3920

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 8, AUGUST 2022

© IEEE_
L css

Decentralized Control of Multiagent Systems Using Local Density
Feedback

Shiba Biswal ¥, Karthik Elamvazhuthi

Abstract—In this article, we stabilize a discrete-time Markov pro-
cess evolving on a compact subset of R to an arbitrary target dis-
tribution that has an L°°(-) density and does not necessarily have
a connected support on the state space. We address this problem
by stabilizing the corresponding Kolmogorov forward equation,
the mean-field model of the system, using a density-dependent
transition Kernel as the control parameter. Our main application
of interest is controlling the distribution of a multiagent system in
which each agent evolves according to this discrete-time Markov
process. To prevent agent state transitions at the equilibrium dis-
tribution, which would potentially waste energy, we show that the
Markov process can be constructed in such a way that the operator
that pushes forward measures is the identity at the target distribu-
tion. In order to achieve this, the transition kernel is defined as a
function of the current agent distribution, resulting in a nonlinear
Markov process. Moreover, we design the transition kernel to be
decentralized in the sense that it depends only on the local den-
sity measured by each agent. We prove the existence of such a
decentralized control law that globally stabilizes the target distri-
bution. Furthermore, to implement our control approach on a finite
N-agent system, we smoothen the mean-field dynamics via the
process of mollification. We validate our control law with numerical
simulations of multiagent systems with different population sizes.
We observe that as IV increases, the agent distribution in the
N-agent simulations converges to the solution of the mean-field
model, and the number of agent state transitions at equilibrium
decreases to zero.

Index Terms—Decentralized control, discrete-time Markov pro-
cesses, multi-agent systems, probability density function.

|. INTRODUCTION

N THIS article, we address the problem of stabilizing a multiagent
I system evolving on a compact, connected subset of R¢ to a target
distribution. This problem can arise, for example, in the allocation
of nodes in an electric power grid [4] or a wireless network [38],
or the redistribution of an ensemble of agents such as a swarm of
robots (e.g., [1], [19]). Our main application is a variety of multiagent
applications that require task reallocation or spatial redistribution,
such as environmental monitoring, surveillance, disaster response, and
autonomous construction. We consider groups of agents that all follow
the same dynamics and control policies, which are independent of
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the agents’ identities. We assume that each agent can obtain local
measurements of the agent population but do not require interagent
communication.

Instead of specifying the spatiotemporal evolution of each individual
agent, a microscopic approach to agent control, we will design agent
control laws using a fluid approximation of the multiagent system,
called the macroscopic or mean-field model [20]. This approximation
is justified by modeling each agent’s dynamics as a Markov process,
and then the mean-field behavior of the population is determined by the
Kolmogorov forward equation corresponding to the Markov process.
Mean-field models have a long history; their origin is in statistical
physics, in particular for modeling dense gases [37], and they have been
applied in epidemiology [3], game theory [5], and in the modeling of
computer networks [10], electric power system loads [33], and energy
demand networks [14].

We will address the problem of stabilizing the mean-field model
using the transition kernel as the control parameter. In contrast to
commonly used graph-theoretic approaches for controlling multiagent
systems [12], [36], control approaches based on mean-field models
scale well to very large numbers of agents. Moreover, a range of tools are
available to analyze and control mean-field dynamical models, which
have the advantage of linearity in the absence of agent interactions.

In this article, we design stochastic agent control laws using the
mean-field model of the agent population dynamics. Essentially, we
construct an ergodic Markov process such that its stationary distribution
is a target L>(-) function. Moreover, we require the agents to stop
transitioning at this target distribution. This condition requires that
the operator acting on densities be the identity operator at the target
distribution. We consider multiagent systems in which the agents have
specified nonlinear discrete-time dynamics. This article builds on our
work in [6], wherein we constructed a Markov process that can be
stabilized to probability distributions that have continuous densities.
Moreover, in contrast to this article, explicit agent dynamics were not
specified in [6].

We detail our contribution in the following three points.

1) We design the transition Kernel to stabilize the mean-field model
to target measures that have L>(-) densities, a larger class of
measures than we previously considered in [6]-[8]. In [7] and
[8], we considered measures that have L*°(-) densities that are
strictly positive almost everywhere (a.e.) on the domain. These
works generalize the Perron—Frobenius theorem [29], which does
not guarantee stabilization to distributions on discrete-state spaces
that are not strongly connected (see [1] for discrete-time Markov
chains and [22] for continuous-time Markov chains), to Markov
processes on continuous state spaces. However, in this article, we
are able to stabilize the mean-field model to distributions that are
not supported everywhere on the domain by using a control law
that is density-dependent.

A similar measure control problem is addressed in [13], in which
the authors consider an optimal control problem that drives a linear
system evolving on R<, for a fixed initial condition on the measure,
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to target Gaussian measures. One of the earlier works on the topic
of distribution control is [30], in which reducing the difference
between distributions is posed as a minimization problem.

2) The convergence of a Markov process to an equilibrium distribution
does not necessarily imply that the agents evolving according to
the process also converge to equilibrium states. In fact, agents may
continue to transition between states, which can cause them to waste
energy. To prevent agents from continuing to switch between states
at the equilibrium distribution, we construct the Markov process
such that its forward operator, which pushes forward measures, is
the identity operator at the desired equilibrium. This results in a
time-dependent transition kernel that is a function of the distribu-
tion and gives rise to a nonlinear Markov process. Such stochastic
processes, called density-dependent population processes, are used
to model the dynamics of logistic growth, epidemics, and chemical
reaction networks [25]. Preliminary work in this direction for
discrete-time Markov chains evolving on finite graphs has been
done in [34].

3) Since we establish that the transition kernel must depend on the
distribution, our third goal is to construct the Kernel to have a
decentralized structure. A kernel with this structure corresponds to
agent control policies that require each agent to estimate the popu-
lation only in its local neighborhood. Toward this end, we construct
a kernel for the mean-field model that is defined pointwise; that is,
it is a function of the value of the distribution at the current state.
We proved the existence of such feedback control laws in the case
of continuous-time Markov chains evolving on finite graphs in [24]
and [21]. A similar problem is addressed in [35], which develops a
decentralized control approach by a priori restricting the controller
to have a decentralized structure. Another related work [17] designs
acentralized controller and uses estimation algorithms to determine
the entire agent distribution in a decentralized manner.

Our approach of analyzing the stability of a dynamical system from a
measure-theoretic point of view is quite classical [32]. This approach is
also used extensively in the context of mean-field games [28], optimal
transport theory [39], and mean-field control [27]. In [7], we present
a review of significant works that have influenced research on the
stabilization of Markov processes.

II. NOTATION

In this section, we present notation that will be used throughout
this article. We define Ry := [0,00) and R, := (0, 00). Similarly, we
define Z  as the set of all nonnegative integers and Z . as the set of
all positive integers. Given a dimension d > 1, the closed ball in R¢ of
radius § centered at = will be denoted by Bs(z). For an arbitrary set
A, the symbol |A| will refer to the cardinality of A.

We denote the state space by  C R¢, a measurable compact set.
The Borel sigma algebra on €2, corresponding to the standard topology
on R4, is denoted by B(€2). The set of admissible control inputs and
its corresponding Borel sigma algebra will be denoted by U and B(U),
respectively. We will assume that U is compact in R?. The dimension
of the set U could be larger than d, but we are restricting it for notational
simplicity.

