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ABSTRACT

A coupled peridynamic (PD) corrosion-fracture model is introduced, in which the local corrosion rate is
determined by solving the corresponding electrostatic problem. By being able to consider variable distri-
butions of corrosion rates along the anodic surface, the model is particularly useful for simulating gal-
vanic corrosion. A novel analytical calibration for parameters in the corrosion model is provided. The
corrosion model is verified in terms of the electric potential, current density, and corrosion depth, and
validated against experimental results for AE44 (Mg alloy) - mild steel and AE44 - AA6063 (Al alloy)
galvanic couples taken from the literature. The PD results are also compared with those from a COM-
SOL FEM-based model. It is found that an artificial initial “step-down” in geometry at the galvanic joint
is required for the COMSOL model in order to provide reasonable results, but it is not needed in the
PD model. A coupled galvanic corrosion-fracture problem accounting for the combined electro-chemical
attack and strains induced by mechanical loadings is solved.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Corrosion induced by galvanic coupling can cause deep and
rough trenches at the material interface, leading to dangerous sit-
uations like other types of localized corrosion, such as pitting cor-
rosion. As stresses rise at these locations, cracks can easily initi-
ate and grow catastrophically. Efficient and accurate predictions of
galvanic corrosion problems can help evaluate their effect on en-
gineering structures and provide insights on solutions to prevent
it. Due to the simultaneous influence of multiple physical mech-
anisms involved in galvanic corrosion, computational models are
necessary for this purpose. A comparison between different com-
putational models for corrosion can be found in [1]. Major recent
advances in galvanic corrosion modeling comes with models based
on finite element method (FEM) [2-4] or phase field (PF) method
[5,6].

A FEM-based model was developed for galvanic corrosion using
the commercial software COMSOL MultiPhysics® (COMSOL here-
after) [2] and validated against the experimental results in [3]. For
the galvanic couple between steel and magnesium alloy, although
the initial current density and the final corrosion depth obtained
by the model have similar patterns to the measured data, the max-
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imum current density and corrosion depth, as well as the tran-
sition across the material interface, present nontrivial deviations
from the experimental data. A similar model was used in [4] to
investigate the effect of mechanical loading on the galvanic cor-
rosion behavior by including stress/strain-dependent electric po-
tential. However, the corrosion pattern obtained by this model,
when the mechanical loading is absent, agree even less with those
from the experiments shown in [3]. This deviation possibly comes
from the linear, instead of piecewise linear, fitting of the polariza-
tion curve. The authors of [4] also studied crack initiation in the
galvanic couple under uniaxial tension loading by computing the
stress intensity factor, approximating the specimen as a side edge
notched tensile specimen. As the corrosion front progresses, it de-
parts from such an idealization of the geometry, and these approx-
imations may not be sufficiently accurate. Corrosion depths closer
to experimental observations in [3] were obtained in [7,8] by tak-
ing into account the effect of corrosion deposition on the corrosion
rate.

A PF model for corrosion in galvanic couples was introduced in
[5]. However, in the simulation results, the current density distri-
bution does not match well a reference solution given by the FEM-
based COMSOL simulation [3]. In addition, the corrosion depth at
the junction of the galvanic couple deviates from experimental ob-
servation [3] significantly. A different PF model was developed in
[6] and was verified against a FEM-based model built in COMSOL,
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but the polarization was neglected along the corroding interface
and no validation tests against experimental data were presented.

One notes that, for these FEM-based /PF models, when corro-
sion happens at the interface between two joined metal parts, an
artificial step-down on the anode side needs to be introduced be-
cause of mathematical and numerical inconsistencies [5,6]. As we
shall see, in the absence of such a step, an incorrect evolution of
the corrosion front is obtained (see discussion in Section 4.2 be-
low). Determining a proper height of this artificial step has not
been examined in the published literature. Moreover, with these
models based on partial differential equations (PDEs), there is, so
far, no attempt to couple galvanic corrosion in a couple with that
of crack initiation and propagation. This is partly due to difficul-
ties in being able simulate the complex interactions of these two
critical mechanisms: singularities (in classical models), moving-
boundary problem, arbitrary geometries, etc.

Recently, the peridynamic (PD) method has been applied to
corrosion modeling [9,10]. PD models view corrosion as material
damage caused by the dissolution of metal into the electrolyte,
coupled with the diffusion of metal ions in the electrolyte [9,10].
A concentration-dependent damage index monitors the evolving
corrosion front (phase changes from solid to electrolyte) and the
gradual changes in material degradation across the Diffusion-based
Corrosion Layer (DCL) [9]. This provides us a better understand-
ing of the factors that lead to the degradation of mechanical prop-
erties (strength, ductility, etc.) observed in corroded samples. The
PD model has been especially advantageous in simulating stress-
corrosion cracking, as shown in the results for pit-to-crack transi-
tion obtained in [11].

The existing PD corrosion models, however, use an important
simplification: for activation-controlled corrosion, one assumes a
constant potential along the corrosion front. The constant potential
determines a constant current density from the polarization curve
which is measured experimentally. This approach avoids solving
for the electric potential distribution along the corrosion front and
is acceptable for pitting corrosion cases in which the potential dis-
tribution (and therefore the current density) along the pit surface
is close to uniform [12]. To cover situations like salt layer forma-
tion or passivation at the corrosion front when diffusion-controlled
conditions dominate (and the potential distribution varies signifi-
cantly along the corrosion front), the existing PD models include
concentration-based rules that can cause pausing/stopping of metal
dissolution as specific locations along the corrosion front [10,13],
effectively leading to non-uniform corrosion rates (even if the in-
put corrosion rate is constant). Under activation-controlled condi-
tions, however, these mechanisms are not triggered, and the ex-
isting PD corrosion models would not apply to galvanic corrosion
problems [14], in which activation-controlled conditions are criti-
cal and the electric potential (or the corrosion rate) varies signif-
icantly along the corrosion front. Moreover, these variations can
also change drastically as the corrosion front evolves. This is the
reason why one needs to compute the distribution of the electric
potential along the corrosion front in order to predict the evolution
of galvanic corrosion.

For galvanic corrosion problems, FEM-based and PF models first
evaluate the electric potential by solving the Laplace’s/Poisson’s
equation, with the boundary condition (BC) given by the cor-
responding metals’/alloys’ polarization curves (Tafel’s equations).
The electric potential determines the current density, which is re-
lated to corrosion rate by Faraday’s law [2,6,15]. Following a sim-
ilar procedure, in this paper we introduce a PD electric potential
model, and couple it with the existing PD corrosion model [10].
This model is an important extension compared with the previ-
ous PD model and will be applicable to a larger class of corro-
sion problems, including galvanic corrosion. When solving for the
electric potential, in order to apply the nonlinear Robin BCs at the
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arbitrarily-shaped corrosion front and reduce the PD surface effect
in the PD electric potential solver, we use a recently introduced
autonomous fictitious nodes method (FNM) ([16]).

In addition to introducing the PD electrostatic solver to com-
pute the electric potential, we reformulate the PD corrosion disso-
lution model in [9,10] based on electrochemistry, and replace the
previous numerical calibration stage (which required a trial solu-
tion in the pre-processing step) with an analytical one. By elim-
inating the numerical calibration, the model is significantly more
efficient in problems with highly non-uniform current densities
along an arbitrary-shape corroding surface, which is often the case
in galvanic corrosion problems. The damage-dependent corrosion
model used in the original PD corrosion model in [9] is no longer
needed. The new model eliminates the required (in order to match
the experimental observations) artificial changes to the given ge-
ometry of a galvanic couple in models based on PDEs (e.g. COM-
SOL, phase-field).

We verify the new model for a uniform corrosion 2D case
against a classical analytical solution in terms of the electric poten-
tial and current density at the beginning of the corrosion process,
as well as the evolution of the corrosion depth in time. The model
is validated against experimental galvanic corrosion results avail-
able in the literature for AE44 (Mg alloy) - mild steel and AE44 -
AA6063 (Al alloy) galvanic couples. The results for the initial cur-
rent density distribution and final corrosion profile are also com-
pared with those from a model built using COMSOL. A coupled
corrosion-fracture problem is solved to show the potential of the
new PD model in resolving failure caused by the combination of
sharp corrosion damage (induced by galvanic corrosion) and me-
chanical loading.

2. Kinetics of galvanic corrosion

In galvanic corrosion, the metal/alloy with lower corrosion po-
tential is the anode and corrodes first. The ordering of corrosion
potential (the galvanic series) for metals/alloys, for a specific en-
vironment, is determined from experiments (see pages 171 and
172 in [17]). However, the galvanic series only gives information
about the corrosion tendency. The actual corrosion rates of the an-
ode must be determined by separate experiments and the mixed
potential theory by overlaying the polarization curves of the con-
stituent individual metals/alloys [2], as schematically shown in
Fig. 1.

Electrochemical polarization is the change in electrode potential
due to the flow of current (see page 127 in [14]). When the over-
potential is small, the corrosion process is activation controlled. In
this corrosion type, the current density is governed by Tafel’s law:

. . ¢-%o
ig=1ipx 1077 (1)

where ij is the uncoupled exchange current density, ¢ is the elec-
trode potential, ¢y is the uncoupled corrosion potential and 8 is
the geometric slope of the linear portion of the semi-logarithmic
plot of the polarization curve.

When the overpotential is large, the resulting high anodic dis-
solution rate saturates the electrolyte near the anode surface, and
the corrosion process becomes diffusion controlled. In this case,
the current density is determined by concentration changes in re-
actants or products near an electrode surface. Between these two
corrosion types, there exists a transition corrosion type called IR
controlled corrosion which is caused by resistance of the elec-
trolyte to the current flow. It happens because there is a finite dis-
tance between the reference electrode and the metal surface to be
investigated (see pages 130 and 131 in [14]). There are other factors
which can affect the corrosion rate, such as the pH field, temper-
ature field, formation of corrosion products, etc. In real corrosion
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Fig. 1. Schematic polarization curves of anode and cathode in a galvanic couple (see page 177 in [17]). ¢§ and ¢§ are the uncoupled corrosion potential and if and ij are
the uncoupled exchange current density for the cathode and anode, respectively. ¢coupie and icoupie are the coupled corrosion potential and current density, respectively.

problems, the corrosion rate is simultaneously influenced by mul-
tiple factors and can be determined from the polarization curve
measured from corresponding experiments.

For the computational modeling of galvanic corrosion in this
work, we focus on the anodic reaction (metal dissolution). The ca-
thodic reaction and the mass transfer in the electrolyte will not
be included. Consider an anodic reaction: M — M9* + ge™, the cur-
rent density is formulated by Eq. (1) in which the unknown co-
efficients are determined by the polarization curve obtained from
experiments.

Note that i, scales linearly with the magnitude of the molar dis-
solution flux (|Jyiss|) at the corrosion front via Faraday’s law [18]:

ia = qFUdiss|~ (2)

where q is the charge number and F is the Faraday’s constant. To
use Eq. (1) to determine the distribution of current density at the
electrode surface, we have to solve for the potential distribution in
the electrolyte domain. The electrostatic field satisfies the follow-
ing Poisson equation [19,20]:

p_ P
V2¢=g=g 3)

where ¢ is the electric potential, p is the charge density, &y and
o are the electric permittivity and conductivity of the medium, re-
spectively. For problems in this work, electroneutrality is satisfied
in the electrolyte domain, therefore, Poisson’s equation reduces to
the Laplace’s equation:

V2 =0 (4)

Rather than using this classical model (Laplace’s equation) to
approximate the electric potential in the electrolyte for the exam-
ples shown in Section 4, we will use the corresponding nonlocal
(PD) version of this equation because it will be easier to couple it
with the mechanical PD model that we seek to employ for simu-
lating the corrosion and fracture of the sample exposed to galvanic

conditions and mechanical loadings. The PD model for the electro-
static solver is given in Section 3.2.1.

