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Abstract—In this article, we stabilize a discrete-time Markov pro-
cess evolving on a compact subset of Rd to an arbitrary target dis-
tribution that has an L

∞(·) density and does not necessarily have
a connected support on the state space. We address this problem
by stabilizing the corresponding Kolmogorov forward equation,
the mean-field model of the system, using a density-dependent
transition Kernel as the control parameter. Our main application
of interest is controlling the distribution of a multiagent system in
which each agent evolves according to this discrete-time Markov
process. To prevent agent state transitions at the equilibrium dis-
tribution, which would potentially waste energy, we show that the
Markov process can be constructed in such a way that the operator
that pushes forward measures is the identity at the target distribu-
tion. In order to achieve this, the transition kernel is defined as a
function of the current agent distribution, resulting in a nonlinear
Markov process. Moreover, we design the transition kernel to be
decentralized in the sense that it depends only on the local den-
sity measured by each agent. We prove the existence of such a
decentralized control law that globally stabilizes the target distri-
bution. Furthermore, to implement our control approach on a finite
N -agent system, we smoothen the mean-field dynamics via the
process of mollification. We validate our control law with numerical
simulations of multiagent systems with different population sizes.
We observe that as N increases, the agent distribution in the
N -agent simulations converges to the solution of the mean-field
model, and the number of agent state transitions at equilibrium
decreases to zero.

Index Terms—Decentralized control, discrete-time Markov pro-
cesses, multi-agent systems, probability density function.

I. INTRODUCTION

I
N THIS article, we address the problem of stabilizing a multiagent

system evolving on a compact, connected subset of R
d to a target

distribution. This problem can arise, for example, in the allocation

of nodes in an electric power grid [4] or a wireless network [38],

or the redistribution of an ensemble of agents such as a swarm of

robots (e.g., [1], [19]). Our main application is a variety of multiagent

applications that require task reallocation or spatial redistribution,

such as environmental monitoring, surveillance, disaster response, and

autonomous construction. We consider groups of agents that all follow

the same dynamics and control policies, which are independent of
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the agents’ identities. We assume that each agent can obtain local

measurements of the agent population but do not require interagent

communication.

Instead of specifying the spatiotemporal evolution of each individual

agent, a microscopic approach to agent control, we will design agent

control laws using a fluid approximation of the multiagent system,

called the macroscopic or mean-field model [20]. This approximation

is justified by modeling each agent’s dynamics as a Markov process,

and then the mean-field behavior of the population is determined by the

Kolmogorov forward equation corresponding to the Markov process.

Mean-field models have a long history; their origin is in statistical

physics, in particular for modeling dense gases [37], and they have been

applied in epidemiology [3], game theory [5], and in the modeling of

computer networks [10], electric power system loads [33], and energy

demand networks [14].

We will address the problem of stabilizing the mean-field model

using the transition kernel as the control parameter. In contrast to

commonly used graph-theoretic approaches for controlling multiagent

systems [12], [36], control approaches based on mean-field models

scale well to very large numbers of agents. Moreover, a range of tools are

available to analyze and control mean-field dynamical models, which

have the advantage of linearity in the absence of agent interactions.

In this article, we design stochastic agent control laws using the

mean-field model of the agent population dynamics. Essentially, we

construct an ergodic Markov process such that its stationary distribution

is a target L∞(·) function. Moreover, we require the agents to stop

transitioning at this target distribution. This condition requires that

the operator acting on densities be the identity operator at the target

distribution. We consider multiagent systems in which the agents have

specified nonlinear discrete-time dynamics. This article builds on our

work in [6], wherein we constructed a Markov process that can be

stabilized to probability distributions that have continuous densities.

Moreover, in contrast to this article, explicit agent dynamics were not

specified in [6].

We detail our contribution in the following three points.

1) We design the transition Kernel to stabilize the mean-field model

to target measures that have L∞(·) densities, a larger class of

measures than we previously considered in [6]–[8]. In [7] and

[8], we considered measures that have L∞(·) densities that are

strictly positive almost everywhere (a.e.) on the domain. These

works generalize the Perron–Frobenius theorem [29], which does

not guarantee stabilization to distributions on discrete-state spaces

that are not strongly connected (see [1] for discrete-time Markov

chains and [22] for continuous-time Markov chains), to Markov

processes on continuous state spaces. However, in this article, we

are able to stabilize the mean-field model to distributions that are

not supported everywhere on the domain by using a control law

that is density-dependent.

A similar measure control problem is addressed in [13], in which

the authors consider an optimal control problem that drives a linear

system evolving on R
d, for a fixed initial condition on the measure,
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to target Gaussian measures. One of the earlier works on the topic

of distribution control is [30], in which reducing the difference

between distributions is posed as a minimization problem.

2) The convergence of a Markov process to an equilibrium distribution

does not necessarily imply that the agents evolving according to

the process also converge to equilibrium states. In fact, agents may

continue to transition between states, which can cause them to waste

energy. To prevent agents from continuing to switch between states

at the equilibrium distribution, we construct the Markov process

such that its forward operator, which pushes forward measures, is

the identity operator at the desired equilibrium. This results in a

time-dependent transition kernel that is a function of the distribu-

tion and gives rise to a nonlinear Markov process. Such stochastic

processes, called density-dependent population processes, are used

to model the dynamics of logistic growth, epidemics, and chemical

reaction networks [25]. Preliminary work in this direction for

discrete-time Markov chains evolving on finite graphs has been

done in [34].

3) Since we establish that the transition kernel must depend on the

distribution, our third goal is to construct the Kernel to have a

decentralized structure. A kernel with this structure corresponds to

agent control policies that require each agent to estimate the popu-

lation only in its local neighborhood. Toward this end, we construct

a kernel for the mean-field model that is defined pointwise; that is,

it is a function of the value of the distribution at the current state.

We proved the existence of such feedback control laws in the case

of continuous-time Markov chains evolving on finite graphs in [24]

and [21]. A similar problem is addressed in [35], which develops a

decentralized control approach by a priori restricting the controller

to have a decentralized structure. Another related work [17] designs

a centralized controller and uses estimation algorithms to determine

the entire agent distribution in a decentralized manner.

Our approach of analyzing the stability of a dynamical system from a

measure-theoretic point of view is quite classical [32]. This approach is

also used extensively in the context of mean-field games [28], optimal

transport theory [39], and mean-field control [27]. In [7], we present

a review of significant works that have influenced research on the

stabilization of Markov processes.

II. NOTATION

In this section, we present notation that will be used throughout

this article. We define R̄+ := [0,∞) and R+ := (0,∞). Similarly, we

define Z̄+ as the set of all nonnegative integers and Z+ as the set of

all positive integers. Given a dimension d ≥ 1, the closed ball in R
d of

radius δ centered at x will be denoted by Bδ(x). For an arbitrary set

A, the symbol |A| will refer to the cardinality of A.

We denote the state space by Ω ⊆ R
d, a measurable compact set.

The Borel sigma algebra on Ω, corresponding to the standard topology

on R
d, is denoted by B(Ω). The set of admissible control inputs and

its corresponding Borel sigma algebra will be denoted by U and B(U),
respectively. We will assume that U is compact in R

d. The dimension

of the setU could be larger than d, but we are restricting it for notational

simplicity.

We denote the space of probability measures on Ω and U by P(Ω).
The Lebesgue measure on R

d will be denoted by m. For a measure ν
on R

n, ν is said to be absolutely continuous with respect to m, denoted

by ν � m, if ν(E) = 0 whenever m(E) = 0. In this case, there exists

a function f : R
n → R such that dν = fdm; this function is called the

Radon–Nikodym derivative of ν with respect to m [26].

For a measure space (X , ν), we define Lp(X , ν), where

p ∈ [1,∞), as the space {f : X → R : f is measurable

and ‖f‖p < ∞}, where ‖f‖p = (
∫
|f |pdν)1/p. In addition, we

define L∞(X , ν) = {f : X → R : f is measurable and ‖f‖∞ < ∞},

where ‖f‖∞ = ess supx∈X |f(x)|. Where it is understood, the measure

will be dropped from the notation of Lp spaces. C(X ) is the space of

continuous functions on X . For a function f : X → R, the support

of f is the closure of the set of points in X where f is nonzero. The

characteristic function over a set A will be denoted as χA(·). The Dirac

measure concentrated a point x is denoted as δx, where δx(A) = 1 if

x ∈ A and δx(A) = 0 otherwise.