We denote the space of probability measures on 2 and U by P().
The Lebesgue measure on R¢ will be denoted by m. For a measure v
on R™, v is said to be absolutely continuous with respect to m, denoted
by v < m, if v(E) = 0 whenever m(E) = 0. In this case, there exists
afunction f : R™ — R such that dv = fdm; this function is called the
Radon-Nikodym derivative of v with respect to m [26].

For a measure space (X,v), we define LP(X,v), where
p€[l,o0), as the space {f:X —R:f is measurable

and | f||, < oo}, where |f|l, = ([|f[Pdv)*/P. In addition, we
define L*(X,v) ={f: X — R : f is measurable and || f||,, < oo},
where || f|| = ess sup,.|f(x)|. Where it is understood, the measure
will be dropped from the notation of L? spaces. C'(X) is the space of
continuous functions on X. For a function f: X — R, the support
of f is the closure of the set of points in X where f is nonzero. The
characteristic function over a set A will be denoted as X 4 (-). The Dirac
measure concentrated a point z is denoted as 0., where 0,,(A) = 1 if
x € Aandd,(A) = 0 otherwise.

For measurable spaces X’ and ) with sigma algebras M and N,
respectively, a transition kernel or Markov kernel is a map T : X' X
N — [0, 1], where T (z, -) is a measure on ) for each fixed z € X and
T (-, E) is a Borel measurable function on X’ for each fixed £ € A. The
transition kernel 7 induces an operator 7" : P(X) — P(Y) as follows.
For each probability measure v on X

(Tv)(E) = /XT(:LE) dv(z), E€EN

defines a probability measure on ). We will say that 7 is regular
if there exists a function h € L™(X x Y, m x m) such that for each
x € X, the measure 7T (z, -) is absolutely continuous with respect to m
and 7 (z, du) = h(z,u)du. The density h : X x ) — R will also be
called the kernel function of the transition kernel 7.

For a function F : X x ) — R?, we define F, as the map from
Y — R? when x € X is fixed, and similarly, we define F, as the map
from X — R< when y € Y is fixed.

IIl. PROBLEM FORMULATION

‘We now state the problem addressed in this article. Consider a system
of N agents that evolve in discrete time on the set 2 C R9. We assume
that the agents are identity-free, by which we mean that they evolve
independently of one another and according to the same dynamics.

We suppose that the dynamics of each agent k € {1,...,N} is
governed by a continuous map F' : Q x U — R%. We assume that F is
nonsingular, which means that for all £ € B(Q2), m(F,;'(E)) =0,
and m(F,'(E)) =0 whenever m(E) =0. We also assume that
F(x,0) = x. The dynamics of each agent is then given by the following
nonlinear discrete-time control system:

§5+1:F( fwuﬁ)? n=0,1,2,...
& e (1)

where ¢F € ©, and (uF)2_, is a sequence in U such that F(¢F uk) €
Q for each n € Z . Let £§ be a random variable with distribution
Mo € P(Q)

The empirical distribution of the N-agent system over () at time
n is given by % Zi\;l 655’, Our goal is to design a feedback con-
trol law u® = v(xF) that redistributes the agents from their initial
empirical distribution % Zszl 655 to a desired empirical distribu-
tion % Efil d¢r.a that “closely approximates™ a target density fie
L>(Q) as n — oo, where + SN d¢k.a is a sample of the measure
induced by the probability density f¢. Since we assume that the agents
are identity-free, we will define the control law as a function of the
current empirical distribution Zi\;l Ok rather than the individual

agent states £¥. However, % Zszl ¢k is mot a state variable of

system (1). In order to treat % Z]kv:1 5551 as the state, we consider
the mean-field limit of this quantity as N — oo.

Suppose that every agent k € {1,..., N} uses the same control law
u, = v(z¥) at each time n; that is, the control law is independent of
the agent identity k. In this case, by the law of large numbers, when N

Authorized licensed use limited to: ASU Library. Downloaded on July 28,2022 at 22:46:09 UTC from IEEE Xplore. Restrictions apply.



3922

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 8, AUGUST 2022

— 00, the empirical distribution % Zszl 6543 converges to a determin-
istic quantity p,, € P(€2), which evolves according to the following
forward equation,

Hn+1 = F#(‘vun)ﬂna Ho S P(Q) (2)

where F#(-,u,) : P(Q) — P() is the induced forward operator
corresponding to the deterministic map F'(-,u,). This operator is
defined as

(F# (- un)pn) (B) = pn (F,,) (B)) = /Q Xp(F (2, un))dz

foreach E € B(£2). Since we are interested in the problem of stabilizing
system (2) to a given target measure u¢ with density f<, we must
determine whether there exists a sequence of feedback laws wu,, such that
starting from any initial measure, system (2) converges to 1%, In general,
this problem cannot be solved using deterministic feedback laws, as was
shown in [23]. Therefore, in the following section, we will construct
a stochastic feedback law using a state-to-control transition kernel
K :Qx B(U) — [0,1]. On a continuous state space, the transition
kernel plays the role of the transition probability matrix on a discrete
state space. That is, given that an agent is at state = € €2, it chooses a
subset of control inputs W C U with probability K (x, W). We note
that deterministic control laws v : {2 — U are a special type of stochas-
tic control law in that K (x,du) = 0,(); that is, given the state x,
the probability of choosing the control v(x) is 1.

To achieve our goal of redistributing agents over €2, we will construct
K to be a function of the distribution ; this dependence will be denoted
as K. For € P(Q), the transition kernel &, induces a nonlinear
forward Kolmogorov operator P, : P(2) — P({2), defined as

(Pad(B) = [ [ Xp(Pla,) Ko, du)ua)

for each E € B(2). The mean-field model that governs the time evo-
lution of x,, can then be written as

Hnt1 = P:U‘na Mo € P(Q) (3)

Hence, taking the mean-field limit of the empirical distribution enables
us to treat the N -agent system as a continuum, as described in Section I.

Using K, we can define a closed-loop transition kernel @, : 2 x
B(U) — [0, 1]. That s, if the Markov chain (£F),, induces a probability
measure P on 2°°, then an agent k& evolves on €2 according to the
following conditional probability

P(&k,, € Bl =) = Qu(z, E) )

foreachxz € Qand E € B(Q). For p € P(Q2) and E € B(Q2), P, can
be redefined as

(Pui) (E) = / Qp(, B)du(z). 5)

In this article, instead of arbitrary measures in P(£2), we will consider
those measures that have L' densities (derivatives with respect to m).
By restricting P to this subset of P(£2), for f € L*(£2), we can define a
nonlinear operator ﬁf on L'(Q); the exact construction will be carried
out in the following section. Then, (3) can be rewritten as

fot1 = P, fny fo € LY(Q). (6)

We are now ready to state the problem that we address in this article
rigorously. _

ProblemIIl.1: Let Py, be the forward operator induced by the oper-
ator P defined in (5). Given a target distribution ¢ € P(Q) with den-
sity f¢ € L>(€) and anonsingular continuous map F' : Q x U — R4,

determine whether there exists a transition kernel @, : Q x B(Q) —
[0, 1] such that:
1) equation (6) satisfies lim,, ,., Py, o---0 Pf, o Py, fo = fforall
initial measures fo € L'(Q);
2) Isfd = I, where [ is the identity operator.

