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Abstract—A wireless network operator typically divides its
radio spectrum into a number of subbands and reuse them to
serve traffic in many cells. To mitigate co-channel interference,
allocation of spectrum and power resources needs to be adapted
to time-varying channel and traffic conditions throughout the
network. Standard model-based network utility maximization is
severely limited by the computational complexity and the diffi-
culty of acquiring instantaneous global channel state information.
In this paper, a learning-based method is proposed to optimize
discrete subband allocations and continuous power allocations
using (generally delayed and inaccurate) channel state informa-
tion in local and nearby cells. For these two types of allocations,
two complementary deep reinforcement learning algorithms are
designed to be executed and trained simultaneously to maximize a
joint objective. Simulation results show that the proposed method
outperforms a state-of-the-art fractional programming algorithm
as well as a previous solution based on deep reinforcement
learning.

I. INTRODUCTION

In today’s cellular networks, the spectrum is divided into
many subbands. Each cellular device suffers from the co-
channel interference caused by nearby access points which use
the same subbands. The interference can be particularly severe
with dense, irregularly placed access points. Joint subband
selection and transmit power control is a crucial tool for
interference mitigation.

For the single band scenario, state-of-the-art optimization
methods such as fractional programming (FP) [1] have been
applied to the power control problem to reach a near-optimal
allocation. We assume that the number of subbands is much
less than the number of cellular devices and that each link
can occupy at most one subband at a time. Therefore, the
joint subband selection and power allocation problem involves
mixed integer programming [2].

Conventional optimization-based schemes such as fractional
programming are model-driven and require a mathematically
tractable and sufficiently accurate model [3]. Furthermore,
such a scheme is in general centralized and requires instan-
taneous global channel state information (CSI). A centralized
solution’s computational complexity does not scale well for a
large number of cellular devices. Therefore, its implementation
is quite challenging in a practical scenario where network and
channel conditions vary.

This material is based upon work supported by the National Science Foun-
dation under Grants No. CCF-1910168, No. CNS-2003098, AST-2037838,
and AST-2037852 as well as a gift from Intel Incorporation.

Recently, there has been extensive research on reinforce-
ment learning based transmit power control which is purely
data-driven [3]. For the single band scenario, deep Q-learning
has been considered on a “centralized training and distributed
execution” framework in [4]–[6]. Since deep Q-learning ap-
plies only to discrete power control, the continuous transmit
power domain had to be quantized in [4]–[6] which may
introduce a quantization error as discussed in [7], [8]. Refer-
ence [7] first showed the performance in [5] can be improved
by quantizing the transmit power using logarithmic step size
instead of linear step size, and propose replacing deep Q-
learning algorithm by an actor-critic learning algorithm called
deep deterministic policy gradient that applies to continuous
power control.

For the multiple band scenario, Tan et al. [2] have proposed
to train a single deep Q-network that jointly handles both
subband selection and transmit power control. One major
drawback of this approach is that the action space is the
Cartesian product of available subbands and quantized transmit
power levels. Therefore, the deep Q-network output layer size
and the number of state action pairs to be visited for conver-
gence during training do not scale well with increasing number
of subbands. Moreover, the joint deep Q-learning approach is
not directly applicable to a problem that includes both discrete
and continuous variables. To overcome these challenges, we
propose a novel approach that consists of two layers, where
the bottom layer is responsible for continuous power allocation
with deep deterministic policy gradient, and the top layer
schedules discrete subbands by adapting deep Q-learning.
Using simulations, we evaluate the proposed learning scheme
by comparing it with the joint deep Q-learning approach and
the fractional programming algorithm in terms of convergence
rate and sum-rate performance.

II. SYSTEM MODEL

In this paper, we consider a cellular network with N links
that are placed in K cells and share M subbands. We denote
the set of link and subband indexes by N = {1, . . . , N}

and M = {1, . . . ,M}, respectively. Link n is composed of
receiver n and its transmitter n. Transmitter n is placed at the
corresponding cell center that includes receiver n within its
cell boundaries. We consider a fully synchronized time slotted
system with a fixed slot duration of T . We assume that all
transmitters and receivers are equipped with a single antenna.
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Due to relative scarcity of available spectrum, K tends to be
much larger than M , i.e., K � M . We let each link pick one
subband at the beginning of each time slot.