For measurable spaces X and Y with sigma algebras M and N ,

respectively, a transition kernel or Markov kernel is a map T : X ×
N → [0, 1], where T (x, ·) is a measure on Y for each fixed x ∈ X and

T (·, E) is a Borel measurable function onX for each fixedE ∈ N . The

transition kernel T induces an operator T : P(X ) → P(Y) as follows.

For each probability measure ν on X

(Tν)(E) =

∫

X

T (x,E) dν(x), E ∈ N

defines a probability measure on Y . We will say that T is regular

if there exists a function h ∈ L∞(X × Y,m×m) such that for each

x ∈ X , the measure T (x, ·) is absolutely continuous with respect to m
and T (x, du) = h(x, u)du. The density h : X × Y → R̄ will also be

called the kernel function of the transition kernel T .

For a function F : X × Y → R
d, we define Fx as the map from

Y → R
d when x ∈ X is fixed, and similarly, we define Fy as the map

from X → R
d when y ∈ Y is fixed.

III. PROBLEM FORMULATION

We now state the problem addressed in this article. Consider a system

of N agents that evolve in discrete time on the set Ω ⊂ R
d. We assume

that the agents are identity-free, by which we mean that they evolve

independently of one another and according to the same dynamics.

We suppose that the dynamics of each agent k ∈ {1, . . . , N} is

governed by a continuous map F : Ω× U → R
d. We assume that F is

nonsingular, which means that for all E ∈ B(Ω), m(F−1
u (E)) = 0,

and m(F−1
x (E)) = 0 whenever m(E) = 0. We also assume that

F (x, 0) = x. The dynamics of each agent is then given by the following

nonlinear discrete-time control system:

ξkn+1 = F (ξkn, u
k
n), n = 0, 1, 2, . . .

ξk0 ∈ Ω (1)

where ξkn ∈ Ω, and (uk
n)

∞
n=1 is a sequence in U such that F (ξkn, u

k
n) ∈

Ω for each n ∈ Z+. Let ξk0 be a random variable with distribution

µ0 ∈ P(Ω).
The empirical distribution of the N -agent system over Ω at time

n is given by 1
N

∑N
k=1 δξkn . Our goal is to design a feedback con-

trol law uk
n = v(xk

n) that redistributes the agents from their initial

empirical distribution 1
N

∑N
k=1 δξk

0
to a desired empirical distribu-

tion 1
N

∑N
i=1 δξk,d that “closely approximates” a target density fd ∈

L∞(Ω) as n → ∞, where 1
N

∑N
i=1 δξk,d is a sample of the measure

induced by the probability density fd. Since we assume that the agents

are identity-free, we will define the control law as a function of the

current empirical distribution 1
N

∑N
k=1 δξkn rather than the individual

agent states ξkn. However, 1
N

∑N
k=1 δξkn is not a state variable of

system (1). In order to treat 1
N

∑N
k=1 δξkn as the state, we consider

the mean-field limit of this quantity as N → ∞.

Suppose that every agent k ∈ {1, . . . , N} uses the same control law

un = v(xk
n) at each time n; that is, the control law is independent of

the agent identity k. In this case, by the law of large numbers, when N
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→ ∞, the empirical distribution 1
N

∑N
k=1 δξkn converges to a determin-

istic quantity µn ∈ P(Ω), which evolves according to the following

forward equation,

µn+1 = F#(·, un)µn, µ0 ∈ P(Ω) (2)

where F#(·, un) : P(Ω) → P(Ω) is the induced forward operator

corresponding to the deterministic map F (·, un). This operator is

defined as

(F#(·, un)µn)(E) = µn(F
−1
un

(E)) =

∫

Ω

χ
E(F (x, un))dx

for eachE ∈ B(Ω). Since we are interested in the problem of stabilizing

system (2) to a given target measure µd with density fd, we must

determine whether there exists a sequence of feedback lawsun such that

starting from any initial measure, system (2) converges toµd. In general,

this problem cannot be solved using deterministic feedback laws, as was

shown in [23]. Therefore, in the following section, we will construct

a stochastic feedback law using a state-to-control transition kernel

K : Ω× B(U) → [0, 1]. On a continuous state space, the transition

kernel plays the role of the transition probability matrix on a discrete

state space. That is, given that an agent is at state x ∈ Ω, it chooses a

subset of control inputs W ⊂ U with probability K(x,W ). We note

that deterministic control laws v : Ω → U are a special type of stochas-

tic control law in that K(x, du) = δv(x); that is, given the state x,

the probability of choosing the control v(x) is 1.

To achieve our goal of redistributing agents overΩ, we will construct

K to be a function of the distributionµ; this dependence will be denoted

as Kµ. For µ ∈ P(Ω), the transition kernel Kµ induces a nonlinear

forward Kolmogorov operator Pµ : P(Ω) → P(Ω), defined as

(Pµµ)(E) =

∫

Ω

∫

U

χ
E(F (x, u))Kµ(x, du)dµ(x)

for each E ∈ B(Ω). The mean-field model that governs the time evo-

lution of µn can then be written as

µn+1 = Pµn, µ0 ∈ P(Ω). (3)

Hence, taking the mean-field limit of the empirical distribution enables

us to treat theN -agent system as a continuum, as described in Section I.

Using Kµ, we can define a closed-loop transition kernel Qµ : Ω×
B(U) → [0, 1]. That is, if the Markov chain (ξkn)n induces a probability

measure P on Ω∞, then an agent k evolves on Ω according to the

following conditional probability

P (ξkn+1 ∈ E|ξkn = x) = Qµ(x,E) (4)

for each x ∈ Ω and E ∈ B(Ω). For µ ∈ P(Ω) and E ∈ B(Ω), Pµ can

be redefined as

(Pµµ)(E) =

∫

Ω

Qµ(x,E)dµ(x). (5)

In this article, instead of arbitrary measures in P(Ω), we will consider

those measures that have L1 densities (derivatives with respect to m).

By restricting P to this subset of P(Ω), for f ∈ L1(Ω), we can define a

nonlinear operator P̃f on L1(Ω); the exact construction will be carried

out in the following section. Then, (3) can be rewritten as

fn+1 = P̃fnfn, f0 ∈ L1(Ω). (6)

We are now ready to state the problem that we address in this article

rigorously.

Problem III.1: Let P̃fn be the forward operator induced by the oper-

ator P defined in (5). Given a target distribution µd ∈ P(Ω) with den-

sity fd ∈ L∞(Ω) and a nonsingular continuous mapF : Ω× U → R
d,

determine whether there exists a transition kernel Qµ : Ω× B(Ω) →
[0, 1] such that:

1) equation (6) satisfies limn→∞ P̃fn ◦ · · · ◦ P̃f1 ◦ P̃f0f0 = fd for all

initial measures f0 ∈ L1(Ω);

2) P̃fd = I , where I is the identity operator.

The operator P̃f governs the stochastic transitions of individual

agents between states. Thus, the condition P̃fd = I ensures that all

agents stop transitioning between states once the density fd of the

target equilibrium distribution is reached. This condition leads to a

nonlinear operator P̃f that depends on f . We will address Problem III.1

in Section IV, where we show that the construction of P̃f requires

additional conditions on Ω and F .

Having proven the existence of such an operator P̃f , in Section V,

we will introduce the system of N agents that evolve according to

the N -agent Markov process that is an approximation of the mean-

field model (3). Since P (via Q) can be constructed such that µd is

an equilibrium of system (3), we observe that in simulations of the

corresponding N -agent system, presented in Section VI, the empirical

distribution 1
N

∑N
k=1 δξkn converges to an empirical distribution that

approximates fd as n → ∞.

IV. STABILITY RESULT

In this section, an operator P̃ that solves Problem III.1 will be

constructed. As stated in Problem III.1, fd ∈ L∞(Ω) is the density

of the target measure. In our previous work [7], we assumed that fd is

supported m a.e. on Ω; in this article, we relax this assumption. The

cost of this generality comes at the price of working with a nonlinear

operator P̃ , which is also necessary to ensure that agent transitions

between states stop once the equilibrium distribution is reached.

