). All questions 
used a 5-point Likert-scale ranging from 
Strongly disagree to Strongly agree. To 
assess how trust changed across time, the 
questionnaires were administered after 
Mission 1 and Mission 5 (McNeese et al., 
2019).

 �

TABLE 4  (Continued)

Figure 2.  Failures across the training conditions. Error bars indicate +/-95% CI of the mean.
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Team Communication Anticipation Ratio
Cohen’s κ was computed to assess inter-rater 

reliability between two trained experimenters on 
the push and pull verbal behavior codes (Tables 4 
and 5). There was substantial agreement between 
the two experimenters on for both push (κ = 0.834; 
95% CI [0.824, 0.844]) and pull (κ = 0.867; 95% 
CI [0.859, 0.876]). Therefore, ordinal measure rat-
ings from both experimenters were averaged for 
each message and summed for each mission. For 
each mission, the team-level anticipation ratio was 
calculated by dividing the number of pushes by the 
number of pulls (Entin & Serfaty, 1999).

We used a 3 (training condition) × 5 (mission) 
split-plot analysis of variance (ANOVA) to ana-
lyze the team-level anticipation ratio. There were 

significant condition, F(2, 30) = 4.73, p = .016, 
and mission main effects, F(4, 120)  = 3.63, p = 
.008. However, the condition by mission interac-
tion effect was not significant, F(8, 120) = 1.60, 
p = .131. Based on the significant condition main 
effect, simple main effects were statistically signif-
icant, F(2, 30) = 4.73, p = .016. Pairwise compari-
sons (LSD) indicated that teams in the coordination 
training condition had a higher anticipation ratio 
than those in both the calibration training (p = .006) 
and control training conditions (p = .030). The cal-
ibration and control training conditions were not 
significantly different (p = .517; see Figure  4). 
This finding supports the hypothesis that coordina-
tion training would improve team communication 
behaviors. Based on the significant mission main 
effect, simple main effects were statistically signif-

icant, F(4, 120) = 3.63, p = .008. The significant 
mission main effect indicates that the anticipation 
ratio increased over time in all three training con-
ditions (Missions 1 to 5, p = .001). This is to be 
expected as teams develop more effective implicit 
coordination strategies as they become more famil-
iar with the task and their teammates. This finding 
supports the hypothesis that coordination training 
would improve team communication behaviors. 
Based on the significant mission main effect, sim-
ple main effects were statistically significant, F(4, 
120) = 3.63, p = .008. The significant mission main 
effect indicates that the anticipation ratio increased 
over time in all three training conditions (Missions 
1 to 5, p = .001). This is to be expected as teams 

Figure 3.  Target processing efficiency between 
training conditions. Error bars indicate +/-95% CI of 
the mean.

TABLE 5: Team Verbal Behavior Codes

Verbal Behavior Code Push/Pull Code Description

General status updates Push Informing other team members about the 
current status

Suggestions Push Making suggestions to other team members

Planning ahead Push Creating rules or plans for future encounters

Inquiries about the status of 
others

Pull Inquiring about the current status of others

Repeated requests Pull Requesting the same information or action 
from a team member
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develop more effective implicit coordination strat-
egies as they become more familiar with the task 
and their teammates.

Trust in the Autonomous Agent
To test the hypothesis related to trust in the 

autonomous agent, an analysis was conducted on 
responses to the single-item query “I trusted the 
pilot.” The single-item responses were averaged 
for each team and session. Scores were analyzed 
using a 3 (training condition) × 2 (session) split-plot 
ANOVA. There was a significant condition by ses-
sion interaction, F(2, 25) = 6.67, p = .005, ‍η

2
p ‍ = .35. 

Simple effects analysis indicated that there was a 
significant difference in trust between training con-
ditions for Session 2, F(2, 25) = 6.35, p = .006, ‍η

2
p ‍ = 

.38. Pairwise comparisons (LSD) indicated that for 
teams that received calibration training, trust was 
significantly higher than teams that received either 
coordination training (p = .049) or control training 
(p = .002). The coordination training and control 
training conditions were not significantly differ-
ent (p = .164; Figure 5). These results support our 
hypothesis that calibration training would calibrate 
trust by lowering expectations in the autonomous 
agent, suggesting that the training mitigated the 
impact of trust violations due to autonomy failures.