The operator ]Sf governs the stochastic transitions of individual
agents between states. Thus, the condition ﬁfd = [ ensures that all
agents stop transitioning between states once the density f¢ of the
target equilibrium distribution is reached. This condition leads to a
nonlinear operator ﬁf that depends on f. We will address Problem III.1
in Section IV, where we show that the construction of ﬁf requires
additional conditions on €2 and F'. _

Having proven the existence of such an operator Py, in Section V,
we will introduce the system of N agents that evolve according to
the N-agent Markov process that is an approximation of the mean-
field model (3). Since P (via Q) can be constructed such that p? is
an equilibrium of system (3), we observe that in simulations of the
corresponding /N-agent system, presented in Section VI, the empirical
distribution % Ei\;l 657@ converges to an empirical distribution that
approximates f< as n — oo.

IV. STABILITY RESULT

In this section, an operator P that solves Problem IIL.1 will be
constructed. As stated in Problem IIL1, f¢ € L>®() is the density
of the target measure. In our previous work [7], we assumed that f¢ is
supported m a.e. on €2; in this article, we relax this assumption. The
cost of this generality comes at the price of working with a nonlinear
operator PP, which is also necessary to ensure that agent transitions
between states stop once the equilibrium distribution is reached.

We begin by stating our assumptions.

1) We assume that €2 is a path connected, compact subset of R4, Path
connectedness of {2 means that any two points z,y € €2 can be
connected by a path in 2, which is a continuous map p : [0,1] — Q
with p(0) =z, p(1) = y.

2) We also require €2 to satisfy the cone condition ([2, Definition 4.6]),
which ensures that the boundary of €2 is regular enough. A domain
D is said to satisfy the cone condition if there exists a cone C such
that each x € () is the vertex of a cone C,, that is contained in )
and congruent to C. Note that C,, need not be obtained from C by
parallel translation, but simply by rigid motion.

3) We require the measures in P(£2) to be absolutely continuous w.r.t
m. This implies that its derivative (density) w.r.t. m must be in
LY(Q).

4) The density f¢ of the target distribution is in L>(£2).

5) As mentioned in Section III, we require F' to be nonsingular.
Additionally, F' must satisfy Lusin’s property (see page 5).

6) Lastly, for system (1) to be controllable, we need the following
local controllability condition.

Definition IV.1: System (1) is said to be one-step locally controllable
if there exists 7 > 0 such that, foreveryz € Q, B,.(z) NQ C F(z,U).

In other words, a system is one-step locally controllable if from any
given state x € 2, the system can reach every other state (in §2) that is
within a radius r. From here on, we will consider r to be fixed as per
this definition.

Let v € P(2) be such that 4 < m, and let f,, be the derivative of
p with respect to m. For an arbitrary f € L'(€2), define a function a
on (2 as
d
as(z) = {’W for m-a.e. x iff(x) — fé(z) >0 o

0 otherwise.
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We note that ay € L>(€2) with norm at most 1.
Define k : Q x U — [0, 1] to be a bounded function that satisfies the
following properties:

(s ) >0 for m-z.i.e. x€QueUst Flz,u) €Q @®)
=0 otherwise
/ k(z,u)du =1 for m-ae.x € Q. )
U

Before we proceed, we must determine whether we can construct
a measurable k € L>*(Q x U, m x m) that satisfies these properties.
We note that due to the first condition (8), the integral in the second
condition (9) is computed over the set U, := F,*(Q). This integral
can, therefore, be expressed as [, k(x, u)Xy, (u)du = 1. Since F, is
continuous, the set U, is measurable for each x. The following lemma
can be used to construct such a measurable k.

Lemma IV.2: ForVx € ), we have the following results.

1) There exists an € > 0 such that m(U,) > e.

2) The map x — m(U,,) is measurable.

3) The characteristic function Xy, (u) is jointly measurable in x
and u.

Proof: Result(1)isprovedin [7, Proposition V.2]. Proving this result
requires the domain €2 to have a “smooth enough” boundary, which is
ensured by the cone condition.

To prove results (2) and (3), let G={(z,u) € @ x U : F(z,u) €
Q}. G is Borel measurable because F' is continuous in both vari-
ables. Since X is a Borel measurable function, the Tonelli theo-
rem [26] implies that (X&), is Borel measurable for each = € . Since
(X@)z(u) = Xp, (u), we have that Xy, (u) is a measurable function
in both variables, proving result (2). Then, by the Tonelli theorem, we
have that = — [;,(Xg)du is Borel measurable. Since (X¢),(u) =
X¢(z,u), we have that [, (X¢).du = m(F,"(Q)) = m(U,). That
is, z — m(U,,) is Borel measurable. [ ]

The existence of a measurable function k then trivially follows from
the fact that one can set & to be the uniform kernel, k(z, u) = 7:(%

Next, we define a transition kernel that depends on the current
distribution p1, K, : @ x B(U) — [0,1]. For W € B(U)

K, (z,W)=K,(z,WnU,) =K, + K, where

K! = ay, (2) /W k(, u)du

K2 = (1—ag, ()5 (W).

o

(10)

Recall that we have assumed that F'(x,0) = x. Since this kernel is a
function of ay,,, it depends on the density f,,. The kernel is defined
such that the corresponding Markov chain stays at control 0 with
probability 1 —ay, () and moves to a control in the set U, with
probability ay, (), and when it moves, the distribution is given by the
density k(z,w). The integral term K ‘IL is regular because its kernel
function k(z, u) is in L>(Q x U).

Remark IV.3: We note that the local controllability assumption, Def-
inition IV.1, implies that there exists a measurable control V (z) € U
such that F'(xz,V(z)) = x (see [7, Proposition V.13]). Therefore, the
condition F'(x,0) = z is not restrictive. However, we impose this
condition here for the sake of simplicity and note that we can extend
our results even when this condition is not satisfied following the steps
in [7].

The proof of the following result follows from Lemma IV.2.

Lemma IV.4: The Kernel K, is well-defined. That is, K, (-, W) is
a measurable function on € for each fixed W € B(U) and K, (x, ) is
a probability measure on U for each fixed x € €.

Using K, we define a closed-loop kernel Q,, : Q2 x B(Q) — [0, 1].
The subscript £ in @, is included to indicate that @, is a function of
i, due to the dependence of K, on p1. For E € B(2)

Q@ E) = / X (Fa, u) K (, du) an

U

:afﬂ(x)/UXE(F(m,u))k(x,u)du

+(1—ay, (m))/ Xg(F(z,u))ddy

U

= Q}t + Qi, where
QL = ay, (2) / X (F (2 ) k()
U

Q= (1 - ay, (2))d:(B).

For the next result, we require F' to satisty Lusin’s property [9] in both
the = and w variables, which in simple terms means that F' maps sets of
measure zero to sets of measure zero. For x € €2 fixed, we say that F, :
(U,m) — (R%, m) satisfies Lusin’s property if m(F,(W)) = 0 for
every W € U with m(W) = 0. Lusin’s property for F), has a similar
definition.