3. A coupled PD model for electric potential-driven corrosion
and fracture

The PD theory is a nonlocal extension of the classical contin-
uum mechanics [21]. The PD formulation is in the form of integro-
differential equations (IDEs) rather than PDEs used in classical local
theories. In PD models, discontinuities such as cracks/damages can
initiate and propagate naturally and autonomously [22-25]. While
the PD method has been primarily used to deal with mechanical
behaviors [22,24,26-29], it has also been employed in diffusion-
type problems involving cracks and damage, including thermal dif-
fusion [30-33] and mass transport (e.g. corrosion) [1,9,10,13,34-
36].

Consider a PD body occupying the domain © € R¥, k=2 or 3,
in which a point x € Q interacts with points & ¢ Q\x in a neigh-
borhood Hy (called the horizon region of x, usually selected to be
a disk in 2D, sphere in 3D, centered at x). The radius of Hy is called
the horizon size (or simply, the horizon) and denoted by 4. Objects
that carry the pairwise nonlocal interactions between points are
called bonds. Fig. 2 schematically shows a PD body with a generic
point x, its family and its horizon.

In this section we first briefly review the PD mechanical (for
fracture) model and then introduce an extended PD corrosion
model. Finally, we show how these models are coupled together
into a PD corrosion-fracture model. For further discussion on the
model the following definitions for solid and liquid domains are
useful:

Qs(t) = {x € QIC(x, t) > Coar}
Qqiss (£) = {¥ € Q|Csae < C(X, £) < Cplia} (5)
Qt) ={xe Q|C(x,t) < Ca}

where C,iq refers to the concentration of metal atoms in the in-
tact solid phase, and Csy; is the saturation value for dissolved metal
atoms in electrolyte. Note that Qg;(t) € Q(t).
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Fig. 2. Nonlocal interaction between point # and an arbitrary point & located in its
horizon Hy.

3.1. Bond-based PD mechanical model

The equations of motion for the bond-based PD mechanical
model, at each x € €, can be written as [22]:

PX)i(X, 1) = /f(u(ﬁ,t)—u(x,t),&—x)dVngb(x,t) (6)
HxN2s

where t is the time, p is the density field, u is the displacement
vector field, f is the pairwise force in the PD bond x — &, and b is
the body force field. dV; is the volume (area in 2D, length in 1D)
associated with ® that is covered by Hy. The pairwise force for a
prototype micro-elastic brittle material is defined as [22]:

E+n
I=ot g ”
where & =& — x is the relative position of & and x in the refer-
ence configuration, 5 = u(&, t) — u(x, t) is the relative displacement
with respect to the reference configuration, c is the micro-modulus
function or the elastic stiffness of the bond which can take differ-
ent forms depending on the required horizon-scale behavior [37],

S= w is the relative deformation or bond strain. PD bonds

break when they reach the critical relative deformation sy and the
state of a bond is tracked by the bond damage factor u as [22]:

2o J1 ifs(x,&t) <spforall0<t <t
nx2 t)_{ ( O)Otherwise

(8)

which means once a bond breaks, it does not carry bond force any-
more. With the breakage of bonds, failure starts to accumulate, and
cracks begin to initiate and propagate. The damage index d is used
to measure the damage level at a point:

f M(ﬁ, X, t)dV,@

Hx

B "
Hy

After spatial discretization, d(x,t) is the ratio of the number of
broken bonds to that of total bonds connected to point x at time

(9)
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t. When all bonds connected to point x are broken, d(x,t) =1 and
point ¥ becomes a free point. In this work, we consider the con-
stant micro-modulus function [27]. For plane stress conditions, we

9E 47 Gy

have ¢ = =55 and so =/ > (E and Gg are Young's modulus and

energy release rate, respectively), while for plane strain conditions,

_ A48E _ /571Gy
we have c = =75 and so = |/ 757

For mechanical equilibrium problems with no body forces,
but in which damage may evolve in time because of corrosion,
Eq. (6) becomes:

/f(u(ﬁ, t) —u t),&—x)dV; =0 (10)
Hy

where ¢t is the time when equilibrium is tested/enforced after a
certain evolution of the corrosion process. Appropriate conditions
on the boundaries (volume constraints) have to be assigned to this
equation for specific problems. In many cases, it is convenient to
enforce these nonlocal BCs to approximate as close as possible the
local BCs one would use in a classical model. For each of the ex-
amples solved below we describe these conditions in detail.

3.2. PD corrosion model

Corrosion is the result of an electrochemical process. In the
presence of electrolytes, metal corrosion can be represented as
a dissolution process of the solid material (metal) into the lig-
uid medium (electrolyte). The diffusion of metal ions in the elec-
trolyte can affect the dissolution rate. This process can be effec-
tively described by the original PD corrosion model [9,10], which
treats corrosion as a diffusion-type problem in a bi-material sys-
tem, with specific diffusivities assigned to the solid (an effective
diffusivity, not its actual one), liquid and interface phases. Later is
was recognized ([10]) that important savings can be achieved by
focusing only on the dissolution layer part of the solid (the DCL,
Diffusion-based Corrosion Layer [38]) and the electrolyte, as the
rest of the solid (with its very small actual diffusivity) does not
directly participate in the corrosion process. Specifically, the disso-
lution flux of metal ions crossing the solid-liquid interface is used
in the PD diffusion equation to solve for the metal ion concentra-
tion in the bi-material system. The nonlocality in PD models in-
troduces a length scale which facilitates modeling of the dissolu-
tion flux, which cannot be defined in local models when jump-
discontinuities are present at the interface [10].

The dissolution process causes mechanical damage through a
thin layer (several micrometers-thick) at the corroding surface [38-
41]. To model mass transport and material damage simultaneously
in the PD corrosion model, the material damage definition (d) in
Eq. (9) is employed and two sets of bonds are overlaid: transport
bonds and mechanical bonds. Transport bonds are responsible for
diffusion/dissolution of metal ions/atoms, while mechanical bonds
provide the link between strain- and corrosion-induced damage.
The corrosion damage process is the progression of material dam-
age/disintegration into the intact material. When the concentra-
tion at a solid point drops below the saturated concentration, the
point suffers a phase change from solid to electrolyte (its diffusiv-
ity is switched to that of the electrolyte), and all of its mechanical
bonds are broken (its damage value becomes 1). Material points
with a damage value lower than 1 are part of the solid phase: in-
tact (d = 0, no broken bonds) or partially damaged (0 <d < 1).

Existing PD models for corrosion can capture important changes
that happen near the corrosion front (on the solid side) and offer a
more complete description of corrosion damage than was possible
before [1,9,10,13]. However, in these models, an important simpli-
fication is used for activation-controlled corrosion, namely that the
overpotential is a constant value (independent of location) along
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the corrosion front. This value can be measured from experiments
and determines the current density from corresponding polariza-
tion curves. This treatment avoids solving for the electric poten-
tial distribution along the corrosion front and is acceptable for pit-
ting corrosion cases in which the potential distribution (and there-
fore the current density) along the pit surface is close to uniform
[12]. To cover situations like salt layer formation or passivation at
the corrosion front when diffusion-controlled conditions dominate
(and the potential distribution varies significantly along the cor-
rosion front), the existing PD models include concentration-based
rules that lead to the pausing/stopping of metal dissolution [10,13].
Under activation-controlled conditions, these mechanisms are not
triggered, and the existing PD corrosion models would not apply
to galvanic corrosion problems [14], in which activation-controlled
conditions are critical and the electric potential (or the corrosion
rate) varies significantly along the corrosion front. Moreover, these
variations also change drastically as the corrosion front evolves.
Therefore, to predict galvanic corrosion, it is necessary to com-
pute and update the potential distribution throughout the corro-
sion process, so that the distribution of corrosion rates along the
corrosion front can be updated accordingly.

To achieve this goal, we introduce a PD electrostatic solver to
compute the electric potential distribution in the electrolyte do-
main. In addition to that, we reformulate the PD corrosion dissolu-
tion model in [10] based on electrochemistry to substitute the nu-
merical calibration with an analytical one. This change makes the
model more reliable for problems with highly non-uniform current
densities along arbitrary corroding surface, as in the case of gal-
vanic corrosion. Moreover, we show that the damage-dependent
corrosion model which was used in the original PD concentration-
dependent damage model is no longer needed.

3.2.1. PD electrostatic model

In galvanic corrosion, one can use the classical model (Laplace’s
equation) shown in Eq. (4) to find the electric potential. However,
because we would like to couple the electric potential solver with
the PD corrosion model, it is more convenient (for a seamless in-
tegration) to formulate and solve the corresponding PD problem of
Laplace’s equation in Eq. (4) to find the electric potential needed in
the corrosion model. The PD model for finding the electric poten-
tial is identical to that for steady state diffusion, with a constant
micro-diffusivity:

/de _ (11)
X e

When using Eq. (11) to solve for the electric potential in the
electrolyte, the BCs away from the metal surfaces can be approxi-
mated as homogeneous Neumann-type conditions (zero flux across
those boundaries). The BC that has to be specified on the metal
surfaces, according to the Ohm’s law, is:

i(p.t) = -0 Vap(p.t) (12)

in which p is a point at the metal surface, o is the electric con-
ductivity, i is the current density and Vy¢ = V¢ -n, where n is
the outward unit normal. The relation between i and ¢ can be
measured experimentally and expressed using Tafel’s equation (see
Eq. (1)). This makes Eq. (12) a nonlinear Robin type BC [2], written
as:

P(.H)—¢g

iox 10~ 7 ' = —0Vad(p.t). (13)

To enforce the local Robin BC on the metal surfaces in the PD
model, we use an autonomous mirror-type fictitious nodes method
(FNM) [16], which has been designed to handle boundaries of ar-
bitrary shape. Implementation details are provided in Appendix A.
Once the electric potential is obtained, the current density at each

Electrochimica Acta 391 (2021) 138968

point p € 02 can be determined by Eq. (13) or the Ohm’s law (see
Section 3.2.2). For simplicity of implementation, along the zero-
flux boundaries, we do not use fictitious nodes, and these con-
ditions are then, approximately, but naturally, represented in the
model.

3.2.2. A modified PD corrosion dissolution model

PD corrosion models use a phase-dependent nonlocal diffu-
sion equation on a domain that contains both liquid (electrolyte)
and solid (metal) phases. Diffusion of metal ions/atoms in the lig-
uid/solid, and the dissolution of solid into liquid at the solid-liquid
interface can all be represented using the PD corrosion model as
discussed in [9,10]. In this work, however, we assume activation-
controlled conditions, i.e., corrosion rate is not influenced by mass
transport in the liquid domain €, (all liquid points are set to al-
ways have zero metal-ion concentration). In addition ([10]), mass
transport in the solid €25 is too slow relative to the interfacial mass
transport (dissolution). Therefore, for these conditions we ignore
diffusion in €2; and 2. Consequently, as shown in Fig. 3 for pitting
corrosion, only transport bonds connecting solid and liquid points
across the anode surface (pit wall) are involved in the dissolution
of solid into liquid. These are called dissolution bonds.

Based on the above assumptions, the PD corrosion dissolution
model can be written as:

IC(Xg.t) N A
T /H " J(%. %4, t)dVg (14)

where C(x4,t) is the concentration at a dissolving point X; € Qgjss
at time t, and the integrand J(&,x4,t) is the mass flow density
from x4 to a point & € Hy, N ;. In the model presented in [10],
J was assumed to depend on the concentration gradient between
the ends of a transport bond, x; and &:

C(R.t) — C(xg.t)

L (15)
|® — 42

J(R.xq. 1) = kg

where k; is the constant micro-dissolvability, a parameter that
needs to be calibrated such that the dissolution rate in the PD
model matches the measured/given activation-controlled corrosion
rate. Since there is a linear correlation between «; and the cur-
rent density i [9], i.e., x4 = Ai, one can find the correlation con-
stant A by using a trial simulation as follows [10]: a simulation of
uniform corrosion under activation-controlled regime is performed
with a trial micro-dissolvability «{1!; if the resulting current den-
sity is denoted by i, we have A = «{rial/itrial, For cases like gal-
vanic corrosion where i is location-dependent, this would lead to a
location-dependent «; in Eq. (15), which could be computed from
Ai(p(xy), t) (since the electrostatic solver gives the current density
value at each point along the metal surface), where p(x;) is the
point in Iy (the corrosion front/surface, see Fig. 4) that minimizes
the distance to x;4. One still would have to find A, through a cali-
bration procedure. Each set of x; which share the same p are de-
noted by x (p), as shown in Fig. 4 for the case of a smooth bound-
ary.

