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Probabilistic Consensus on Feature Distribution for
Multi-robot Systems with Markovian Exploration
Dynamics

Aniket Shirsat', Shatadal Mishra?, Wenlong Zhang?, and Spring Berman'

Abstract—In this paper, we present a consensus-based decen-
tralized multi-robot approach to reconstruct a discrete distribu-
tion of features, modeled as an occupancy grid map, that repre-
sent information contained in a bounded planar 2D environment,
such as visual cues used for navigation or semantic labels asso-
ciated with object detection. The robots explore the environment
according to a random walk modeled by a discrete-time discrete-
state (DTDS) Markov chain and estimate the feature distribution
from their own measurements and the estimates communicated
by neighboring robots, using a distributed Chernoff fusion
protocol. We prove that under this decentralized fusion protocol,
each robot’s feature distribution converges to the ground truth
distribution in an almost sure sense. We verify this result in
numerical simulations that show that the Hellinger distance
between the estimated and ground truth feature distributions
converges to zero over time for each robot. We also validate
our strategy through Software-In-The-Loop (SITL) simulations
of quadrotors that search a bounded square grid for a set of
visual features distributed on a discretized circle.

Index Terms—Multi-Robot Systems; Mapping; Probability and
Statistical Methods

I. INTRODUCTION

ULTI-ROBOT systems (MRS) composed of multiple
mobile robots have been used for various collective
exploration and perception tasks, such as mapping unknown
environments [1], disaster response [2], and surveillance and
monitoring [3], herding a group of robots [4]. The performance
of MRS in such applications is constrained by the capabilities
of the payloads that the robots can carry on-board, including
the power source, sensor suite, computational resources, and
communication devices for transmitting information to other
robots and/or a central node. These constraints are particularly
restrictive in the case of small aerial robots such as multi-rotors
that perform vision-guided tasks [5].
Centralized MRS strategies for exploration and mapping,
such as the next-best-view planning method in [6], rely on con-
stant communication between all the robots and a central node.
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Fig. 1: Software-In-The-Loop (SITL) setup in Gazebo using the
Rotors [8] package. Robots 1 and 2 are quadrotors, and the ArUco
markers represent a discrete approximation of a continuous circular
feature (the red dotted line).

Scaling up such strategies with the number of robots requires
expanding the communication infrastructure and preventing
communication failures of the central node. Frontier-based
MRS exploration strategies such as [7] rely on a dynamic
communication topology in which leaders are responsible for
coordinating the team.

Decentralized MRS exploration and mapping strategies that
employ only local communication alleviate these drawbacks
and are designed to work robustly under inter-robot communi-
cation bandwidth constraints [9] and disruptions to communi-
cation links by environmental effects [10]. Many decentralized
MRS estimation strategies are designed to achieve consensus
among the robots on a particular variable or property of
interest through local inter-robot communication. For example,
distributed consensus-based approaches have been designed
for spacecraft attitude estimation [11] and space debris track-
ing [12]. Consensus behaviors also arise in social networks
[13] when users reach an agreement on a shared opinion in a
distributed fashion. Consensus strategies have been developed
for MRS communication networks that are static or dynamic,
and that can be represented as directed or undirected graphs
[14], as well as random networks [15] and networks with
communication delays [16]. However, few works address con-
sensus problems for MRS that follow random mobility models,
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often used in MRS exploration strategies as in, e.g., [17],
whose communication networks exhibit Markovian switching
dynamics as a result. Random exploration strategies have
certain advantages for MRS: they do not require centralized
motion planning, localization, or communication, and they
can be modified to produce more focused or more dispersed
coverage.

In our previous work [18], we developed a probabilistic
consensus-based strategy for target search by MRS with a
discrete-time discrete-state (DTDS) Markov motion model
and local sensing and communication. Using this strategy,
the robots are guaranteed to achieve consensus almost surely
on the presence of a static feature of interest, without any
requirements on the connectivity of the robots’ communication
network. We extended this approach in [19] to an MRS
strategy for tracking multiple static features by formulating
the tracking procedure as a renewal-reward process on the
underlying Markov chain. The robots reach a consensus on
the number of features and their locations in a decentralized
manner using a Gaussian Mixture approximation of the Prob-
ability Hypothesis Density (PHD) filter.