We begin by stating our assumptions.

1) We assume that Ω is a path connected, compact subset of R
d. Path

connectedness of Ω means that any two points x, y ∈ Ω can be

connected by a path inΩ, which is a continuous map p : [0, 1] → Ω
with p(0) = x, p(1) = y.

2) We also requireΩ to satisfy the cone condition ([2, Definition 4.6]),

which ensures that the boundary of Ω is regular enough. A domain

D is said to satisfy the cone condition if there exists a cone C such

that each x ∈ Ω is the vertex of a cone Cx that is contained in Ω
and congruent to C. Note that Cx need not be obtained from C by

parallel translation, but simply by rigid motion.

3) We require the measures in P(Ω) to be absolutely continuous w.r.t

m. This implies that its derivative (density) w.r.t. m must be in

L1(Ω).
4) The density fd of the target distribution is in L∞(Ω).
5) As mentioned in Section III, we require F to be nonsingular.

Additionally, F must satisfy Lusin’s property (see page 5).

6) Lastly, for system (1) to be controllable, we need the following

local controllability condition.

Definition IV.1: System (1) is said to be one-step locally controllable

if there exists r > 0 such that, for everyx ∈ Ω,Br(x) ∩Ω ⊆ F (x,U).
In other words, a system is one-step locally controllable if from any

given state x ∈ Ω, the system can reach every other state (in Ω) that is

within a radius r. From here on, we will consider r to be fixed as per

this definition.

Let µ ∈ P(Ω) be such that µ � m, and let fµ be the derivative of

µ with respect to m. For an arbitrary f ∈ L1(Ω), define a function af

on Ω as

af (x) =

{
f(x)−fd(x)

f(x)
for m-a.e. x iff(x)− fd(x) > 0

0 otherwise.
(7)
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We note that af ∈ L∞(Ω) with norm at most 1.

Define k : Ω× U → [0, 1] to be a bounded function that satisfies the

following properties:

k(x, u)

{
> 0 for m-a.e. x ∈ Ω, u ∈ U s.t. F (x, u) ∈ Ω

= 0 otherwise
(8)

∫

U

k(x, u)du = 1 for m-a.e. x ∈ Ω. (9)

Before we proceed, we must determine whether we can construct

a measurable k ∈ L∞(Ω× U,m×m) that satisfies these properties.

We note that due to the first condition (8), the integral in the second

condition (9) is computed over the set Ux := F−1
x (Ω). This integral

can, therefore, be expressed as
∫
U
k(x, u)χUx(u)du = 1. Since Fx is

continuous, the set Ux is measurable for each x. The following lemma

can be used to construct such a measurable k.

Lemma IV.2: For ∀x ∈ Ω, we have the following results.

1) There exists an ε > 0 such that m(Ux) > ε.
2) The map x 
→ m(Ux) is measurable.

3) The characteristic function χ
Ux(u) is jointly measurable in x

and u.

Proof: Result (1) is proved in [7, Proposition V.2]. Proving this result

requires the domain Ω to have a “smooth enough” boundary, which is

ensured by the cone condition.

To prove results (2) and (3), let G={(x, u) ∈ Ω× U : F (x, u) ∈
Ω}. G is Borel measurable because F is continuous in both vari-

ables. Since χ
G is a Borel measurable function, the Tonelli theo-

rem [26] implies that (χG)x is Borel measurable for each x ∈ Ω. Since

(χG)x(u) = χ
Ux(u), we have that χUx(u) is a measurable function

in both variables, proving result (2). Then, by the Tonelli theorem, we

have that x 
→
∫
U
(χG)xdu is Borel measurable. Since (χG)x(u) =

χ
G(x, u), we have that

∫
U
(χG)xdu = m(F−1

x (Ω)) = m(Ux). That

is, x 
→ m(Ux) is Borel measurable. �

The existence of a measurable function k then trivially follows from

the fact that one can set k to be the uniform kernel, k(x, u) =
χ
Ux

m(Ux)
.

Next, we define a transition kernel that depends on the current

distribution µ, Kµ : Ω× B(U) → [0, 1]. For W ∈ B(U)

Kµ(x,W ) = Kµ(x,W ∩ Ux) = K1
µ +K2

µ, where

K1
µ = afµ(x)

∫

W

k(x, u)du

K2
µ = (1− afµ(x))δ0(W ). (10)

Recall that we have assumed that F (x, 0) = x. Since this kernel is a

function of afµ , it depends on the density fµ. The kernel is defined

such that the corresponding Markov chain stays at control 0 with

probability 1− afµ(x) and moves to a control in the set Ux with

probability afµ(x), and when it moves, the distribution is given by the

density k(x, u). The integral term K1
µ is regular because its kernel

function k(x, u) is in L∞(Ω× U).
Remark IV.3: We note that the local controllability assumption, Def-

inition IV.1, implies that there exists a measurable control V (x) ∈ U
such that F (x, V (x)) = x (see [7, Proposition V.13]). Therefore, the

condition F (x, 0) = x is not restrictive. However, we impose this

condition here for the sake of simplicity and note that we can extend

our results even when this condition is not satisfied following the steps

in [7].

The proof of the following result follows from Lemma IV.2.

Lemma IV.4: The Kernel Kµ is well-defined. That is, Kµ(·,W ) is

a measurable function on Ω for each fixed W ∈ B(U) and Kµ(x, ·) is

a probability measure on U for each fixed x ∈ Ω.

Using Kµ, we define a closed-loop kernel Qµ : Ω× B(Ω) → [0, 1].
The subscript µ in Qµ is included to indicate that Qµ is a function of

µ, due to the dependence of Kµ on µ. For E ∈ B(Ω)

Qµ(x,E) =

∫

U

χ
E(F (x, u))Kµ(x, du) (11)

= afµ(x)

∫

U

χ
E(F (x, u))k(x, u)du

+ (1− afµ(x))

∫

U

χ
E(F (x, u))dδ0

= Q1
µ +Q2

µ, where

Q1
µ = afµ(x)

∫

U

χ
E(F (x, u))k(x, u)du

Q2
µ = (1− afµ(x))δx(E). (12)

For the next result, we require F to satisfy Lusin’s property [9] in both

the x and u variables, which in simple terms means that F maps sets of

measure zero to sets of measure zero. For x ∈ Ω fixed, we say that Fx :
(U,m) → (Rd,m) satisfies Lusin’s property if m(Fx(W )) = 0 for

every W ∈ U with m(W ) = 0. Lusin’s property for Fu has a similar

definition.

Lemma IV.5: The kernel Qµ is well-defined; that is, Qµ(·, E) is

a measurable function on Ω for each E ∈ B(Ω) and Qµ(x, ·) is a

probability measure on Ω for each x ∈ Ω. Furthermore, if F satisfies

Lusin’s property, then Q1
µ is regular.

Proof: The proof that Qµ is well-defined is similar to the proof that

K is well-defined (Lemma IV.4). To prove that Q1
µ is regular, we first

require that Q1
µ(x, ·) � m for every x. Indeed, if E ∈ B(Ω) is such

thatm(E) = 0, then due to the nonsingularity ofF with respect to both

variablesx andu, we have that (m×m)(F−1(E)) = 0. Therefore, for

x ∈ Ω, u ∈ U , we have that χE(F (x, u)) = χ
F−1(E)(x, u) = 0 in the

integral that defines Q1
µ. Hence, Q1

µ(x,E) = 0.

The proof that Q1
µ has a kernel function q ∈ L∞(Ω× Ω) is given in

[7, Proposition IV.4]. �

Next, we define a nonlinear operator Pµ : P(Ω) → P(Ω) in terms

of Qµ as follows:

(Pµµ)(E) =

∫

Ω

Qµ(x,E)dµ(x) (13)

=

∫

Ω

∫

U

χ
E(F (x, u))Kµ(x, du)dµ(x)

=

∫

Ω

∫

U

afµ(x)χE(F (x, u))k(x, u)du dµ(x)

+

∫

Ω

(1− afµ(x))δx(E)dµ(x)

=

∫

Ω

∫

U

afµ(x)χE(F (x, u))k(x, u)du dµ(x)

+

∫

E

(1− afµ(x))dµ(x). (14)

Due to the properties of Qµ (Lemma IV.5), we immediately have the

following lemma.