Since the calibration procedure described above was based on
a trial simulation that assumed uniform corrosion for a flat sur-
face, the calibrated value would not be valid on anode surfaces
with high curvature (where the radius of curvature is in the or-
der of the horizon size). Such high curvatures are likely to appear
in galvanic corrosion in which the corrosion rate can vary signifi-
cantly along the anode surface, especially near the anode-cathode
joint. Moreover, even for flat anode surfaces, this calibration ap-
proach would fail to predict the corrosion rate accurately at loca-
tions near a corner of the anode (e.g., anode-cathode joint), since
dissolving points located near a corner have significantly smaller
number of dissolution bonds compared with those which are lo-
cated elsewhere. This would result in unrealistically slow disso-
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solid-solid bonds
dissolving solid
region ({gjss)

Fig. 3. A schematic of different regions and bonds defined in the PD corrosion model at the corrosion front (redrawn from [10]). The PD horizon size is §. Solid-solid bonds
are considered as inert here, and diffusion in liquid is also ignored (by enforcing zero concentration at all times on liquid nodes).

corrosion
front/surface [r

Q .
HES -Qs \Qdiss

X pel"f
e x; € x(p)

o
~ x(p) € Qaiss

Fig. 4. Examples of dissolving points (that form the set x (p)) which share the current density of point p € I', for an arbitrary, but smooth, boundary.

lution rates at locations which can be critical in the evolution of
material damage and failure. For example, the corrosion rate at the
anode-cathode joint in galvanic corrosion plays a significant role in
material failure since these joints are likely to become stress con-
centration locations once corrosion starts.

While these issues could be overcome with a series of calibra-
tions performed on a sufficient number of different geometrical
configurations of the anode surface, that would lead to a rather
complex algorithm/implementation, as well as an increase in the
computational cost of the simulation. A preferred option is an an-
alytical, instead of a numerical, calibration for this model param-
eter. Recall that most PD models are setup using analytical rela-
tionships between bond parameters, such as micro-modulus and
micro-diffusivity, and material properties, like elastic modulus and
diffusivity [22,30].

Furthermore, the dependency of mass flow density in
Eq. (15) on concentration distribution becomes less reliable
for problems with highly non-uniform current densities along an
arbitrary corroding surface, which is the case of galvanic corrosion,
for example. From electrochemistry, we know that anodic disso-

lution is driven by the corrosion reaction (directly related to the
current density), which is determined by the potential distribution
at the anode surface, and is only indirectly dependent on the
concentration distribution near the corrosion front. Therefore, we
modify the definition of the PD mass flow density in Eq. (15) to
make it directly depend on the current density distribution (de-
termined by the PD electrostatic model, see Section 3.2.1) at the
corrosion front, as follows:

wi(q(xd), t)
1% — x4l

J(® xg.t) = (16)

where  is a constant that will be calibrated analytically for a cer-
tain curvature at p by matching the PD flux jggs(p, t) (see below)
with a given constant dissolution flux Jss (p, t). Note that here we
use a constant w, but other options are not precluded, for example
one could choose w = w(||® — x4]|).

Consider a flat surface as shown in Fig. 5, Ji2 (p.t) is con-

tributed from all dissolution bonds connected to x; € x (p) and can
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X(p)

Qs\Qdiss

Fig. 5. Computation of the PD flux at a point p at a flat anode surface.

be computed as [25]:

5 écos‘ §
dlSS(p’ // /
00

—;
£ S E

///

where £ is the bond length, 0 is the angle between the bond and
the surface, and z is the distance between x; and the surface (or
P(xy)). Since Jyss (P, t) = i(p. t)/qF according to Faraday’s law, by
letting JE0 (P, t) = Jaiss (P. t), We obtain:
1
T gF8?’

One more step is required to make this model applicable for
general corrosion problems, including galvanic corrosion. The PD
flux definition in Eq. (17) assumes a flat surface (see Fig. 5). In
order to have this analytical calibration process work for the PD
transport equation in Eq. (14) independent on the curvature of
the anodic surface, we modify the transport equation as described
next.

In general, uniform corrosion (same current density i every-
where) on a metal surface of arbitrary shape, as shown in Fig. 4,
should evolve perpendicular to the surface and progress with the
same speed everywhere. In the PD framework, this means that
points x; with the same distance to the surface (z) should have
the same rate of concentration loss, independent of the curvature
of the surface at p(x;) and the number of dissolution bonds con-
nected to x; (the shape of the horizon region contained in the

electrolyte domain, Hy, N €2;). Therefore, we can write xgt) _
f(z(x)), where f(z(x4)) is the integral of the mass flow density

J(®. x4, t)£d0OdEdz

'("’t)gdedgdz_ wipHs?  (17)

(18)

of all dissolution bonds connected to x4, that should not depend
on the shape of Hy, N €. Since we calibrated w for a flat surface,
we need to compute f (z(x4)) over a flat surface:

f(z(g)) = / / ’("(”d) MP®D)- O ¢ dgds = 2wi(p(xy). 1)

«8cos1Z ZzIn §+tar1 (cos‘lz) )
1) z 1)

The modification to the PD model for corrosion dissolution de-
fined by Eqgs. (14) and (15) is:

(19)

% = 20i(p(Xy), ) {(Scos‘]; -zln [i + tan (cos“ g)] }
(20)

Therefore, we replace the integro-differential model in
Egs. (14) and (15) with an ordinary differential model (Eq. (20))
in which z(x,) for each x; € Qg;,,, together with i(p(x,), t), deter-
mines the dissolution flux. Note that computing the distance z(x;)
is, in a sense, computationally equivalent to evaluating the integral
in Eq. (14), because it involves, after discretization, searching
through the nodes in Hy, N €2 for the one closest to x,.

We remark that if we wanted to calibrate w using a surface dif-
ferent than a flat one, we would have to use that same geometry
for computing f(z(x4)). Eq. (20) works naturally for cases where
i is highly location-dependent, or when the curvature of the cor-
rosion surface is high (at corners, for example). In Section 4.1, we
will use the discrete version of Eq. (20) to estimate the numerical
error of resulting current density introduced by the discretization,
for a problem with a known (classical) analytical solution.

We now explain how to find the corresponding p and the dis-
tance to the surface z, for a given x;. With the meshfree-type
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liquid node
dissolving solid node (x;)
implicit corrosion front

X approx. corrosion front (p)

O example for a pair of mirror nodes

Fig. 6. A schematic of corrosion front after spatial discretization.

(one-point Gaussian quadrature) spatial discretization of the do-
main (see Fig. 6), the corrosion surface I'y is located between the
solid nodes and liquid nodes and can be approximated by those
liquid nodes p which are closest to solid nodes, as shown in Fig. 6.
To determine p(x4), we search all ¥ € Hy, N €; for the one closest
to x4. If there are multiple such points, we select the one which
makes the angle between X;p and the nonlocal outward unit “nor-
mal” at x4, n(x;), the smallest. The nonlocal outward unit “nor-
mal” at x; (which approximates the classical outward normal on
the boundary of a domain) is [16]:
i (2? - xd)dﬁ
H,‘de,
n(xy) = (21)

f (ﬁfxd)dﬁ

H,‘d ng,

Since we are not tracking the corrosion front with a moving
mesh (we use a fixed and uniform discretization), to improve the
approximation of current density distribution along I'y, we take
z(xg) ~ ||, — Pl| — 5%, and used it in Eq. (20).

We compute the current density i(p, t) from Ohm’s law:

lp(B.t) — d(BR.t)|

Ip*-pIl
Here, p® is the reflection/mirror node of p (see Appendix A)
through I'y and ¢ (PR, t) is the electric potential assigned at p; to
enforce the local BC for the electric potential solver as discussed in
Section 3.2.1 and Appendix A. If the polarization curve (or Tafel's
equation) is used, we can also compute i(p, t) using Eq. (13) with

(B, 6) = 3[P(B. ) + P(BR, O)].

(22)

i(pt)y=0

3.2.3. Concentration—-dependent damage models in PD simulation of
corrosion

Modeling of corrosion-induced damage is important in under-
standing stress-corrosion cracking [42]. In the combined action of
mechanical loading and environmental attack, material damage can
be caused by strain- or chemically-induced atomic bond ruptur-
ing. In the corresponding PD model, we will account for damage
accumulation (see Eq. (9)) from both sources: corrosion-induced
damage (monitored by d.(x, t)) and mechanical strain-triggered
damage (monitored by ds(x, t)). Note that, in the context of corro-
sion, Eq. (8) is augmented so that the condition for u = 0 includes
corrosion-induced bond breaking.

A concentration-dependent damage (CDD) model was intro-
duced in [9] to establish a relationship between corrosion and

the damage of mechanical bonds. Given the intrinsic randomness
of the corrosion reaction (partly due to the variations in the mi-
crostructure of the material), one can assign a probability P(x, t)
of the bonds connected at x € s at time t to break, based on
the concentration drop at x, for all (intact) mechanical bonds con-
nected to x. In order to determine P(x, t), a linear dependency
between the corrosion-induced damage d.(x,t) and the concentra-
tion C(x,t) was proposed in [9]:

1,C(x, t) < Csar
de (x.t) = {Csolidfc(x-f) ,Coat < C(x, 1) < Cooid

Csolid —Csat

(23)

where C,iq refers to the concentration of metal atoms in the in-
tact solid phase, and Csy¢ is the saturation concentration for metal
ions in electrolyte. Reaching Cs3r was assumed as a good approxi-
mation for when the solid-to-liquid phase-change takes place. Note
that for activation-controlled corrosion, we assume that if a nodal
concentration reaches below Cs,¢, that concentration is set to zero.
The change in damage (from one time-step to the next, at a point)
can then be expressed in terms of the probability P(x, t) as [9]:

Adc(X.t;) = dc (X, t;) —dc (X, t;i_1) = (1 —dc (X, ti_1))P(x. ;) (24)

Combining Eqgs. (23) and (24), one finds an expression for the
probability of corrosion damage at x € s and ¢; in terms of the
concentration drop at that point:

1 Cx.ti1) —C&.t;)
1 —dc(x, ti—l) < )
_ C@&.tig) —C&x. )

B C(X, ti—l) - Csat

This quantity now allows us to break a corresponding number
of mechanical bonds connected to x so that the damage evolves
(stochastically) according to Eq. (23). The stochastic procedure for
selecting which mechanical bond breaks at a given time Vx € Qs is
as follows [9]:

Px.t) =

Csotia — Cat

(25)

(1) Compute/update the concentration field at this time step.
(2) Loop over all x € €.
a Compute the probability of breaking P at x; if P =0, then
skip this x, else continue.
b Loop over all & € Hy N Q.
i If the mechanical bond connecting x and X is already
broken, then skip this bond, else continue.
ii Generate a random number R(x, X) from a uniform dis-
tribution in interval [0, 1]; if R(x, %) is smaller than or
equal to P, then break the bond (note that each bond
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connects two points, thus, once a bond breaks, it is con-
sidered broken for both points).
¢ End loop over all & € Hy N Q.
(3) End loop over all x € ;.