In this paper, we generalize the consensus objective of our
probabilistic multi-robot search strategy to agreement on a dis-
crete distribution of static features, modeled as an occupancy
grid map, using results on opinion pools [20]. We consider
a group of robots that move according to a DTDS Markov
chain on a finite 2D spatial grid, as shown in Figure 2, and that
can detect features using their on-board sensors. The proposed
strategy is distributed and asynchronous, and it preserves
the required communication bandwidth by relying only on
local inter-robot communication. The main contributions of
the paper are as follows:

1) We present a decentralized, stochastic multi-robot explo-
ration and mapping strategy in which the robots use a
consensus protocol, without communication connectivity
requirements, to arrive at a common reconstruction of a
feature distribution on a 2D grid. Specifically, given a
group of robots with a DTDS Markov motion model and
local sensing and communication, we prove that if the
robots update their estimates of the feature distribution
with those of other robots according to a distributed
Chernoff fusion protocol, then they will reach consensus
almost surely on the ground truth distribution. This
extends the result in [21] on opinion consensus over
fixed, strongly connected networks to networks with
Markovian switching dynamics.

2) We validate our theoretical results in numerical simula-
tions that illustrate the pathwise convergence to zero of
the Hellinger distance between each robot’s estimate of
the feature distribution and the ground truth distribution.
We also validate our approach in Software-In-The-Loop
(SITL) simulations of quadrotors, performed in Gazebo
using the Robot Operating System (ROS) with the PX4
autopilot.

The remainder of the paper is organized as follows. We
present our probabilistic exploration strategy and information
fusion protocol in Section II. We describe some relevant

properties of DTDS Markov chains in Section III, and we
derive the main result that guarantees the convergence of each
robot’s feature distribution to the ground truth distribution in
Section IV. We present the results of our numerical simula-
tions in Section V and our SITL simulations in Section VI.
Section VII concludes the paper and suggests directions for
future work. A video overview of the paper is provided at
https://youtu.be/-Z4-DZrHwSM.

II. EXPLORATION AND INFORMATION FUSION STRATEGY

Consider a bounded square environment B C R? with sides
of length B. We discretize B into a square grid of nodes spaced
at a distance J apart. The set of nodes is denoted by S C Z,,
and we define S = |S]. A set of N robots, A ={1,2,...,N},
each modeled as a point mass, explore the environment by
performing a random walk on the grid. We assume that there
are no obstacles in the environment that impede the robots’
motion. Let G; = (Vs, &) be an undirected graph associated
with this finite spatial grid, where V; = S is the set of nodes
and &, is the set of edges (7,j). The edges signify pairs of
nodes 2,5 € V,, called neighboring nodes, between which
robots can travel. We assume that the robots can localize on
Gs.

Let Y} € S be a random variable that defines the node that
robot a € A occupies at discrete time k. Robot a moves from
its current node ¢ to a neighboring node j at the next time step
with a transition probability p;; € [0, 1]. We define P € RS>
as the state transition matrix consisting of elements p;; at
row i and column j. Let m, € RS denote the probability
mass function (PMF) of Y} for each robot a, or alternatively,
the distribution of the robot population over the grid at time
k. This distribution evolves over time according to a DTDS
Markov chain model of order one:

Tk+1 = 7TkP. (1)

We assume that each robot can exchange information with
other robots that are within a communication radius 7comm <
0.56. Let G [k] = (V., E.[k]) be an undirected graph in which
V. = A, the set of robots, and E.[k] is the set of all pairs of
robots (a,b) € A x A that can communicate with each other
at time k. Let M[k] € RN*N be the adjacency matrix with
elements mgqp[k] = 1 if (a,b) € E.[k] and mgp[k] = O other-
wise. For each robot a € A, we define the set of neighbors of
robot a at time k as N2 £ {b € A: (a,b) € E.[k]}.

