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a b s t r a c t 

A coupled peridynamic (PD) corrosion-fracture model is introduced, in which the local corrosion rate is 

determined by solving the corresponding electrostatic problem. By being able to consider variable distri- 

butions of corrosion rates along the anodic surface, the model is particularly useful for simulating gal- 

vanic corrosion. A novel analytical calibration for parameters in the corrosion model is provided. The 

corrosion model is verified in terms of the electric potential, current density, and corrosion depth, and 

validated against experimental results for AE44 (Mg alloy) – mild steel and AE44 – AA6063 (Al alloy) 

galvanic couples taken from the literature. The PD results are also compared with those from a COM- 

SOL FEM-based model. It is found that an artificial initial “step-down” in geometry at the galvanic joint 

is required for the COMSOL model in order to provide reasonable results, but it is not needed in the 

PD model. A coupled galvanic corrosion-fracture problem accounting for the combined electro-chemical 

attack and strains induced by mechanical loadings is solved. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Corrosion induced by galvanic coupling can cause deep and 

ough trenches at the material interface, leading to dangerous sit- 

ations like other types of localized corrosion, such as pitting cor- 

osion. As stresses rise at these locations, cracks can easily initi- 

te and grow catastrophically. Efficient and accurate predictions of 

alvanic corrosion problems can help evaluate their effect on en- 

ineering structures and provide insights on solutions to prevent 

t. Due to the simultaneous influence of multiple physical mech- 

nisms involved in galvanic corrosion, computational models are 

ecessary for this purpose. A comparison between different com- 

utational models for corrosion can be found in [1] . Major recent 

dvances in galvanic corrosion modeling comes with models based 

n finite element method (FEM) [2–4] or phase field (PF) method 

 5 , 6 ]. 

A FEM-based model was developed for galvanic corrosion using 

he commercial software COMSOL MultiPhysics® (COMSOL here- 

fter) [2] and validated against the experimental results in [3] . For 

he galvanic couple between steel and magnesium alloy, although 

he initial current density and the final corrosion depth obtained 

y the model have similar patterns to the measured data, the max- 
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mum current density and corrosion depth, as well as the tran- 

ition across the material interface, present nontrivial deviations 

rom the experimental data. A similar model was used in [4] to 

nvestigate the effect of mechanical loading on the galvanic cor- 

osion behavior by including stress/strain-dependent electric po- 

ential. However, the corrosion pattern obtained by this model, 

hen the mechanical loading is absent, agree even less with those 

rom the experiments shown in [3] . This deviation possibly comes 

rom the linear, instead of piecewise linear, fitting of the polariza- 

ion curve. The authors of [4] also studied crack initiation in the 

alvanic couple under uniaxial tension loading by computing the 

tress intensity factor, approximating the specimen as a side edge 

otched tensile specimen. As the corrosion front progresses, it de- 

arts from such an idealization of the geometry, and these approx- 

mations may not be sufficiently accurate. Corrosion depths closer 

o experimental observations in [3] were obtained in [ 7,8 ] by tak- 

ng into account the effect of corrosion deposition on the corrosion 

ate. 

A PF model for corrosion in galvanic couples was introduced in 

5] . However, in the simulation results, the current density distri- 

ution does not match well a reference solution given by the FEM- 

ased COMSOL simulation [3] . In addition, the corrosion depth at 

he junction of the galvanic couple deviates from experimental ob- 

ervation [3] significantly. A different PF model was developed in 

6] and was verified against a FEM-based model built in COMSOL, 
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ut the polarization was neglected along the corroding interface 

nd no validation tests against experimental data were presented. 

One notes that, for these FEM-based /PF models, when corro- 

ion happens at the interface between two joined metal parts, an 

rtificial step-down on the anode side needs to be introduced be- 

ause of mathematical and numerical inconsistencies [ 5 , 6 ]. As we 

hall see, in the absence of such a step, an incorrect evolution of 

he corrosion front is obtained (see discussion in Section 4.2 be- 

ow). Determining a proper height of this artificial step has not 

een examined in the published literature. Moreover, with these 

odels based on partial differential equations (PDEs), there is, so 

ar, no attempt to couple galvanic corrosion in a couple with that 

f crack initiation and propagation. This is partly due to difficul- 

ies in being able simulate the complex interactions of these two 

ritical mechanisms: singularities (in classical models), moving- 

oundary problem, arbitrary geometries, etc. 