Note that Eq. (23) gives the expected corrosion-induced dam-
age value d. at point x, based on the concentration drop at that
point only. After performing the bond-breaking procedure for all
X € Qqjss, the damage index d at each x € Q; is computed from
Eq. (9). However, as we can see in this procedure, a mechanical
bond x — X can be broken due to either x or & which means that
the damage index at a point x € €2, at the end of a time step,
can also be affected by bond-breaking events due to concentra-
tion drop at & € Hy N Q24;s. This means that the damage index com-
puted by Eq. (9) may have a slightly larger values than what is
expected from Eq. (23). As a result, there could be material points
that reach d = 1 (totally detached from other solid points) that still
have C > Csa¢. Physically, this would mean that a small part of the
solid (a speck, defined by a node) is now surrounded by electrolyte
and would dissolve rather instantaneously. This leads to the con-
clusion that we can assume this location to, effectively, now be
electrolyte phase. This was the reason for the damage-dependent
corrosion (DDC) model to be used in [9], where such nodes where
switched from a the solid phase to the liquid phase (by chang-
ing the micro-diffusivity of transport bonds connected to them). In
the absence of DDC, given the “effective” diffusion in solid used in
[9] to calibrate the model to a given corrosion rate, one obtains
an ever expanding corrosion-affected layer, which is not physically
observed (see [38]).

An important update to the CDD + DDC model in [9] has ap-
peared in [10]. There, it was recognized that it was sufficient to
monitor changes in the Diffusion-based Corrosion Layer (DCL, a
layer of thickness § at the corrosion surface), and only model
transport through PD transport bonds whose end nodes are either
solid-liquid or liquid-liquid. The numerical calibration to match a
certain corrosion rate for the model in [10] was performed to de-
termine the micro-dissolvability of an dissolution (anode-liquid)
bond, as explained above in the paragraph after Eq. (15). While the
DDC part of the coupled corrosion-damage model was still used in
[10], it had become redundant. Because of the numerical calibra-
tion procedure, the model in [10] can work with or without the
DDC part. However, the new PD formulation for corrosion disso-
lution, see Eq. (20), introduced here, does not work with DDC be-
cause it uses an analytical calibration, which assumes dissolution
happens only through dissolution bonds, and phase-change takes
place only when the concentration at a node drops below Csat:

{ if C(x, t) <Gy then x € (26)
if Gaat < C(®, t) < Cyojig then x € Q4

In the context of the new coupled corrosion-damage model,
Egs. (20) and (25), adding the DDC part would artificially speed up
the corrosion rate. Therefore, the coupled corrosion-induced dam-
age model we use here is based on Eqgs. (20), (25), and (26).

3.3. PD corrosion-fracture model

In previous sections, we reviewed the mechanical fracture
model and introduced different ingredients of the modified corro-
sion model. In this section, we introduce the coupling strategy for
these models and discuss their numerical implementation.

The elasticity (with fracture), electrostatics, and mass transfer
(with damage and phase-change) models are coupled into a PD
model called the PD corrosion-fracture (PD-CF) model and consists
of the following set of equations:

Electrochimica Acta 391 (2021) 138968
Elasticity Eqgs. (7) and ((10)):

/csugi—ZdVﬁ = 0Vx € Q; (displacement) (27)

x

where s = W (bond strain)

Electrostatics Eqs. (11) and ((22)):
/ $(R) - o)
Ho X —x]2
lp(.t) — p (PR, 1)
1% - pl
Corrosion Egs. (20), ((25) and (26)):

dV; = 0Vx € , (electric potential)

(current density) (28)

i(p.t)y=0

acgi 2 20i(p(X),t) {8c051§ —zIn |:i +tan (cos’1 g)} } Vx
€ Quiss (mass transport)
Cx ti1)—-C& ¢t
C(X, tiq ) - Csat
€ Q; (bond — breaking probability)

ifC(x, t) <Csa thenx e
ifCsat < C(x, t) <Cyoiig then x €

P(x,t;) = ) Vx

Q (phase — change) (29)
N

Bond damage (corrosion- and strain-induced bond breaking) is
defined as:

1 ifx,&eQ,and s(x, %, t') < s and
R(x,t') > P(x,t), ¥t €[0,¢] (30)
0 otherwise

n(x % t) =

where R is the random number generated for each bond in the
algorithm given in the previous section.

These equations are accompanied by appropriate initial and
BCs. The initial concentration distribution for the corrosion and the
local BCs to be enforced for electrostatics and elasticity are speci-
fied for each of the examples considered here in Sections 4 and 5.
In Appendix A, we explain how we enforce local BCs in PD models.

In the PD-CF model, the elasticity model (Eq. (27)) computes
the displacements field (u) and bond strains (s) in the solid;
the electrostatic model (Eq. (28)) computes the electric potential
distribution (¢) in the electrolyte and current density distribu-
tion (i) on electrode surfaces; the corrosion model (Eq. (29)) up-
dates the distribution of metal concentrations (C), computes the
corrosion-induced bond-breaking probability (P) and determines
the necessary phase changes from the dissolution process; the
damage model (Eq. (30)) updates the strain- and corrosion-induced
bond-failure in the solid. To visualize damage results, in a post-
processing phase, we determine the total nodal damage index
value (d) by Eq. (9). Note that in the PD-CF model, d(x, t)~
ds(x, t) + (1 —ds) x dc(x, t) in which d. represents the corrosion-
induced damage index and ds is mechanical strain-triggered dam-
age index.

The implementation of the PD-CF model is shown in Fig. 7.
In the main solver, the corrosion solvers are called at each time-
step, and the electric potential and displacement fields are up-
dated at the first time-step and any time step if any of the solid
nodes becomes liquid in the previous time step. In the electro-
static solver, because the FNM is used to impose BCs, the elec-
tric potential needs to be solved iteratively, with the solution in
the domain and constraint in the fictitious region updated after
each iteration, until two sequential solutions differ by less than a
given tolerance. Since this system is linear, we use the Conjugate
Gradient (CG) method to solve it. The Euclidean norm is used to
measure the difference between two solutions, and the tolerance
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Fig. 7. Workflow of the PD corrosion-fracture (PD-CF) model.

is set to le-6. The displacement field is solved by the Nonlinear
Conjugate Gradient (NCG) method [43,44] and, ideally, should be
updated every time new corrosion damage happens. However, in
this work, to save computational time, we update it as frequently
as the electric potential field. The influence of this treatment on
the stress corrosion cracking behavior is insignificant [11]. If any
mechanical bond breaks after we updated the displacement field,
the update needs to be repeated until equilibrium is satisfied and
no more bonds break in the process. The simulation stops when
the final time-step is reached, or when the number of successive
updates of displacement field exceed a certain value, e.g., 50, since
this would be an indication of unstable crack growth, and a differ-
ent solver (e.g., explicit) may need to be used.

The corrosion rate may depend on the stress field [36]. While
we will show an example solving a coupled corrosion-fracture
problem (in which changes in sample geometry induced by the
galvanic dissolution process leads to higher tensile stresses/strains
and fracture) in Section 5, here we assume the corrosion rate to
be independent of the stress field. It is, however, possible to intro-
duce the stress-dependent corrosion rate model into a PD model
of corrosion, as has been presented in [36]. The examples shown
in Section 4 do not employ the mechanical solver, because no me-
chanical loadings are involved. The full model is used in the exam-
ple in Section 5, where we simulate the combined effects of gal-
vanic corrosion and failure induced by corrosion and mechanical
loadings.

To discretize the PD IDEs, we use the meshfree method with
one-point Gaussian quadrature, in which handling damage and
fracture is natural [24]. Uniform grids are used to discretize the
domain, both electrolyte and solid regions. Detailed descriptions of
the discretization used can be found in [10].

10

4. Verification and validation of the PD corrosion model

In this section, we first verify the new PD corrosion model
against a problem with the corresponding classical analytical so-
lution. Then, validation against experimental data is provided. We
only consider activation-controlled corrosion, therefore mass trans-
port between any two points in the electrolyte domain is ignored.

4.1. Verification of the new PD formulation for galvanic corrosion

To verify the new corrosion model for galvanic corrosion, we
consider the example shown in Fig. 8. The cathode and anode are
in electric contact by a perfect conductor, in the presence of an
electrolyte with conductivity o. The electrode potential of cathode
and anode are ¢ and ¢y, respectively. The whole domain is infinite
in the x direction and the electrolyte region has an initial height of
ho.

If both electrodes are nonpolarizable, the classical formulation
for the electric potential distribution in the electrolyte domain is:

V2p =0
{ ¢(x.y=0.t) = ¢
¢(X’y:h(t)7t) :d)a

where h(t) is the height of the electrolyte domain at time t. The
classical solution of Eq. (31) is:

(31)

PY) = da - %@a ~¢0) (32)
and the mass flux at the anode surface is:

0 (g — Pc)
J= g 3)
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Fig. 8. Sketch of the example used to verify the PD galvanic corrosion model (re-
drawn from [6]).

Table 1.

Parameter values for the example shown in Fig. 8.
Parameters  Value Parameters  Value
Pa 06V F 96, 485 C/mol
b 01V ho 0.1 m
o 2.5S/m L 0.1 m
Csolid 143 mol/L q 2

where q is charge number of a metal ion and F is Faraday’s con-
stant. Values for these parameters are provided in Table 1. Note
that the width of the domain is set to L in the PD simulation, and
periodic BCs are imposed at x = :i:%, to effectively make the do-
main infinite in the x direction. To accomplish this, two fictitious
regions (A and B), with their width equal to the horizon size, are
added outside the domain, as shown in Fig. 9. The electric poten-
tial in these fictitious regions is mapped from that of the corre-
sponding subdomains (A and B) in the solution domain, so that
the left and right boundaries of the solution domain are effectively
connected by periodicity.

We first compute the electric potential in the electrolyte do-
main to verify our PD electrostatic model. We choose § =4 mm
and Ax =1 mm for the simulation. The relative difference (using
the Euclidean norm) of the electric potential compared to the clas-
sical solution (see Eq. (32)) is 1.67e-6, when the tolerance for con-
vergence is set to 1e-6. The uniform current density at the anode
surface computed by Eq. (22) is 12.50183 A/m?, while the classical
solution is 12.5 A/m2, leading to a relative difference of 1.46e-4.
Note that the convergence study on the electric potential is not
needed for this problem, because the exact solution has a linear
distribution and the FNM enforces the local BCs exactly, i.e., the PD
solution matches the analytical classical solution exactly regardless
of the grid density. In fact, a finer grid leads to a larger error due
to accumulation of round-off numerical errors.

Next, we analyze the numerical error introduced by using the
discretized form of Eq. (20) to update the concentration in the cor-
rosion dissolution model. Assuming that at a point on the anode
surface the given current density (e.g., obtained from the electric
potential) is iy, the relative difference between iy and the result-
ing current density if, generated by using the discrete form of

1
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Table 2.

Numerical errors (for
different  values  of
m) for the resulting

current density when
the discrete version
of Eq. (20) is used to
update the concentra-
tion in the corrosion
dissolution model.

m-value |%|
2 7.15e-2
4 2.18e-2
8 6.4e-3
16 1.8e-3
32 5.2e-4

Eq. (20) can be written as:

-m .
lPD — 1o
i

m
_-2 > {mcos*1 B _ ZIn [T + tan (cos*1 Q)]}
m2 P m Zy m
(34)

where m is the ratio of horizon size and grid size (6/Ax), and
z;, = k—1/2. This relative error only depends on the value of m
and should drop as m increases (or as 1/m decreases). The error for
different m-values is given in Table 2; as expected, larger m-value
leads to smaller error (with a convergence rate close to quadratic).
However, as we increase the m-value (with § fixed), the scaling
of the total computational cost also increases significantly, since
with this type of numerical solution, the scaling is O(N?), where N
is the total number of nodes used in the discretization [45]. Note
also that a larger m-value does not necessarily improve the accu-
racy because of concurrent increase in round-off error. It is pos-
sible to choose different m-values for each model in the coupled
PD-CF model to balance cost and accuracy. When a large m-value
is needed to capture some fine details, the fast convolution-based
PD method recently introduced, may be used as an alternative ap-
proach, since it has been shown to lead to significant computa-
tional efficiencies [45,46]. Here, considering that the relative error
in ipp is acceptable when m = 4, we use this value. Note that since
we calibrated the PD models, for any horizon size, to match a given
current density (see Eq. (18)), these numerical errors are indepen-
dent of the horizon size.