A set of discrete features is distributed over the grid at
nodes in the set 57 C S. The robots know a priori that these
features are present in the environment, but do not know their
distribution. We assume that when a robot is located at a node
in B", it can detect the presence of a feature at that node
using its on-board sensors. Each node in the grid is associated
with a binary occupancy value, defined as [ € (0.5,1) if the
robot detects a feature at that node and 1 — [ if it does not.
Setting [ € (0.5, 1) helps produce sharp reconstructions of the
features: as the value of [ increases, the distinction between
occupied and unoccupied nodes becomes clearer.
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- We define the occupancy vector for robot a at time k as
0% = [0¢(1) ... 03(9)] € R, where

l
Or(s) =< -
k(s) {l—l,

The occupancy vector for each robot indicates its estimate of
the nodes that are occupied by features. The feature PMF, or
occupancy distribution, estimated by robot a at time k from
its own sensor measurements is defined as:

0 (s)
I (s) = kia
>ics Ui (0)
Here, f(s) also represents the opinion [22] of robot ¢ at time
k for the occupancy distribution. We denote 67¢/ € R1*S as

the reference occupancy vector that is being estimated by all
the robots, defined as follows:

e?"ef(s)={l’ el @)

1—-1, ow

s € B" (occupied) )

o.w (unoccupied)

3)

Since the robots do not know the occupancy distribution a
priori, we specify that they all initially consider the grid to be
unoccupied, i.e.,

1-1

fo(s) = m7

This is defined as the nominal distribution for all the robots,
denoted by f"°™(s) = fé')(s). We also denote a vector
gnom ¢ RS as the nominal occupancy vector for all robots,
which represents all nodes as unoccupied (i.e., 67" (s) =
9(()')(3) =1-1, Vs € S). We define f7*/(s) as the reference
PMF, the ground truth feature distribution, corresponding to
67¢f(s). We define a fusion weight w,(ca’b) as the following
Metropolis weight [23]:

ac A, VseS8S @)

ﬁwa be Ni\{a}
wlia,b) =<1= ZbeNﬁ’\{a} wl(ca’b)’ a=b acA (0)
0, 0.w
(a b) _

Note that w (a >0 and Dpens W = 1. We then define

the consensus or opinion welghlmg matrix €, € RVXN at
time k, which consists of elements w,(c “*) at row @ and column
b.

Given the robot exploration dynamics in Equation (1), each
robot a updates its opinion f(s), computed from Equa-
tion (3), to the following PMF f,gfbre{( ) at the next time step,
which it computes from the opinions of other robots within
its communication range according to the Chernoff fusion rule
[24]:

w®®
HbeN“U{a}[ (S)]
CDN

Zses HbEN“U{a}[fIS( 8)] <k

Applying Theorem 1 from [21], we can say that f,jfﬁ"’(s) is
the local neighbor fused feature PMF at time k + 1 of the all
robots a € A that are in /. When only two robots a,b € A
are within communication range, this update rule becomes:

fcher( ) _ [fl?(s)]w[flg(s)]l_
rH sl 12 (s)]

FAS (s) =

acA (1)

®)

Algorithm 1: Distributed Chernoff fusion protocol for
robots a,b € A computed by robot a at time k
input : f2, f,i’, Yy, ka, k, T, €
output: f'
if 1 <k <T then
if Y, = ka then
I w=0.5
else
I w=1.0
end
=Yl - ()
10g fener = wlog (fi) + (1 —w)log (f})

cher __

fl?+1 = fk+1 - exp(logfcher)

—log (c)

end

where the Metropolis weight w = w(a’b) is defined in Equa-

tion (6). Then each robot a compares f£"5"(s) with f7°™ (s)
to generate a new fused occupancy vector as follows:
Z fcher s) > fnom 8)7 seS
o ()=t T ( ©)
1—-1 ow
Then, each robot a generates a new occupancy vector 07, (s)
by comparing both its occupancy vector at the previous time

step, 0¢(s), and the fused occupancy vector 65" (s), to
oo (s):