Lemma IV.6: Operator Pµ preserves P(Ω), and furthermore, it

preserves absolutely continuous measures.

By restricting Pµ to those measures that are absolutely continuous

w.r.t m, that is, measures that have L1 densities, we can define P̃fµ :
L1(Ω) → L1(Ω). The next few steps will be toward this effort. We

Authorized licensed use limited to: ASU Library. Downloaded on July 28,2022 at 22:46:09 UTC from IEEE Xplore.  Restrictions apply. 



3924 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 8, AUGUST 2022

note that the operator P̃fµ is a function of fµ through the dependence

of Qµ on µ.

Lemma IV.6 implies that Pµµ � m; let P̃fµfµ be the density, that

is, for E ∈ B(Ω)

(Pµµ)(E) =

∫

E

(P̃fµfµ)(y)dy.

We note that since Q1
µ is regular, there must exist a function q ∈

L∞(Ω× Ω). Therefore, from (12), we have that

Q1
µ(x,E) =

∫

E

q(x, y)dy =

∫

U

χ
E(F (x, u))K1

µ(x, du).

Using this expression, (14) can be rewritten as follows. For E ∈ B(Ω)

(Pµµ)(E) =

∫

Ω

∫

E

afµ(x)q(x, y)dy fµ(x)dx

+

∫

E

(1− afµ(x))fµ(x)dx =

∫

E

(P̃fµfµ)(y)dy.

Applying Fubini’s theorem [26] to the equation mentioned above, we

obtain an expression for an operator P̃ defined on L1(Ω) as follows.

For f ∈ L1(Ω)

P̃f = P̃ 1
f + P̃ 2

f ,where

(P̃ 1
f f)(y) =

∫

Ω

af (x)q(x, y)f(x)dx

(P̃ 2
f f)(y) = (1− af (y))f(y). (15)

The operator P̃f preserves L1(Ω), stated in the proposition as

follows.

Proposition IV.7: For f ∈ L2(Ω) ⊂ L1(Ω) we have that

1) P̃f ∈ L1(Ω), i.e., P̃f is well-defined. Moreover, P̃f preserves

probability densities; in other words, it is a Markov operator [32].

2) In fact, P̃f : L2(Ω) → L2(Ω) is well-defined.

The second result mentioned above is a consequence of [15, Proposi-

tion II.4.7], detailed in [7, Proposition IV.4]. We will require this result

in Section V.

Note that for each fixed f , P̃f is a linear operator. The following

result will be used in Section V. In the following result, B(L2(Ω))
stands for the set of bounded linear operators on L2(Ω).

Lemma IV.8: The map from L2(Ω) → B(L2(Ω)), defined as f 
→

P̃f , is uniformly bounded; that is, for every f ∈ L2(Ω), ‖P̃f‖ ≤ C for

some C > 0. Moreover, this result also holds true for P̃f as an operator

on L1(Ω).

Proof: This follows from the fact that P̃f depends on f through

the af function, which is in L∞ for any f ∈ L1(Ω) or L2(Ω). An

application of [26, Theorem 6.18] then proves the result for P̃ 1
f . The

result holds true trivially for P̃ 2
f , since it is a multiplication operator.

�

Clearly, the operator P̃f satisfies P̃fdfd = fd. Furthermore, note

that P̃f is constructed to satisfy P̃fd = I , in order to ensure that all

agents stop transitioning between states when the target density fd is

reached.

Next, we will show that fd is a globally asymptotically stable

equilibrium of system (6).

Theorem IV.9: For system (6), fd is globally asymptotically stable

in the L1(Ω,m) norm.

For the proof of this theorem, we need the following lemma.

Lemma IV.10: At any given time n, if y ∈ Ω is such that fn(y) ≤
fd(y), then fn+1(y) monotonically increases with n.

Proof: Consider the case when for some y ∈ Ω, fn(y) > fd(y).
Then, it follows that afn(y) > 0. Expression (15) then becomes

P̃fnfn(y) =

∫

Ω

afn(x)k(x, y)fn(x)dx+ fd(y).

The first term in the equation mentioned above is nonnegative. There-

fore, one of the following conditions must be true:

fn+1(y) ≥ fn(y) > fd(y)

fn(y) > fn+1(y) ≥ fd(y).
(16)

Consequently, it is not possible that fn+1(y) < fd(y) for any value of

n. Next, consider the case when y ∈ Ω is such that fn(y) ≤ fd(y). In

this case, afn(y) = 0. Expression (15) then reduces to

P̃fnfn(y) =

∫

Ω

afn(x)k(x, y)fn(x)dx+ fn(y). (17)

Similar to the previous case, given that the first term in the equation

mentioned above is nonnegative, one of the following conditions must

be true:

fn+1(y) ≥ fd(y) > fn(y)

fd(y) > fn+1(y) ≥ fn(y). (18)

Therefore, in this case, we observe that fn+1(y) monotonically in-

creases with n. �

Define the sets

E1
n = {y ∈ Ω : fn(y) < fd(y)}

E2
n = {y ∈ Ω : fn(y) = fd(y)}

E3
n = {y ∈ Ω : fn(y) > fd(y)}.

We note that Ω = E1
n �E2

n �E3
n, where � denotes a disjoint union.

We can now state the proof of Theorem IV.9. The proof employs an

argument by contradiction that if the density fn converges to a function

other than fd, then the measureµn is pushed from sets where its density

fn is greater than fd to sets where fn < fd. This is straightforward to

conclude from the definitions of the transition kernels Kµ and Qµ;

however, to prove the convergence of fn to fd, it is necessary to

precisely quantify the measure that is pushed during each time step,

which is computed in the proof.

Proof: Theorem IV.9 By construction, for any n we have that Ω =
E1

n �E2
n �E3

n; moreover, these sets do not intersect one another. We

also have that each fn is a probability density on Ω and, hence, must

integrate to 1 over E1
n �E2

n �E3
n. By definition, on E2

n, fn = fd.

Therefore, to prove this result, it is sufficient to show that on the set

E1
n, ‖fn − fd‖1 → 0 as n → ∞, as this would imply that on Ω, ‖fn −

fd‖1 → 0 as n → ∞.

OnE1
n, by (18), we have that fn+1 ≥ fn and, hence, that fd − fn ≥

fd − fn+1. Set Fn = (fd − fn)
+, where for an arbitrary function h :

R
d → R, h+ denotes the positive part of h. Then, Fn is monotonically

decreasing on Ω. The sequence (Fn)n is bounded, and monotonically

decreasing, which implies that Fn converges pointwise to a function,

say g. By the monotone convergence theorem [26], we then have that∫
Ω
Fn →

∫
Ω
g. If g = 0, then we have our result. If g �= 0, then since

fn is a probability density on Ω,
∫
Ω
Fn →

∫
Ω
g implies that

∫
Ω
(fn −

fd)+ �→ 0. We will next prove by contradiction that g is in fact 0.

We suppose that g �= 0. Let
∫
Ω
g ≥ γ, where γ > 0. Define S =

{x ∈ Ω : g(x) > 0}. We note that the definition of S is independent of

time. Given the conditions in (16) and (18), it follows that E1
n ⊃ E1

n+1

for all n. Due to the convergence of Fn to g, we must have that for all
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n, S ⊂ E1
n. Moreover, limn→∞ m(E1

n) → m(S). Note that

∫

S

fd(x)− fn(x)dx ≥

∫

S

g(x)dx > γ. (19)

Since Ω is compact, Ω can be covered by M (finite) number of balls

of radius ε, where 4ε < r. That is, Ω ⊂ ∪M
i=1Bε(xi) for some xi ∈ Ω.