Recently, the peridynamic (PD) method has been applied to 

orrosion modeling [ 9 , 10 ]. PD models view corrosion as material 

amage caused by the dissolution of metal into the electrolyte, 

oupled with the diffusion of metal ions in the electrolyte [ 9 , 10 ].

 concentration-dependent damage index monitors the evolving 

orrosion front (phase changes from solid to electrolyte) and the 

radual changes in material degradation across the Diffusion-based 

orrosion Layer (DCL) [9] . This provides us a better understand- 

ng of the factors that lead to the degradation of mechanical prop- 

rties (strength, ductility, etc.) observed in corroded samples. The 

D model has been especially advantageous in simulating stress- 

orrosion cracking, as shown in the results for pit-to-crack transi- 

ion obtained in [11] . 

The existing PD corrosion models, however, use an important 

implification: for activation-controlled corrosion, one assumes a 

onstant potential along the corrosion front. The constant potential 

etermines a constant current density from the polarization curve 

hich is measured experimentally. This approach avoids solving 

or the electric potential distribution along the corrosion front and 

s acceptable for pitting corrosion cases in which the potential dis- 

ribution (and therefore the current density) along the pit surface 

s close to uniform [12] . To cover situations like salt layer forma- 

ion or passivation at the corrosion front when diffusion-controlled 

onditions dominate (and the potential distribution varies signifi- 

antly along the corrosion front), the existing PD models include 

oncentration-based rules that can cause pausing/stopping of metal 

issolution as specific locations along the corrosion front [ 10 , 13 ], 

ffectively leading to non-uniform corrosion rates (even if the in- 

ut corrosion rate is constant). Under activation-controlled condi- 

ions, however, these mechanisms are not triggered, and the ex- 

sting PD corrosion models would not apply to galvanic corrosion 

roblems [14] , in which activation-controlled conditions are criti- 

al and the electric potential (or the corrosion rate) varies signif- 

cantly along the corrosion front. Moreover, these variations can 

lso change drastically as the corrosion front evolves. This is the 

eason why one needs to compute the distribution of the electric 

otential along the corrosion front in order to predict the evolution 

f galvanic corrosion. 

For galvanic corrosion problems, FEM-based and PF models first 

valuate the electric potential by solving the Laplace’s/Poisson’s 

quation, with the boundary condition (BC) given by the cor- 

esponding metals’/alloys’ polarization curves (Tafel’s equations). 

he electric potential determines the current density, which is re- 

ated to corrosion rate by Faraday’s law [ 2 , 6 , 15 ]. Following a sim-

lar procedure, in this paper we introduce a PD electric potential 

odel, and couple it with the existing PD corrosion model [10] . 

his model is an important extension compared with the previ- 

us PD model and will be applicable to a larger class of corro- 

ion problems, including galvanic corrosion. When solving for the 

lectric potential, in order to apply the nonlinear Robin BCs at the 
2 
rbitrarily-shaped corrosion front and reduce the PD surface effect 

n the PD electric potential solver, we use a recently introduced 

utonomous fictitious nodes method (FNM) ([ 16 ]). 

In addition to introducing the PD electrostatic solver to com- 

ute the electric potential, we reformulate the PD corrosion disso- 

ution model in [ 9 , 10 ] based on electrochemistry, and replace the 

revious numerical calibration stage (which required a trial solu- 

ion in the pre-processing step) with an analytical one. By elim- 

nating the numerical calibration, the model is significantly more 

fficient in problems with highly non-uniform current densities 

long an arbitrary-shape corroding surface, which is often the case 

n galvanic corrosion problems. The damage-dependent corrosion 

odel used in the original PD corrosion model in [9] is no longer 

eeded. The new model eliminates the required (in order to match 

he experimental observations) artificial changes to the given ge- 

metry of a galvanic couple in models based on PDEs (e.g. COM- 

OL, phase-field). 

We verify the new model for a uniform corrosion 2D case 

gainst a classical analytical solution in terms of the electric poten- 

ial and current density at the beginning of the corrosion process, 

s well as the evolution of the corrosion depth in time. The model 

s validated against experimental galvanic corrosion results avail- 

ble in the literature for AE44 (Mg alloy) – mild steel and AE44 –

A6063 (Al alloy) galvanic couples. The results for the initial cur- 

ent density distribution and final corrosion profile are also com- 

ared with those from a model built using COMSOL. A coupled 

orrosion-fracture problem is solved to show the potential of the 

ew PD model in resolving failure caused by the combination of 

harp corrosion damage (induced by galvanic corrosion) and me- 

hanical loading. 