! 07 (s) > 6m°™(s) or
023_617( ) enovn(s)’ seS
o.w

Ois1(s) = (10)

05:(s)

To quantify the convergence of each robot’s feature dis-
tribution to the reference distribution, we use the Hellinger
metric, which measures the similarity between two PMFs. The

Hellinger distance between the feature PMF f(s) of a robot
a € A at time k and the reference PMF f7¢/(s) is given by

Dy (2(), 7 (5)) = \/1 = (g (s). fe0 (), (1)
where p(f&(s), f*¢/(s)) is the Bhattacharya coefficient, de-

fined as:
DR HORIC

p(fi(s)
seS

), £ (s) (12)

This distance takes values in [0,1]. We define the vec-
tor Dy € RY OXl with each entry a € A given by
Dy (f2(s), 7 (s)). The pseudo code in Algorithm 1 im-
plements this fusion strategy for two robots a and b. In this
algorithm, the normalizing constant ¢ is the denominator of
Equation (8).

Figure 2 illustrates the proposed strategy for a scenario
with two quadrotors. The quadrotors start at the spatial grid
nodes indexed by ¢ and j and move on the grid according to
the DTDS Markov chain dynamics in (1). The figure shows
sample paths of the quadrotors. The orange quadrotor detects
the feature, indicated by a magenta square, when it moves to
a node in the set B" (at these nodes, the feature is within the
quadrotor’s sensing range). The quadrotors meet at grid node
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Fig. 2: Illustration of our multi-robot exploration strategy, showing
sample paths for two quadrotors (orange and blue) on a square grid.
The quadrotors search the environment for a set of static features (the
magenta squares representing a discretized circle) as they perform a
random walk on the grid.

m after £ = 9 time steps and fuse occupancy distributions
according to Equation (8). They continue to random-walk on
the grid and update f(s) until a specified final time T. We
chose T' empirically based on feature PMF convergence times
from numerical simulation studies, shown in Figure 8, and on
flight time constraints of off-the-shelf quadrotors.

III. PROPERTIES OF DTDS MARKOV CHAINS

The Markov chain in Equation (1) is characterized in
terms of the time-invariant state transition matrix P, which
is defined by the state space of the spatial grid representing
the discretized environment. Hence, the Markov chain is
time-homogeneous, which implies that Pr(Y, , = j | V! =
1) is the same for all robots at all times k. The entries of P,
which are the state transition probabilities, can therefore be
defined as

pij=Pr(Yg, =7 |Y=1),Vi,jeS, k€l Yaec A

(13)
Since each robot chooses its next node from a uniform
distribution, these entries can be computed as

o {dilﬂ, (i,]) € &,
ng -
0, o.w,

where d; is the degree of the node i € S, defined as d; = 2
if ¢ is a corner node of the spatial grid, d; = 3 if it is on
an edge between two corner nodes, and d; = 4 otherwise.
Since each entry p;; > 0, we use the notation P > 0. We see
that P™ > 0 for m > 1, and therefore P is a non-negative
matrix. From Theorem 5 in [25], we can conclude that P is a
stochastic matrix. If 7 is a stationary distribution of Markov
chain (1), then Vk € Z,

7Pk = 1.

(14)

(15)

From the construction of the Markov chain, each robot has
a positive probability of moving from any node ¢ € S to
any other node j € S of the spatial grid in a finite number

pu pu

Dij gb Djl g\‘

Fig. 3: A graph G, = (Vs7 Es) defined on the set of spatial nodes
Vs = {i,7,1}. The arrows slgmfy undirected edges between pairs
of distinct nodes and self-edges. The edge set of the graph is & =

{G@,4), (,9), (D), (6, 5), (G, D}

i j [
%.; 4.
(7’71) AE— (Z’]) — (/Lal) T

q;; 45 4ai;

Fig. 4: A subset of the composite graph G = (V, £) for 2 robots that
move on the graph G, shown in Figure 3.

of time steps. As a result, the Markov chain is irreducible,
and therefore P is an irreducible matrix. By Lemma 8.4.4
(Perron-Frobenius) in [26], there exists a real unique positive
left eigenvector of P and since P is a stochastic matrix, its
spectral radius p(P) is 1. Therefore, this left eigenvector is
the stationary distribution of the corresponding Markov chain.
Since we have shown that the Markov chain is irreducible
and has a stationary distribution 7, which satisfies 7P = ,
we can conclude from Theorem 21.12 in [27] that the Markov
chain is positive recurrent. Thus, all states in the Markov chain
are positive recurrent, which implies that each robot will keep
visiting every state on the finite spatial grid infinitely often.