To verify the coupling of the electrostatic model and the cor-
rosion dissolution model, we test the corrosion evolution for the
problem in Fig. 8 by checking the corrosion depth z;, = (h — hg) as
a function of time t. The solution for the corrosion depth in the
classical model is [6]:

+h%—h0

2= \/M (35)

qF csiiq

The evolution of corrosion depth obtained by the PD corrosion
model (using effective corrosion depth, see Appendix B) agrees
with the classical solution, as shown in Fig. 10. The relative dif-
ference of the final depth between them is 2.07%, which is close
to the numerical error in the effective current density for m =4
shown in Table 2. Note that the relative difference in electric po-
tential between the PD and classical solutions, and the approxi-
mation of the current density by Eq. (22), also contribute to the
relative difference in corrosion depth between the PD and classical
models.
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Fig. 9. Schematic of the implementation of periodic BCs in PD simulations.
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Fig. 10. Comparison of the corrosion depth vs. time between PD solution and classical solution (Eq. (35)) for the problem shown in Fig. 8. Computing the effective corrosion
depth in PD corrosion model is described in Appendix B
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Fig. 11. (a) Geometry and BCs for the galvanic corrosion problem (adapted from [2]); (b) piecewise linear interpolation of the experimentally obtained polarization curves

for mild steel and AE44 in [2] (details are given in Table 3).

Table 3.
Data used in the piecewise linear interpolation of the polarization curves from [2]
(to be used in the Tafel's equation).

Alloy ¢ (V, SCE) ip (A/m?) B (V) ¢o (V. SCE)
Anode AE44 (—00, —1.48) 0.014 0.021 -1.55
[-1.48, -1.41] 21.145 0.166 —1.48
(=141, 00) 58.107 0.400 -1.41
Cathode  Mild steel 0.00125 -0.153  -0.58
Table 4.

Material properties for the galvanic problem
shown in Fig. 11 (a).

(CAE44 q

Parameters o olid

Value 2.5S/m 67860 mol/m3 2

4.2. Validation against experimental results from the literature

The previous example verified the PD electrostatic model and
the modified corrosion dissolution model. In this subsection, we
validate the model against a galvanic corrosion experiment which
appeared in [3]. We compare the PD results with experimental ob-
servations, as well as with results obtained by a FEM-based model
built in COMSOL (see Appendix C) for the classical formulation of
the problem. The model in COMSOL uses the Arbitrary Lagrangian-
Eulerian method to track the corrosion front as a moving boundary
[2].

The setup of the problem is shown in Fig. 11 (a). The classical
formulation for the electric potential distribution in the electrolyte
domain is:

Vip =0
Vap(x=0, 10 <y <20,t) =0
{ Vap(x =20, 10 <y <20,t) =0
Vap(0 <x <20, y=15,t) =0
Vap(0 <x <10, y=5,t) = —i;/o
Vap(10 < x <20, y=5,t) = —ig/0

in whichVy¢ = V¢ - n, iz and i. are defined by the Tafel’s equation
(see Eq. (13)) which can be determined by fitting the polarization
curves of corresponding galvanic couples. The polarization curves
we use for the AE44 - mild steel couple are shown in Fig. 11 (b)
which are (piecewise) linear interpolations of the experimentally
obtained curves in [2]. The coefficients in the Tafel's equation are
given in Table 3. Note that the sign of cathodic and anodic cur-
rent densities is negative and positive, respectively. Other material
properties for this problem are provided in Table 4. These param-
eters are used in both PD and COMSOL simulations.
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The comparison between COMSOL results and PD results (with
6 = 0.4 mm) in terms of the initial potential distribution is shown
in Fig. 12. The COMSOL result is selected after a convergence study
with respect to the mesh size (see Appendix C for details on the
COMSOL model) and then, before plotting, post-processed by the
Kriging interpolation (necessary because of the adaptive mesh used
in COMSOL) and plotting that at the nodes of the uniform grid
used in the PD model. The agreement between the two solutions
is very good.

For a quantitative comparison, we plot the initial current den-
sity distribution along the electrode surface in Fig. 13. From the
zoom-in images, we can see that the PD solution, as the horizon
size decreases (m-value is fixed to be 4), approaches the result
found by COMSOL. In the experimental results, there is a smooth
transition of current density at the galvanic joint, and its minimum
value is around -50 A/m?, while the PD and COMSOL results show
much smaller values (around -120 A/m?2), and a sudden jump at
the galvanic joint. We notice that, in the experiment (see [2]), the
spatial resolution of the current density variation at the joint is
highly dependent on the scan rate, or the data acquisition time at
each measurement point, but the author did not perform a con-
vergence study on the scan rate. A slower scan rate may lead to
sharper transition at the joint. Another possible factor is that, in
the real physical system, there exists a transition zone between
different materials, while in our models, we assumed a sudden
material change at the joint. Note that the difference between the
PD and COMSOL results near the interface is due to the finer dis-
cretization used by COMSOL near the interface (automatic adaptive
refinement).

The experimental profile and that obtained by the PD model for
the AE44 - mild steel galvanic couple after 3 days of corrosion are
shown in Fig. 14 (a) and (b), respectively. Although the magnitude
of corrosion depth obtained by PD simulation is slightly smaller
than that from the experiment, their patterns agree very well.

The comparison for the final corrosion depth between experi-
mental measurements, COMSOL and PD results, is shown in Fig. 15.
In Appendix B we explain how we computed the effective corro-
sion depth in the PD corrosion model. The corrosion profile ob-
tained by the COMSOL model differs considerably from the exper-
imental one or the one found by the PD corrosion model. Notice,
however, that the results presented in Refs. [5,6,47] show patterns
similar to experimental measurements. That is because an artifi-
cial step in the geometry of the galvanic joint was used in pro-
ducing those results. While this artificial step is mentioned in Ref.
[31], it was not mentioned in [32] but its insertion is obvious from
the plots shown there. To obtain COMSOL results closer to those
measured in experiments, we therefore modify the geometry and
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Fig. 12. Electric potential distribution for AE44 - mild steel galvanic couple obtained by (a) PD; (b) COMSOL.
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Fig. 13. Initial current density along the electrode surface for AE44 - mild steel couple: convergence study for PD solutions; COMSOL (our work), and experimental results

(b)
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Fig. 14. Corrosion profiles for the AE44 - mild steel galvanic couple obtained from (a) experiments [3]; (b) PD corrosion model (§ = 0.4 mm).

insert the small step at the galvanic joint before the start of the
COMSOL simulation. This extra treatment, which reduces the gen-
erality of the COMSOL model, is necessary because of difficulties
with assigning proper BCs in the classical model at the interface,
and it allows the corrosion front to start moving in a way similar
to what is observed experimentally (see Appendix C). The size of
the artificial step determines the smallest mesh size used, and, as
its size goes to zero, the maximum corrosion depth obtained ap-
pears to converge, as results shown in Appendix C indicate. Note
also that in [2,4], the authors did not specify whether or not they
inserted this artificial step into their COMSOL model. However, the
corrosion depth profiles for the AE44 - mild steel galvanic couple
obtained there show a pattern close to our COMSOL results that
use the artificial step, and it is, therefore, reasonable to assume
that they made use of the step there as well.

As shown in Fig. 15, both PD and the modified-geometry COM-
SOL models generate slightly smaller maximum corrosion depths
than measured in experiments. Some possible explanations are: (1)
the geometry of the electrolyte domain used in simulations is dif-
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ferent from the real conditions (our electrolyte “bath” has “walls”
at the ends of the sample, while the electrochemical cell used in
experiments is likely larger than the sample; also, our model is a
2D approximation of an actual 3D experiment); (2) other corro-
sion mechanisms, not included here (e.g. crevice or micro-galvanic
corrosion, stress-dependent corrosion rate), may accelerate the cor-
rosion at the interface between the anode and the cathode, as
well as at the edge of the anode; (3) the deposition of corrosion
products on the corrosion surface (not considered here), can affect
the dissolution of metal atoms into the electrolyte and the elec-
tric potential around the surface and thus impact the evolution of
corrosion [7,8]. Note that the specific shape at the bottom of the
trench carved by the galvanic corrosion process is very important
when mechanical loadings are involved because it affects the stress
profile in that critical region, from which cracks can initiate and
propagate (see next section). Microscale experimentation that can
quantify, in detail, the shape of the bottom of the trench as gal-
vanic corrosion attack progresses, could be used for further valida-
tion of the PD models presented here.
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Fig. 15. Corrosion depths obtained from the PD corrosion model (6 = 0.4 mm), COMSOL with and without the artificial step (our work), and experiments from [3] for AE44
- mild steel galvanic couple. See Appendix B for how we computed the corrosion depth in the PD corrosion model.

The COMSOL curve obtained with the artificial step (see Fig. 15),
appears to be slightly steeper and deeper at the galvanic interface
than the PD curves. This is because: (1) the adaptive mesh re-
finement technique the COMSOL model employs generates a much
finer mesh near the interface than the uniform grid used in PD
models, leading to a slightly larger current density at the inter-
face than that obtained by the PD corrosion model (see Fig. 13);
and (2), the discretized PD corrosion dissolution model effec-
tively induces a slightly slower corrosion rate, as demonstrated in
Section 4.1, that could be mitigated by using a larger m-value (not
pursued here due to increasing computational cost).

Note that our galvanic corrosion model is general and work for
any kind of galvanic joints, as long as the corrosion processes are
well described by the mechanisms included in the model. An ad-
ditional validation for the AE44 — AA6063 galvanic couple is pro-
vided in Appendix D.

The DCL formed below the corrosion front can degrade mate-
rial’'s performance, and can play a significant role in material fail-
ure when mechanical loadings are applied to the galvanic couple
[48]. In the next section, we investigate the coupling of galvanic
corrosion and fracture, when both corrosion attack and mechanical
loadings are present. Such a multi-physical problem can be easily
treated with PD models but is difficult to simulate using classical
models.

5. Application of the PD-CF model to galvanic
corrosion-induced fracture

In this section, we investigate the coupling effect between gal-
vanic corrosion and mechanical loading on material failure. Gal-
vanic corrosion usually generates localized and deep trenches at a
material interface. As stresses rise/concentrate at these locations,
cracks can easily initiate and grow catastrophically. To date, no
model has attempted to predict the coupling of these two criti-
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cal mechanisms involved in material degradation and failure. Such
a multi-physical problem can be easily treated using PD models.

We consider the 2D thin plate galvanic couple (mild steel and
AE44, see Fig. 11 (a)) under plane stress conditions and subject to
the mechanical loadings and environmental conditions shown in
Fig. 16. As galvanic corrosion progresses at the interface, bending
creates a region a higher tensile stresses at the corrosion trench,
and a crack may initiate and propagate, if conditions meet the brit-
tle fracture criterion discussed in Section 3.1. Note that the load-
ing conditions and geometry have significant effects on the stress
concentration at the joint of the galvanic couple. In addition, once
a crack initiates in the region damaged by galvanic corrosion, its
stress intensity factor also depends on the loading conditions and
geometry [49]. In actual 3D structures, conditions along the crack
front vary from plane stress near its edges to plane strain in its
central part [49]. The thin plate couple we chose here is only for
demonstrating our models’ capabilities to handle the coupled ef-
fect of galvanic corrosion and fracture induced by it. A full 3D
example will be pursued once experimental data for this coupled
problem become available.

The local mechanical BCs to be enforced are:

uy(0<x<8, y=5,t)=up
{uy(—%<x<§, y=0,t)=0
uy(x=20, 0<y<5,t)=0
uy(x=20, 0<y<5,t)=0

(37)

In the corresponding PD mechanical model, the displacement
on the right side is fixed in all directions through a thickness equal
to the horizon size §. At the left top of the cathode domain, a § x &
square region is displaced at the start of the simulation by a fixed
amount (ug = 50 pum) and is kept constant in time, while another
square region (of same dimension) at the central bottom location
of the couple is fixed in the vertical direction. In this example, we
choose § =4 mm and Ax =1 mm.
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Fig. 16. Geometry and BCs for the galvanic couple under combined mechanical loading and galvanic corrosion attack.