Lemma IV.5: The kernel @Q,, is well-defined; that is, Q,(-, E) is
a measurable function on © for each E € B(f2) and Q,(x,-) is a
probability measure on §2 for each x € ). Furthermore, if I satisfies
Lusin’s property, then Q}L is regular.

Proof: The proof that Q,, is well-defined is similar to the proof that
K is well-defined (Lemma IV.4). To prove that Q}L is regular, we first
require that Q},(,-) < m for every z. Indeed, if E € B(Q) is such
that m(E) = 0, then due to the nonsingularity of F' with respect to both
variables x and u, we have that (m x m)(F~!(E)) = 0. Therefore, for
x € Q,u e U,wehavethat X (F(z,u)) = Xp-1(g)(v,u) = Ointhe
integral that defines Q.. Hence, Q. (z, E) = 0.

The proof that Q}, has a kernel function ¢ € L>(2 x ) is given in
[7, Proposition IV.4]. O

Next, we define a nonlinear operator P, : P(2) — P(£2) in terms
of @ as follows:

12)

(Po) () = / Qu(, B)dp(x) (13)

- /Q /U Xis (F (2, 0)) K, (, du)dpa()

_ /Q /U ag, ()X (F(z,u))k(z, u)du du(z)
+‘/(‘2(17afu($))6z(E)du(:r)

- /sz /U ay, (€)Xp(F (2, u)k(z, u)du dp(z)

+ /E(l —ay, (z))du(x). (14)
Due to the properties of (),, (Lemma IV.5), we immediately have the
following lemma.

Lemma 1V.6: Operator P, preserves P(2), and furthermore, it
preserves absolutely continuous measures.

By restricting P, to those measures that are absolutely continuous
w.r.t m, that is, measures that have L' densities, we can define ISf“ :
LY(Q) — LY(Q). The next few steps will be toward this effort. We
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note that the operator }Sf/_b is a function of f,, through the dependence
of @, on f.

Lemma IV.6 implies that P,y < m; let ISfH fu be the density, that
is, for E € B(£2)

(Pop)(E) = /E (B, £,)(v)dy.

We note that since Qh is regular, there must exist a function g €
L>®(Q x Q). Therefore, from (12), we have that

QL(x, ) = /E a(z,y)dy = /U X (F (o, ) Kz, du).

Using this expression, (14) can be rewritten as follows. For E € B(f2)

(Pop)(E) = /Q /E a5, (2)a(x,y)dy fu(z)de

T /E (1 - ag, (@) fu(z)dz = /E (P, £,)(w)dy.

Applying Fubini’s theorem [26] to the equation mentioned above, we
obtain an expression for an operator P defined on L!(Q) as follows.
For f € L'(Q)

Py = P} + P?, where
(P () = / ay(2)a(z, ) f(z)dx
(B2)(y) = (1 - ap (1)) f)-

The operator 15f preserves L!(2), stated in the proposition as
follows.

Proposition IV.7: For f € L?(Q) C L'(Q) we have that

1) ISf € LY(Q), ie., ﬁf is well-defined. Moreover, ﬁf preserves
probability densities; in other words, it is a Markov operator [32].
2) Infact, Py : L*(Q2) — L?(Q) is well-defined.

The second result mentioned above is a consequence of [15, Proposi-
tion 11.4.7], detailed in [7, Proposition IV.4]. We will require this result
in Section V. _

Note that for each fixed f, Py is a linear operator. The following
result will be used in Section V. In the following result, B(L?(2))
stands for the set of bounded linear operators on L?((2).

Lemma IV.8: The map from L2(Q2) — B(L?(f2)), defined as f —
ﬁf, is uniformly bounded; that is, for every f € L?(2), Hﬁfﬂ < C'for
some C' > 0. Moreover, this result also holds true for ﬁf as an operator
on L1(Q).

Proof: This follows from the fact that ]Sf depends on f through
the a; function, which is in L™ for any f € L*(Q) or L?(Q2). An
application of [26, Theorem 6.18] then proves the result for 13} The

s)

result holds true trivially for P2, since it is a multiplication operator.
|

Clearly, the operator ﬁf satisfies lgfd f® = f<. Furthermore, note
that ﬁf is constructed to satisfy f’fd = I, in order to ensure that all
agents stop transitioning between states when the target density f¢ is
reached.

Next, we will show that f¢ is a globally asymptotically stable
equilibrium of system (6).

Theorem 1V.9: For system (6), f¢ is globally asymptotically stable
in the L (2, m) norm.

For the proof of this theorem, we need the following lemma.

Lemma IV.10: At any given time n, if y € Q is such that f,,(y) <
f4(y), then f, .1 (y) monotonically increases with 7.

Proof: Consider the case when for some y € Q, f,.(y) > f%(y).
Then, it follows that ay, (y) > 0. Expression (15) then becomes

Py dalv) = [ as, @G fu@)ds + 1),

Q

The first term in the equation mentioned above is nonnegative. There-
fore, one of the following conditions must be true:

far1(y) = fuly) > f9(y)
fn(y) > fn+1(y) Z fd(y)
Consequently, it is not possible that f,,11(y) < f%(y) for any value of

n. Next, consider the case when y € 2 is such that f,,(y) < f%(y). In
this case, ay, (y) = 0. Expression (15) then reduces to

(16)

By fuly) = / as, (@)@, g) fu@)do + faly). (17)

Q

Similar to the previous case, given that the first term in the equation
mentioned above is nonnegative, one of the following conditions must
be true:

far1(w) = f4y) > fa(y)
FHW) > far1(y) = faly). (18)

Therefore, in this case, we observe that f,,1(y) monotonically in-
creases with n. | |
Define the sets

EL={yeQ: fuly) < f(y)}
E2={yeQ: fuly) = f(y)}
E}={yeQ: f.(y) > f*(v)}.

We note that ) = E! 1 E2 U E3 | where L denotes a disjoint union.

We can now state the proof of Theorem IV.9. The proof employs an
argument by contradiction that if the density f,, converges to a function
other than f<, then the measure i, is pushed from sets where its density
fn is greater than f¢ to sets where f,, < f<. This is straightforward to
conclude from the definitions of the transition kernels K, and Q;
however, to prove the convergence of f, to f¢, it is necessary to
precisely quantify the measure that is pushed during each time step,
which is computed in the proof.

Proof: Theorem IV.9 By construction, for any n we have that {2 =
E! U E2 U E3; moreover, these sets do not intersect one another. We
also have that each f,, is a probability density on 2 and, hence, must
integrate to 1 over B} U E? U E2. By definition, on E2?, f,, = f<.
Therefore, to prove this result, it is sufficient to show that on the set
EL | fn — f%l1 — 0asn — oo, as this would imply that on €2, || f,, —
il — 0asn — oco.

On E}, by (18), we have that f,, ;1 > f,, and, hence, that f¢ — f,, >
fe— fni1.Set F, = (f¢ — f,,)T, where for an arbitrary function h :
R< — R, b denotes the positive part of h. Then, F}, is monotonically
decreasing on €. The sequence (F},),, is bounded, and monotonically
decreasing, which implies that F, converges pointwise to a function,
say g. By the monotone convergence theorem [26], we then have that
Jo Fn = [, 9. 1f g = 0, then we have our result. If g # 0, then since
fn is a probability density on §, [, F}, — [, g implies that [,(f, —
FHT A 0. We will next prove by contradiction that g is in fact 0.