IV. CONSENSUS ON THE FEATURE DISTRIBUTION

By Theorem 1 of [21], Equation (8) achieves opinion
consensus over a graph with a fixed and strongly connected
topology. We extend this result to graphs with topologies that
evolve according to the switching dynamics on the composite
Markov chain described in this section. We demonstrate that
under our opinion fusion scheme, all the robots will reach a
consensus on the feature distribution.

The dynamics of all robots’ movements on the spatial grid
can be modeled by a composite Markov chain with states
Yr = (VLY2 ... YY) € M, where M = SA. Note that
S = |S| and M| = S¥. We define an undirected graph
G = (V,€) that is associated with the composite Markov
chain. The vertex set V is the set of all possible realizations
i € M of Y}. The notation i(a) represents the a'” entry of i,
which is the node ¢ € S occupied by robot a. We define the
edge set £ as follows: (i, 7) € & if and only if (i(a), j(a)) € &
for all robots a € N. Let Q € RMIXIMI pe the state
transition matrix associated with the composite Markov chain.
The elements of Q, denoted by ¢;;, are computed from the
transition probabilities defined in Equation (14) as follows:

qi5 = sz(a (a)»

Here, ¢;; is the probability that in the next time step, each
robot a will move from node i(a) to node j(a).

Vi,j € M. (16)
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For example, consider a set of two robots, A = {1, 2}, that
move on the graph G in Figure 3. In the next time step,
the robots can stay at their current node or travel between
nodes ¢ and j and between nodes j and [, but they cannot
travel between nodes ¢ and [. Figure 4 shows a subset of
the resulting composite graph G.whose entire set of nodes
is V= {(i,9), (}a])» (4,0), (4,9), (4, 5), (3, 1), (1, 9), (L, 3), (1, D) }-
Each node in V is labeled by an index i, e.g., 7 = (4, ), with
(1) =i and i(2) = j. Given the connectivity of the spatial grid
defined by &, we can for example identify ((,5), (¢,1)) as an
edge in &, but not ((4,5), ({,1)). Since N = 2 and S = 3, we
have that |M| = 32 = 9. For each i,j € V, we can compute
the transition probabilities in Q € R*Y from Equation (16)
as follows:

Gi; = Pr(Yee1 =11 Yr =1 = pi)j)Pi2)i(2)

keZ,. (17)

We now prove that all robots will reach consensus on
the feature distribution and it will converge to the reference
distribution.

Theorem IV-A. Consider a group of N robots, moving
on a finite spatial grid with DTDS Markov chain dynamics
Equation (1), that update their opinions f(s) for the feature
distribution on the grid according to Equations (3), (7), (9)
and (10). Then for each robot a € A, fi(s) will converge to
fref(s) as k — oo almost surely.

