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Abstract
Autonomous robots have the potential to play a critical role in urban search and rescue (USAR) by allowing human counterparts
of a response team to remain in remote, stable locations while the robots execute more dangerous work in the field. However,
challenges remain in developing robot capabilities suitable for teaming with humans. Communicating effectively is one of
these challenges, especially if plan deviations during field operations require robot explanation. A virtual USAR team task
experiment was conducted inMinecraft with a confederate acting as the remote robot. Four explanation-based communication
conditions were tested: (1) always explain–the robot automatically provided explanations for any off-plan behaviors, (2)
explain if asked–the robot provided an explanation only when the human counterpart requests it, (3) pull prime–the same as
(2) but participants also experienced implicit training to pull information from the robot, and (4) never explain–a baseline
condition in which the robot acknowledged requests but would not provide an explanation. Results indicate that the training
in (3) generated more team communication than (1), but this did not improve team performance or shared situation awareness.
Rather, team performance and shared situation awareness was best supported by a moderate level of explanations and the
robot pushing information. These findings reinforce the importance of designing robot communication strategies that can
reduce human workload, particularly communication overhead, in dynamic and time-constrained tasks.

Keywords Human–robot team · Search and rescue · Communication · Explanation · Situation awareness · Complex
environment

1 Introduction

Using robots in urban search and rescue (USAR) has been
ongoing for over a decade: at the 9/11 World Trade Center
collapse [1]; the 2004 Mid Niigata and 2011 Tohoku earth-
quakes in Japan [2]; hurricanes Katrina, Wilma, and Rita in
2005 [3], and hurricane Harvey in 2018 [4]. In the wake of
these catastrophes, robots were primarily used in reconnais-
sance missions to assess the disaster environment and search
for victims in need of retrieval or rescue [5]. Today, USAR
robots remain more as teleoperated tools under the careful
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control of highly trained robot wranglers. Therefore, though
robots may be useful in enhancing USAR efforts and team
capabilities, they still require significant human resources
and human control to be effective [6].

A team can be defined as two or more interdependent
agents that interact to achieve shared goals or tasks [7]. Under
this broad definition, robots enabled by artificial intelligence
(AI) may thus serve as “team members” to human coun-
terparts, similar to human-animal teams in which human
supervision remains a necessary part of team functioning
[8]. A common reason for introducing automation (including
some AI and robot applications) into existing work sys-
tems is to expand the operational capabilities of a system,
given a limited human workforce. However, a common rea-
son for teaming goes beyond scaling the workforce through
the strategic distribution of work. Rather, teams are meant
to surpass the aggregate abilities of working individuals that
are choreographed to achieve certain outcomes, i.e., coor-
dination [9]. Therefore, effective teams that include people
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require interactive communication and social processes to
achieve emergent outcomes in complex task environments
[10]–[13]. This idea of how teams function underlies the the-
ory of interactive team cognition, which posits that a team’s
cognition is the team’s interactive communication [10].

Interactive communication not only serves to transfer crit-
ical task-related information within a team, it also serves
to build and repair trust between teammates through expla-
nation [14, 15]. Whereas information transfer describes the
preliminary work of teams [10], explanations as a specific
type of information transfer can affect perceptions of a
teammate’s ability to help achieve the team task, thereby
affecting trust in the teammate [15–17]. These perceptions
of the teammate may subsequently affect the team’s ability
to communicate effectively, thereby undermining the team’s
situation awareness and performance. Although there have
been several studies on human-robot communication such
as how people perceive robot communication, what are vari-
ous qualities of human–robot communication, and even how
robots should communicate with one another in front of peo-
ple [18], our focus is on effective strategies for human–robot
team communication in complex task environments – par-
ticularly as technology is developed to exhibit increasing
autonomy [19].

Previous studies of teaming in command-and-control
environments indicate that team communication can predict
team performance and shared situation awareness, whether
in human–human teams [10, 20] or human–machine teams
[21, 22]. In USAR environments previous studies have also
addressed the importance of team communication, including
team communication training and its impact on team perfor-
mance and situation awareness [23, 24]. Other studies have
outlined the technological feasability of human-robot com-
munication [25], and developed coding schemes for human-
robot communication to study how team tasks are accom-
plished [26]. Although this prior work has been essential for
understanding and improving current human-robot USAR
teams, much of this work has focused on field applications
in which existing capabilities are considered (i.e., current
human–robot USAR teams primarily involve human–human
verbal communication and human–robot non-verbal commu-
nication). One limitation of such studies is that they provide
little insight on the design of increasingly autonomous robots
that may allow them to function as more capable teammates.
Furthermore, few studies have examined how robot expla-
nations – and how various strategies for delivering those
explanations–affect team performance and situation aware-
ness in complex team task environments such as USAR.

This study addresses these gaps by imagining future robots
with autonomous navigation capabilities [27], to explore how
such robots might serve as better team players to their human
counterparts in dynamic USAR environments, through the
use of various explanation-based communication strategies

and training. We tested three explanation-based communica-
tion strategies and the effects of a communication training
condition on a human–robot team’s performance and situ-
ation awareness. The primary motivation of this study is to
explore the tradeoffs of these various explanation-based com-
munication strategies to inform the design of future robots
and their ability to team effectively with human counterparts.

1.1 Maintaining Situation Awareness Through Team
Communication

Studies have shown that team communication is critical
for team performance [28, 29], especially when team com-
munication involves transferring task-related information
between teammates [30]. In dynamic environments, com-
munication also informs teammates about any task relevant
changes thereby maintaining the team’s situation awareness.
Although situation awareness can develop at an individual
and team level, this study focuses on a within-team concept
of situation awareness known as shared situation awareness,
due to its association with team task interdependencies that
require team communication and coordination in dynamic
settings. Shared situation awareness differs from both indi-
vidual situation awareness and team situation awareness.
Whereas team situation awareness focuses on each team
member possessing the situation awareness requirements
for their respective responsibilities, shared situation aware-
ness refers to the common awareness of the situation that
is shared between teammates [31]. Practically speaking, in
some cases shared situation awareness has been considered
a sub-component of overall team situation awareness [32].

In previous studies, shared situation awareness (also
referred to as team situation awareness) has been found
to contribute to team performance [32], [33], and its posi-
tive association with team performance has been found in
human-robot teams as well as human-human teams [34–37].
Findings of team communication supporting shared situation
awareness in human-human teams is more common [38],
whereas team communication that supports shared situation
awareness in human-robot teams has been more challenging
to achieve.

In a USAR competition for human-robot teams, all
instances of robot or test arena damage were attributed
to low shared situation awareness [39]. Low shared situa-
tion awareness of robot’s location also negatively affected
human-robot team performance in locating and extracting
victims in a physically simulated USAR environment [40].
These observations highlight the importance of maintaining
shared situation awareness to avoid critical errors and tomore
effectively accomplishUSAR team tasks.As such, shared sit-
uation awareness in human-robot teams for USAR refers to
the shared perception of the robots’ location, surroundings,
and status; the comprehension of their meaning; and the pro-
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jection of how the robot will behave in the near future [41,
42].