Similar to [9], our channel model is composed of two parts:
large and small scale fading. For simplicity, we assume that
the large-scale fading is same across all subbands, whereas the
small-scale fading is frequency selective, i.e., different across
all subbands [2]. Within each subband, small-scale fading is
assumed to be block-fading and flat. Let g(t)n!l,m denote the
downlink channel gain from transmitter n to receiver l on
subband m in time slot t:

g(t)n!l,m = �n!l

���h(t)
n!l,m

���
2
, t = 1, 2, . . . , (1)

where �n!l is the large-scale fading that includes both path
loss and log-normal shadowing, and h(t)

n!l,m is the small-
scale Rayleigh fading. We assume that the large-scale fading
remains the same through many time slots. Note that in case
of mobile receivers, a time index can be associated with �n!l.

We adopt Jake’s fading model to describe h(t)
n!l,m [9].

Accordingly, the small-scale fading for each channel follows
a first-order complex Gauss-Markov process:

h(t)
n!l,m = ⇢h(t�1)

n!l,m +
p
1� ⇢2e(t)n!l,m, (2)

where the correlation between two successive fading blocks
⇢ = J0(2⇡fdT ) with J0(.) being the zeroth-order Bessel
function of the first kind depending on the maximum Doppler
frequency fd. Besides, h(0)

n!l,m and the channel innovation
process e(1)n!l,m, e(2)n!l,m, . . . are independent and identically
distributed circularly symmetric complex Gaussian random
variables with unit variance. The cells are agnostic to the
specific fading statistics a priori.

We use binary variables ↵(t)
n,m to indicate the subband

selection of link n in time slot t. If link n selects subband
m, we have ↵(t)

n,m = 1 and ↵(t)
n,j = 0 for every j 6= m. We

denote the transmit power of transmitter n in time slot t as p(t)n .
The signal-to-interference-plus-noise at receiver n on subband
m in time slot t is given by

�(t)n,m =
↵(t)
n,mg(t)n!n,mp(t)n

P
l 6=n ↵

(t)
l,mg(t)l!n,mp(t)l + �2

, (3)

where �2 is the additive white Gaussian noise power spectral
density at receiver n. Assuming normalized bandwidth, the
downlink spectral efficiency achieved by link n on subband
m during time slot t is

C(t)
n,m = log

⇣
1 + �(t)n,m

⌘
. (4)

III. PROBLEM FORMULATION

Denoting subband and power vectors in time slot t as
↵(t) =

h
↵(t)
1,1,↵

(t)
1,2, . . . ,↵

(t)
N,M

i|
and p(t) =

h
p(t)1 , . . . , p(t)N

i|
,

respectively, we formulate the sum-rate maximization problem

as [2], [10]:

maximize
p(t),↵(t)

NX

n=1

C(t)
n (P1a)

subject to 0  p(t)n  Pmax, 8n 2 N , (P1b)

↵(t)
n,m 2 {0, 1}, 8n 2 N , 8m 2 M, (P1c)
X

m2M

↵(t)
n,m = 1, 8n 2 N , (P1d)

where C(t)
n =

PM
m=1 C

(t)
n,m is link n’s achieved spectral

efficiency, and (P1b) restricts the transmit power to be non-
negative and no larger than Pmax.

Unfortunately, (P1) is in general non-convex and requires
mixed integer programming to be carried out for each time slot
as channel varies. Even for a given subband selection ↵(t), this
problem has been proven to be NP-hard [10]. Conventional
algorithms such as fractional programming are centralized
solutions to (P1), but these algorithms still require many
iterations to converge and their computational complexity does
not scale well with increasing number of links. Besides that,
obtaining instantaneous global CSI in a centralized controller
and sending the allocation decisions back to all transmitters is
difficult in practice.