A separate analysis was conducted on the mul-
tidimensional trust questionnaire responses. We 
used a 3 (training condition) × 2 (session) split-plot 
ANOVA to analyze these responses. Responses 

were averaged for each team. Results were not 
statistically significant for the session by condition 
interaction effect, F(2, 25) = 1.638, p = .214, ‍η

2
p ‍ = 

.116, the session main effect, F(1, 25) = 3.44, p = 

.075, ‍η
2
p ‍ = .121, or the training condition main effect 

F(2, 25) = 1.66, p = .210, ‍η
2
p ‍ = .153. Unlike the 

single-item trust questionnaire, these results from 
the multidimensional questionnaire did not sup-
port our hypothesis that trust would be more robust 
to failures in the calibration training condition. 

Figure 4.  Team anticipation ratio (a) across training conditions and (b) across missions. Error bars indicate +/-
95% CI of the mean.

Figure 5.  Average responses to “I trusted the AVO 
(pilot)” across sessions.
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Overall, these findings suggest that the calibration 
training may have impacted perceptions or beliefs 
of trust put in the autonomous agent without nec-
essarily having a significant impact on summative 
perceptions of benevolence, ability, or integrity.

DISCUSSION
This study evaluated the impact of coordination 

training and calibration training over a series of 
missions that included automation and autonomy 
failures. Here, we discuss the findings and provide 
recommendations for implementing HAT training.

Outcomes of Coordination and Trust 
Calibration Training

Coordination Training.  We hypothesized 
that coordination training would lead to adaptive 
coordination and better performance in response 
to automation failures by improving the timely 
communication of essential information. However, 
we found that teams who received the coordina-
tion training overcame automation failures at rates 
similar to those observed with control and trust 
calibration training. These teams did have higher 
anticipation ratios than those in both the calibration 
training and control training conditions, indicat-
ing these teams shared information more effec-
tively (Entin & Serfaty, 1999; MacMillan et  al., 
2004; Shah & Breazeal, 2010), and they also had 
improved target processing efficiency compared to 
the control training condition. In the coordination 
training condition, the change in communication 
behavior of a single team member (the artificial 
agent pilot) resulted in significant improvement in 
anticipation ratios and processing efficiency of the 
team as a whole. Thus, we propose that the coordi-
nation training had an entrainment effect on team 
communication and coordination behaviors, sug-
gesting the behaviors of an autonomous agent can 
have more widespread impacts on the behaviors of 
its teammates, impacting emergent team-level pro-
cesses and performance beyond the human–agent 
dyadic interaction level.

Coordination training was beneficial for over-
coming autonomy failures in this study; however, 
overcoming automation failures appears to have 
required teams to do more than share information 
efficiently. It also required them to coordinate flexi-
bly, such as routing information through a different 

teammate or retrieving missing information from 
someone who does not routinely provide it. The 
coordination training did not appear to improve 
team adaptability and flexibility, which literature 
suggests is necessary for overcoming complex 
challenges like the automation failures in this study 
(Bowers et al., 2017; Burke et al., 2006; Maynard 
et al., 2015). One possible explanation is that the 
coordination training focused on entraining a 
narrow set of routine communications (i.e., the 
INF sequence), but did not include elements that 
increased the variety of team interactions that a 
team experienced outside of that routine process. 
Thus, when teams were faced with an automation 
failure, they were no more experienced with imple-
menting novel coordination solutions than teams in 
the other training conditions.

Trust Calibration Training.  We hypothe-
sized that calibration training would adjust human 
team members’ expectations and calibrate trust in 
the autonomous agent and also encourage them 
to communicate persistently with the agent, lead-
ing to an increased ability to overcome autonomy 
failures. Teams who received calibration training 
did not show a significant decrease in agreement 
with the question “I trusted the pilot.” Instead, 
their responses remained similar between the first 
and final mission. This suggests that the calibra-
tion training prepared them to expect the agent to 
fail during later missions and reduced the impact 
of trust violations caused by autonomy failures. 
However, the multidimensional trust questionnaire 
responses failed to uncover a similar pattern, indi-
cating that it may not have substantially impacted 
all of the dimensions considered.