We will denote Bε(xi) ∩Ω by B(xi). Choose a ball B(xj) from this

cover that intersects both E1
n and (E1

n)
c. Then

m(B(xj)) = m(B(xj) ∩ S) +m(B(xj) ∩ (E1
n \ S))

+m(B(xj) ∩ (E1
n)

c). (20)

Let m(B(xj) ∩ S) ≥ ε0, for some ε0 > 0. If m(B(xj) ∩ (E1
n)

c) = 0
at the current time n, then we look for a large enough time T ∈ Z+

such that m(E1
T \ S)) ≤ ε1 << ε0. At times n ≥ T , (20) shows that

m(B(xj) ∩ (E1
n)

c) > 0, ensuring the existence of at least one ball

from the cover that has intersections of positive measure with both S
and (E1

n)
c.

Next, let J = {1, . . . ,M} and define the following sets:

N1 =
⋃

i∈J
m(B(xi)∩S)>0

B(xi)

Nk =
⋃

i∈J
m(B(xi)∩Nk−1)>0

B(xi)\Nk−1, k > 1.

Let n > T . If
∫
N1∩(E

1
n)c

fn − fd is not tending to 0 with increasing n,

then we must have that
∫
N1∩(E

1
n)c

fn − fd ≥ δ infinitely often (i.o), for

some δ > 0. Moreover, each time the integral exceeds δ, the measure

that is pushed from N1 ∩ (E1
n)

c to S can be quantified as

∫

N1∩(E
1
n)c

Q1
µn

(x, S)dµn(x)

=

∫

N1∩(E
1
n)c

∫

S

afn(x)q(x, y)dyfn(x)dx

=

∫

N1∩(E
1
n)c

(fn(x)− fd(x))

∫

S

q(x, y)dydx

= C1

∫

N1∩(E
1
n)c

fn(x)− fd(x)dx

where the constantC1 in the last expression is
∫
S
q(x, y)dy. Therefore,

the measure that gets pushed onto S from N1 ∩ (E1
n)

c is C1δ at every

time n when
∫
N1∩(E

1
n)c

fn − fd ≥ δ. Let {tn}n be a sequence in Z+

of all such times n, with t0 > T . When the integral exceeds δ, we have

that
∫

S

fn+1(x)dx =

∫

S

fn(x)dx+ C1δ.

Consequently, for each tn we have

∫

S

ftn(x)dx =

∫

S

fn(x)dx+ C1nδ

which implies that

∫

S

fd(x)− ftn(x)dx =

∫

S

fd(x)− fn(x)dx− C1nδ.

As n → ∞, the integral on the right-hand side of the equation men-

tioned above tends to −∞, contradicting the fact that this integral is

an upper bound on the integral of g over S, as per (19). Thus, we must

have that
∫
N1∩(E

1
n)c

fn − fd → 0 as n → ∞.

We will now use an induction argument to show that
∫
(E1

n)c
fn −

fd → 0. We have just shown that this was true for the neighborhood of

S given by N1 ∩ (E1
n)

c. We assume that
∫
Nk∩(E

1
n)c

fn − fd → 0 for

some k > 1. We will prove that this also holds true for Nk+1 ∩ (E1
n)

c.

Suppose that it is not true; then,
∫
Nk+1∩(E

1
n)c

fn − fd ≥ δ1 i.o for

some δ1 > 0. Again, denote the sequence of times when this happens

by {tn}n. By construction, Nk+1 does not intersect S; however,

Nk+1 may intersect E1
n (possibly a subset of Nk), to which it can

push measure. We now demonstrate that Nk+1 pushes most of its

measure to Nk ∩ (E1
n)

c. We have established that for any n ≥ T ,

m(Nk ∩E1
n) ≤ m(E1

n\S) ≤ ε1, which is arbitrarily small. Hence,

m(Nk ∩E1
n)must be arbitrarily small, and therefore,m(Nk ∩ (E1

n)
c)

must have positive measure. Consequently, we have that
∫

Nk+1∩(E
1
n)c

Q1
µn

(x,Nk ∩ (E1
n)

c)dµn(x)

=

∫

Nk+1∩(E
1
n)c

(fn(x)− fd(x))

∫

Nk∩(E1
n)c

q(x, y)dydx

= Ck

∫

Nk+1∩(E
1
n)c

(fn(x)− fd(x))dx

where Ck =
∫
Nk∩(E1

n)c
q(x, y)dy. That is, the measure pushed from

Nk+1 ∩ (E1
n)

c to Nk ∩ (E1
n)

c is Ckδ1 for every tn. Using similar ar-

guments, we can conclude that
∫
Nk+1∩(E

1
n)c

fn − fd → 0 as n → ∞.

Since Ω is compact, this process of induction must stop at a finite

k. Therefore, we have that
∫
(E1

n)c
fn − fd → 0, and consequently,

g = 0, proving that fd is globally attractive. Since fd − fn is strictly

decreasing on the set E1
n and

∫
fn = 1 for all n, we can conclude

that, in fact, the equilibrium distribution fd is stable in the sense of

Lyapunov. This concludes the proof.

V. THE N -AGENT SYSTEM

In this section, we will define the microscopic description of the

system, i.e., the model of individual agents’ state transitions, and study

how it relates to the macroscopic or mean-field model (3). The following

mathematical definitions are adapted from [16].

Consider a population of N agents evolving on the state space Ω.

Let the state of each agent k at time n be given by the random variable

ξkn ∈ Ω, k = {1, . . . , N}. Each agent transitions between states on Ω
according to the transition kernel Qµ defined in (12). The N -agent sys-

tem can, therefore, be described as a Markov chain ξn = (ξ1n, . . . , ξ
N
n )

with state space ΩN . To a measure ν ∈ P(Ω), we associate a measure

ν⊗N = ν × . . .× ν ∈ P(ΩN ). The empirical measure m(x) associ-

ated with the point x = (x1, . . . , xN ) ∈ ΩN , where each entry xk is

the state of agent k, is given by a normalized sum of Dirac measures

associated with each agent

m(x) =
1

N

N∑

k=1

δxk . (21)

The corresponding Markov process (ξn)n on (ΩN ,Fn,P) is defined

by

P(ξ0 ∈ dx) = µ⊗N
0 (dx)

P(ξn ∈ dx|ξn−1 = z) = (Pmm(z))⊗N (dx)
(22)

where dx = dx1 × · · · × dxN and Pm is as defined in (14). However,

unlike (14) m does not have a density, therefore, m must be converted to

an absolutely continuous measure so that the operator Pm makes sense,

we will do so later in this section. At time n = 0, the N -agent system

can be modeled as N independent random variables ξ10 , . . . , ξ
N
0 with
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common distribution µ0. At time n ≥ 1, define µN
n := m(ξn). Then,

µN
n+1 is evaluated as

µN
n+1 = Pmm(ξn). (23)

Thus, from the equation mentioned above, at timen theN -agent system

is modeled as N random variables ξ1n, . . . , ξ
N
n that are conditional on

ξn−1 and distributed according to Pmm(ξn−1). The agents’ states are

therefore not independent of one another; their distribution is dependent

on the system configuration at time n− 1. Although the evolution of

each agent’s state is not Markovian, the distribution of the N -agent

system evolves according to an interacting Markov chain. At time n =
0, µN

0 → µ0 as N → ∞. At times n ≥ 1, due to the aforementioned

interaction between agents, the law of large numbers does not apply.

Thus, another method must be used to establish the limit µN
n

N→∞
−→

µn, where µn evolves according to (3). This limit is called the mean-

field limit. The work [16] proved this limit for systems of the form

(3) in which the right-hand side is continuous. In [31], this limit is

referred to as the dynamic law of large numbers; it is proven for Markov

processes whose evolution is governed by a partial differential equation.

A comprehensive survey of mean-field approximations of both discrete-

time and continuous-time Markov chains is given in [11].

Since the empirical measure m is a sum of Dirac measures, it is not

absolutely continuous with respect to the Lebesgue measure. We will

“mollify” the Dirac measures in order to be able to use results from

the previous section and to apply the operators P̃f and Pµ defined

in (14) and (15), respectively, to absolutely continuous measures.