IV. A DEEP REINFORCEMENT LEARNING FRAMEWORK

A. Overview of Reinforcement Learning

Model-free reinforcement learning [11] is a trial-and-error
process where an agent interacts with an unknown envi-
ronment in a sequence of discrete time steps to achieve a
task. At time t, agent first observes the current state of the
environment which is a tuple of relevant environment features
and is denoted as s(t) 2 S , where S is the set of possible
states. It then takes an action a(t) 2 A from an allowed
set of actions A according to a policy which can be either
stochastic, i.e., ⇡ with a(t) ⇠ ⇡(·|s(t)) or deterministic, i.e.,
µ with a(t) = µ(s(t)) [12]. Since the interactions are often
modeled as a Markov decision process, the environment moves
to a next state s(t+1) following an unknown transition matrix
that maps state-action pairs onto a distribution of next states,
and the agent receives a reward s(t+1). Overall, the above
process is described as an experience at t + 1 denoted as
e(t+1) =

�
s(t), a(t), r(t+1), s(t+1)

�
. The goal is to learn a

policy that maximizes the cumulative discounted reward at
time t, defined as

R(t) =
1X

⌧=0

�⌧r(t+⌧+1), (5)

where � 2 (0, 1] is the discount factor.
Next, we introduce two reinforcement learning methods that

are used in the proposed design.
Q-learning [11] is a popular reinforcement learning method

that learns an action value function Q(s, a). Let ⇡(a|s) be the
probability of taking action a conditioned on the current state
being s. Assuming a stationary setting, the Q-function under
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a ⇡ is the expected cumulative discounted reward when action
a is taken in state s:

Q⇡(s, a) = E⇡

h
R(t)

���s(t) = s, a(t) = a
i
. (6)

Assuming the optimal policy ⇡⇤(a|s) be equal to 1 for the most
favorable action a⇤ that maximizes Q⇡⇤

(s, a) for a given state
s, the optimal Q-function satisfies the Bellman equation:

Q⇡⇤
(s, a) = R(s, a) + �

X

s02S

P
a
ss0 max

a0
Q⇡⇤

(s0, a0), (7)

where R(s, a) = E
⇥
r(t+1)

��s(t) = s, a(t) = a
⇤

is the ex-
pected reward of taking action a at state s, and P

a
ss0 =

Pr
�
s(t+1) = s0

��s(t) = s, a(t) = a
�

is the transition probability
from state s to next state s0 with action a. The classical Q-
learning algorithm uses a lookup table to represent the Q-
function values and employs the fixed-point relation in (7) to
iteratively update these values. However, the classical lookup
table approach is not practical for continuous or large discrete
state spaces.

To overcome this drawback, deep Q-learning replaces the
lookup table with a deep neural network which is called
deep Q-network and expressed as q(s, a; ) with  being its
parameters [13]. As described in [13, Fig. 1], its input layer
is fed by a given state s, and each port of its output layer
gives the Q-function value for input s and corresponding action
output. Deep Q-learning is an off-policy learning method that
stores the past experiences in an experience replay memory
denoted as D in the form of e = (s, a, r0, s0). A small value
for the maximum size of this memory, |D|, will result with
over-fitting, while a large value will slow down learning.
Additionally, deep Q-learning adopts “quasi-static target net-
work” technique that implies creating a target network with
parameters  target to predict the target values in the following
mean-squared Bellman error:

L ( ,D) = E(s,a,r0,s0)⇠D

h
(y(r0, s0)� q (s, a; ))

2
i
, (8)

where the target y(r0, s0) = r0 + �maxa0 q (s0, a0; target). To
minimize (8),  is updated by sampling a random mini-batch
B from D and running gradient descent by

r 
1

|B|

X

(s,a,r0,s0)2B

(y(r0, s0)� q (s, a; ))
2
. (9)

Each iteration is followed by updating  train by  . During
the training, instead of fully exploiting the updated policy,
the learning agent applies the ✏-greedy strategy which takes a
random action with a probability of ✏ for exploration.