In previous studies involving a simulated USAR envi-
ronment, teams that had differing access to information in
a virtual environment, and a restricted ability to communi-
cate, had lower team performance compared to teams with
equal access to information and fewer restrictions on their
communication [43, 44]. Teams with more restricted ability
to communicate also had higher variability in their situa-
tion awareness that included a lower range. Possible reasons
for the higher variability could be that the communication
restrictions resulted in a stronger effect of individual differ-
ences on communication behaviors. Another reason could be
that having the fewer restrictions resulted in more effective
communicating that improved shared situation awareness,
but with an upper limit to the level of awareness that could
be achieved. With fewer restrictions on communication,
the act of communicating may have led to missing other
important information or events occurring in the task envi-
ronment. Furthermore, human teammates on teams with
more restricted communication experienced higher cogni-
tive workload. Given this challenge of balancing the costs
and benefits of communication in human–robot teams, it thus
seems crucial to further explorewhat are effective robot com-
munication strategies that support shared situation awareness
and team performance [45].

To maintain shared situation awareness, anticipating
future needs and front-loading relevant information in team
communication may help [37]. Proactive team communi-
cation during downtime avoids the risks of reactive or
just-in-time communication, which can increase workload
and cause cascading effects in dynamic task environments,
to the detriment of team performance [46]. In addition to
proactive communication, information elaboration has been
found to have a stronger relationship with team performance
compared to communication frequency [30]. Information
elaboration refers to communication that encompasses clar-
ifying information, including explanations. Because the
impact of clarifying information (e.g., status updates and
status confirmations) on maintaining situation awareness in
human–robot teams has been more extensively studied [13,
23, 26, 47], our study focuses on explanations more specif-
ically, due to their purported but under-explored impact on
human–robot teaming [15, 48, 49].

1.2 Explanations

Explanations refer to explicit communication that provides
a contrastive reason behind a decision or action occurring
relative to a counterpart’s understanding [15]. This type of
communication between teammates, which often instanti-
ates as responses to “why” questions, can help improve
human teams’ shared situation awareness [38, 50], and trust

in machine learning agents [51]. Situation awareness and
trust are both important qualities in teams for successfully
operating in dynamic and complex task environments.

Explanations help maintain shared situation awareness in
dynamic situations, including awareness of team members’
shifting purpose, process, and performance information,
which are types of information that affect trust. Without
the ability to explain actions while performing team tasks,
misunderstandings between teammates can arise and lead to
future surprises or additional work to resolve breakdowns
in teaming. These misunderstandings can lead to disengage-
ment or overreliance on a teammate, affecting a team’s shared
situation awareness and ability to adapt to unexpected events.
Given the importance of shared situation awareness and trust
in dynamic teaming [14, 52], a team’s ability to perform
effectively in a dynamic task environment may be under-
mined without explanations.

A lack of natural language processing or shared men-
tal models with robot teammates can introduce unexpected
challenges during deployment, especially without a way to
resolve those challenges in the moment, compared to how
human teammates are able to interact with and adapt to
other people [53]. Currently, robots designed to operate
like autonomous teammates essentially follow pre-planned
routines, akin to performing choreography, or they require
significant resources to operate (e.g., a dedicated robot
operator). Such team compositions that rely on human adapt-
ability to address unexpected issues may still be useful
but will have limited value in USAR compared to teams
with more dynamic abilities. As robots become increasingly
autonomous, the flexibility of human–robot teams will be
increasingly crucial for highly complex environments with
limited resources and changing conditions. The potential for
robot teammates to function beyond choreography toward
facilitating emergent team interactions will thus require the
ability to provide explanations to their human counterparts
in the wake of unexpected events or behaviors.

2 Current Study

Ourprimary purposewas to investigate the effects of different
explanation-based communication strategies on team perfor-
mance and shared situation awareness in a dynamic USAR
team task environment. First, we describe the microworld
testing environment used to conduct the study.

2.1 Simulated Search and Rescue TeamTask
Environment

A virtual USAR team task environment [54] developed in
Minecraft (version 1.11.2) and based on [43] was rebuilt to
include dynamic events [55]. These dynamic events were
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Fig. 1 Screenshot of the Minecraft simulated USAR task environment (top), and a reenacted setup of the participant station (bottom left) and the
“robot” station (bottom right)

introduced to motivate the need for explanations–to justify
plan deviations in real time. The USAR team involved two
heterogeneous team members – a robot and a human – who
interacted virtually. The robot’s job was to autonomously
navigate a partially collapsed building and to locate potential
victims in the field, and the remote navigator’s job was to
monitor the robot’s live video feed (a first-person view) to
track the location of the robot while documenting the loca-
tion of victims on a map of the building. The navigator was
provided with marking utensils and a paper map (i.e., a floor
plan) of the building pre-collapse and was also tasked with
documenting any changes to the map (see Fig. 1). The objec-
tive of the team was to complete a reconnaissance mission
(i.e., identifying victim locations and changes to the build-
ing) before sending in a recovery team to retrieve the victims
safely.

The “robot” in our study was, in fact, a highly-trained
researcher controlling the navigation of a virtual “robot” in
Minecraft. This “wizard-of-oz” approach in user-centered
research has been used in human-autonomy teaming research
and allows researchers to compare technology designs that
would be cost-prohibitive to develop fully [27, 56]. Wizard-
of-oz is also used to anticipate future designs and test how
people may respond to those designs. Hereafter, we refer to
the researcher-controller as “the robot.” Study participants
were assigned the navigator role and told that they would be

completing two USAR missions with an autonomous robot
in a virtual task environment.

In addition to sharing a video feed [24], the robot
interacted with the navigator via text chat communication.
Participants were not limited to what they could ask or say to
the robot through the text chat, but they were provided infor-
mation about the robot’s capabilities in advance. The robot
was limited to providing explanations that were relevant to
the task environment and to respond to the participant using
a series of pre-scripted phrases. For example, in response to
questions that were not relevant to the task environment the
robot would write, “sorry, I am unable to help you with that.”
Comments that were not relevant to the task were ignored
by the robot. The robot was designed not to have complete
natural language abilities, in part to maintain the perception
that participants were interacting with an autonomous robot
rather than another human teammate, and also to ensure some
control across study conditions.

2.2 Study Design

2.2.1 Human–Robot Team Communication

Although this study focuses on explanation-based communi-
cation strategies, other forms of team communication such as
status updates and status confirmations are necessary to com-
plete the team task. Table 1 shows example text chats between
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Table 1 Examples of human–robot text chat communication during the USAR task

Example Sender Content Type

1 Robot 205 is next A status update absent a request (pushing information).
The robot is communicating which room it will enter
next

2 Navigator Why the deviation A “why” question that indicates a request for an
explanation

Robot 201 and 203 were skipped because we already searched
them

An explanation is provided regarding a deviation observed
via video feed that motivated the request

3 Robot 207 is next A status update absent a request (pushing information)

4 Robot All clear A status update absent a request (pushing information).
The robot is communicating the status of the room it was
in – it has completed scanning and no victims were found

5 Navigator How many in 207 A “how many” question in this task environment was
considered a status update request (pulling information)

6 Navigator Where are you is this room 207 A status update request (pulling information)

7 Robot Ready to move on to the next hallway? A status update request (pulling information)

the robot and human navigator that generally occurred across
conditions, and an example robot explanation provided in
response to a request depending on the study condition
(addressed in the next section).