. Kinetics of galvanic corrosion 

In galvanic corrosion, the metal/alloy with lower corrosion po- 

ential is the anode and corrodes first. The ordering of corrosion 

otential (the galvanic series) for metals/alloys, for a specific en- 

ironment, is determined from experiments (see pages 171 and 

72 in [17] ). However, the galvanic series only gives information 

bout the corrosion tendency. The actual corrosion rates of the an- 

de must be determined by separate experiments and the mixed 

otential theory by overlaying the polarization curves of the con- 

tituent individual metals/alloys [2] , as schematically shown in 

ig. 1 . 

Electrochemical polarization is the change in electrode potential 

ue to the flow of current (see page 127 in [14] ). When the over-

otential is small, the corrosion process is activation controlled. In 

his corrosion type, the current density is governed by Tafel’s law: 

 a = i 0 × 10 
φ−φ0 

β (1) 

here i 0 is the uncoupled exchange current density, φ is the elec- 

rode potential, φ0 is the uncoupled corrosion potential and β is 

he geometric slope of the linear portion of the semi-logarithmic 

lot of the polarization curve. 

When the overpotential is large, the resulting high anodic dis- 

olution rate saturates the electrolyte near the anode surface, and 

he corrosion process becomes diffusion controlled. In this case, 

he current density is determined by concentration changes in re- 

ctants or products near an electrode surface. Between these two 

orrosion types, there exists a transition corrosion type called IR 

ontrolled corrosion which is caused by resistance of the elec- 

rolyte to the current flow. It happens because there is a finite dis- 

ance between the reference electrode and the metal surface to be 

nvestigated (see pages 130 and 131 in [14] ). There are other factors 

hich can affect the corrosion rate, such as the pH field, temper- 

ture field, formation of corrosion products, etc. In real corrosion 
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Fig. 1. Schematic polarization curves of anode and cathode in a galvanic couple (see page 177 in [17] ). φc 
0 and φ

a 
0 are the uncoupled corrosion potential and i 

c 
0 and i 

a 
0 are 

the uncoupled exchange current density for the cathode and anode, respectively. φcouple and i couple are the coupled corrosion potential and current density, respectively. 
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roblems, the corrosion rate is simultaneously influenced by mul- 

iple factors and can be determined from the polarization curve 

easured from corresponding experiments. 

For the computational modeling of galvanic corrosion in this 

ork, we focus on the anodic reaction (metal dissolution). The ca- 

hodic reaction and the mass transfer in the electrolyte will not 

e included. Consider an anodic reaction: M → M 
q + + q e −, the cur- 

ent density is formulated by Eq. (1) in which the unknown co- 

fficients are determined by the polarization curve obtained from 

xperiments. 

Note that i a scales linearly with the magnitude of the molar dis- 

olution flux ( | J diss | ) at the corrosion front via Faraday’s law [18] :

 a = qF | J diss | . (2) 

here q is the charge number and F is the Faraday’s constant. To 

se Eq. (1) to determine the distribution of current density at the 

lectrode surface, we have to solve for the potential distribution in 

he electrolyte domain. The electrostatic field satisfies the follow- 

ng Poisson equation [ 19 , 20 ]: 

 
2 φ = 

ρ

ε 0 
= 

˙ ρ

σ
(3) 

here φ is the electric potential, ρ is the charge density, ε 0 and 
are the electric permittivity and conductivity of the medium, re- 

pectively. For problems in this work, electroneutrality is satisfied 

n the electrolyte domain, therefore, Poisson’s equation reduces to 

he Laplace’s equation: 

 
2 φ = 0 (4) 

Rather than using this classical model (Laplace’s equation) to 

pproximate the electric potential in the electrolyte for the exam- 

les shown in Section 4 , we will use the corresponding nonlocal 

PD) version of this equation because it will be easier to couple it 

ith the mechanical PD model that we seek to employ for simu- 

ating the corrosion and fracture of the sample exposed to galvanic 
3 
onditions and mechanical loadings. The PD model for the electro- 

tatic solver is given in Section 3.2.1 . 