On the other hand, to overcome the challenge of applying
deep Q-learning to continuous action spaces. Reference [14]
had proposed an actor-critic learning scheme called deep
deterministic policy gradient. It iteratively trains a critic net-
work, defined by �, to represent an action-value function, and
uses the critic network to train an actor network, defined by
✓, that parameterizes a deterministic policy. We define the
deterministic policy as µ : S ! A, and for a given state s, the
action is determined by a = µ(s;✓). Hence, the target policy

Fig. 1: Diagram of the proposed power control algorithm.

µ⇤ satisfies the Bellman property:

Qµ⇤
(s, a) = R(s, a) + �

X

s02S

P
a
ss0Q

µ⇤
(s0, µ⇤(s0)). (10)

Similar to deep Q-learning, the critic network is trained by
minimizing the mean-squared Bellman error defined in (8).
However, compared to the deep Q-network, the critic network
has only one output that gives a Q-function value estimate for
a given state and action input. In addition, the target in (8)
becomes ycritic(r0, s0) = r0 + �q (s0, µ(s0;✓);�target).

Since q(s, a;�) is differentiable with respect to action,
caused by action space being continuous, the policy parameters
are simply updated by the following gradient:

r✓
1

|B|

X

(s,... )2B

q (s, µ(s;✓);�) . (11)

Note that a noise term is added to the deterministic policy
output for exploration during training.

B. Local Information and Neighborhood Sets

We next describe the extent of the local information at
transmitter n at the beginning of time slot t. In each time
slot, transmitter n has two types of neighborhood sets for each
subband. The first set is called “interferers” that consists of c
indexes and is denoted as I

(t)
n,m. For subband m, transmitter

n first divides nearby transmitters into two groups whether
they used subband m during time slot t � 1 or not in order
to prioritize the transmitters that occupy subband m. Then, it
sorts each group according to the interfering channel strength
at receiver n from their transmitters during time slot t� 1 by
descending order, i.e., g(t�1)

i!n,m. Lastly, the first c sorted nearby
transmitters forms I

(t)
n,m.

The second set is the set of “interfered receivers” that
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consists of c indexes and is defined as O
(t)
n,m. Again, each

nearby receiver j is first divided into two groups based
on ↵(t�1)

j,m . The sorting criteria within each group becomes
the potential significance of the interference strength at re-
ceiver j from transmitter n during time slot t � 1, i.e.,
g(t�1)
n!j,m

⇣P
l2N ,l 6=j ↵

(t�1)
l,m g(t�1)

l!j,mp(t�1)
l + �2

⌘�1
.

Compared to [5], we follow simpler practical constraints
on the available local information to be used in the state set
design, as our main goal is to show the usefulness of the
proposed approach. At the beginning of time slot t, transmitter
n has access to the most recent local information gathered
at receiver n for each subband m such as g(t)n!n,m, g(t)i!n,m

8i 2 I
(t)
n,m, and the sum interference power at receiver n

which is measured just before the new policy decisions at the
beginning of time slot t and can be formulated with subband
and power allocation from time slot t�1 and interfering chan-
nel gains from time slot t as

P
l2N ,l 6=n ↵

(t�1)
l,m g(t)l!n,mp(t�1)

l .
Conversely, the measurements gathered at nearby receivers
are delayed by one time slot, e.g., g(t�1)

n!j,m 8j 2 O
(t)
n,m. Apart

from the channel related measurements, we assume that each
interfered and interferer neighbor also sends crucial key per-
formance indicators delayed by one time slot due to network
latency, e.g., its achieved spectral efficiency during last slot.

C. Proposed Multi-Agent Learning Scheme

In order to allow distributed execution, each link, specif-
ically, each transmitter, operates as an independent learning
agent by treating other agents as part of its local environment.
Hence, our approach is based on multiple learning agents,
rather than a single learning agent that controls the entire ac-
tion space whose dimensions will grow exponentially with the
total number of links. The single learning agent approach has
similar drawbacks as the conventional centralized optimization
algorithms in terms of complexity and cost of communica-
tion. In contrast, the proposed multi-agent approach is easily
scalable to larger networks and can operate with just local
information after training.