Proof. Suppose at initial time kg, the locations of the robots
on the spatial grid are given by the node 7 € V. Consider
another set of robot locations at a future time kg + k, given by
the node j € V. The transition of the robots from configuration
7 to configuration j in k time steps corresponds to a random
walk of length k£ on the composite Markov chain Y from
node 7 to node j. It also corresponds to a random walk by each
robot a on the spatial grid from node #(a) to node j(a) in k
time steps. By construction, the graph G is strongly connected
and each of its nodes has a self-edge. Thus, there exists a
discrete time n > 0 such that, for each robot a, there exists a
random walk on the spatial grid from node i(a) to node j(a)
in n time steps. Consequently, there always exists a random
walk of length n on the composite Markov chain Y} from
node 7 to node j, and therefore Y is an irreducible Markov
chain. All states of an irreducible Markov chain belong to
a single communication class. In this case, all states are
positive recurrent; as a result, each state of Y is visited
infinitely often by the group of robots. Moreover, because the
composite Markov chain is irreducible, we can conclude that
Ukez, Ge[k] = Go, where Gy is the complete graph on the
set of robots. Therefore G is strongly connected. Hence, each
robot will meet every other robot at some node s € S infinitely
often. Since Y, is irreducible and, from Equation (10), we
have that 67 (s) < ¢, ,(s) < 0/ (s), Va € A, Vs € S, it
follows from Equations (9) and (10) that 6¢(s) — 67/ (s) as
k — oo. Consequently, f&(s) — f"¢/(s) as k — oo almost
surely. O

V. NUMERICAL SIMULATION RESULTS

In the numerical simulations, we consider a set of robots
A = {1,2,3,4} moving on a 5.6 m X 5.6 m domain that
is discretized into a square grid with ¢ = 8 nodes on each
side, with a distance 6 = 0.7 m between adjacent nodes.
The robots switch from one node to another at each time step
according to the Markov chain dynamics in Equation (1). The
state transition probabilities p;;, i,j € S = {1,2,...,c%},
that are associated with the spatial graph G, are computed
from Equation (14). We set the value of I =0.8in Equa-
tion (2) in both the numerical and Software-In-The-Loop
simulations. We distribute the features on the set of nodes
B = {19, 20,21, 26, 30, 34, 38,42, 46,51, 52, 53}, which rep-
resents a discrete approximation of a circular distribution on
the grid. The set of neighbors N of robot a at time & consists
of all robots that are located at the same node as robot a at
that time.

All robots are initialized at uniformly random nodes in
S. Prior to exploration, the robots assume that all the grid
nodes are unoccupied by features, and hence the vector of
Hellinger distances is initially Dz = 0 € RY*!, During their
exploration of the grid, when robots encounter each other at
the same node, they exchange their current feature PMFs and
fuse them according to Equation (7). Figure 5 and Figure 6
show the feature PMFs computed by each robot at £ = 240
s and £ = 500 s, respectively. We observe in Figure 5 that
by k = 240 s, all robots have partially reconstructed the
feature PMF, with robot 4 having the closest reconstruction
as measured by Dy (f2,0(s), £/ (s)) ~ 0.07 in Figure 7. In
Figure 6, we see that all robots have successfully reconstructed
the feature PMF by k& = 500 s. The robots’ consensus on
the reference PMF is also apparent from Figure 7, which
shows that all Hellinger distances are zero at that time. Several
distances Dy (f2(s), "¢/ (s)) increase at times k between 400
s and 500 s, due to the numerical inaccuracies in the fusion.

We also ran Monte Carlo numerical simulations with differ-
ent numbers of robots, N = {4,8,12,16}, to investigate the
effect of N and the effect of consensus on the performance
of the strategy in terms of the time for all robots’ feature
PMFs to converge to the reference PMF. Figure 8 plots the
resulting time, averaged over 100 simulations (error bars show
standard deviations), until the feature PMFs of all N robots
converge to the reference PMF in the consensus and no-
consensus cases. The figure shows that for N = 4 robots,
the mean time until convergence for both the consensus and
no-consensus strategies are similar, with a significant overlap
in their standard deviations. This indicates that for small
numbers of robots, both strategies perform similarly. However,
as N increases, there is a widening gap between the mean
times until convergence of the consensus and no-consensus
strategies, with the times for the strategy with consensus being
consistently lower. For N = 16 robots, the strategy with
consensus is faster than the one without consensus by a factor
of ~2 (830 s/438 s).