We suppose that g # 0. Let fQ g >y, where v > 0. Define S =
{z € Q: g(z) > 0}. We note that the definition of .S is independent of
time. Given the conditions in (16) and (18), it follows that I} D E}!
for all n. Due to the convergence of F}, to g, we must have that for all
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n, S C E}. Moreover, lim,, ., m(E}) — m(S). Note that

/ Fi@) — fo(e)de > / g(@)dz > 7. (19)
S S

Since €2 is compact, €2 can be covered by M (finite) number of balls
of radius &, where 4¢ < r. Thatis, Q C UM B, (x;) for some z; € Q.
We will denote B, (x;) N2 by B(z;). Choose a ball B(z;) from this
cover that intersects both E! and (E})¢. Then

m(B(z;)) = m(B(z;) N S) +m(B(z;) N (E, \ 5))
+m(B(x;) N (E,)%).

Letm(B(z;) N S) > €, for some ¢ > 0. If m(B(z;) N (EL)¢) =0
at the current time n, then we look for a large enough time 7" € Z
such that m(E+ \ 9)) < €; << ¢o. At times n > T, (20) shows that
m(B(z;) N (EL)¢) > 0, ensuring the existence of at least one ball
from the cover that has intersections of positive measure with both S
and (E})e.

Next, let J = {1,..., M} and define the following sets:

N, = U

i€J
m(B(z;)NS)>0

Ny = U

e
m(B(w;)NNj_1)>0

(20)

B(x;)
B(jS)\Nk,h k‘ > 1.

Letn >T. Ifme(E%’)c fn — f%is not tending to 0 with increasing n,

then we must have that [, nmLye fn = f® > ¢ infinitely often (i.0), for
some ¢ > 0. Moreover, each time the integral exceeds J, the measure
that is pushed from N; N (EL)° to S can be quantified as

/ QL (. S)dpn(2)
Nin(EL)e

-/ [ ar@ata. vt @)z
Nin(Ep)e /s

= (@) — Fx x,y)dydx
Jop o) = £ [ oGty

S
_ _ pd
= f L @ e

where the constant C in the last expression is f 5 q(, y)dy. Therefore,
the measure that gets pushed onto S from N7 N (E} )¢ is C1 6 at every
time n when lem(E}z)c fn— f%>6.Let {t,}, be asequence in Z
of all such times n, with ¢ty > T'. When the integral exceeds J, we have
that

[ den@yis = [ fa@do+ o
S S

Consequently, for each ¢,, we have

/ftn(x)dx = / fn(z)dz + C1nd
s s

which implies that

/ @) — o, (x)de = / F4(@) — fu(x)de — Cind.
S S

As n — oo, the integral on the right-hand side of the equation men-
tioned above tends to —oo, contradicting the fact that this integral is
an upper bound on the integral of g over .S, as per (19). Thus, we must
have that me(E}L)“ fo—f*—=0asn — oo.

We will now use an induction argument to show that [, (Blye fn —
n

f® — 0. We have just shown that this was true for the neighborhood of
S given by Ny N (E})¢. We assume that kaﬁ(E%)C fn— f¢ = 0for
some k > 1. We will prove that this also holds true for Ny 11 N (E})e.
Suppose that it is not true; then, kaer(E%)“ fn — f4 >4, io for
some ¢; > 0. Again, denote the sequence of times when this happens
by {t,}.. By construction, Ny ; does not intersect S; however,
Ny, may intersect E} (possibly a subset of Ny), to which it can
push measure. We now demonstrate that Ny, pushes most of its
measure to Nj N (EL)¢. We have established that for any n > T,
m(Ny N E}) <m(EL\S) < €1, which is arbitrarily small. Hence,
m(Ny N EL) must be arbitrarily small, and therefore, m(Ny N (EL)€)
must have positive measure. Consequently, we have that

/ QL (, Ny 1 (L)) dpin ()
Npp1n(EL)e

- / (fula) — F4()) / o(e,y)dyde
Npt1n(Eh)e NpN(E)e

— Gy / (Fulz) — fi(x))dz
Ni41n(EL)e

where Cj, = ka,ﬂ(El e q(x,y)dy. That is, the measure pushed from
Nit1 N (EL)to NN (EL)eis Cy6y for every t,,. Using similar ar-
d

guments, we can conclude that fNHm(E}L)“ fn—f*—=0asn — oco.
Since €2 is compact, this process of induction must stop at a finite
k. Therefore, we have that |, (B1)e fn— f%— 0, and consequently,
g = 0, proving that f¢ is globally attractive. Since f¢ — f,, is strictly
decreasing on the set E} and [ f, =1 for all n, we can conclude
that, in fact, the equilibrium distribution f@ is stable in the sense of
Lyapunov. This concludes the proof.

V. THE N-AGENT SYSTEM

In this section, we will define the microscopic description of the
system, i.e., the model of individual agents’ state transitions, and study
how itrelates to the macroscopic or mean-field model (3). The following
mathematical definitions are adapted from [16].

Consider a population of N agents evolving on the state space 2.
Let the state of each agent k at time n be given by the random variable
€¥ € Q, k=1{1,..., N}. Each agent transitions between states on €
according to the transition kernel ), defined in (12). The N-agent sys-
tem can, therefore, be described as a Markov chain &,, = (£}, ...,&N)
with state space Q. To a measure v € P(S2), we associate a measure
vON =y x ... x v e P(QY). The empirical measure m(x) associ-
ated with the point x = (2!,...,2") € QF, where each entry z* is
the state of agent k, is given by a normalized sum of Dirac measures
associated with each agent

1 N
m(m)zﬁz(sxk.
1

k=
The corresponding Markov process (£,,), on (QV, F,,, P) is defined
by

2n

P(& € dr) = pg™ (dx)

P(¢, € dufé,; = 2) = (Pun(2))*" (dz) @2)

where dx = da' x --- x dz™V and P,, is as defined in (14). However,
unlike (14) mdoes not have a density, therefore, 7 must be converted to
an absolutely continuous measure so that the operator F,,, makes sense,
we will do so later in this section. At time n = 0, the N-agent system
can be modeled as N independent random variables &3, . .., &Y with
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common distribution juo. At time n > 1, define 2 := m(€,,). Then,
i 11 is evaluated as

ij+1 = P,m(&,).

Thus, from the equation mentioned above, at time n the /N -agent system
is modeled as N random variables £}, ..., &Y that are conditional on
&,-1 and distributed according to P,m(&,,_1). The agents’ states are
therefore not independent of one another; their distribution is dependent
on the system configuration at time n — 1. Although the evolution of
each agent’s state is not Markovian, the distribution of the N-agent
system evolves according to an interacting Markov chain. At time n =
0, ud" — 1o as N — oco. At times n > 1, due to the aforementioned
interaction between agents, the law of large numbers does not apply.

(23)

Thus, another method must be used to establish the limit p2 oy
I4n, Where pi,, evolves according to (3). This limit is called the mean-
field limit. The work [16] proved this limit for systems of the form
(3) in which the right-hand side is continuous. In [31], this limit is
referred to as the dynamic law of large numbers; it is proven for Markov
processes whose evolution is governed by a partial differential equation.
A comprehensive survey of mean-field approximations of both discrete-
time and continuous-time Markov chains is given in [11].