. A coupled PD model for electric potential–driven corrosion 

nd fracture 

The PD theory is a nonlocal extension of the classical contin- 

um mechanics [21] . The PD formulation is in the form of integro- 

ifferential equations (IDEs) rather than PDEs used in classical local 

heories. In PD models, discontinuities such as cracks/damages can 

nitiate and propagate naturally and autonomously [22–25] . While 

he PD method has been primarily used to deal with mechanical 

ehaviors [ 22 , 24 , 26–29 ], it has also been employed in diffusion-

ype problems involving cracks and damage, including thermal dif- 

usion [30–33] and mass transport (e.g. corrosion) [ 1 , 9 , 10 , 13 , 34–

6 ]. 

Consider a PD body occupying the domain � ∈ R 
k , k = 2 or 3,

n which a point x ∈ � interacts with points ˆ x ∈ �\ x in a neigh-
orhood H x (called the horizon region of x , usually selected to be 

 disk in 2D, sphere in 3D, centered at x ) . The radius of H x is called

he horizon size (or simply, the horizon) and denoted by δ. Objects 
hat carry the pairwise nonlocal interactions between points are 

alled bonds. Fig. 2 schematically shows a PD body with a generic 

oint x , its family and its horizon. 

In this section we first briefly review the PD mechanical (for 

racture) model and then introduce an extended PD corrosion 

odel. Finally, we show how these models are coupled together 

nto a PD corrosion-fracture model. For further discussion on the 

odel the following definitions for solid and liquid domains are 

seful: 

�s ( t ) = { x ∈ �| C ( x , t ) > C sat } 
diss ( t ) = { x ∈ �| C sat < C ( x , t ) < C solid } 

�l ( t ) = { x ∈ �| C ( x , t ) ≤ C sat } 
(5) 

here C solid refers to the concentration of metal atoms in the in- 

act solid phase, and C sat is the saturation value for dissolved metal 

toms in electrolyte. Note that � (t) ⊆ �s (t). 
diss 
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Fig. 2. Nonlocal interaction between point x and an arbitrary point ˆ x located in its 

horizon H x . 
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.1. Bond–based PD mechanical model 

The equations of motion for the bond-based PD mechanical 

odel, at each x ∈ �s , can be written as [22] : 

( x ) ̈u ( x , t ) = 

∫ 
H x ∩ �s 

f 
(
u 

(
ˆ x , t 

)
− u ( x , t ) , ̂  x − x 

)
d V ˆ x + b ( x , t ) (6) 

here t is the time, ρ is the density field, u is the displacement 

ector field, f is the pairwise force in the PD bond x − ˆ x , and b is

he body force field. d V ˆ x is the volume (area in 2D, length in 1D)

ssociated with ˆ x that is covered by H x . The pairwise force for a 

rototype micro-elastic brittle material is defined as [22] : 

f = csμ
ξ + η

‖ ξ + η‖ 

(7) 

here ξ = ˆ x − x is the relative position of ˆ x and x in the refer- 

nce configuration, η = u ( ̂  x , t ) − u ( x , t ) is the relative displacement 

ith respect to the reference configuration, c is the micro-modulus 

unction or the elastic stiffness of the bond which can take differ- 

nt forms depending on the required horizon-scale behavior [37] , 

 = 

‖ ξ+ η‖−‖ ξ‖ 
‖ ξ‖ is the relative deformation or bond strain. PD bonds 

reak when they reach the critical relative deformation s 0 and the 

tate of a bond is tracked by the bond damage factor μ as [22] : (
x , ̂  x , t 

)
= 

{
1 if s 

(
x, ̂  x , t 

′ )
< s 0 for all 0 ≤ t 

′ ≤ t 

0 otherwise 
(8) 

hich means once a bond breaks, it does not carry bond force any- 

ore. With the breakage of bonds, failure starts to accumulate, and 

racks begin to initiate and propagate. The damage index d is used 

o measure the damage level at a point: 

 ( x , t ) = 1 −

∫ 
H x 

μ
(
ˆ x , x , t 

)
d V ˆ x ∫ 

H x 

d V ˆ x 
(9) 

After spatial discretization, d( x , t ) is the ratio of the number of 

roken bonds to that of total bonds connected to point x at time 
4 
. When all bonds connected to point x are broken, d( x , t ) = 1 and

oint x becomes a free point. In this work, we consider the con- 

tant micro-modulus function [27] . For plane stress conditions, we 

ave c = 
9 E 
πδ3 

and s 0 = 

√ 

4 πG 0 
9 Eδ

( E and G 0 are Young’s modulus and 

nergy release rate, respectively), while for plane strain conditions, 

e have c = 
48 E 
5 πδ3 

and s 0 = 

√ 

5 πG 0 
12 Eδ

. 