VI. SOFTWARE-IN-THE-LOOP RESULTS

We also validate our approach in Software-In-The-Loop
(SITL) simulations using Gazebo and ROS Melodic. We sim-
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Fig. 5: Feature PMF fZ(s) of 4 robots at time k = 240 s in the
numerical simulation.
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Fig. 6: Feature PMF [ (s) of 4 robots at time k = 500 s in the
numerical simulation.

ulate the same scenario as in the numerical simulations, with
the set of robots A consisting of two quadrotors, Robot I and
Robot 2. Figure 1 illustrates the simulation setup. Video clips
of the SITL simulations are included in the overview video
https://youtu.be/-Z4-DZrHwSM. The quadrotors are simulated
using the Rotors [8] package in Gazebo, and the PX4 flight
control stack is implemented in SITL to execute all low-
level control tasks for each quadrotor. The discrete feature
distribution that the quadrotors must reconstruct is represented
by the ArUco markers on the ground plane, located at positions
along the red dotted circle. The quadrotors fly at different
altitudes (1 m and 2 m) to avoid collisions. This eliminates
the need for obstacle detection and avoidance strategies, which
are beyond the scope of this work. To detect the ArUco
markers, each quadrotor is equipped with a simulated VGA
resolution RGB camera that takes images at 30 fps and
is oriented to face the ground plane. The image window
size is heuristically adjusted to account for the difference in
perspective resulting from the robots’ difference in altitude.
The quadrotors are assigned static IP addresses and exchange

o L (s), £ (s))
0.2—“% 7D§I(fl§(s)7 fref(s)) E
§0.15— | ‘ 7DH k\S)s (s i
= M djﬂ
\Z)/ ‘ | || \‘ il
;ém MLTJ\ L

0.05 - ‘ q

IR I . |
50 100 150 200 250 300 350 400 450 500

Simulated Time (s)

Fig. 7: Time evolution of Dy (f{(s), f*!(s)) for each robot a €
{1,2,3,4} in the numerical simulation.

1000
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@ ~ ©
I=1 =} =}
S S S
T T T
\

Simulated Time (s)

400 -

300 I I I I I I I
2 4 6 10 12 14 16 18

8
Number of robots

Fig. 8: Time until convergence of robots’ feature PMFs to the
reference PMF in numerical simulations of the feature reconstruction
strategy with and without consensus, for N = {4,8,12,16} robots.

their feature distributions over wireless communication when
they meet at the x,y position of the same node (at different
altitudes). We chose T = 550 s as the final time of the
simulations.

A. System architecture

A diagram of our system architecture is shown in Figure 9.
We use a hierarchical control scheme composed of low-level
and high-level control blocks. The following is a description
of each block in Figure 9. The low-level controllers (Low
Level Unit) use the ROS package MAVROS to generate the
control commands for the simulated quadrotors from the high-
level controller (High Level Unit). Gazebo provides global
localization for the simulated quadrotors. It outputs the 3D
position of each robot a, [pg, py,p?], and its orientation.The
3D quadrotor positions from Gazebo are used to determine
the quadrotors’ current nodes on the grid and the nodes they
should move to in the next time step, according to the DTDS
Markov chain in Equation (1). The new node locations are


https://youtu.be/-Z4-DZrHwSM
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Fig. 9: SITL simulation system architecture block diagram.

mapped to the commanded quadrotor velocities at time k4 1,
VEEL which are converted by MAVROS into velocity set
points VS’;,“ and sent to the Low Level Unit. This block
performs the corrections to the quadrotors’ poses, which are
rendered in Gazebo. An RGB image from the quadrotor’s
bottom-facing camera is used to detect an ArUco marker at
the quadrotor’s current node, and the feature PMF f{(s) is
computed according to Equation (3). When two quadrotors are
located at the same node, they exchange their feature PMFs
using ZeroMQ [28]. Chernoff Fusion block executes the fusion
protocol in Algorithm 1. It computes the quadrotor’s feature
PMF from its own measurements and from the feature PMFs
transmitted by other quadrotors at its current node through the
ADHOC block.

B. Simulation results

Figure 10-Figure 13 plot the feature PMFs computed by
both quadrotors during two SITL simulation runs. Figure 10
and Figure 11 show the feature PMFs at k& = 240 s (4 min)
and k = 330 s (5.5 min), respectively, of the first simulation
run. The figures indicate that Robot I reconstructs most of
the feature distribution within 4 min, and both robots fully
reconstruct the distribution within 5.5 min.