Since the empirical measure m is a sum of Dirac measures, it is not
absolutely continuous with respect to the Lebesgue measure. We will
“mollify” the Dirac measures in order to be able to use results from
the previous section and to apply the operators Py and P, defined
in (14) and (15), respectively, to absolutely continuous measures.
Mathematically, this means that the measure m is convolved with a
smooth function ¢ : R — R, a mollifier, to obtain a smooth function
(density). The convolution of m and ¢ is carried out as

. 1 ¢ k
qﬁm—/ﬂ¢(:c)dm—ﬁiz:;¢(x—m ). (24)
The result of this convolution is a sum of smooth functions, which
is smooth. Loosely speaking, this convolution replaces each Dirac
measure by a measure with smooth density ¢. We can now apply P
and P, to the right-hand side of this equation. In our simulations, we
have defined ¢ as the standard bump function with a compact support

()
e \1=I2/ ze(—-1,1)
0, otherwise.

o(z) = (25)

To change the support of ¢, we define a function ¢;, on R? for some
h > 0 as follows [26]:

on(z) = h o (T ). (26)
Note that f ¢n = 1, which is independent of h. Moreover, the “mass”
of ¢, becomes concentrated at the origin as h — 0; that is, ¢, tends to
a Dirac measure as h — 0. Fig. 1 shows a visualization of two bump
functions with h = 0.1 and one with h = 0.05. Since the integral of all
bump functions is 1, to compensate for the decrease in h, the peak of
the bump function with A~ = 0.05 is significantly higher than the peaks
of the functions with A = 0.1.

The introduction of the mollifier also has implications for the imple-
mentation of the N-agent system in practice. For an agent with state x,
given a distribution f, the transition kernel K, in (10) is defined such
that it requires pointwise evaluation of the function f(z) in the term
ay = (f — f%)/f from (7). However, to evaluate the density ¢ at its
state x using (24), the agent must know the states x; of all other agents
whose states are within a distance h of its own. For example, if the

y 0 o A X

Fig. 1. Visualization of two bump functions ¢; with h = 0.1 and one
bump function with A = 0.05.

agents’ states are their positions in space, mollification of the empirical
measure implies that each agent must estimate the density ¢ in (24)
based on its relative distance to all agents that are located within a
neighborhood whose size is determined by the parameter h. As h — 0,
this neighborhood shrinks, and the density tends to the Dirac measure,
which is singular. Note that here, we assume ideal sensing in order to
simplify the analysis. More realistic descriptions of the /NV-agent system
should include models of sensor noise.

In order to derive the macroscopic (mean-field) model from the mi-
croscopic description of the system, i.e., the dynamics of N individual
agents, one typically needs to take the mean-field limit, as described
earlier in this section. Since we have introduced the mollifier, a second
limit needs to be proven as well. Both limits are defined as follows.

1) N — co: We now introduce a measure x” that evolves according
to the deterministic difference equation
M1 = P@;%Mﬁa 1 € P(Q). 27N
Due to the introduction of the mollifier, we expect the N-agent
system (23) to converge to the system mentioned above, which is
different from (3). That is

pl = uhoas; N = oo

This limit is usually proven in the weak topology and can be estab-
lished for discrete-time systems using results from [16]. Applying
these results requires proving that the right-hand side of (3) is
continuous in the weak topology, which is significantly challenging
for our system. Thus, we will reserve this investigation for future
work.

2) h — 0: The second limit proves that the solution of (27) converges
to the solution of (3); that is, foralln € Z

uh = g, as h— 0. (28)

We shall prove this convergence in the L (-) norm in the following
section.

A. Limitash — 0

We prove the limit (28) for a dense subset of L1 (Q); specifically, we
consider distributions z € P(£2) that have L2 () densities. Moreover,
we require f< to be bounded from below a.e. on €.
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Let ;10 < m with density fy € L?(€2). In Proposition V.7, we
proved that Py preserves L?(Q); that is, f, = P, , o
Py, fo € L?(Q) for n € Z . Therefore, system (27) can be rewritten
on L2(Q) as

...OPf10

froa =Py, o fh, £l € L2(Q). (29)

Since m(Q) < oo, L2(2) € L*(£), and therefore, we will consider
system (6) to be a system on L2(Q) instead of L*(£2). We will show
that solutions of the abovementioned system converge to those of (6)
in the L () norm.

Theorem V.1: Suppose the initial condition f, be in L?(€2). Let f"
and f,, be solutions of (29) and (6), respectively. If ¢ is bounded from
below a.e. on €2, then

£ = fall =0

foranyn € Z ..
To prove this result, we need the following proposition, whose proof
is given in the Appendix.
Proposition V.2: Let g € L*(Q2). If ¢ is bounded from below a.e.
on {2, then we have the following convergence results:
1) For f € L?(Q)

> > h—0
1Ps,419 = Prglls = 0.
2) If f; = finthe L'(€2) norm, then
1P, — Prglli = 0.

We can now prove Theorem V.1.
Proof: Theorem V.1 To prove this result, we will use an induction
argument. For n = 1, we have that

flh = }5¢h*f0f0
fl = f)fof()'

Then, by statement (1) of Proposition V.2, || f1* — fi[ly = || Py« fo —
P, folls — 0 as b — 0. Assume that this is true for some n > 1. i.e.,
Ilf2 = folli = 0as h — 0. We will show that this limit holds true for
n + 1 using the following computation:

1721 = foll = | By £ = Profo

1

= "(13¢h*fgfﬁ — Py, f1)

‘ 1

= H(Pq>h*ff{ — Pr) o+ Pr(fr = fa)

’ 1

]| P = )

‘1 ’
The bracket (f — £,,) in the second term converges to 0 as b — 0 due

to our assumption. Considering the first term, we observe that

This follows from the fact that the inner limit tends to lsfh by statement
(1) of Proposition V.2, and the outer limit lim 1. _, Igfk tends to ﬁfn~by

statement (2) of Proposition V.2. Therefore, the bracket ﬁ%* = Py,
in the first term tends to O as A — 0, and hence, we have our result.

Fig. 2. Target distribution f<.

VI. SIMULATIONS

In this section, we present numerical solutions of the mean-field
model (3) and simulations of the corresponding N-agent system. We
provide verification via these simulations that as N — oo, the simu-
lations of the N-agent system (stochastic simulations) approach the
solution of the deterministic system (3).

In the following example, we define the agent state space 2 C R?
as the unit square [0, 1] x [0, 1], representing a physical domain in
which the agents move. The target distribution, as shown in Fig. 2,
is set to f¢ = sin?(27zt) 4 sin?(2wx?), where [z'2?]T € Q. The
initial distribution is set to the Dirac measure at (0,0). We consider
a nonlinear vector field F' in system (1) that represents a unicycle
model

xh .y =z, + u, cos(ul)
. (30)

x2 ) =l +u, sin(ul).

Here, z,, = [z} 22]T € Qand u,, = [u} v2]T € U. The set of con-
trol inputs is defined as U = [0, 0.1] x [0, 27]. This map F satisfies all
the required conditions stated in Section I'V.