Table 5.

Mechanical properties for materials in the galvanic couple

(Fig. 16).
Parameters Steel AE44 Interface
Young’s modulus (GPa) 205 [51] 45 [52] 125
Fracture energy (kJ/m?) 65 [53] 1.5 [54] 0.1

Since we did not find experimental data for this type of prob-
lem to compare our PD results with, we simply assume a certain
fracture toughness (100 J/m?2) for the interface between the metals,
to allow a crack to propagate at some point (not too early, not too
late) during the formation of the galvanic corrosion trench in our
particular example. Material properties for the alloys and the in-
terface are given in Table 5. The Young’s modulus for the interface
is assumed to be the average of the two alloys [50], i.e., 125 GPa.

As mentioned previously, the DCL reduces the material prop-
erties at the corrosion front. According to experimental measure-
ments (performed on a number of material systems, such as Mg
and Al alloys), the DCL can be several micrometers thick and is
seamlessly attached to the bulk with gradual change of properties
[38-40]. Under external loadings, microcracks can accumulate in
the DCL in a brittle fashion and grow into the bulk, leading to sig-
nificant loss of overall ductility in the structure.

Contours of the damage index obtained by the PD simula-
tion for the problem setup seen in Fig. 16 are given in Fig. 17.
A simulation movie is also included in Supplementary Materials.
The system does not crack under the applied bending loads be-
fore corrosion starts, as shown in Fig. 17 (a). As galvanic corro-
sion progresses, the geometry changes gradually, creating higher
and higher tensile stresses at the bottom of the trench. A few PD
bonds start to break because of reaching their critical strain (see
Section 3.1), but once they do, strains nearby relax and any po-
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tential crack growth arrests, and the next call to the corrosion
solver is made. After about 41.6 hrs. of corrosion time, as shown
in Fig. 17 (c), a crack suddenly initiates and propagates along the
interface. The crack arrests at some point before reaching the bot-
tom of the interface, because of the displacement-controlled BCs.
Note that here we only considered a brittle fracture model. Plas-
tic deformations can also strongly influence crack growth but were
not considered in this work.

While galvanic corrosion influences the state of stress in our
model (by changing the geometry of the sample as the corrosion
trench increases), we did not consider here stress-dependent cor-
rosion rate, the possible direct effect tensile stresses could have on
the corrosion itself. A PD model that uses a stress-dependent cor-
rosion rate has been introduced and validated in [11,36]. We do
not consider it here for simplicity, but once experimental data on
the coupled corrosion-fracture problems become available, such a
model can easily be tested. For the same reason, we do not account
for the conditions that are specific to crevice corrosion, which has
been recently investigated with a PD model in [55]. The example
chosen here is demonstrate that possible coupling of degradation
due to galvanic corrosion and that due to critical strains that take
place in the trench created by the galvanic corrosion process.

Note also that temperature can have a significant influence on
the corrosion rate, as well as on the mechanical properties (elas-
ticity, plasticity, fracture). Our model can incorporate such depen-
dencies easily and examples of such effects in thermomechanical
fracture have been shown using PD formulations in, e.g. [44]. Such
dependencies are, however, beyond the scope of the present work.

To solve this coupled problem using COMSOL or other PDE-
based classical models, one needs to consider a model for crack
growth. One option is to use cohesive elements with their corre-
sponding damage models defined throughout the domain of inter-
est. Beside the complexity of coupling these physical mechanisms,
introducing cohesive elements can significantly increase the com-
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Fig. 17. Damage index for the AE44 - mild steel galvanic couple under stress corrosion cracking at (a) t = 0 hrs, (b) t = 36 hrs, and (c) t = 41.6 hrs. See also the movie in

Supplementary Materials.

putational cost by creating new nodes and increasing the band-
width of matrices. The PD model, on the other hand, simplifies this
process and allows treatment of complex problems with little ef-
fort. For realistic, complex problems, the advantages of PD formu-
lations over traditional methods stand out.

6. Conclusion

A new peridynamic (PD) model for coupled galvanic corrosion
and fracture was introduced. The coupled model consists of a PD
electrostatic solver to compute the electric potential distribution
over the electrolyte domain, a reformulated PD corrosion disso-
lution model which is applicable to problems with highly non-
uniform current densities along arbitrary-shape corroding surfaces
(a common occurrence in galvanic corrosion problems), and a lin-
ear elastic-brittle fracture PD model.

The reformulated PD corrosion dissolution model was estab-
lished based on the electrochemical view of the corrosion process.
This change enabled an analytical calibration for the corrosion rate
and replaced the original integro-differential equation for corro-
sion dissolution with an ordinary differential equation, leading to a
simplified algorithm/implementation and decreased computational
cost of simulation compared to the original PD corrosion model.
The new model works well even in cases where the current den-
sity is highly location-dependent, or when the curvature of the cor-
rosion surface is high (near reentrant corners, for example), as in
the case of galvanic corrosion.

The model was verified for a 2D uniform corrosion case in
terms of the initial electric potential and current density, and time-
dependent corrosion depth. Validating the model against experi-
mental results available from the literature for two galvanic cou-
ples (AE44 (Mg alloy) - mild steel and AE44 - AAG063 (Al alloy))
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was performed. Results obtained with an FEM-based model built
using COMSOL were compared with the PD results. It was found
that for FEM-based or phase-field models of corrosion in galvanic
couples, a “step-down” needs to be artificially inserted in the ge-
ometry at the material interface of the couple in order for these
models to produce reasonable results. The step appears to be nec-
essary in models based on partial differential equations because
of difficulties in assigning proper boundary conditions at the gal-
vanic couple interface, to correctly initialize the motion of the cor-
rosion front. The need for introducing such geometrical artifacts in
a model reduces its generality. Moreover, such artificial modifica-
tions to the sample geometry may lead to erroneous results when
mechanical loadings are applied to a galvanic couple system, be-
cause the stress profile near the interface would be different from
the actual one, at least in the early stages of the corrosion process.
If there is a strong stress-dependency of the corrosion rate, the
likelihood of obtaining wrong results for coupled problems (e.g.,
galvanic corrosion and fracture) may be further enhanced. The PD
model introduced here does not require the artificial change in ge-
ometry at the interface to obtain results that match the experi-
mental observations.

A coupled corrosion-fracture problem was solved using the new
PD model, demonstrating how fracture can initiate and grow from
the sharp trench created by galvanic corrosion. This showed the
model’s potential for simulating failure caused by the combined
galvanic corrosion attack and mechanical loadings.
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Appendix A. Imposing boundary conditions in PD elastic and
electrostatic solvers

Unlike classical local methods, the BCs in peridynamic models
are intrinsically nonlocal. However, when solving practical prob-
lems, imposing local-type BCs in nonlocal/PD models is usually de-
sired/needed because, in reality, conditions (on the unknown func-
tion values or its flux) are imposed at the surfaces of a body, not
through a finite layer near the surface. The natural representation
of such conditions (based on measurements) is via local BCs. Vari-
ous methods to impose local BCs in PD models have been investi-
gated in [32,56,57].

For the elastic solver in this work, the local BCs involved (see
the example in Section 5) is of the Dirichlet type, and the accu-
racy of the BCs is not a major concern considering the purpose of
the example. Therefore, we assign the value of the Dirichlet BCs
directly to those PD nodes nearby, as described in Section 5.

The electrostatic solver, however, involves Robin-type BCs and
requires more accurate representation of the local BCs to be
enforced. Therefore, we use the fictitious nodes method (FNM)
[32,57,58]. In FNM for PD models, certain constraints are specified
on the fictitious region Q = {x ¢ Q|distance(x, 02) < 8} (the “col-
lar” outside of the solution domain 2 shown in Fig. A1), so that
desired local BCs on 0€2 are satisfied or approximately satisfied.
There are a couple of different FNMs to enforce local BCs in PD
models. In this paper, we use the autonomous mirror-based one
(or mirror FNM) [16], which is designed to handle arbitrary bound-
ary shapes, to enforce the local BCs at metal surfaces for the elec-
trostatic solver. The fictitious region overlaps a solid region with
thickness § below the metal surface, as shown in Fig. A2. A brief
review of the autonomous mirror FNM and a simplification per-
formed for the problem in this work are provided next .

Consider a body occupying the domain €2 ¢ R4, d=2 or 3, and
an extended fictitious region €2 = {x ¢ R?\ Q|distance(x, 9R) <
8}, as shown in Fig. A3. The mirror FNM assigns the constraint i(x)
at each x € Q based on u(x®) and u(x") in which ¥ = OProjyq (%)
is the orthogonal projection of ¥ onto 92 and xR = Refyq (%) =
x+ 2(xP — x) is the reflection, or mirror point, of ¥ through/across
9. For x € ©, when Q% = {02 N Hy} is continuous and the nor-
mal to 092 at each y € 9Qy is unique (i.e., dQy € G'), we have
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Q0

Fig. A1. Schematic of a PD domain (£2), its boundary (d€2), and its fictitious region
Q).

Far-field boundary (9(1)

Electrolyte ()

7
\ Metal surface (9()
9 . /

Fig. A2. An illustration of the electrolyte domain (£2), boundaries (9€2) and ficti-

tious region (€2) in the PD electrostatic model for a general corrosion problem. The
PD horizon size is 4.

b = an(x’), in which & € R— and n(x") is the outward unit nor-
mal vector at x°.

In the mirror FNM, to impose the local Dirichlet BC u(x) =
up(x) for x € 0Q2p and the Neumann BC Vjyu(x) =q for € 92y,
ii(x) at x € Qp is assigned as:

a(x) =2u(x’) — u(x*) (A1)
and fi(x) at x € Qy is assigned as:
a(x) = u(xF) + [[x - x%||q (A2)

respectively. For Ehe local Robin BC Vyu(x) = f(u(x)) for € 92,
we have, for x € Qg:
u(xF)

a(x) = u(x*) + [l — 28| f(u(x"))
+||x—xR||f(W) (3)
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Fig. A3. A schematic of orthogonal projection " of x onto 92 and the reflection xfof x through/across d€2 in mirror-based FNM [32].
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Fig. A4. Illustration of enforcing a local Dirichlet BC in the mirror FNM (redrawn from [32]).

in which the approximation u(x’) = is made by assum-
ing that the value of u, or i, between x and xR are close to a linear
distribution. #i(x) in Eq. (A3) requires to be solved using a non-
linear solver if function f is nonlinear. Constraints applied on ficti-
tious nodes vary with the solution step. See Fig. A4 for illustrations
of how local Dirichlet BCs are enforced in the mirror FNM at each
solution step.

For the nonlinear robin boundary condition (at the electrode
surfaces) in the galvanic corrosion problem we are solving (see
Section 4.2), instead of using a nonlinear solver to solve Eq. (A3),
one can replace Eq. (A3) by:

B0 = () - 0

for x € g where y = W (wy) is the Lambert W function which sat-
isfies ye¥ = wq and

( ¢(”R2+¢3(x) b )
N B
x ||xx% || x 10

u(xR)+ii(x)
2

(A4)

io In10
208

Wo—— (A5)
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where iy, o, B and ¢q are parameters determined by the polariza-
tion curve and given in Table 3.