For mechanical equilibrium problems with no body forces, 

ut in which damage may evolve in time because of corrosion, 

q. (6) becomes: 
 

H x 

f 
(
u 

(
ˆ x , t 

)
− u ( x , t ) , ̂  x − x 

)
d V ˆ x = 0 (10) 

here t is the time when equilibrium is tested/enforced after a 

ertain evolution of the corrosion process. Appropriate conditions 

n the boundaries (volume constraints) have to be assigned to this 

quation for specific problems. In many cases, it is convenient to 

nforce these nonlocal BCs to approximate as close as possible the 

ocal BCs one would use in a classical model. For each of the ex- 

mples solved below we describe these conditions in detail. 

.2. PD corrosion model 

Corrosion is the result of an electrochemical process. In the 

resence of electrolytes, metal corrosion can be represented as 

 dissolution process of the solid material (metal) into the liq- 

id medium (electrolyte). The diffusion of metal ions in the elec- 

rolyte can affect the dissolution rate. This process can be effec- 

ively described by the original PD corrosion model [ 9 , 10 ], which

reats corrosion as a diffusion-type problem in a bi-material sys- 

em, with specific diffusivities assigned to the solid (an effective 

iffusivity, not its actual one), liquid and interface phases. Later is 

as recognized ([ 10 ]) that important savings can be achieved by 

ocusing only on the dissolution layer part of the solid (the DCL, 

iffusion-based Corrosion Layer [38] ) and the electrolyte, as the 

est of the solid (with its very small actual diffusivity) does not 

irectly participate in the corrosion process. Specifically, the disso- 

ution flux of metal ions crossing the solid-liquid interface is used 

n the PD diffusion equation to solve for the metal ion concentra- 

ion in the bi-material system. The nonlocality in PD models in- 

roduces a length scale which facilitates modeling of the dissolu- 

ion flux, which cannot be defined in local models when jump- 

iscontinuities are present at the interface [10] . 

The dissolution process causes mechanical damage through a 

hin layer (several micrometers-thick) at the corroding surface [38–

1] . To model mass transport and material damage simultaneously 

n the PD corrosion model, the material damage definition ( d) in 

q. (9) is employed and two sets of bonds are overlaid: transport 

onds and mechanical bonds. Transport bonds are responsible for 

iffusion/dissolution of metal ions/atoms, while mechanical bonds 

rovide the link between strain- and corrosion-induced damage. 

he corrosion damage process is the progression of material dam- 

ge/disintegration into the intact material. When the concentra- 

ion at a solid point drops below the saturated concentration, the 

oint suffers a phase change from solid to electrolyte (its diffusiv- 

ty is switched to that of the electrolyte), and all of its mechanical 

onds are broken (its damage value becomes 1). Material points 

ith a damage value lower than 1 are part of the solid phase: in- 

act ( d = 0 , no broken bonds) or partially damaged ( 0 < d < 1 ). 

Existing PD models for corrosion can capture important changes 

hat happen near the corrosion front (on the solid side) and offer a 

ore complete description of corrosion damage than was possible 

efore [ 1 , 9 , 10 , 13 ]. However, in these models, an important simpli-

cation is used for activation-controlled corrosion, namely that the 

verpotential is a constant value (independent of location) along 
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he corrosion front. This value can be measured from experiments 

nd determines the current density from corresponding polariza- 

ion curves. This treatment avoids solving for the electric poten- 

ial distribution along the corrosion front and is acceptable for pit- 

ing corrosion cases in which the potential distribution (and there- 

ore the current density) along the pit surface is close to uniform 

12] . To cover situations like salt layer formation or passivation at 

he corrosion front when diffusion-controlled conditions dominate 

and the potential distribution varies significantly along the cor- 

osion front), the existing PD models include concentration-based 

ules that lead to the pausing/stopping of metal dissolution [ 10 , 13 ].

nder activation-controlled conditions, these mechanisms are not 

riggered, and the existing PD corrosion models would not apply 

o galvanic corrosion problems [14] , in which activation-controlled 

onditions are critical and the electric potential (or the corrosion 

ate) varies significantly along the corrosion front. Moreover, these 

ariations also change drastically as the corrosion front evolves. 

herefore, to predict galvanic corrosion, it is necessary to com- 

ute and update the potential distribution throughout the corro- 

ion process, so that the distribution of corrosion rates along the 

orrosion front can be updated accordingly. 