Mathematically, this means that the measure m is convolved with a

smooth function φ : R
d → R, a mollifier, to obtain a smooth function

(density). The convolution of m and φ is carried out as

φ∗
m =

∫

Ω

φ(x)dm =
1

N

N∑

i=1

φ(x− xk). (24)

The result of this convolution is a sum of smooth functions, which

is smooth. Loosely speaking, this convolution replaces each Dirac

measure by a measure with smooth density φ. We can now apply P̃f

and Pµ to the right-hand side of this equation. In our simulations, we

have defined φ as the standard bump function with a compact support

φ(x) =

⎧
⎨
⎩
e
−
(

1

1−‖x‖2

)

, x ∈ (−1, 1)

0, otherwise.
(25)

To change the support of φ, we define a function φh on R
d for some

h > 0 as follows [26]:

φh(x) = h−dφ
(x

h

)
. (26)

Note that
∫
φh = 1, which is independent of h. Moreover, the “mass”

of φh becomes concentrated at the origin as h → 0; that is, φh tends to

a Dirac measure as h → 0. Fig. 1 shows a visualization of two bump

functions with h = 0.1 and one with h = 0.05. Since the integral of all

bump functions is 1, to compensate for the decrease in h, the peak of

the bump function with h = 0.05 is significantly higher than the peaks

of the functions with h = 0.1.

The introduction of the mollifier also has implications for the imple-

mentation of the N -agent system in practice. For an agent with state x,

given a distribution f , the transition kernel Kµ in (10) is defined such

that it requires pointwise evaluation of the function f(x) in the term

af = (f − fd)/f from (7). However, to evaluate the density φ at its

state x using (24), the agent must know the states xi of all other agents

whose states are within a distance h of its own. For example, if the

Fig. 1. Visualization of two bump functions φh with h = 0.1 and one
bump function with h = 0.05.

agents’ states are their positions in space, mollification of the empirical

measure implies that each agent must estimate the density φ in (24)

based on its relative distance to all agents that are located within a

neighborhood whose size is determined by the parameter h. As h → 0,

this neighborhood shrinks, and the density tends to the Dirac measure,

which is singular. Note that here, we assume ideal sensing in order to

simplify the analysis. More realistic descriptions of theN -agent system

should include models of sensor noise.

In order to derive the macroscopic (mean-field) model from the mi-

croscopic description of the system, i.e., the dynamics of N individual

agents, one typically needs to take the mean-field limit, as described

earlier in this section. Since we have introduced the mollifier, a second

limit needs to be proven as well. Both limits are defined as follows.

1) N → ∞: We now introduce a measure µh
n that evolves according

to the deterministic difference equation

µh
n+1 = Pφh∗µh

n
µh
n, µh

0 ∈ P(Ω). (27)

Due to the introduction of the mollifier, we expect the N -agent

system (23) to converge to the system mentioned above, which is

different from (3). That is

µN
n → µh

n as; N → ∞.

This limit is usually proven in the weak topology and can be estab-

lished for discrete-time systems using results from [16]. Applying

these results requires proving that the right-hand side of (3) is

continuous in the weak topology, which is significantly challenging

for our system. Thus, we will reserve this investigation for future

work.

2) h → 0: The second limit proves that the solution of (27) converges

to the solution of (3); that is, for all n ∈ Z+

µh
n → µn as h → 0. (28)

We shall prove this convergence in the L1(·) norm in the following

section.

A. Limit as h → 0

We prove the limit (28) for a dense subset of L1(Ω); specifically, we

consider distributions µ ∈ P(Ω) that have L2(Ω) densities. Moreover,

we require fd to be bounded from below a.e. on Ω.
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Let µ0 � m with density f0 ∈ L2(Ω). In Proposition IV.7, we

proved that P̃f preserves L2(Ω); that is, fn = P̃fn−1
◦ . . . ◦ P̃f1 ◦

P̃f0f0 ∈ L2(Ω) for n ∈ Z+ Therefore, system (27) can be rewritten

on L2(Ω) as

fh
n+1 = P̃φh∗fh

n
fh
n , f

h
0 ∈ L2(Ω). (29)

Since m(Ω) < ∞, L2(Ω) ⊂ L1(Ω), and therefore, we will consider

system (6) to be a system on L2(Ω) instead of L1(Ω). We will show

that solutions of the abovementioned system converge to those of (6)

in the L1(Ω) norm.

Theorem V.1: Suppose the initial condition f0 be in L2(Ω). Let fh
n

and fn be solutions of (29) and (6), respectively. If fd is bounded from

below a.e. on Ω, then

‖fh
n − fn‖1 → 0

for any n ∈ Z+.

To prove this result, we need the following proposition, whose proof

is given in the Appendix.

Proposition V.2: Let g ∈ L2(Ω). If fd is bounded from below a.e.

on Ω, then we have the following convergence results:

1) For f ∈ L2(Ω)

‖P̃φh∗fg − P̃fg‖1
h→0
−→ 0.

2) If fi
i→∞
−→ f in the L1(Ω) norm, then

‖P̃fig − P̃fg‖1
i→∞
−→ 0.

We can now prove Theorem V.1.

Proof: Theorem V.1 To prove this result, we will use an induction

argument. For n = 1, we have that

fh
1 = P̃φh∗f0f0

f1 = P̃f0f0.

Then, by statement (1) of Proposition V.2, ‖fh
1 − f1‖1 = ‖P̃φh∗f0f0 −

P̃f0f0‖1 → 0 as h → 0. Assume that this is true for some n > 1. i.e.,

‖fh
n − fn‖1 → 0 as h → 0. We will show that this limit holds true for

n+ 1 using the following computation:

‖fh
n+1 − fn+1‖ =

∥∥∥P̃φh∗fh
n
fh
n − P̃fnfn

∥∥∥
1

=
∥∥∥(P̃φh∗fh

n
fh
n − P̃fnf

h
n )

+(P̃fnf
h
n − P̃fnfn)

∥∥∥
1

=
∥∥∥(P̃φh∗fh

n
− P̃fn)f

h
n + P̃fn(f

h
n − fn)

∥∥∥
1

≤
∥∥∥(P̃φh∗fh

n
− P̃fn)f

h
n

∥∥∥
1
+

∥∥∥P̃fn(f
h
n − fn)

∥∥∥
1
.

The bracket (fh
n − fn) in the second term converges to 0 as h → 0 due

to our assumption. Considering the first term, we observe that

lim
fh
n→fn

lim
h→0

P̃φh∗fh
n
= P̃fn .

This follows from the fact that the inner limit tends to P̃fh
n

by statement

(1) of Proposition V.2, and the outer limit limfh
n→fn

P̃fh
n

tends to P̃fn by

statement (2) of Proposition V.2. Therefore, the bracket P̃φh∗fh
n
− P̃fn

in the first term tends to 0 as h → 0, and hence, we have our result.

Fig. 2. Target distribution fd.

VI. SIMULATIONS

In this section, we present numerical solutions of the mean-field

model (3) and simulations of the corresponding N -agent system. We

provide verification via these simulations that as N → ∞, the simu-

lations of the N -agent system (stochastic simulations) approach the

solution of the deterministic system (3).

In the following example, we define the agent state space Ω ⊂ R
2

as the unit square [0, 1]× [0, 1], representing a physical domain in

which the agents move. The target distribution, as shown in Fig. 2,

is set to fd = sin2(2πx1) + sin2(2πx2), where [x1x2]T ∈ Ω. The

initial distribution is set to the Dirac measure at (0,0). We consider

a nonlinear vector field F in system (1) that represents a unicycle

model

x1
n+1 = x1

n + u1
n cos(u2

n)

x2
n+1 = x2

n + u1
n sin(u2

n). (30)

Here, xn = [x1
n x2

n]
T ∈ Ω and un = [u1

n u2
n]

T ∈ U . The set of con-

trol inputs is defined as U = [0, 0.1]× [0, 2π]. This map F satisfies all

the required conditions stated in Section IV.

To simulate the mean-field model (6), we need to discretize

both Ω and U . The set Ω is partitioned into nx ∈ Z+ sets, Ω̃ =
{Ω1, . . . ,Ωnx}, where Ω = ∪nx

i=1Ωi and the sets Ωi have intersections

of zero Lebesgue measure. The set of control inputs U is approximated

as a set ofnu ∈ Z+ discrete elements, Ũ = {v1, . . . , vnu}, where vi ∈
U for each i. Define index sets I = {1, . . . , nx} andJ = {1, . . . , nu}.