Appendix B. Computing effective corrosion depth

The corrosion depth distribution for a problem with general
geometry is usually measured, when available, in the direction
normal to the original surface. For the problems considered in
this work, that direction is the vertical direction. Therefore, we
will measure the depth at each horizontal coordinate x. For a fair
comparison of corrosion depth obtained by our PD model and
by a classical model (analytical or numerical) or experiments, we
will consider both the fully corroded region ((d(x,t) = 1) and the
diffusion-based corrosion layer (d(x,t) € (0,1)) when computing
the total mass loss. The effective corrosion depth can then be com-
puted at x = xg as:

1

_— B1
Csolid - Csat ( )

Zn(X0. t) = / [Cuotia — C(X0. . £)]dy

¥ (Xo.1)
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Fig. B1. A schematic of ¥ (xo) over which the PD effective corrosion depth is com-
puted in this work.

where ¥ (xg,t) = {®(x,y)|x =%y and d(x,t =0) =0 and d(x,t) >
0}. The nodes with d(x,t =0) =0 are those solid at the initial
time, while nodes with d(x,t) > 0 include liquid and partially
damaged ones at the current time. The schematic of ¥ (xg) is
shown in Fig. B1.

Appendix C. COMSOL modeling of galvanic corrosion

In COMSOL MultiPhysics®, the dissolution/corrosion process is
modeled through the deformation of the boundary using the Ar-
bitrary Lagrangian-Eulerian Method [47]. The deformation is deter-
mined by relating the boundary velocity to the electrode corrosion
velocity, by the following equation:

ZZ

Jk

]klk

Qk (Cl)

ay
Vdiss. tot = 8 n|an0de

where n is the normal vector to the boundary, M; and p; are mo-
lar mass and density of the species j, respectively, @;, i, and g
are the stoichiometric coefficient of species j, local current density,
and the number of participating electrons, respectively, associated
with the electrode reactions of index k.

While Eq. (C1) assumes that deformation/dissolution occurs
only in the normal direction of the dissolving electrode (an-
ode) boundary, a pointwise constraint is applied to non-dissolving
boundaries (cathode) to prevent any dissolution in their normal di-
rections (zero normal displacement):

dy . nlcathode =0. (Cz)

Such treatments may cause challenges for cases with shared
nodes at the anode-cathode interface (e.g., the galvanic corrosion
shown in Fig. 11 (a)), where the deformation/dissolution may grow
into the cathode. To resolve this issue, one may extend the cathode
boundary by introducing a small geometric step at the cathode-
anode interface, as shown in Fig. C1.

To build the geometry with small step incorporated at the
anode-cathode interface the whole domain was constructed using
two separate shapes with a difference in height. The two shapes
were then connected using the Booleans and Partitions module.
For the physics of the problem, the secondary current distribu-
tion and deformed geometry modules were used. Then, the elec-
trolyte domain and two electrode surfaces were defined in the
model. The cathodic reduction reaction was assigned to the cath-
ode electrode surface, while the anodic corrosion reaction and the
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Fig. C1. A schematic of the artificial geometric step at the interface between the
anode and the cathode.

Table C1.
Convergence study on the maximum corrosion depth as the height of the
initial step decreases, for the AE44 - AA6063 galvanic couple.

Step height (mm)  No. of elements Max. corrosion depth (mm)

1 1001 0.236905914
0.5 1040 0.240754949
0.2 1078 0.249791228
0.1 1180 0.255897817
0.01 1886 0.259696086
0.001 3850 0.260926697
0.0001 8464 0.261126347

resulting boundary movement were defined at the anode electrode
surface. The stoichiometric coefficients for dissolving-depositing
species were defined for the anode part. To apply a constraint for
the planar non-depositing walls in order to enforce a zero bound-
ary movement in the normal direction of surfaces other than the
anode, zero normal displacement BC was used in the Multiphysics
setting.

For the COMSOL modeling of the galvanic corrosion problem in
Fig. 11 (a), the FE mesh at the initial stage is shown in Fig. C2.
There are in total 7 one-node vertex elements, 183 two-node edge
elements and 7189 three-node triangular elements, while the num-
ber of mesh points is 3687. As we explained above, the small step-
down (0.1mm) at the interface between the anode and the cathode
is necessary.

The height of this vertical geometric step controls the mesh
resolution. Table C1 represents the result for maximum corrosion
depth as the height of the step decreases, for the AE44 — AA6063
galvanic couple.

Appendix D. Galvanic corrosion of a AE44 - AA6063 couple

In this appendix, we use the AE44 - AA6063 galvanic couple
test the PD and COMSOL models and compare their results with
the experimental data provided in [3]. The coefficients used to fit
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Fig. C2. Finite element mesh in COMSOL for the galvanic cell shown in Fig. 11 (a). Notice the artifical step on the bottom side.
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Fig. D1. Quantitative comparison of the final corrosion depth for AE44 - AA6063 galvanic couple between experimental measurement [3], PD simulation and COMSOL

simulation.
Table D1.
Data used in the Tafel’s equation for AA6063 [2].
io (A/m*)be (V) be (V) %o (V. SCE)
AAGOGS —1.363  0.142 —0.0701 -1.363
¢ >-1363 0.142 —-0.0051  -1.363

the polarization curve for AA6063 are shown in Table D1, while
those for AE44 can be found in Table 3.

The quantitative comparison of the final corrosion depth be-
tween experimental measurement, PD simulation and COMSOL
simulation (with the artificial step at the joint included), after 3
days of corrosion, is shown in Fig. D1. As we can see, the corro-
sion depth obtained from PD simulation agrees with that from the
COMSOL simulation. However, they have two significant differences
compared with the corrosion depth from the experiment. First, in
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the experiment, the corrosion does not take place exactly along the
interface between two materials. Some part of the AA6063 (which
is supposed to be cathode) is also corroded. Second, in the exper-
iment, the corrosion trench is localized near the interface, and is
very deep, while the computations show a much shallower trench
and considerable reach of corrosion along the AE44 surface. It is
highly possible that some other forms of corrosion, such as crevice
and micro-galvanic corrosions, take place at the interface and play
a significant role here. While we did not consider these mecha-
nisms into our model here, some of them have been separately
investigated with PD formulations (see [35,55]), and future devel-
opments will include them.

References

[1] S. Jafarzadeh, Z. Chen, F. Bobaru, Computational modeling of pitting corrosion,
Corros. Rev. 37 (2019) 419-439, doi:10.1515/corrrev-2019-0049.


https://doi.org/10.1515/corrrev-2019-0049

J. Zhao, S. Jafarzadeh, M. Rahmani et al.

[2] K.B. Deshpande, Validated numerical modeling of galvanic corrosion for cou-
ples: magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063)
in brine solution, Corros. Sci. 52 (2010) 3514-3522, doi:10.1016/j.corsci.2010.
06.031.

[3] K.B. Deshpande, Experimental investigation of galvanic corrosion: comparison
between SVET and immersion techniques, Corros. Sci. 52 (2010) 2819-2826,
doi:10.1016/j.corsci.2010.04.023.

[4] L. Adlakha, B.G. Bazehhour, N.C. Muthegowda, K.N. Solanki, Effect of mechani-
cal loading on the galvanic corrosion behavior of a magnesium-steel structural
joint, Corros. Sci. 133 (2018) 300-309, doi:10.1016/j.corsci.2018.01.038.

[5] Imanian A., Amiri M. Phase field modeling of galvanic corrosion, arXiv
preprint (2018). http://arxiv.org/abs/1804.08517.

[6] W. Mai, S. Soghrati, New phase field model for simulating galvanic and pit-

ting corrosion processes, Electrochim. Acta 260 (2018) 290-304, doi:10.1016/j.

electacta.2017.12.086.

W. Sun, G. Liu, L. Wang, T. Wu, Y. Liu, An arbitrary Lagrangian-Eulerian

model for studying the influences of corrosion product deposition on bimetal-

lic corrosion, J. Solid State Electrochem. 17 (2013) 829-840, doi:10.1007/
510008-012-1935-9.

K. Wang, C. Li, Y. Li, J. Lu, Y. Wang, X. Luo, Multi-physics analysis of the

galvanic corrosion of Mg-steel couple under the influence of time-dependent

anisotropic deposition film, J. Magnes. Alloy (2021), doi:10.1016/j.jma.2020.11.

022.

[9] Z. Chen, F. Bobaru, Peridynamic modeling of pitting corrosion damage, J. Mech.
Phys. Solids 78 (2015) 352-381, doi:10.1016/j.,jmps.2015.02.015.

[10] S. Jafarzadeh, Z. Chen, ]. Zhao, F. Bobaru, Pitting, lacy covers, and pit merger in
stainless steel: 3D peridynamic models, Corros. Sci. 150 (2019) 17-31, doi:10.
1016/j.corsci.2019.01.006.

[11] Z. Chen, S. Jafarzadeh, J. Zhao, F. Bobaru, A coupled mechano-chemical peridy-
namic model for pit-to-crack transition in stress-corrosion cracking, J. Mech.
Phys. Solids 146 (2021) 104203, doi:10.1016/j.jmps.2020.104203.

[12] R. Duddu, N. Kota, S.M. Qidwai, An extended finite element method based ap-
proach for modeling crevice and pitting corrosion, J. Appl. Mech. 83 (2016)
081003, doi:10.1115/1.4033379.

[13] S. Jafarzadeh, Z. Chen, F. Bobaru, Peridynamic modeling of repassivation in
pitting corrosion of stainless steel, Corrosion 74 (2018) 393-414, doi:10.5006/
2615.

[14] E. McCafferty, Introduction to Corrosion Science, Springer, NY, 2010 New York,
New York, doi:10.1007/978-1-4419-0455-3.

[15] C. Lin, H. Ruan, S.Q. Shi, Phase field study of mechanico-electrochemical corro-
sion, Electrochim. Acta 310 (2019) 240-255, doi:10.1016/j.electacta.2019.04.076.

[16] J. Zhao, S. Jafarzadeh, Z. Chen, F. Bobaru, An algorithm for imposing local
boundary conditions in peridynamic models on arbitrary domains, engrXiv
(2020), doi:10.31224/osf.io/7z8qr.

[17] D.A. Jones, Principles and Prevention of Corrosion, Macmillan, 1992.

[18] AJ. Bard, L. Fulkner, Electrochemical Methods, Fundamental Applications, John
Wiley & Sons, Inc., 2001.

[19] S.M. Sharland, C.P. Jackson, A]. Diver, A finite-element model of the propaga-
tion of corrosion crevices and pits, Corros. Sci. 29 (1989) 1149-1166, doi:10.
1016/0010-938X(89)90051-6.

[20] C. Tsuyuki, A. Yamanaka, Y. Ogimoto, Phase-field modeling for pH-dependent
general and pitting corrosion of iron, Sci. Rep. 8 (2018) 12777, doi:10.1038/
s41598-018-31145-7.

[21] S.A. Silling, Reformulation of elasticity theory for discontinuities and
long-range forces, J. Mech. Phys. Solids 48 (2000) 175-209, doi:10.1016/
$0022-5096(99)00029-0.

[22] S.A. Silling, E. Askari, A meshfree method based on the peridynamic model
of solid mechanics, Comput. Struct. 83 (2005) 1526-1535, doi:10.1016/j.
compstruc.2004.11.026.

[23] E. Madenci, E. Oterkus, Peridynamic Theory and Its Applications, Springer, NY,
2014 New York, New York, doi:10.1007/978-1-4614-8465-3.

[24] E. Bobaru, G. Zhang, Why do cracks branch? A peridynamic investigation
of dynamic brittle fracture, Int. J. Fract. 196 (2015) 59-98, doi:10.1007/
510704-015-0056-8.

[25] E. Bobaru, ].T. Foster, PH. Geubelle, S.A. Silling, Handbook of Peridynamic Mod-
eling, CRC press, 2016, doi:10.1201/9781315373331.

[26] S.A. Silling, RB. Lehoucq, Peridynamic theory of solid mechanics, Adv. Appl.
Mech. (2010) 73-168, doi:10.1016/S0065-2156(10)44002-8.

[27] Y.D. Ha, E. Bobaru, Studies of dynamic crack propagation and crack branch-
ing with peridynamics, Int. J. Fract. 162 (2010) 229-244, doi:10.1007/
510704-010-9442-4.