Figure 12 and Figure 13 plot the feature PMFs at k = 240
$ (4 min) and k£ = 530 s (~ 8.8 min), respectively, of the
second simulation run. Figure 12 shows that in this simulation
run, the two robots do not meet and exchange feature PMFs
within the first 4 min, since their feature PMFs are completely
distinct at that time. By ~ 8.8 min, Figure 13 shows that both
robots have fully reconstructed the feature distribution, which
matches the reconstructed distribution in Figure 11. Thus,
Figure 10 through Figure 13 demonstrate that our approach
ultimately results in accurate feature reconstruction, but that
the convergence time to full reconstruction can differ between
runs due to the randomness in the robot paths over the grid.

C. Considerations for real-world implementation

The performance of our approach in real-world environ-
ments will be affected by aerodynamic interactions between
quadrotors, uncertainty in positioning, and feature occlusion
by a quadrotor that enters another’s field of view. In the SITL
simulations, it is difficult to accurately simulate the aerody-
namic disturbance on a quadrotor caused by the downwash
of a quadrotor above it. These disturbances can be rejected
by incorporating a robust disturbance observer [29], [30] into
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Fig. 10: Feature PMF f{(s) of 2 robots at time k = 240 s in the
first run of the SITL simulation.
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Fig. 11: Feature PMF f£(s) of 2 robots at time k£ = 330 s in the
first run of the SITL simulation.

the quadrotor’s low-level flight control strategy. Alternatively,
the quadrotors could fly at the same altitude and employ con-
trollers for inter-robot collision avoidance, e.g. using control
barrier functions [31]. Quadrotors may miss feature detections
due to misalignment of their camera image window with the
ground or to occlusion of the feature by another quadrotor
flying below it. Such misalignments and occlusions sometimes
occurred in our SITL simulations; however, the accuracy of the
feature reconstruction despite these occurrences demonstrates
the robustness of our approach to the resulting missed feature
detections.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a decentralized multi-robot strat-
egy for reconstructing a discrete feature distribution on a
finite spatial grid. Robots update their estimate of the feature
distribution using their own measurements during random-
walk exploration and estimates from nearby robots, combined
using a distributed Chernoff fusion protocol. Our strategy
extends established results on consensus of opinion pools for
fixed, strongly connected networks to networks with Marko-
vian switching dynamics. We provide theoretical guarantees
on convergence to the ground truth feature distribution in
an almost sure sense, and we validate the strategy in both
numerical simulations and SITL simulations with quadrotors.

We note that our strategy is agnostic to the source of
the information used to reconstruct the feature distribution;
it values the information gained from exploration and other
robots equally. This can result in suboptimal convergence
rates to consensus on the ground truth distribution, potentially
exceeding the operational flight times of small aerial robots
with limited battery life. To increase the convergence rate
to consensus, we propose to modify the robots’ exploration
strategy from unbiased random walks to random walks that
are biased in directions that increase information gain from
individual robots’ on-board sensor measurements and also
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Fig. 12: Feature PMF f;(s) of 2 robots at time k& = 240 s in the
second run of the SITL simulation.
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Fig. 13: Feature PMF f;(s) of 2 robots at time & = 530 s in the
second run of the SITL simulation.

ensure frequent encounters between robots. Another possible
way to decrease the time to consensus is by relaxing the
constraint 7comm, < 0.5, allowing robots to communicate
with robots at other nodes. This would require an analysis of
whether consensus is still ensured by reformulating the com-
posite Markov chain and determining whether it is irreducible
and positive recurrent. In addition, while Pélya’s recurrence
theorem [32] guarantees that our results on irreducibility and
positive recurrence do not extend to random walks on infinite
3D lattices, it would be interesting to investigate whether they
are valid for finite 3D grids. Finally, it would be useful to
derive an analytical formulation of the expected time until
consensus, if possible, which would provide a more rigorous
basis for selecting the final time 7.
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