At the beginning of each time slot, each agent successively
executes two policies to determine its associated subband and
transmit power level. The reinforcement learning component
at the top layer is a deep Q-network that is responsible for the
subband selection. The bottom layer uses deep deterministic
policy gradient algorithm to train the actor network responsible
for agent’s transmit power level decisions. As described in
Fig. 1, the actor network at the bottom layer requires the
subband decision of the top layer to determine its state input
before setting agent’s transmit power.

We next describe key components of the proposed design:
1) Action set design: All agents have the same pair of

action spaces. The top layer uses a discrete action space
that consists of subband indexes, i.e, a(t)n 2 Asubband =
{1, . . . ,M} = M. Hence, we denote the subband selection
of agent n for time slot t as a(t)n . The bottom layer has a
continuous action space defined as Apower = [0, 1]. Since
the bottom layer is executed after the top layer, we denote

its action as a(t)
n,a(t)

n

. We later multiply it by Pmax to get

p(t)n = Pmaxa
(t)

n,a(t)
n

.
2) State set design: To be used in the state, all agents rank

the subbands at the beginning of each time slot according
to their direct channel gain to the total interference power
ratio. We denote the rank as z(t)n,m. Now we describe the
state of agent n on subband m at time t as:

s(t)n,m =

(
↵(t�1)
n,m p(t�1)

n , C(t�1)
n , z(t)n,m, g(t)n!n,m,

X

l 6=n

↵(t�1)
l,m g(t)l!n,mp(t�1)

l ,
n
g(t)i!n,m,↵(t�1)

i,m p(t�1)
i ,

C(t�1)
i , z(t�1)

i,m

���8i 2 I
(t)
n,m

o
,
n
g(t�1)
n!j,m, g(t�1)

j!j,m,

C(t�1)
j , z(t�1)

j,m ,
X

l 6=j

↵(t�1)
l,m g(t�1)

l!j,mp(t�1)
l

���8j 2 O
(t)
n,m

o)
.

(12)

Since the top layer does the subband decisions that requires
information from all subbands, it should have a broader
environment view than the bottom layer. Thus, for the top
layer, we define agent n’s state as s(t)n =

n
s(t)n,1, . . . , s

(t)
n,M

o
.

Then, the bottom layer uses s(t)
n,a(t)

n

as its input.
3) Reward Function Design: Both learning layers collab-

oratively aim to maximize the objective in (P1a). Conse-
quently, they share the same reward function that describes
the overall contribution of agent’s combined subband and
power decisions on the sum-rate objective. This includes
agent’s own spectral efficiency and a penalty term de-
pending on its externalities to its interfered neighbors on
subband a(t)n [5]. For the reward function, we first compute
the externality of agent n to interfered j 2 O

(t+1)

n,a(t)
n

during
time slot t as

⇡(t)
n!j = C(t)

j\n,a(t)
n

� C(t)

j,a(t)
n

, (13)

where C(t)

j\n,a(t)
n

is the spectral efficiency of j without the

interference from agent n on subband a(t)n during slot t:

C(t)

j\n,a(t)
n

= log

0

@1 +
↵(t)

j,a(t)
n

g(t)
j!j,a(t)

n

p(t)j

P
l 6=n,j ↵

(t)

l,a(t)
n

g(t)
l!j,a(t)

n

p(t)l + �2

1

A .

(14)

Next, we define the reward of agent n as

r(t+1)
n = C(t)

n,a(t)
n

�

X

j2O
(t+1)

n,a
(t)
n

⇡(t)
n!j . (15)

4) Centralized Training: Since multi-agent setting violates
the environment stationary assumption of the underlying
Markov decision process discussed in Section IV-A, there
is an extensive research to develop multi-agent learning
frameworks with good empirical performance, but rarely
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Fig. 2: A network configuration example.