[28] ]J.T. Foster, S.A. Silling, W.W. Chen, Viscoplasticity using peridynamics, Int. J.
Numer. Methods Eng. 81 (2010) 1242-1258, doi:10.1002/nme.2725.

[29] Y.L. Hu, N.V. De Carvalho, E. Madenci, Peridynamic modeling of delamination
growth in composite laminates, Compos. Struct. 132 (2015) 610-620, doi:10.
1016/j.compstruct.2015.05.079.

[30] F. Bobaru, M. Duangpanya, The peridynamic formulation for transient heat
conduction, Int. J. Heat Mass Transf. 53 (2010) 4047-4059, doi:10.1016/j.
ijheatmasstransfer.2010.05.024.

(71

(8

22

Electrochimica Acta 391 (2021) 138968

[31] E. Bobaru, M. Duangpanya, A peridynamic formulation for transient heat con-
duction in bodies with evolving discontinuities, J. Comput. Phys. 231 (2012)
2764-2785, doi:10.1016/j.jcp.2011.12.017.

[32] S. Oterkus, E. Madenci, A. Agwai, Peridynamic thermal diffusion, J. Comput.
Phys. 265 (2014) 71-96, doi:10.1016/j.jcp.2014.01.027.

[33] J. Zhao, Z. Chen, ]. Mehrmashhadi, F. Bobaru, Construction of a peridynamic
model for transient advection-diffusion problems, Int. J. Heat Mass Transf. 126
(2018) 1253-1266, doi:10.1016/j.ijheatmasstransfer.2018.06.075.

[34] Z. Chen, G. Zhang, F. Bobaru, The influence of passive film damage on pitting
corrosion, J. Electrochem. Soc. 163 (2016) C19-C24, doi:10.1149/2.0521602jes.

[35] S. Jafarzadeh, Z. Chen, F. Bobaru, Peridynamic modeling of intergranular cor-
rosion damage, ]. Electrochem. Soc. 165 (2018) C362-C374, doi:10.1149/2.
0821807jes.

[36] S. Jafarzadeh, Z. Chen, S. Li, F. Bobaru, A peridynamic mechano-chemical dam-
age model for stress-assisted corrosion, Electrochim. Acta 323 (2019) 134795,
doi:10.1016/j.electacta.2019.134795.

[37] Z. Chen, D. Bakenhus, F. Bobaru, A constructive peridynamic kernel for elastic-
ity, Comput. Methods Appl. Mech. Eng. 311 (2016) 356-373, doi:10.1016/j.cma.
2016.08.012.

[38] S. Li, Z. Chen, F. Wang, B. Cui, L. Tan, F. Bobaru, Analysis of corrosion-induced
diffusion layer in ZK60A magnesium alloy, ]. Electrochem. Soc. 163 (2016)
C784-C790, doi:10.1149/2.1001613jes.

[39] S. Li, Z. Chen, L. Tan, F. Bobaru, Corrosion-induced embrittlement in ZK60A Mg
alloy, Mater. Sci. Eng. A 713 (2018) 7-17, doi:10.1016/j.msea.2017.12.053.

[40] R. Vallabhaneni, TJ. Stannard, C.S. Kaira, N. Chawla, 3D X-ray microtomog-
raphy and mechanical characterization of corrosion-induced damage in 7075
aluminium (Al) alloys, Corros. Sci. 139 (2018) 97-113, doi:10.1016/j.corsci.2018.
04.046.

[41] D. Yavas, P. Mishra, A. Alshehri, P. Shrotriya, K.R. Hebert, A.F. Bastawros,
Nanoindentation study of corrosion-induced grain boundary degradation in a
pipeline steel, Electrochem. Commun. 88 (2018) 88-92, doi:10.1016/j.elecom.
2018.02.001.

[42] ].T. Burns, S. Kim, R.P. Gangloff, Effect of corrosion severity on fatigue evolution
in Al-Zn-Mg-Cu, Corros. Sci. 52 (2010) 498-508, doi:10.1016/j.corsci.2009.10.
006.

[43] J.R. Shewchuk, An introduction to the conjugate gradient method without the
agonizing pain, Tech. Rep. C. Carnegie Mellon Univ. (1994), https://www.cs.
cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

[44] Z. Xu, G. Zhang, Z. Chen, F. Bobaru, Elastic vortices and thermally-driven cracks
in brittle materials with peridynamics, Int. J. Fract. 209 (2018) 203-222, doi:10.
1007/s10704-017-0256-5.

[45] S. Jafarzadeh, A. Larios, F. Bobaru, Efficient solutions for nonlocal diffusion
problems via boundary-adapted spectral methods, ]. Peridyn. Nonlocal Model.
2 (2020) 85-110, doi:10.1007/s42102-019-00026-6.

[46] S. Jafarzadeh, L. Wang, A. Larios, F. Bobaru, A fast convolution-based method
for peridynamic transient diffusion in arbitrary domains, Comput. Methods
Appl. Mech. Eng. 375 (2021) 113633, doi:10.1016/j.cma.2020.113633.

[47] COMSOL, corrosion module user’s guide, 2018. https://doc.comsol.com/5.4/doc/
com.comsol.help.corr/CorrosionModuleUsersGuide.pdf.

[48] H. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Cracks Handbook, 3rd ed.,
ASME Press, 2000, doi:10.1115/1.801535.

[49] TL. Anderson, Fracture Mechanics,
9781315370293.

[50] A. Katiyar, ].T. Foster, H. Ouchi, M.M. Sharma, A peridynamic formulation of
pressure driven convective fluid transport in porous media, ]. Comput. Phys.
261 (2014) 209-229, doi:10.1016/j.jcp.2013.12.039.

[51] J.B. Yan, ].Y.R. Liew, M.H. Zhang, ].Y. Wang, Mechanical properties of normal
strength mild steel and high strength steel S690 in low temperature relevant
to Arctic environment, Mater. Des. 61 (2014) 150-159, doi:10.1016/j.matdes.
2014.04.057.

[52] M.M. Avedesian, H. Baker, ASM Specialty Handbook: Magnesium and Magne-
sium Alloys, ASM International, 1999.

[53] K. Prasad, M. Srinivas, S.V. Kamat, Influence of mixed mode I/l loading on dy-
namic fracture toughness of mild steel at room and low temperatures, Mater.
Sci. Eng. A 590 (2014) 54-59, doi:10.1016/j.msea.2013.09.099.

[54] N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K.U. Kainer, N. Hort, C. Blaw-
ert, A critical review of the stress corrosion cracking (SCC) of magnesium al-
loys, Adv. Eng. Mater. 7 (2005) 659-693, doi:10.1002/adem.200500071.

[55] S. Jafarzadeh, ]. Zhao, M. Shakouri, F. Bobaru, A peridynamic model for crevice
corrosion damage, engrXiv (2021), doi:10.31224/osf.io/fc7xd.

[56] Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, A nonlocal vector calculus, non-
local volume-constrained problems, and nonlocal balance laws, Math. Model.
Methods Appl. Sci. 23 (2013) 493-540, doi:10.1142/50218202512500546.

[57] Y. Tao, X. Tian, Q. Du, Nonlocal diffusion and peridynamic models with Neu-
mann type constraints and their numerical approximations, Appl. Math. Com-
put. 305 (2017) 282-298, doi:10.1016/j.amc.2017.01.061.

[58] Q.V. Le, . Bobaru, Surface corrections for peridynamic models in elasticity and
fracture, Comput. Mech. 61 (2018) 499-518, doi:10.1007/s00466-017-1469-1.

CRC Press, 2017, doi:10.1201/


https://doi.org/10.1016/j.corsci.2010.06.031
https://doi.org/10.1016/j.corsci.2010.04.023
https://doi.org/10.1016/j.corsci.2018.01.038
http://arxiv.org/abs/1804.08517
https://doi.org/10.1016/j.electacta.2017.12.086
https://doi.org/10.1007/s10008-012-1935-9
https://doi.org/10.1016/j.jma.2020.11.022
https://doi.org/10.1016/j.jmps.2015.02.015
https://doi.org/10.1016/j.corsci.2019.01.006
https://doi.org/10.1016/j.jmps.2020.104203
https://doi.org/10.1115/1.4033379
https://doi.org/10.5006/2615
https://doi.org/10.1007/978-1-4419-0455-3
https://doi.org/10.1016/j.electacta.2019.04.076
https://doi.org/10.31224/osf.io/7z8qr
http://refhub.elsevier.com/S0013-4686(21)01258-5/sbref0017
http://refhub.elsevier.com/S0013-4686(21)01258-5/sbref0017
http://refhub.elsevier.com/S0013-4686(21)01258-5/sbref0018
http://refhub.elsevier.com/S0013-4686(21)01258-5/sbref0018
http://refhub.elsevier.com/S0013-4686(21)01258-5/sbref0018
https://doi.org/10.1016/0010-938X(89)90051-6
https://doi.org/10.1038/s41598-018-31145-7
https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1016/j.compstruc.2004.11.026
https://doi.org/10.1007/978-1-4614-8465-3
https://doi.org/10.1007/s10704-015-0056-8
https://doi.org/10.1201/9781315373331
https://doi.org/10.1016/S0065-2156(10)44002-8
https://doi.org/10.1007/s10704-010-9442-4
https://doi.org/10.1002/nme.2725
https://doi.org/10.1016/j.compstruct.2015.05.079
https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.024
https://doi.org/10.1016/j.jcp.2011.12.017
https://doi.org/10.1016/j.jcp.2014.01.027
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.075
https://doi.org/10.1149/2.0521602jes
https://doi.org/10.1149/2.0821807jes
https://doi.org/10.1016/j.electacta.2019.134795
https://doi.org/10.1016/j.cma.2016.08.012
https://doi.org/10.1149/2.1001613jes
https://doi.org/10.1016/j.msea.2017.12.053
https://doi.org/10.1016/j.corsci.2018.04.046
https://doi.org/10.1016/j.elecom.2018.02.001
https://doi.org/10.1016/j.corsci.2009.10.006
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://doi.org/10.1007/s10704-017-0256-5
https://doi.org/10.1007/s42102-019-00026-6
https://doi.org/10.1016/j.cma.2020.113633
https://doc.comsol.com/5.4/doc/com.comsol.help.corr/CorrosionModuleUsersGuide.pdf
https://doi.org/10.1115/1.801535
https://doi.org/10.1201/9781315370293
https://doi.org/10.1016/j.jcp.2013.12.039
https://doi.org/10.1016/j.matdes.2014.04.057
http://refhub.elsevier.com/S0013-4686(21)01258-5/sbref0052
http://refhub.elsevier.com/S0013-4686(21)01258-5/sbref0052
http://refhub.elsevier.com/S0013-4686(21)01258-5/sbref0052
https://doi.org/10.1016/j.msea.2013.09.099
https://doi.org/10.1002/adem.200500071
https://doi.org/10.31224/osf.io/fc7xd
https://doi.org/10.1142/S0218202512500546
https://doi.org/10.1016/j.amc.2017.01.061
https://doi.org/10.1007/s00466-017-1469-1

	A peridynamic model for galvanic corrosion and fracture
	1 Introduction
	2 Kinetics of galvanic corrosion
	3 A coupled PD model for electric potential-driven corrosion and fracture
	3.1 Bond-based PD mechanical model
	3.2 PD corrosion model
	3.2.1 PD electrostatic model
	3.2.2 A modified PD corrosion dissolution model
	3.2.3 Concentration-dependent damage models in PD simulation of corrosion

	3.3 PD corrosion-fracture model

	4 Verification and validation of the PD corrosion model
	4.1 Verification of the new PD formulation for galvanic corrosion
	4.2 Validation against experimental results from the literature

	5 Application of the PD-CF model to galvanic corrosion-induced fracture
	6 Conclusion
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	Supplementary materials
	Appendix A Imposing boundary conditions in PD elastic and electrostatic solvers
	Appendix B Computing effective corrosion depth
	Appendix C COMSOL modeling of galvanic corrosion
	Appendix D Galvanic corrosion of a AE44 - AA6063 couple
	References