2.2.2 Selection of the Study Conditions and Hypotheses

Within our USAR team task environment, we were inter-
ested in which communication strategy would best support
the following team effectiveness metrics: team performance
(proportion of correctly triaged victims), shared situation
awareness (accuracy of the annotated map), trust in the
robot (high trust would be appropriate because the robot was
designed to be autonomous and did not make mistakes), and
workload (although some level ofworkloadmay indicate task
engagement, interactions with the robot should not signifi-
cantly increase workload).

Four conditions (between subjects effect) were tested: (1)
always explain—the robot proactively explained plan devi-
ations, and provided other explanations if asked (2) explain
if asked—the robot provided explanations only when asked,
(3) pull prime—the robot provided explanations only when
asked and participants received some training to ask the robot
questions, and (4) never explain—the robot did not provide
explanations, but did acknowledge requests for explanations.
We describe our reasoning behind each of these conditions
in more detail below.

Based on prior work, we expected that the always explain
condition would result in the best outcomes for team per-
formance and shared situation awareness [57]. Proactive
communication can indicate an ability to anticipate a team-
mate’s needs [10], and reduces communication overhead
that results from teammates needing to request information.
Requesting information generally involves at least five steps:

first determining the information needed, forming a request,
making the request, monitoring for a response, and then pro-
cessing the information. This is more cognitive work than
simply receiving the right information at the right time,which
generally involves just two steps – monitoring for new infor-
mation and then processing the information.

However, it is also possible that always explain could
result in information overload, requiring vigilant monitor-
ing and filtering of an information stream. This information
overload could further undermine the intended benefits of
an always explain strategy which are to: reduce workload,
increase shared situation awareness in a timely manner, and
to foster trust in the robot teammate. Furthermore, the always
explain condition may lead a teammate to adopt a more pas-
sive role in team communication, thereby failing to identify
a need to request an explanation when one might be needed.
Therefore, as an alternative to always explain,we also tested
an explain if asked condition in which the robot would pro-
vide an explanation only if the participant requested one.

The never explain condition served as a baseline in which
no explanations were provided, although the robot still com-
municated general status updates with the navigator in all
conditions.We expected that shared situation awareness, and
in particular team trust, would be the lowest in the never
explain condition due to the purported role that explanations
play in team communication. To avoid conflating perceptions
of the robot’s general ability to communicate with the robot’s
ability to provide explanations, the robot would politely [58]
acknowledge requests for explanations in this conditionwith-
out providing one by saying, “sorry, I am unable to help you
with that.”

Initially, we elected to test the above three conditions only.
However, during pilot testingwe found that most participants
would not initiate requests for information in the explain if
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asked condition, thus undermining the condition. Therefore,
we developed and introduced a fourth condition, called pull
prime, in which participants were “primed” to initiate com-
munication with the robot. Our use of the term “priming”
refers to the presentation of a stimulus that is thought to
impact subsequent behaviors, borrowing loosely from the
more established notion of semantic priming that involves
the rapid and successive presentation of the initial stimu-
lus. In the pull prime condition, the researcher prompted
participants to initiate an interactive training sequence by
asking the robot a question. In the other three conditions the
robot would initiate the interactive training sequence, which
involved scripted communication about the navigation task
with participants. Other than this difference in who initiated
the training sequence, participants in the pull prime condition
experienced the same communication strategy as explain if
asked.

We expected that priming participants would lead to more
requests for explanations (askingmore “why” questions) dur-
ing subsequent interactions with the robot, without explicitly
telling them to do so. The reasoning behind this is based on
social exchange theory and the primacy effect. Prior work
in social exchange theory has found that the structure of
repeated interactions between a person and an automated
agent, such as who initiates requests for resources, can affect
subsequent teaming behaviorswith an agent [59]. In addition,
the primacy effect states that a person’s first impressions of a
robot impacts their subsequent behaviors with the robot [60].
Therefore, we expected that introducing a social structure in
which participants initiated interactions as part of their first
impression of the robot would lead to participants asking
more questions (and requesting more explanations) than in
the other conditions. As a result of asking more questions,
we also expected that the pull prime teams would be more
effective than in the explain if asked condition, in which par-
ticipants were not primed to ask the robot questions.

In summary,always explainwas expected to have thehigh-
est shared situation awareness and team performance, high
trust in the robot, but also the highest workload. Pull prime
(which was explain if asked with participant priming) was
expected to have high shared situation awareness and team
performance, the highest trust in the robot due to a greater
number of exchanges with the robot [12], and less workload
than always explain due to actively requesting information
when needed rather than constantly monitoring the text chat.
Explain if asked was expected to have less shared situation
awareness, lower team performance, less workload, and the
same levels of trust in the robot compared to the previous
two conditions, contingent on the resulting number of expla-
nations requested. Never explain was expected to have the
lowest shared situation awareness, team performance, work-
load, and trust in the robot.

2.2.3 Designing a Task-Relevant Need
for Explanation-Based Communication

Before the experimental trials, as part of the interactive train-
ing, participants engaged in a short planning session with
the robot in which the robot first established the planned
route it would take, based on a map of the building, includ-
ing the order of the targeted rooms. Two types of explanations
were designed to occur as a result of deviations to this plan:
(1) when the robot encountered an unexpected opening to
another room and used it to access and search the target room,
and (2) when the robot encountered areas that were blocked
by debris and needed to deviate from the planned route.When
it encountered an opening, the robot would explain that it
found a different route to the target room through an open-
ing in the wall. For blockages, the robot would explain that
it could not enter the target room because it was blocked.
There were four openings and four blockages in each of
the two missions that participants experienced. Additionally,
the second mission introduced two dynamic elements, (1) a
dynamicwall collapse that triggeredwhen the robot traversed
its planned route and (2) the presence of critical victims that
needed to be reached within a certain time period.

Critical victims were introduced to add temporal urgency
and difficulty to the second mission. Orange blocks in
Minecraft were used to represent these victims; these blocks
would remain orange for the first 10 min of the mission,
and then turn pink to indicate their expiry. Ideally, the
human–robot team would prioritize searching for these criti-
cal victims within the first 10 min of the mission to minimize
casualties. At the same time, the team’s overall goal was
still to accurately document structural differences between
the pre-collapsed building and the actual environment, and
to correctly mark the location and type of victim (e.g., alive,
critical, deceased) on their mission map. To achieve this, the
navigator and the robot needed to coordinate and communi-
cate with one another in a timely manner.

3 Method

3.1 Sample Size and Participants

An a priori power analysis was conducted using G*Power3
[61] to test the difference between the means of 4-conditions
by 2-missions using an F-test, with a medium effect size (η2p
� 0.06; [62]), and an alpha (∝) of 0.05. According to the
result, a total sample of 60 participants with four equal-sized
groups of n � 15 was required to achieve a power of 0.90.

Thus, 60 participants from Arizona State University and
its surrounding community were recruited for this study.
Participants were required to be 18 years or older, fluent
in English, have normal or corrected-to-normal hearing and
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vision (e.g., colorblind participants were excluded from this
study), and comfortable using a standard computer mouse
and keyboard. Participants were compensated $10 per hour
for their time spent during the study, or roughly $15 total.