Although the calibration training did appear to 
impact trust, it did not improve responses to auton-
omy failures. Research suggests other factors that 
may increase recognition of autonomy failures. For 
example, if an operator can predict how an algo-
rithm works under what conditions, they can lever-
age that information (Bass & Pritchett, 2008). Other 
work demonstrates that calibrated trust isn’t always 
sufficient for improved performance (Zhang et al., 
2020). Task context determines if trust is necessary 
for performance and to what degree (Chiou & Lee, 
2021). In this study, only the autonomous pilot 
could control the flight path of the RPA, so partic-
ipants had no alternative but to rely on the pilot or 
to give up completely during autonomy failures. 
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However, other autonomy failure contexts may 
include multiple options for task completion, and 
calibrated trust could improve decisions between 
relying on the autonomy or pursuing a different 
course of action. Even if the calibration training 
impacted the identification of autonomy failures, 
it did not appear to equip teams to communicate 
to overcome the failure. In contrast, teams in the 
coordination training condition reported lower 
overall trust after encountering multiple autonomy 
failures, but their training emphasized the timely 
pushing of communications, and this may have 
been what helped them coordinate to overcome the 
autonomy failures—which required less complex 
coordination than automation failures.

Implications for Human–Autonomy Team 
Training

HAT performance depends on many factors, 
some of which may be impacted by training 
(O’Neill et al., 2020). This study demonstrates that 
training can address some challenges with com-
munication, coordination, and trust calibration in 
HATs and improve responses to autonomy fail-
ures. The coordination training focused on improv-
ing team communication and coordination with 
interaction-based coordination coaching. Rather 
than employing coaching with explicit instruc-
tion or feedback (e.g., Hackman & Wageman, 
2005), the autonomous agent teammate modeled 
aspects of team interactions which changed how 
the rest of the team’s behaviors were constrained 
(Harrison et al., 2003). This effect appeared to per-
sist after those constraints were relaxed, and also 
equipped teams to coordinate to overcome auton-
omy failures.

In contrast, the calibration training emphasized 
imperfect autonomy by providing explicit instruc-
tion and first-hand experience with shortcomings. 
This training was a form of HAT trust dampening 
that focused on lowering expectations and chang-
ing perceptions of the autonomous agent (de Visser 
et  al., 2020), rather than directly influencing the 
constraints of the team’s behaviors. Calibration 
training appeared to make overall perceptions 
of trust in the autonomous agent more robust to 
failures. Notably, both training approaches in this 
study took a short amount of time to implement 
and included only minor alterations to the control 

protocol but had lasting effects. Our findings sug-
gest the following for implementing training in 
HATs:

1.	 Training should consider the impacts of entrain-
ment on team communication and coordination. 
Training with an agent that is programmed to 
model aspects of good information exchange may 
be useful for improving team communication and 
coordination.

2.	 The capabilities and limitations of autonomy 
should be made known to human team members, 
and training scenarios should include examples of 
agent shortcomings to help calibrate trust. Other 
research suggests that this is particularly import-
ant when the operational context dictates that cal-
ibrated trust is strongly linked with performance.

Limitations and Future Research
This study had some limitations. It may have 

had low power for detecting certain effects, a com-
mon challenge in team studies (Bing & Burroughs, 
2001; Brodbeck et al., 2021). Because the primary 
aim was to target team-level relationships, many of 
the analyses were conducted only at the team level. 
Future research may benefit from assessing more 
individual- or dyad-level variables. Additionally, 
generalizations from one instantiation of a HAT 
can be challenging because agents and teams vary 
drastically between contexts. For instance, the WoZ 
agent in this study did not learn over time, whereas 
some types of autonomous agents can. Future 
research in HAT could benefit from considering 
the impact of different types of artificial agents and 
team configurations on HAT training. Also, there 
was a clear distinction between automation and 
autonomy failures as they were designed for this 
study, but those categories may not always be gen-
eralizable. Other contexts may include both types 
of failures, possibly in combination with other 
failures. Finally, future research should explore the 
integration of coordination and calibration training 
and other approaches such as cross-training and 
perturbation training to develop a comprehensive 
HAT training framework. Such a framework may 
help to fill an important gap in our understanding of 
training effective HATs.
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KEY POINTS

●● Communication and trust are essential for effec-
tive human–autonomy teaming.

●● Two training approaches based on entraining 
effective communication behaviors (coordina-
tion training) and calibrating trust (calibration 
training) were assessed in a human–autonomy 
teaming command and control task using a 
Wizard of Oz paradigm.

●● Coordination training improved information 
exchange through communications, target 
processing efficiency, and improved team 
responses when the autonomous agent failed.

●● Calibration training appeared to influence expec-
tations and trust in the artificial agent, but this 
did not result in a concomitant improvement in 
responses to autonomy failures.

●● HAT training should consider the impacts of 
entrainment, make the capabilities of autonomy 
known, and other interventions may be needed to 
equip teams to adapt to complex disruptions.
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