Using these definitions, we construct an approximating controlled

Markov chain on the finite state space I. For i ∈ I, when the system

state is in the setΩi, we will consider the state of this Markov chain to be

i. We use a modified version of Ulam’s method [18] to construct this ap-

proximation. In the uncontrolled setting, the Ulam’s method is a classi-

cal technique for constructing approximations of the pushforward map

(Perron–Frobenius operators) induced by dynamical systems. Let plij
denote the probability of the system state being in the set Ωj in the next

time step, given that the system state is uniformly randomly distributed

over the set Ωi and the selected control input is vl. To obtain plij via the

modified Ulam’s method, we assume that a fixed number of agents, say

M , are uniformly distributed over Ωi. For each agent m ∈ {1, . . . ,M}
with state xm ∈ Ωi, we compute F (xm, vl). Then, we define the

transition probabilities of the approximating controlled Markov chain

as follows:

plij =

∣∣{y ∈ Ωj : xm = F−1
l (y),m = 1, . . . ,M}

∣∣
∣∣{y ∈ Ω : xm = F−1

l (y),m = 1, . . . ,M}
∣∣
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where Fl(·) = F (·, vl). We next define an equivalent of the state-to-

control transition kernel K. Let k̃il be the probability of choosing the

control variable vl, given that the system state xm is in Ωi. We set

k̃il > 0 if for some m, F (xm, vl) ∈ Ω, while ensuring that k̃il is a

probability.

Algorithm 1: Simulation of N Agents.

1: Input: Ω, U, k, F,N, fd, h, Tf

2: Initialize n = 0, ak = 0, xk
0 ∈ Ω for all k = 1, . . . , N

3: while n ≤ Tf do

4: for k = 1 : N do

5: y = xk
n �Current location of agent k

6: s = 0
7: for all j ∈ N (k) do

�N (k) := {agents within distance h of k}

8: z = xj
n

9: s = s+PHI(y, z, h)
10: end for

11: fn(y) =
1

|N (k)|
s

12: if fn(y) > fd(y) then

13: ak = fn(y)−fd(y)
fn(y)

14: end if

15: if ak > 0 then

16: Draw v uniformly from (0,1)

17: if v ≤ ak then

18: Draw u ∼ k(y, ·) from U
19: y = F (y, u)
20: end if

21: end if

22: xk
n+1 = y

23: end for

24: n = n+ 1
25: end while

26: functionPHI(y, z, h)
27: d = ‖y − z‖2
28: if d

h
< 1 then

29: Φ = 1
C

1
h2 exp ( −1

1−(d/h)2
) �C := Normalizing constant

30: end if

31: return Φ
32: end function

We now define the discretization of the mean-field model (3). Let

µ ∈ P(Ω̃) and j ∈ I, and let µd be the discretization of fd on Ω̃. Let

P ∈ R
nx×nx be the discretization of the operator Pµ defined in (14).

Then, the discretization of system (3) is given by

µn+1 = Pµn

Pµ(j) =
∑

i∈I

aµ(i)
∑

l∈J

k̃ilp
l
ijµ(i) + (1− aµ(j))µ(j) (31)

where aµ(i) = (µ(i)− µd(i))/µ(i) ifµ(i)− µd(i) > 0, and aµ(i) =
0 otherwise. Fig. 3 shows snapshots of the simulation of this system at

several times n.

Algorithm 1 presents the pseudocode that simulates the evolution of

agents over a domain Ω with a control set U , until a specified final time

Tf . An agent considers another agent to be its neighbor if their relative

distance is less than h, the parameter of the bump functionφh described

in the previous section. We denote the set of neighbors of agent k at any

given time by N (k). At every time step, each agent computes the value

of the bump function based on the relative distances of its neighbors.

Note that C in Line 31 is a normalizing constant, which is chosen to

ensure that Φ is a probability density. Figs. 4–7 show snapshots of

the N -agent simulation for agent population sizes of N =100, 500,

and 1000, with h = 0.1 in the first three figures and 0.05 in the last

figure.

We first investigate the effect of increasing N while keeping h
fixed on the time evolution of the simulated N -agent system. Fig. 3

shows that as time n increases, the mean-field model indeed converges

asymptotically to the target distribution in Fig. 2. We observe that the

convergence slows down significantly after time n = 500. Following

our discussion in Section V, we expect the stochastic simulations

of the N -agent system to converge to the discretization of system

(27) in the limit N → ∞. Although system (27) is different from

system (3), note that the solutions of the two systems (3) and (27)

converge in the limit h → 0. The snapshots in Figs. 4–6 show that

as the population size N is increased with a fixed value of h, the

agent distribution in the N -agent simulation approaches the solution

of system (31), plotted in Fig. 3. In all three figures, the agent distri-

bution converges to a discrete approximation of the continuous target

distribution.

Next, we study the effect of N on the frequency of agent state

transitions. For each of the N -agent simulations shown in Figs. 4–7,

Fig. 8(a)–(d) plots the time evolution of the 2-norm of five randomly

selected agents’ states. Fig. 8(a)–(c) shows that the agents’ frequency of

state transitions significantly decreases with increasing N ; the agents

eventually stop transitioning between states (i.e., stop moving) for both

N = 500 and N = 1000. This trend can be attributed to our approxi-

mation of a continuous distribution by a discrete function representing

the state of the N -agent system. For low values of N , the resulting

coarse discretization of fd might yield an operator P̃φh∗µN
n

that is not a

sufficiently accurate approximation of P̃fd = I , the condition that stops

agent state transitions. Higher values ofN produce a finer discretization

of fd, which improves the accuracy of the approximation of P̃fd = I .

This validates our claim that control policies designed for the mean-field

model can be implemented on a population of individual agents to

achieve a target distribution, as long as this population is sufficiently

large.

Finally, we investigate the effect of changing h while keeping N
fixed. Similar to the agent distribution in Fig. 6 (h = 0.1), the agent

distribution in Fig. 7 (h = 0.05) approaches the solution of (31) shown

in Fig. 3 as N increases. However, the relative closeness of the distribu-

tions in Figs. 6 and 7 to the distribution in Fig. 3 is not apparent from the

figures. This can be explained by noting that in this case, we are holding

N constant and decreasing h, thereby reversing the order of limits that

we considered in Section V. There is no mathematical guarantee that

the limits commute, and hence, we do not necessarily expect that with

reduced h, the N -agent simulations will more closely approach the

solution of (31). Moreover, a lower value of h for a fixed N yields a

smaller neighborhood in which each agent evaluates the local density,

which can produce a less accurate approximation of P̃fd = I . As

explained previously, this can result in persistent agent state transitions,

which are evident in the simulation of N = 1000 agents when h is

reduced from 0.1 [see Fig. 8(c)] to 0.05 [see Fig. 8(d)]. Increasing h,

on the other hand, can result in the eventual cessation of agent transitions

in smaller agent populations N . This is demonstrated in Fig. 9(a)

and (b), which show that when h is increased from 0.2 to 0.25, the

population of N agents stops transitioning for a lower value of N . The

snapshots of stochastic simulations for N = 1000 at time n = 2000 in

Figs. 6(d), 7(d), 10(a), and 10(b) demonstrate that the agent distribution

becomes smoother ash is increased, due to the smoothening effect of the

mollification.
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Fig. 3. Snapshots of the simulation of system (31) at several times n. (a) n = 50. (b) n = 200. (c) n = 500. (d) n = 2000.

Fig. 4. Snapshots of a stochastic simulation of N = 100 agents, with h = 0.1, at several times n. (a) n = 50. (b) n = 200. (c) n = 500.
(d) n = 2000.

Fig. 5. Snapshots of a stochastic simulation of N = 500 agents, with h = 0.1, at several times n. (a) n = 50. (b) n = 200. (c) n = 500.
(d) n = 2000.

Fig. 6. Snapshots of a stochastic simulation of N = 1000 agents, with h = 0.1, at several times n. (a) n = 50. (b) n = 200. (c) n = 500. (d) n =

2000.

Fig. 7. Snapshots of a stochastic simulation of N = 1000 agents, with h = 0.05, at several times n. (a) n = 50. (b) n = 200. (c) n = 500.
(d) n = 2000.
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Fig. 8. Time evolution of the 2-norm of five randomly selected agents’ states in each of the N -agent simulations. (a) N = 100, h = 0.1
(b) N = 500, h = 0.1 (c) N = 1000, h = 0.1 (d) N = 1000, h = 0.05.