Study recruitment materials advertised a human–robot
study in Minecraft. The resulting demographics collected at
the end of the study show that participants were generally
younger adults (Mage � 22, SDage � 7.21), skewed male
(70% identified as “Male”), and had some prior experience
playingMinecraft.When asked, “I amexperiencedwith play-
ingMinecraft” on a scale of zero (strongly disagree) to seven
(strongly agree), participants ratedM � 4.53. However, there
was somevariation inMinecraft experience across study con-
ditions, after random assignment (never explain M � 4.6, SD
� 2.41; always explain M � 3.27, SD � 2.4; explain if asked
M � 5.73, SD � 1.94; pull prime M � 4.53, SD � 2.23).
This is addressed briefly in Sect. 5.3.

3.2 Equipment

Four computers running Windows OS were used to con-
duct the study. One desktop computer was used to show
PowerPoint slides as part of the training session, and to com-
plete the missions in Minecraft. The missions were recorded
using Snagit, a screen capture and recording software pro-
gram (techsmith.com/screen-capture.html). The desktopwas
connected to two monitors with mirrored displays and two
keyboards. The monitors were connected through a small
opening in a wall separating the robot/researcher from the
navigator/participant such that the robot and navigator each
only had access to one of the connected monitors. Three
laptop computers were also used to enable the robot and nav-
igator to communicate with one another. Each team member
used one laptop to access the chat system interface, and the
third was used to host the chat server.

Figure 1 shows an example view of the virtual task
environment (top), and the experimental setup between the
navigator (participant, bottom left) and the robot (wizard-of-
oz researcher, bottom right). The participant’s field of view
was purposefully restricted using a wood frame overlaid on
their monitor screen, to simulate a task environment in which
remote responders have a narrower field of vision, and to
increase participants’ required vigilance and dependence on
the robot to complete their mapping task.

Minecraft by Mojang (minecraft.net and mojang.com)
was selected as the platform for the team task environment
due to its flexibility as well as the ease with which it can
be controlled and modified. Following their training session,
maps of the building floorplan pre-collapse were provided
to participants. Following each experimental mission with
the robot in Minecraft, participants were asked to complete
several questionnaires, which are described in more detail

Table 2 Summary of the study procedure

Step Description Duration

1 Recruitment, briefing, and informed consent (N
� 60 participants)

Pre-study

2 Random assignment into one of four study
conditions: always explain, explain if asked,
pull prime, never explain

Pre-study

3 Training via PowerPoint tutorial (~10 min) and
in the task environment with the robot
(~10 min)

20 min

4 Mission 1 20 min

5 Workload and trust questionnaires administered ~15 min

6 Mission 2 20 min

7 Workload, trust, and demographics
questionnaires administered

~15 min

8 Debriefing Post-study

below. Additional paper materials used were for consenting
and debriefing participants.

3.3 Procedure

After consenting to participate in the study, each participant
was randomly assigned to one of four conditions: always
explain, explain if asked, pull prime, or never explain. All
participants reviewed a voiced-over tutorial created in Pow-
erPoint (~10 min), completed interactive training with the
robot in Minecraft while using the chat system (~10 min),
completed two experimental missions with the robot in
Minecraft (20 min each), and were administered question-
naires (~15 min). In total, the session lasted roughly 1.5 h
per participant. Table 2 outlines the overall study procedure,
which is described in further detail below.

The PowerPoint tutorial informed participants about the
team task and mission, individual roles, the robot’s capabili-
ties (including how and what could be communicated to the
robot), and how team performance during the task would
be scored. Images of common robots used in USAR (e.g.,
robot rovers with traction propulsion, a camera, manipulator,
and end effector attached) were shown as part of the train-
ing to provide additional context that participants would be
interacting with a robot. Following the tutorial, participants
completed an interactive training with the robot in Minecraft
to achieve three training goals: (1) to practice observing the
robot navigating the environment, (2) to experience com-
municating with the robot, and (3) to practice marking up
the mission map. No dynamic events were experienced dur-
ing the interactive training. Next, participants completed two
missions with the robot in Minecraft with increasing task
complexity from Mission 1 to Mission 2. This increasing
task complexity was to increase the workload between mis-
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Fig. 2 Map provided to participants before the start of a mission (left) and the answer key map for Mission 2 (right), which was used by researchers
to code participant map data. The colored circles indicate different types of victims, the “X” indicate blocked pathways, and “|” indicate new
openings

sions by adding collapses, additional victims, and fires in the
task environment.

In each mission, participants were responsible for mark-
ing the location of victims and any changes to the map (i.e.,
potential dangers, blockages, or openings). Meanwhile, the
robot searched for victims in the building while relaying its
location to the participant through the text chat. As part of
their role as navigator, participants received a map of the
building pre-collapse and were asked to use the map to log
any found victims’ location and changes to the building that
would impede a rescue mission’s effort to retrieve the vic-
tims. Themap included the robot’s planned path and location
of light switches, elevators, and restrooms (see Fig. 2). The
participant could reference a pre-planned search route anno-
tated on the map to help track the robot’s movement on the
ground. The location of light switches was important for map
orientation because as the robot entered a room, it would turn
the lights on (see Fig. 2). Inconsistencies between the map
and the actual virtual environment included: missing walls,
additional walls, and misplaced doorways to simulate a dam-
aged building.

After completing the first mission, participants were
administered a modified NASA-TLX workload assessment
and a questionnaire that assessed trust in the robot teammate.
Following the second mission, participants were adminis-
tered the same NASA-TLX workload assessment and trust
questionnaire, as well as questionnaires for demographics,
including previous experience with Minecraft. The robot’s
activities within Minecraft were obtained via a task data log-
ging system constructed in Minecraft.

3.4 OutcomeMeasures and Data Processing

To address our research questions, the following measures of
team effectiveness were assessed: team performance, shared
situation awareness, trust in the robot, workload, and team
communication. Three types of team communication were
coded from the text chat data – explanations, pulling infor-
mation, and pushing information (the latter two exclude
explanations). We further describe these measures below.

3.4.1 Team Performance

Team performance in this task was measured by the pro-
portion of correctly identified victims (location and status).
Although documenting victims’ location and status was the
primary goal of the navigator, the navigator needed to rely
on the robot to achieve it. The number of victims identified
were counted, divided by the total number of victims in the
collapsed structure, and then multiplied by 100 to arrive at
the team performance score for each mission.

3.4.2 Shared Situation Awareness

Shared situation awareness was measured by the navigator’s
proportion of map accuracy in each mission. To calculate
this, we summed the correctly annotated collapses and open-
ings on the map, divided by the total number of imposed
collapses and openings, then multiplied by 100 to obtain a
percentage. This value made up the mission-level score for
shared situation awareness.
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3.4.3 Trust in the Robot

Trust in the robot was measured using a questionnaire
adapted from Hoffman et al. [49] that focuses on trust in
explainable AI. This eight-item questionnaire was based on
Cahour and Forzy [63]; Jian, Bisantz, and Drury [64]; and
Madsen and Gregor [65]. The resulting composite question-
naire emphasizes that trust should be viewed as a process
when evaluating explainable AI systems and thus, empha-
sizes a repeatable evaluation of trust after explanations are
provided. Trust ratings for each item used a 5-point Likert-
type scale (1 � “I agree strongly”, 2 � “I agree”, 3 � ”
Neutral”, 4 � “I agree”, and 5 � “I disagree strongly”),
containing seven positive items (e.g., “I am confident in the
Robot. I feel that it works well”) and one negative item (“I
am wary of the robot.”) To calculate the final trust score for
each participant, we totaled the ratings from the positively
valenced items and subtracted the rating from the negatively
valanced item.