To simulate the mean-field model (6), we need to discretize
both ©Q and U. The set €2 is partitioned into n, € Z sets, 2 =
{Q1,...,Q,, }, where Q = U, Q; and the sets §2; have intersections
of zero Lebesgue measure. The set of control inputs U is approximated
asasetofn, € Z discreteelements, U = {vy,...,v,, }, wherev; €
U foreachi. Defineindex setsZ = {1,...,n, }and J = {1,...,n,}.
Using these definitions, we construct an approximating controlled
Markov chain on the finite state space Z. For ¢ € Z, when the system
state is in the set €2;, we will consider the state of this Markov chain to be
1. We use a modified version of Ulam’s method [18] to construct this ap-
proximation. In the uncontrolled setting, the Ulam’s method is a classi-
cal technique for constructing approximations of the pushforward map
(Perron—Frobenius operators) induced by dynamical systems. Let pfb.j
denote the probability of the system state being in the set €2; in the next
time step, given that the system state is uniformly randomly distributed
over the set 2; and the selected control input is v;. To obtain p! ; viathe
modified Ulam’s method, we assume that a fixed number of agents, say
M, are uniformly distributed over €2,. For each agentm € {1,..., M}
with state z,, € Q;, we compute F(z,,,v;). Then, we define the
transition probabilities of the approximating controlled Markov chain
as follows:

o= HyEQjZl’m:Fl’l(y)’m:l,...,M}‘
17 ’{yGQme:Flfl(yLm:l,..,,M}‘
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where F(-) = F(-,v;). We next define an equivalent of the state-to-
control transition kernel K. Let k;; be the probability of choosing the
control variable v;, given that the system state x,,, is in €2;. We set
ki > 0 if for some m, F(xm,v) € Q, while ensuring that ki is a
probability.

Algorithm 1: Simulation of N Agents.
1: Input: Q, Uk, F,N, f4 h, T}

2: Initializen = 0,a* = 0,2f € Qforallk=1,...,N
3: whilen < T% do
4: fork=1: N do
S: y=ak >Current location of agent &k
6: s=0
7: for all j € N(k) do
>N (k) := {agents within distance h of k}
8: 2=
9: s=s+ PHI(y, z, h)
10: end for
11: fn(y) = WS
12: if £,(y) > f%(y) then
d
13: ak = W
14: end if
15: if a® > 0 then
16: Draw v uniformly from (0,1)
17: if v < a* then
18: Draw u ~ k(y, -) from U
19: y=F(y,u)
20: end if
21: end if
22: xﬁ_‘_l =y
23: end for

24 n=n++1

25:  end while

26: functionPHI(y, z, h)

27: d=y— =zl

28: if # < 1 then

29: @z%%exp(ﬁ)
30: end if

31: return &

32: end function

>C' := Normalizing constant

We now define the discretization of the mean-field model (3). Let
1€ P(Q) and j € Z, and let p? be the discretization of f¢ on . Let
P ¢ R"=*"= be the discretization of the operator P, defined in (14).
Then, the discretization of system (3) is given by

Hnt1 = Ppy
Pu(j) =Y au(i) Y kaplp(@) + (1 —au())u() 3D
i€l leg

where a,, (i) = (u(i) — u(i)) /(i) if (i) — p (i) > 0,and a,, (i) =
0 otherwise. Fig. 3 shows snapshots of the simulation of this system at
several times n.

Algorithm 1 presents the pseudocode that simulates the evolution of
agents over a domain €2 with a control set U, until a specified final time
T'. An agent considers another agent to be its neighbor if their relative
distance is less than h, the parameter of the bump function ¢;, described
in the previous section. We denote the set of neighbors of agent k at any
given time by A/(k). At every time step, each agent computes the value
of the bump function based on the relative distances of its neighbors.

Note that C' in Line 31 is a normalizing constant, which is chosen to
ensure that ® is a probability density. Figs. 4—7 show snapshots of
the N-agent simulation for agent population sizes of N =100, 500,
and 1000, with h = 0.1 in the first three figures and 0.05 in the last
figure.

We first investigate the effect of increasing N while keeping h
fixed on the time evolution of the simulated N-agent system. Fig. 3
shows that as time n increases, the mean-field model indeed converges
asymptotically to the target distribution in Fig. 2. We observe that the
convergence slows down significantly after time n = 500. Following
our discussion in Section V, we expect the stochastic simulations
of the N-agent system to converge to the discretization of system
(27) in the limit N — oo. Although system (27) is different from
system (3), note that the solutions of the two systems (3) and (27)
converge in the limit A — 0. The snapshots in Figs. 4-6 show that
as the population size NN is increased with a fixed value of h, the
agent distribution in the /N-agent simulation approaches the solution
of system (31), plotted in Fig. 3. In all three figures, the agent distri-
bution converges to a discrete approximation of the continuous target
distribution.

Next, we study the effect of N on the frequency of agent state
transitions. For each of the N-agent simulations shown in Figs. 4-7,
Fig. 8(a)—(d) plots the time evolution of the 2-norm of five randomly
selected agents’ states. Fig. 8(a)—(c) shows that the agents’ frequency of
state transitions significantly decreases with increasing /N; the agents
eventually stop transitioning between states (i.e., stop moving) for both
N =500 and N = 1000. This trend can be attributed to our approxi-
mation of a continuous distribution by a discrete function representing
the state of the N-agent system. For low values of N, the resulting
coarse discretization of f¢ might yield an operator P el that isnot a

sufficiently accurate approximation of ﬁfd = I, the condition that stops
agent state transitions. Higher values of N produce a finer discretization
of f4, which improves the accuracy of the approximation of P =1.
This validates our claim that control policies designed for the mean-field
model can be implemented on a population of individual agents to
achieve a target distribution, as long as this population is sufficiently
large.

Finally, we investigate the effect of changing h while keeping N
fixed. Similar to the agent distribution in Fig. 6 (h = 0.1), the agent
distribution in Fig. 7 (h = 0.05) approaches the solution of (31) shown
in Fig. 3 as N increases. However, the relative closeness of the distribu-
tions in Figs. 6 and 7 to the distribution in Fig. 3 is not apparent from the
figures. This can be explained by noting that in this case, we are holding
N constant and decreasing h, thereby reversing the order of limits that
we considered in Section V. There is no mathematical guarantee that
the limits commute, and hence, we do not necessarily expect that with
reduced h, the N-agent simulations will more closely approach the
solution of (31). Moreover, a lower value of h for a fixed N yields a
smaller neighborhood in which each agent evaluates the local density,
which can produce a less accurate approximation of ﬁfd =1. As
explained previously, this can result in persistent agent state transitions,
which are evident in the simulation of N = 1000 agents when h is
reduced from 0.1 [see Fig. 8(c)] to 0.05 [see Fig. 8(d)]. Increasing h,
on the other hand, can result in the eventual cessation of agent transitions
in smaller agent populations N. This is demonstrated in Fig. 9(a)
and (b), which show that when h is increased from 0.2 to 0.25, the
population of N agents stops transitioning for a lower value of N. The
snapshots of stochastic simulations for N = 1000 at time n = 2000 in
Figs. 6(d), 7(d), 10(a), and 10(b) demonstrate that the agent distribution
becomes smoother as h is increased, due to the smoothening effect of the
mollification.
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Fig. 3. Snapshots of the simulation . (d) n = 2000.