Fig. 9. Time evolution of the 2-norm of five randomly selected agents’
states in two N -agent simulations with different values of N and h
(snapshots of corresponding stochastic simulations not shown).

Fig. 10. Snapshots at time n = 2000 of stochastic simulations of
N = 1000 agents with different values of h. (a) h = 0:2. (b) h = 0:25

VII. CONCLUSION

In this article, we have used a discrete-time mean-field model de-

scribing the state dynamics of a multiagent system to design decentral-

ized state-feedback agent control laws that drive the agents asymptot-

ically to a target state distribution. To implement the control laws, the

agents only require knowledge of the local agent density; for example,

the density of agents within their sensing range. The mean-field model

considered here is the forward Kolmogorov equation of a discrete-time

Markov process that can be stabilized to an arbitrary distribution that has

L∞(·) derivatives. Moreover, the Markov process can be constructed

such that its forward operator is the identity operator at the desired

distribution. This prevents agents from switching between states once

the equilibrium distribution is reached. Although stability and con-

vergence results were proven for the mean-field model, simulations

of the corresponding N -agent system demonstrate that for relatively

small numbers of agents (N � 500), the agents indeed redistribute

themselves to the target distribution and thereafter cease switching

between states. Our use of density-dependent feedback control laws

enables us to specify a more general class of target distributions than in

our prior works [7], [8], in which we considered only open-loop control

laws. In the future, we would like to establish the mean-field limit of

the system considered in this article, as well as extend our results to

swarms of agents governed by M -step controllable dynamical models

(where M > 1).

APPENDIX A

PROOF OF PROPOSITION V.2

Here, we prove the two convergence results stated in the proposition.

1) Let f ∈ L2(Ω). Then, φh ∗ f ∈ L2(Ω). By [26, Th. 8.14], φh ∗

f
h→0
−→ f in the L2 norm. To prove convergence of P̃φh∗f to P̃f as

operators onL1(Ω), chooseg ∈ L2(Ω) (sinceΩhas finite measure,

g ∈ L1(Ω)), and compute the following:

‖P̃φh∗fg − P̃fg‖1 =

∫

Ω

∣∣∣P̃φh∗fg(y)− P̃fg(y)
∣∣∣ dy. (32)

Recall that according to (15), P̃f = P̃ 1
f + P̃ 2

f . We will now evalu-

ate the integral (32) in terms of the two operators P̃ 1
f and P̃ 2

f .

In (32), the component of the integrand that depends on P̃ 1
f is given

by

P̃ 1
φh∗fg(y)− P̃ 1

f g(y) =

∫

Ω

A(x, y)dx, where

A(x, y) = aφh∗f (x)q(x, y)g(x)− af (x)q(x, y)g(x).

We now define the following sets:

E1 = {x ∈ Ω : φh ∗ f(x) > fd(x)}

E2 = {x ∈ Ω : φh ∗ f(x) ≤ fd(x)}

E3 = {x ∈ Ω : f(x) > fd(x)}

E4 = {x ∈ Ω : f(x) ≤ fd(x)}.

We will split the integral
∫
Ω
A over four sets constructed from these

sets, namely, S1 = {E1 ∩E3}, S2 = {E2 ∩E3}, S3 = {E1 ∩
E4}, and S4 = {E2 ∩E4}. Note that S1 � S2 � S3 � S4 = Ω.

Consider the integral of A over S1

∫

E1∩E3

A ≤ ‖q‖∞

∫

E1∩E3

aφh∗fg − afg

= ‖q‖∞

∫

E1∩E3

φh ∗ f − fd

φh ∗ f
g −

f − fd

f
g

= ‖q‖∞

∫

E1∩E3

φh ∗ f − f

φh ∗ f

fd

f
g. (33)
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Note that on E1 ∩E3, φh ∗ f
‖·‖2
−→ f > fd > 0, and ‖ fd

f
‖∞ < 1.

Since fd is bounded from below a.e. on Ω, we must have that

‖ 1
φh∗f

‖∞ < ∞. Continuing the computation from above

‖q‖∞

∫

E1∩E3

φh ∗ f − f

φh ∗ f

fd

f
g

≤ ‖q‖∞

∥∥∥∥
1

φh ∗ f

∥∥∥∥
∞

∥∥∥∥
fd

f

∥∥∥∥
∞

∫

E1∩E3

φh ∗ f − fg

≤ ‖q‖∞

∥∥∥∥
1

φh ∗ f

∥∥∥∥
∞

∥∥∥∥
fd

f

∥∥∥∥
∞

‖φh ∗ f − f‖2‖g‖2.

The second inequality mentioned above follows from Hölder’s

inequality. Since we have established that ‖φh ∗ f − f‖2 → 0 as

h → 0, the integral of A over S1 must converge to 0. Next, we

consider the integral of A over S2

∫

E2∩E3

A ≤ ‖q‖∞

∫

E2∩E3

−
f − fd

f
g

≤ ‖q‖∞

∥∥∥∥
f − fd

f

∥∥∥∥
∞

‖g‖2m(E2 ∩E3). (34)

The second inequality follows from Hölder’s inequality. In this

case, we will establish that m(E2 ∩E3) → 0 as h → 0, which

would imply that the integral of A over S2 converges to 0. We can

compute m(E2 ∩E3) as

m(E2 ∩E3) = m({φh ∗ f − fd ≤ 0} ∩ {f − fd > 0})

= m({(φh ∗ f − f) + (f − fd) ≤ 0} ∩ {f − fd > 0}).

Note that

{(φh ∗ f − f) + (f − fd) ≤ 0} ⊂ {(φh ∗ f − f) ≤ 0}.

Continuing the computation from above

m(E2 ∩E3) ≤ m({φh ∗ f − f ≤ 0} ∩ {f − fd > 0})

= m({φh ∗ f − f < 0} ∩ {f − fd > 0}).

By [26, Proposition 2.29], since φh ∗ f − f → f in the L2 norm

as h → 0, then φh ∗ f − f → f in measure; that is, m({φh ∗ f −
f ≤ δ}) → 0 as h → 0 for every δ > 0. Therefore, we must have

that m(E2 ∩E3) → 0 as h → 0, and consequently, the integral of

A over E2 ∩E3 must converge to 0. Now, consider the integral of

A over S3

∫

E1∩E4

A ≤ ‖q‖∞

∫

E1∩E4

φh ∗ f − f

φh ∗ f
g

≤ ‖q‖∞

∥∥∥∥
1

φh ∗ f

∥∥∥∥
∞

‖g‖2‖φh ∗ f − f‖2m(E1 ∩E4). (35)

The second inequality follows from Hölder’s inequality. Since we

have that ‖φh ∗ f − f‖2 → 0 as h → 0, the integral of A over

E1 ∩E4 converges to 0. Finally, the integral ofAoverS4 is trivially

zero
∫

E2∩E4

A =

∫

E2∩E4

aφh∗fg − afg = 0. (36)

Thus, we have shown that
∫
Ω
A → 0 as h → 0.

Returning to the integral (32), the component of the integrand that

depends on P̃ 2
f is given by

P̃ 2
φh∗fg(y)− P̃ 2

f g(y)

=
(
1− aφh∗f (y)

)
g(y)− (1− af (y)) g(y)

= af (y)g(y)− aφh∗f (y)g(y) := B(y). (37)

This term is equal to the integrand of each of the four integrals

considered in (33)–(36). Since we showed that each of these

integrands tends to 0 as h → 0, we must have that B(y) → 0 as

well.

We can now evaluate (32) as

‖P̃φh∗fg − P̃fg‖1

=

∫

Ω

∣∣∣∣
∫

Ω

A(x, y)dx+B(y)

∣∣∣∣ dy

=

∫

Ω

∣∣∣∣
∫

S1�S2�S3�S4

A(x, y)dx+B(y)

∣∣∣∣ dy.

Since we have shown that both
∫
Ω
A → 0 andB(y) → 0 ash → 0,

the outer integral converges to 0 as well, and we have our result.

2) The proof of this result is similar to the proof of result (1).
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