3.4.4 Workload

Workload was measured using the NASA-TLX [66] with
two modifications – only the questionnaire items were used,
and the response was limited to a 5-point scale to mirror
the numeric range used in the trust questionnaire, which was
administered at the same time (see Table 2). Past studies that
used only the questionnaire portion of the NASA-TLX have
also moved away from the 21-point scale [67]. For adminis-
trative simplicity and considering user experience, the same
numeric range for all questionnaire items was used. In this
study, the six items from the NASA-TLX were summed to
form each participant’s workload score.

3.4.5 Communication Behaviors: Explanation, Pushing
Information, Pulling Information

The three communication measures were gleaned from the
robot and participant text chat data. We considered the
amount of explanations provided (robot only, due to its spe-
cific role in the task), the amount of information pulled (i.e.,
questions that would not be classified as requests for expla-
nations, from the robot and participant), and the amount of
information pushed (e.g., status updates, from the robot and
participant). These three communication measures allowed
us to assess participants’ communication relative to the
robot’s (e.g., what were some resulting effects on team com-
munication, and did our pull prime training lead to more
questions or requests for explanations). To obtain these team
communication measures, each message within the text chat
data was transformed into a row within a datasheet. Two
trained experimenters coded the rows independently, and
Cohen’s κ was run to assess inter-rater reliability.

Table 3 Example coding of explanations

Sender Message Text Explanation

Navigator Why did you skip E0? 0

Robot Because we already searched it 1

Navigator What about room 212? 0

Robot We already searched room 212 1

An explanation was identified (coded as 1 instead of 0)
when the robot provided explanations after the navigator
asked a “why” question or an implied “why” question, such
as “what about” questions, as in Table 3. To avoid double-
counting explanations, requests for historical information,
such as requests to repeat previously answered information
in the same context, were not considered explanations but
clarifications. In coding the explanations, there was almost
perfect agreement between raters [κ � 0.936 (95% CI, 0.885
to 0.987)]. Therefore, we took the average of the two raters’
codes and totaled them across each mission before further
analyses.

Pulling information was identified as any requests for
information from any team member that was not semanti-
cally a “why” question. An example of this would be seeking
confirmation, such as the navigator asking, “Did we search
room E0?” Note that this definition does not overlap with an
explanation, because explanations were coded as informa-
tion provided in response to a “why” question (retroactive,
contrastive information). Again, there was almost perfect
agreement between the two raters [κ � 0.973 (95%CI, 0.969
to 0.977)], so we took the average of the two raters’ codes
totaled across each mission before further analyses.

Pushing information was identified when any team mem-
ber sent information that did not follow a question. Therefore,
potential “anticipatory explanations” (information provided
in anticipation of a need to reconcile contrastive understand-
ing) would have been captured in this measure, in addition
to other task-relevant information provided before a request
(or in the absence of a request). This could include status
updates that would help maintain shared situation awareness
but are not considered explanations because they do not pro-
vide directly observed contrastive information. There was
also almost perfect agreement between the raters [κ � 0.882
(95% CI, 0.876 to 0.888)]. Therefore, we took the average of
the two raters’ codes and summed them across each mission
before further analyses.

3.5 Data Analysis Approach

To assess how team performance, shared situation aware-
ness, trust, workload, and robot explanations varied across
conditions andmissions, we conducted a 4 (number of condi-
tions)×2 (number ofmissions) split-plot analysis of variance
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(ANOVA) for each of the five outcome measures. We chose
to run separate ANOVAs instead of a multivariate analysis
of variance (MANOVA) because of a significant moderate
positive correlation between team performance and shared
situation awareness, r(118) � 2.11, p � 0.037; and between
trust and workload, r(118) � 0.23, p � 0.013.

Next, we ran two repeated measures three-factor mixed
ANOVAs, to address how information pulling, and infor-
mation pushing changed across conditions, missions, and
roles (robot and navigator).We applied Fisher’s Least Signif-
icance Difference (LSD) to compare each pair of conditions
because four conditions control the family-wise alpha at the
per contrast alpha. Additionally, Fisher’s LSD assumes rea-
sonably good homogeneity of variance [68, 69]. To conduct
theANOVAs, we used IBMSPSS Statistics 26 software [70].

Finally, we used stepwise regression (based on Akaike
information criteria, AIC) to determine the best set of pre-
dictors for team performance and shared situation awareness
from explanations, pushing information, pulling informa-
tion, trust in the robot, and workload. We chose stepwise
regression because it eliminates the multicollinearity issue
by including an additional predictor variable (i.e., forward
selection) and eliminating a predictor variable (i.e., back-
ward elimination) already in the model [71]. We also chose
AIC because our sample size was limited, and AIC places a
moderate penalty on the number of predictor variables com-
pared to Bayesian, which places a heavier penalty [72]. This
analysis was conducted in R [73], using the MASS packages
for stepwise regression [74] and lm-beta [75] for adding stan-
dardized regression coefficients.

Team performance and shared situation awareness were
considered the primary outcome variables given the specific
goals of the human–robot team. However, trust andworkload
were also considered as the literature indicates that they could
be impacted by the communication strategies. The three com-
munication behaviors (robot explanations, robot-navigator
pushing information, and robot-navigator pulling informa-
tion) were analyzed in an exploratory manner to cross-check
the effects of the four conditions on the actual communica-
tion behaviors of the dyad.

Notably, participants’ trust in the robot did not differ
across conditions or missions; average trust in the robot was
moderate (M � 2.83, SD� 1.70; p>0.05) andwas not related
with the outcome variables (p >0.05). Therefore, we omit
reporting the trust measure in the results section and revisit
the implications of this in the discussion section.

Fig. 3 Plot of mean team performance by mission (error bars are 95%
confidence intervals)

4 Results

4.1 Split-Plot Analysis of Variance

The first split-plot ANOVA addresses how team performance
(percent of correctly identified victims) differed across con-
ditions and missions. While there was a significant mission
main effect, F(1, 56)� 26.5, p <0.001, η2p � 0.02, the condi-
tion main effect and condition by mission interaction effect
were not significant, F(3, 56) � 0.44, p � 0.728, η2p � 0.02,
and F(3, 56) � 0.19, p � 0.902, η2p � 0.01, respectively.
These results indicate that there may have been a team per-
formance learning effect despite the additional challenges
introduced in Mission 2 (Fig. 3).

The second split-plot ANOVA addresses how shared sit-
uation awareness (map accuracy) differed across conditions
andmissions. The findings indicate that all three effects were
not statistically significant, the condition main effect, F(3,
56) � 1.93, p � 0.136, η2p � 0.09, the mission main effect,
F(1, 56) � 0.25, p � 0.620, η2p � 0.04, and the interaction
effect of condition by mission, F(3, 56) � 0.66, p � 0.583,
η2p � 0.03.