(a) (b) (©) (d)
Fig. 4. Snapshots of a stochastic simulation of N = 100 agents, with h = 0.1, at several times n. (a) n = 50. (b) n = 200. (c) n = 500.
(d) n = 2000.
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Fig. 5. Snapshots of a stochastic simulation of N = 500 agents,

(d) n = 2000.
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Fig. 6. Snapshots of a stochastic simulation of N = 1000 agents, with h = 0.1, at several times n. (a) n = 50. (b) n = 200. (c) n = 500. (d) n =
2000.

Fig. 7. Snapshots of a stochastic simulation of N = 1000 agents, with h = 0.05, at several times n. (a) n = 50. (b) n = 200. (c) n = 500.
(d) n = 2000.
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Fig. 9. Time evolution of the 2-norm of five randomly selected agents’
states in two N-agent simulations with different values of N and h
(snapshots of corresponding stochastic simulations not shown).
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Fig. 10. Snapshots at time n = 2000 of stochastic simulations of
N = 1000 agents with different values of h. (a) h = 0:2. (b) h = 0:25

VII. CONCLUSION

In this article, we have used a discrete-time mean-field model de-
scribing the state dynamics of a multiagent system to design decentral-
ized state-feedback agent control laws that drive the agents asymptot-
ically to a target state distribution. To implement the control laws, the
agents only require knowledge of the local agent density; for example,
the density of agents within their sensing range. The mean-field model
considered here is the forward Kolmogorov equation of a discrete-time
Markov process that can be stabilized to an arbitrary distribution that has
L*>(-) derivatives. Moreover, the Markov process can be constructed
such that its forward operator is the identity operator at the desired
distribution. This prevents agents from switching between states once
the equilibrium distribution is reached. Although stability and con-
vergence results were proven for the mean-field model, simulations
of the corresponding N-agent system demonstrate that for relatively
small numbers of agents (N 2 500), the agents indeed redistribute
themselves to the target distribution and thereafter cease switching
between states. Our use of density-dependent feedback control laws
enables us to specify a more general class of target distributions than in

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (n

(d

3
0 200 400 G600 800 1000 1200 1400 1600 1800 2000
Time (n)

(©)

Time evolution of the 2-norm of five randomly selected agents’ states in each of the N-agent simulations. (a) N =100, h =0.1

our prior works [7], [8], in which we considered only open-loop control
laws. In the future, we would like to establish the mean-field limit of
the system considered in this article, as well as extend our results to
swarms of agents governed by M -step controllable dynamical models
(where M > 1).

APPENDIX A
PROOF OF PROPOSITION V.2
Here, we prove the two convergence results stated in the proposition.

1) Let f € L2(Q). Then, ¢y, * f € L2(€2). By [26, Th. 8.14], ¢y, =

£ 22 fin the L2 norm. To prove convergence of ﬁ¢ ef O }~7f as

operators on L' (£2), choose g € L?(£2) (since €2 has finite measure,
g € L'(2)), and compute the following:

| Poy-rg — Prgll = /Q ‘ﬁ¢h*fg(y) — Prg(y)|dy.  (32)

Recall that according to (15), ﬁf = Isf1 + ﬁf We will now evalu-
ate the integral (32) in terms of the two operators ISfl and ﬁf2

In (32), the component of the integrand that depends on ]3} is given
by

P} .;9(y) — Pg(y) Z/QA(w,y)dw, where

Az, y) = a5 (2)a(x,y)g(x) — ap(x)q(z,y)g(x).
We now define the following sets:
By ={xeQ:op*f(z)> f4z)}
By ={x€Q: ¢y f(z) < f(a)}
By ={xeQ: f(z) > f4(z)}
Ey={xeQ: f(z) < f42)}.

We will split the integral | o A over four sets constructed from these
sets, namely, S; ={E;NE3}, S ={E2NE3},S5={E1N
E4}, and S4 = {EQ N E4} Note that Sl [ Sg (] Sg (] 54 = Q.
Consider the integral of A over Sy

[ astale [ ansg-a
E1NE3

E1NE;
= llgll /
E1NEs

= llgll /
E1NE3

i

onxf—f*
g 7 g

On o f
¢h*f*ff7dg
enxf 7

(33)
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Note that on Ey N E3, ¢p, * f Mf > f%>0,and ||%”oc <L

Since f¢ is bounded from below a.e. on 2, we must have that

I Wl*f |lc < co. Continuing the computation from above

lallx /
E1NEs

< llgll

onxf—ff*
onxf f

1%
— on*xf—fg
00 f xElﬁ/E;z,

¢h1*f L‘ 7l on = f — fll2llgll-

The second inequality mentioned above follows from Holder’s
inequality. Since we have established that ||¢p, * f — f|l2 — 0 as
h — 0, the integral of A over S; must converge to 0. Next, we
consider the integral of A over Sy

g

1
n* f

fd

< llgll

_pd
[ oa<ia. | ] ffg
EoNEs EoNEs
_pd
< llalle || £ ff lglam(Es N By). (34

The second inequality follows from Holder’s inequality. In this
case, we will establish that m(E2 N E3) — 0 as h — 0, which
would imply that the integral of A over S5 converges to 0. We can
compute m(E, N E3) as

m(E> N Es) =m({on * f— f* <0}n{f - f¢>0})
=m({(¢n*f =)+ (F =) <O} {f—f">0}).
Note that
{(pnxf=F)+(f = f1) <0} C{(¢nxf—f) <0}
Continuing the computation from above
m(Ey N Es) <m({¢n*f—f<0yn{f—f*>0})
=m({¢n = f—f<0}n{f—f*>0}).

By [26, Proposition 2.29], since ¢y, * f — f — f in the L? norm
as h — 0, then ¢y, * f — f — [ in measure; that is, m({¢p * f —
f <6}) — 0as h — 0 forevery § > 0. Therefore, we must have
that m(E2 N E3) — 0as h — 0, and consequently, the integral of
A over E5 N E3 must converge to 0. Now, consider the integral of
A over S3

[ a<ia- [
E1NEy4

E1NEy

onxf—f

onx f

< gl lgllzllén = f — fllam(Er N Ey).  (35)

|&
@k fll
The second inequality follows from Holder’s inequality. Since we
have that ||¢p, * f — f|l2 — 0 as h — 0, the integral of A over
E; N E4 converges to 0. Finally, the integral of A over Sy is trivially
Zero

/ A= Qgpf9 —apg = 0. (36)
EanEy EanEy

Thus, we have shown that [, A — 0 as h — 0.

Returning to the integral (32), the component of the integrand that
depends on P7 is given by

P2 .;9(y) — P3g(y)
(1= ag,+(1) 9(y) — (1 — ay(y)) 9(v)

=ay(y)9(y) — ag, s ¥)g(y) := B(y).

(37)

This term is equal to the integrand of each of the four integrals
considered in (33)—(36). Since we showed that each of these
integrands tends to 0 as h — 0, we must have that B(y) — 0 as
well.

‘We can now evaluate (32) as

[Py <r9 — Pl

-,
-,

Since we have shown that both fQ A — 0and B(y) — 0ash — 0,
the outer integral converges to 0 as well, and we have our result.
2) The proof of this result is similar to the proof of result (1).

/Q Az, y)dz + B(y)‘ dy

/ A(z,y)dz + B(y)' dy.
S1US2LS5US,
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