with theoretical guarantees [15]. We follow some recently
emerged multi-agent learning concepts like transfer learn-
ing and parameter sharing that increase the stability and
convergence rate by taking advantage of the fact that
agents are learning together [16]. Therefore, our method
encourages stability by training global policy parameters
shared across the network and trained by a centralized
trainer that gathers experiences of all agents. As shown
in Fig. 1, centralized training stores two experience-replay
memories for each layer: Dsubband and Dpower. At time t,
the most recent experience at Dsubband and Dpower from
agent n is e(t�1)

n,subband =
⇣
s(t�2)
n , a(t�2)

n , r(t�1)
n , s(t�1)

n

⌘
and

e(t�1)
n,power =

⇣
s(t�2)

n,a(t�2)
n

, a(t�2)

n,a(t�2)
n

, r(t�1)
n , s(t�1)

n,a(t�2)
n

⌘
, respec-

tively, due to the backhaul delay of 1 time slot. Note that
the next state in e(t�1)

n,power is with respect to the old subband
selection a(t�2)

n .
During time slot t, the centralized training runs one gradi-
ent step for each policy. As described in Fig 1, it broadcasts
most recent versions of  and ✓ once per Tu time slots.
The broadcasting takes Td time slots to finish, again due
to the backhaul delay.

V. SIMULATION RESULTS

In this section, we compare the performance of the proposed
learning approach with some conventional optimization meth-
ods and joint learning as the number of subbands increases.

Throughout the simulations, we choose two network sizes
of (K,N) = (5 cells, 20 links) and (10 cells, 50 links), re-
spectively. As described in Fig. 2, we consider homogeneous
hexagonal cells of 400 meters radius with each cell having
equal number of uniformly randomly placed receivers. We
vary the number of subbands M from 1 to 10. Following
the LTE standard, we set the distance dependent path loss
to 128.1 + 37.6 log10(d) (in dB), where d is transmitter-to-
receiver distance in km. The log-normal shadowing standard
deviation is 10 dB. We set fd = 10 Hz, T = 20 ms,
Pmax = 38 dBm, and �2 = �114 dBm. Similar to [5], the
signal-to-interference-plus-noise ratio is capped at 30 dB in
the calculation of the spectral efficiency in (4) due to practical
constraints on front end’s dynamic range.

We compare the proposed approach with four benchmarks.
The first is the joint learning approach as proposed in [2].
We discretize the transmit power into 10 levels. The second
is called the ‘ideal FP’. It runs the fractional programming
algorithm with an assumption of full instant CSI. The first
scenario ignores any delay during the execution of centralized
optimization or passing the optimization outcomes to the
transmitters. On the other hand, the third benchmark is called
the ‘delayed FP’ and assumes one time slot delay to run the
fractional programming algorithm. In the final benchmark,
each transmitter just picks a random subband and transmit
power at the beginning of every time slot.

We divide training into four episodes with each running
for 5,000 time slots. At the beginning of each episode, we
randomly sample a new deployment, and we reset the explo-
ration and learning rate parameters. For faster convergence,
we replace the noise term added to the deterministic policy
output with Q-learning’s e-greedy algorithm. We have made
the source code (including the implementation and hyper-
parameters) available at [17]. For better stability, we ensure
that the bottom layer has higher learning rate than the top
layer, and it uses a higher initial value of ✏, but with a higher
decay rate. The fine-tuning of the ✏ value is important to avoid
converging to undesired situations in which all agents want to
transmit with Pmax or with zero power.

In Fig. 3, we show the training convergence of the proposed
and joint reinforcement learning scheme. For M = 2 subbands,
as shown in Fig. 3a, their convergence rates are quite close.
However, when we increase the number of subbands, the joint
learning approach is not able to keep up with the proposed
approach in terms of training convergence. This is mainly
caused by the increased size of the joint learning’s action
space and increased deep Q-network output layer complexity.
Next, we test the performance of the trained policies on several
randomly generated deployments in Table I. Testing shows that
a pretrained policy is still usable on new deployments and the
proposed approach is better scalable than the benchmarks.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated a novel multi-agent reinforcement
learning framework for the joint subband selection and power
control problem. With centralized training and distributed
execution, only local information is needed by the agent under
practical constraints. In addition, as the number of subbands
increases, the proposed learning approach has better training
convergence and higher sum-rate performance than the joint
learning approach. For future work, we are looking into better
and easily tunable training and exploration schemes to better
adapt to the environment non-stationarity of the multi-agent
setting.
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