Although there was no significant condition main effect,
pairwise comparisons (based onLSD—least significance dif-
ference) indicate that the always explain condition had better
shared situation awareness than the pull prime condition (p�
0.020), but did not differ from the remaining two conditions,
never explain or explain if asked (Fig. 4).

The third split-plot ANOVA addresses how participants’
workload differed across the conditions and missions. Simi-
lar to team performance, there was a significant missionmain
effect, F(3, 56) � 41.6, p <0.001, η2p � 0.43, while the con-
ditionmain effect and condition bymission interaction effect
were not significant, F(3, 56) � 0.95, p � 0.424, η2p � 0.05
and F(3, 56) � 0.19, p � 0.906, η2p � 0.01, respectively.
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Fig. 4 Plot of mean shared situation awareness across conditions (error
bars are 95% confidence intervals)

Fig. 5 Plot of participants’ reported workload across missions, with 30
being the highest possible workload rating (means with 95% confidence
intervals)

The pairwise comparisons (LSD) show that workload in
Mission 2 was higher than in Mission 1 (p <0.001; Fig. 5).
This was somewhat expected as Mission 2 was designed to
be more challenging than Mission 1, with dynamic events
and an increased number of victims and roadblocks.

The fourth split-plot ANOVA addresses how the number
of robot explanations differed across the conditions and mis-
sions. The condition main effect was statistically significant,
F(3, 56) � 4.28, p � 0.009, η2p � 0.19, while the mission
main effect and the interaction effect of condition by mis-
sion were not statistically significant, F(1, 56) � 1.44, p �
0.235, η2p � 0.03 and F(3, 56)� 0.51, p� 0.678, η2p � 0.03,
respectively.

Fig. 6 Plot of robot explanations across conditions (means with 95%
confidence intervals)

In accordance with the significant condition main effect,
pairwise comparisons (LSD) indicate that participants in the
pull prime and explain if asked conditions experienced more
robot explanations than participants in the always explain (p
� 0.051 and p � 0.032, respectively) and never explain con-
ditions (p� 0.008 and p� 0.005, respectively; Fig. 6). Based
on our coding scheme, this also indicates that participants in
the pull prime and explain if asked conditions asked the robot
more “why” questions than in the always explain condition.

4.2 Mixed Analysis of Variance

Next, we discuss the between-subjects effect (i.e., condition)
on the information pulling and pushing behaviors. Given
the way the team task was structured, only the robot’s role
demanded explanations. However, pulling and pushing of
information generally needed to take place between the nav-
igator and robot to carry out the team task.

4.2.1 Pulling of Information

The teams’ pulling of information was analyzed via a
repeated measure three-factor mixed ANOVA, with condi-
tion as the between-subjects factor, mission as a within-
subjects factor, and role nested (within missions) as within
team factors. There were significant main effects for condi-
tion [F(3, 224) � 9.53, MSe � 106, p <0.001,η2p � 0.11]
and role (within mission) [F(2, 224) � 5.88, MSe � 65.4, p
� 0.003, η2p � 0.05], and a significant interaction effect for
condition by role (within mission) [F(6, 224) � 5.67, MSe
� 63.2, p <0.001, η2p � 0.13]. However, the mission main
effect was not significant [F(1, 224)� 0.35,MSe� 3.88, p�
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Fig. 7 Plot of information pulled by condition (means with 95% confi-
dence intervals)

0.555, η2p � 0.002], nor was the condition by mission inter-
action effect [F(3, 224) � 0.58,MSe � 6.41, p � 0.63,η2p �
0.008].

In accordance with the significant condition main effect,
pairwise comparisons (LSD) indicate that the pull prime
teams pulled more information than the always explain (p
<0.001), explain if asked (p<0.001), andnever explain teams
(p� 0.003; see Fig. 7).Meanwhile, the always explain teams
pulled significantly less information than the remaining three
conditions (never explain, explain if asked, p � 0.043; and
always explain, p <0.001). Teams in the explain if asked
and never explain conditions did not differ in the amount of
information pulled (p � 0.784).

According to the significant role (within mission) main
effect, navigators generally pulled more information from
the robot than the robot pulled from the navigators (based
on LSD, p <0.001, see Fig. 8). This finding was somewhat
expected, based on the team task design, as the navigator’s
role updating the map required pulling information from the
robot.

The significant interaction effect of condition by role
(within mission) and pairwise comparisons (LSD) further
support the finding that pull prime navigators pulled the most
information compared to the navigator in the other conditions
(p <0.001; Fig. 9) and also pulled more information from the
robot than the robot pulled from them (p <0.001). In con-
trast, the always explain navigators pulled the least amount of
information compared to the navigator in the other conditions
(p<0.001), and also seemed to be the only condition inwhich
the navigator pulled less information than the robot. The nav-
igators in the remaining two conditions, explain if asked and
never explain, did not differ in terms of the amount of infor-
mation they pulled (p � 0.892). Across all four conditions,

Fig. 8 Plot of information pulled by role (means with 95% confidence
intervals)

the robot pulled similar amounts of information. This indi-
cates that our wizard-of-oz robots pulled information from
participants relatively consistently across all conditions, to
the benefit of experimental control.

4.2.2 Pushing Information

Pushing information refers to any information sent by a team
member, before being asked for that information. Generally,
it indicates anticipatory team communication. As in the pre-
vious analysis, pushing of information was analyzed via a
repeated measure three-factor mixed Analysis of Variance
(ANOVA) with condition as a between-teams manipulation,
and mission with role nested as within-team factors.

Results showa significant conditionmain effect [F(3, 224)
� 3.86, MSe � 110, p � 0.010,η2p � 0.05], mission main
effect [F(1, 224)� 5.17,MSe� 148, p� 0.024, η2p � 0.02],
and role (within mission) main effect [F(2, 224) � 499,MSe
� 14,276, p <0.001, η2p � 0.82]. There were no significant
interaction effects of condition by role (within a mission)
[F(6, 224) � 0.44, MSe � 12.5, p � 0.854, η2p � 0.01] or
condition by mission [F(3, 224) � 0.12, MSe � 3.32, p �
0.951,η2p � 0.01].

In accordance with the significant condition main effect,
pairwise comparisons (LSD) indicate that teams in thealways
explain and pull prime conditions pushed similar amounts of
information (p � 0.62), which was more information than
teams in the never explain (p� 0.027 and p� 0.007, respec-
tively) and explain if asked conditions (p � 0.043 and p �
0.012, respectively; Fig. 10, left), which also pushed similar
amounts of information (p � 0.845).

In accordance with the significant mission main effect,
pushing information increased from Mission 1 to 2 (p �
0.024; Fig. 10, right), likely due to the dynamic events
involved in Mission 2.
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Fig. 9 Plot of information pulled
by condition and role (means
with 95% confidence intervals)

Fig. 10 Plot of information pushed by condition (left) and by mission (right); means with 95% confidence intervals

According to the significant role (within a mission) main
effect, we can also confirm that the robot pushed more infor-
mation than the navigator overall (p <0.001, Fig. 11), as was
expected given their respective roles in the team task.

Even without a significant condition by role interaction
effect, we still examined how each role differed across con-
ditions. As seen in Fig. 12, the navigator did not differ in the
amount of information they pushed across conditions. How-
ever, results indicate that the robot pushed significantly more
information in the always explain (p� 0.021) and pull prime
conditions (p � 0.010) compared to the never explain condi-
tion. This means that the robot’s behaviors were inconsistent
in pushing information across conditions, and a confounding
factor because pushing informationwas unsolicited behavior.

As a visual summary of our findings, we plotted the mean
frequencies of team communication behaviors across condi-
tions (Fig. 13). This figure interpreted alongside the earlier
statistical tests shows that although our robot was incon-

Fig. 11 Pushing information by role (means with 95% confidence inter-
vals)
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Fig. 12 Pushing information by
condition and role (means with
95% confidence intervals)

Fig. 13 Team communication
behaviors across conditions
(mean frequency of explanation,
information pulling, and
information pushing messages)

sistent in pushing information across conditions, the more
critical variable to inspect is the number of explanations the
robot provided. Given how we coded the data, the number of
explanations provided also indicate the number of explana-
tions requested.

As previously noted, participants in the explain if asked
and pull prime conditions asked more “why” questions com-
pared to always explain. Concurrently, pull prime did not lead
to more “why” questions – rather, it led to other questions
(i.e., pulling more information) such as requests for status
updates and location. This additional communication in pull
prime did not improve the team’s shared situation awareness
(e.g., Fig. 4).

Next, we discuss what variables could be the most useful
predictors for team performance and shared situation aware-
ness in this task.

4.3 Stepwise regression

4.3.1 Predicting performance

We applied stepwise regression (Akaike criteria—AIC) to
predict team performance (i.e., the proportion of accurately
triaged victims). The model accounted for 20.7% of the
variance (F(6, 113) � 4.92, p <0.001). According to these
findings, a moderate level of robot explanations and push-
ing information were positively related to team performance
in this task (based on the model’s significant linear and
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Table 4 Predicting team
performance Variable Term β SE β t p

Robot explanations Linear 0.46 0.22 2.08 0.039

Quadratic − 0.23 0.10 − 2.41 0.017

Robot pushing information Linear − 0.07 0.02 − 2.89 0.005

Quadratic 0.01 0.00 2.94 0.004

Navigator pushing information Linear 0.09 0.02 3.55 0.001

Robot pulling information Linear 0.15 0.07 2.06 0.042

quadratic terms;Table 4). In addition, themodel indicates that
the navigator’s pushing and the robot’s pulling contributed
to higher team performance.

4.3.2 Predicting Shared Situation Awareness.

We applied another stepwise regression (AIC) to predict
shared situation awareness (i.e., the proportion of correctly
identified collapses and openings on the map). The regres-
sion model accounted for 14.6% of the variance (F(5, 114)
� 3.89, p � 0.002; Table 5). According to significant linear
and quadratic terms, a moderate level of robot explanations
and robot pushing information contributed to better shared
situation awareness (Table 5).

5 Discussion

Our results indicate that in a simulated USAR human–robot
team task environment, a robot that (1) communicates task-
relevant information proactively, including potential expla-
nations for unplanned behaviors while (2) allowing a human
counterpart to request additional explanations as needed,
strikes the best balance among the team communication
strategies tested for supporting team performance and shared
situation awareness. Teams in the always explain condition
experienced a moderate level of robot explanations, which
were coded as responses to the navigator’s “why” questions.
This moderate level of requests that received an explanation
was associatedwith improved shared situation awareness rel-
ative to the other conditions, particularly pull prime, in which
the robot would only respond to requests for explanations
rather than provide this same information in advance.

Although the pull prime robot engaged in the same strat-
egy as the explain if asked robot, the difference was that
participants in pull prime were trained to initiate communi-
cation with the robot by asking it questions. However, this
training did not lead to asking formore explanations. Instead,
it led to asking formore status updates and other task-relevant
types of information. These findings merit further discus-
sion on the potential tradeoffs of communication in future
human–robot USAR teams.

5.1 Tradeoffs of Communication Frequency
and Explanations

Pull prime resulted in the highest frequency of team com-
munication–primarily by the robot pushing and navigator
pulling more information–which did not improve team per-
formance relative to the other conditions.What contributed to
higher team performance was the navigator pushing and the
robot pulling information.This is interesting because the nav-
igator’s role was more suited to information pulling and the
robot’s role wasmore suited to information pushing. It seems
that in dynamic task environments, even when task roles may
demand a particular directionality of information (i.e., either
pushing or pulling), having more bi-directional communi-
cation enhances team performance. This complements and
supports prior research that found team performance is best
predicted by team members spending equal amounts of time
communicating during teammeetings [76], and that a team’s
shared situation awareness in dynamic settings is best sup-
ported by moderate levels of communication (not too much
and not too little) [37].

This leads to the insight that higher communication
frequency does not necessarily translate to higher team per-
formance and shared situation awareness, especially when
the types of information (e.g., pushing and pulling) are highly
unequal or highly unilateral (e.g., one team member is com-
municating much more than the other, or the communication
roles are more rigid). A previous dynamical systems analysis
of team behaviors found that by pushing and pulling infor-
mation in a timely and constructive manner on a three-agent
team, a single agent was able to affect team dynamics in
a way that was positively associated with team performance
and situation awareness. The study also found that, in a victim
location task similar to this study, the best performing human
dyads had moderately structured communication patterns
(neither completely random, nor completely deterministic),
suggesting that a balance between overly structured (i.e.,
rigid) and completely random (i.e., flexible) communication
patterns results in the most effective team dynamics [77].
This also indicates, as did our study, that moderate explana-
tionsmay provide the flexibility needed for teams in dynamic
settings, and indicate team effectiveness.
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Table 5 Predicting shared
situation awareness Variable Term β SE β t p

Robot explanations Linear 8.65 2.84 3.05 0.003

Quadratic − 3.80 1.22 − 3.11 0.002

Robot pushing information Linear 0.54 0.26 2.10 0.038

Quadratic − 0.05 0.03 − 1.98 0.051

Navigator pulling information Linear 0.37 0.26 1.46 0.147

In terms of design implications, these results suggest that
the ability to ask for explanations and the relative quantity of
explanations are important but donot fully determine a team’s
situation awareness and performance. Providing anticipa-
tory explanations, as in the always explain condition, may
better allow people to focus more on their other tasks at
hand, such that they only need to request explanations due to
unexpected needs not known by the robot in advance. There-
fore, robots should be designed to communicate proactively,
including identifying potential needs for explanations and
then providing them, but to also allow participants to request
for additional explanations where needed. This aligns with
recent theoretical literature on trusting automation, which
recommends designing not just for reliability but also for
responsivity when it comes to AI-enabled robots meant for
human teaming [12].

5.2 Implications for Trust andWorkload

In this study, we also examined trust as a potential out-
come of the various explanation-based strategies, but trust
in the robot did not differ across the four conditions or two
missions. A possible reason is that the number of explana-
tions experienced in this study were relatively low compared
to other types of communication, such as requesting and
reporting status updates. Furthermore, participants may not
have had time to reflectively calibrate their trust following
robot explanations, due to the dynamic and demanding task
environment, and relatively short exposure (under an hour)
workingwith the robot. That participants reported highwork-
load, or an average rating of 24.5 out of 30, generally supports
this argument.

We also revisit the finding that trust in the robot team-
mate and perceived task workload were correlated. Although
not direct outcomes of interest, it makes sense that percep-
tions of the robot’s reliability (i.e., trustworthiness) would
be related to perceptions of workload – the more workload
one experiences, the more likely one may feel the need to
rely on a teammate. However, this correlation was moderate,
and trust did not increase between missions whereas work-
load did increase. It is possible that if communication is seen
as a necessary part of teaming [23], then perhaps additional
communicationwould simply crowd out other important task
activities rather than add to the perceived task load. This is

supported by participants rating higher workload in Mission
2 than Mission 1, a result of the dynamic events, rather than
a result of the communication conditions. With a moderate
number of explanations and an increase of information push-
ing (primarily by the robot), higher team performance was
also achieved in Mission 2 despite the additional perceived
workload.

A couple other reasons for the lack of differences in trust
ratings relate to the explanations themselves and whether
theywere contrastive enough to impact trust. Dynamic events
in the task environment allowed the robot to engage in
off-plan behaviors that would ostensibly motivate a need
for explanation. However, taking a shorter path due to
a new opening, or rerouting due to a blockage may be
non-controversial behaviors, especially if participants could
mostly see what the robot saw through their shared video
feed (e.g., noticing a blockage as the robot changed paths).
Because the robot’s behaviorwas an apparent response due to
changes in the environment, the need for an explanation may
have been limited to when participants happened to miss see-
ing the reason for the deviation in the video feed. Presuming
the video feed facilitated a sharedmentalmodel of the robot’s
decision-making [24], this would make the need for expla-
nations less critical. This is supported by the finding that the
always explain condition did not significantly differ from the
never explain situation in terms of predicting shared situation
awareness, despite the binary distinction that one condition
allowed for robot explanations and the other did not.

Last but not least, another reason for the lack of differ-
ences in trust ratings could be that our team task environment
did not faithfully represent the type of task complexity that
merits explanations, given that the team’s goals were fairly
well aligned. One definition of complexity focuses on the
extent to which individual goals require tradeoffs with the
team’s shared goals [12], which differs from the type of
team task environment that is defined more by the number of
interdependent agents involved, or the dynamism of the task
environment and interactions [20, 22, 37, 38, 77]–[79]. The
latter definition of environmental complexity is essentially
a coordination problem that benefits more from the strate-
gic allocation of work or attention, rather than a cooperation
problem that would benefit from the social effects of expla-
nations [15]. As such, this study indicates that explanations
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may be more critical in task environments where there is
higher potential for goal misalignment.

5.3 Future Directions

There were several limitations of this study, including the
challenge of measuring anticipatory explanations. Because
explanations are an inherently sequential concept – meaning
a person must have first had a thought before an explana-
tion can have its purported impact by providing a contrastive
example to that initial thought – this makes designing for
“anticipatory explanations” in dynamic or emergent task
environments difficult. Anticipatory explanations are some-
what of an oxymoron because explanations can only have
their effect in a post hoc way. Alternatively, there must be
robust evidence that many people would interpret a partic-
ular situation in a similar way that would then require an
explanation or specific set of explanations. Given the chal-
lenges of unobtrusively capturingwhat a personwas thinking
while engaging in this task environment, it is possible that
our coded data underestimates the actual number of explana-
tions that occurred in the always explain condition, because
we were unable to capture information that the robot auto-
matically provided thatmight have answered an unverbalized
“why” question. We did not conduct a prior study to deter-
mine which scenarios in our task environment would require
explanations for the always explain condition, and instead
relied on the research team’s assumption that explanations
would be needed when the robot deviated from its original
plan.

Another limitation of this study is the common challenge
of translating results from a participant sample comprising
mostly university students to experts in a particular domain
area. The Minecraft environment was intentionally designed
[43, 55] tomeet our research objective of advancing theory on
human–robot team communication strategies, and was also
tailored to the participant sample we knew we were likely to
draw. In other words, experience playing Minecraft, urban
search and rescue, and human–robot teaming was not nec-
essary to succeed in completing the team task. Nevertheless,
there was some variation across the study conditions with
respect to self-reported Minecraft experience (see Sect. 3.1).
Therefore, it is possible that participants’ perceptions of the
robot, and their subsequent communication behaviors, were
influenced by what they imagined or expected the robot to be
going into the study. Follow up studies that focus specifically
on the relationship between prior experience and team com-
munication in the domain area of interest would be merited.

Nevertheless, we still believe that the results from this
study have added insight – and lessons learned – for others
conducting similar studies for future human–robot teaming
in USAR environments. Determining when explanations are
needed in real-world team task environments may be an

important primer for future work in this area – an insight
that is not currently addressed in human–robot USAR com-
munication studies, given their necessary but limited focus
on conducting studies with existing robot capabilities [26,
80].

6 Conclusion

The primary goal of this research was to characterize
how different explanation-based communication strategies
of a human–robot team impacted their team’s effectiveness,
which included assessments of team performance, shared sit-
uation awareness, trust, and workload in a simulated urban
search and rescue task. Because team communication is typ-
ically an interdependent sequential process–meaning that
behaviors of one teammate impact the behaviors of another
teammate, which impact the behaviors of the other team-
mate, and so on – this study took a multifaceted, descriptive
approach to the experimental data. Interpreted as awhole, our
findings support the following practical implications about
future human–robot team communication in USAR tasks:

(1) Priming people to initiate interactions with a responsive
robot can lead to more frequent communication overall
during subsequent exchanges – this contrasts with pre-
vious experience in which study participants tended to
take on more passive communication roles while inter-
acting with autonomous technology.

(2) More frequent communication does not necessarily sup-
port team performance, shared situation awareness, or
trust – particularly when communication is too fre-
quent and conflicts with human sensory modalities (i.e.,
visual, manual) that are relevant to performing other
ongoing team task activities.

(3) To help support shared situation awareness, the function
of a robot teammate should include understanding how
to reduce communication overhead by pushing relevant
information to its human counterpart, including antic-
ipating potential situations that may need explanation,
and then providing them.

(4) Positioning robots as high-performing, autonomous
teammates in dynamic task environments demands the
ability to communicate bi-directionally within the team,
as well as more equally distributed and moderate levels
of pushing and pulling information, to support unantici-
pated information needs and shared situation awareness.

(5) Explanations may not have much impact on trust in
pure team coordination tasks, i.e., team tasks that do not
involve potential goal tradeoffs that require inter-agent
cooperation.
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USAR operators typically deal with high levels of uncer-
tainty, influxes of information, changing conditions, and
critical time constraints. Although the high workload of our
simulated team task environment bodes positively for its
ecological validity, our study also illuminates several ongo-
ing challenges for real-world application of human–robot
teams working in complex and time-constrained environ-
ments. These challenges include (1) the need to obtain and
to filter the quality of information exchanged [81], (2) main-
taining shared situation awareness through communication
without performance degradation in other tasks, and (3)
moving beyond rigid roles and function allocation within
human–robot teams toward designing for more dynamic and
flexible teaming.
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