To achieve this goal, we introduce a PD electrostatic solver to 

ompute the electric potential distribution in the electrolyte do- 

ain. In addition to that, we reformulate the PD corrosion dissolu- 

ion model in [10] based on electrochemistry to substitute the nu- 

erical calibration with an analytical one. This change makes the 

odel more reliable for problems with highly non-uniform current 

ensities along arbitrary corroding surface, as in the case of gal- 

anic corrosion. Moreover, we show that the damage-dependent 

orrosion model which was used in the original PD concentration- 

ependent damage model is no longer needed. 

.2.1. PD electrostatic model 

In galvanic corrosion, one can use the classical model (Laplace’s 

quation) shown in Eq. (4) to find the electric potential. However, 

ecause we would like to couple the electric potential solver with 

he PD corrosion model, it is more convenient (for a seamless in- 

egration) to formulate and solve the corresponding PD problem of 

aplace’s equation in Eq. (4) to find the electric potential needed in 

he corrosion model. The PD model for finding the electric poten- 

ial is identical to that for steady state diffusion, with a constant 

icro-diffusivity: 

 

H x 

φ
(
ˆ x 
)

− φ( x 
)

‖ ̂  x − x ‖ 
2 

d V ˆ x = 0 . (11) 

When using Eq. (11) to solve for the electric potential in the 

lectrolyte, the BCs away from the metal surfaces can be approxi- 

ated as homogeneous Neumann-type conditions (zero flux across 

hose boundaries). The BC that has to be specified on the metal 

urfaces, according to the Ohm’s law, is: 

 ( p, t ) = −σ∇ n φ( p, t ) (12) 

n which p is a point at the metal surface, σ is the electric con- 

uctivity, i is the current density and ∇ n φ = ∇φ · n , where n is 

he outward unit normal. The relation between i and φ can be 

easured experimentally and expressed using Tafel’s equation (see 

q. (1) ). This makes Eq. (12) a nonlinear Robin type BC [2] , written

s: 

 0 × 10 
φ( p,t ) −φ0 

β = −σ∇ n φ( p, t ) . (13) 

To enforce the local Robin BC on the metal surfaces in the PD 

odel, we use an autonomous mirror-type fictitious nodes method 

FNM) [16] , which has been designed to handle boundaries of ar- 

itrary shape. Implementation details are provided in Appendix A . 

nce the electric potential is obtained, the current density at each 
5 
oint p ∈ ∂� can be determined by Eq. (13) or the Ohm’s law (see

ection 3.2.2 ). For simplicity of implementation, along the zero- 

ux boundaries, we do not use fictitious nodes, and these con- 

itions are then, approximately, but naturally, represented in the 

odel. 

.2.2. A modified PD corrosion dissolution model 

PD corrosion models use a phase-dependent nonlocal diffu- 

ion equation on a domain that contains both liquid (electrolyte) 

nd solid (metal) phases. Diffusion of metal ions/atoms in the liq- 

id/solid, and the dissolution of solid into liquid at the solid-liquid 

nterface can all be represented using the PD corrosion model as 

iscussed in [ 9 , 10 ]. In this work, however, we assume activation-

ontrolled conditions, i.e., corrosion rate is not influenced by mass 

ransport in the liquid domain �l (all liquid points are set to al- 

ays have zero metal-ion concentration). In addition ([10]), mass 

ransport in the solid �s is too slow relative to the interfacial mass 

ransport (dissolution). Therefore, for these conditions we ignore 

iffusion in �l and �s . Consequently, as shown in Fig. 3 for pitting 

orrosion, only transport bonds connecting solid and liquid points 

cross the anode surface (pit wall) are involved in the dissolution 

f solid into liquid. These are called dissolution bonds. 

Based on the above assumptions, the PD corrosion dissolution 

odel can be written as: 

∂C ( x d , t ) 

∂t 
= 

∫ 
H x d ∩ �l 

J 
(
ˆ x , x d , t 

)
d V ˆ x (14) 

here C( x d , t ) is the concentration at a dissolving point x d ∈ �diss 

t time t , and the integrand J( ̂  x , x d , t ) is the mass flow density 

rom x d to a point ˆ x ∈ H x d 
∩ �l . In the model presented in [10] ,

was assumed to depend on the concentration gradient between 

he ends of a transport bond, x d and ˆ x : 

 

(
ˆ x , x d , t 

)
= κd 

C 
(
ˆ x , t 

)
−C ( x d , t ) 

‖ ̂  x − x d ‖ 
2 

(15) 

here κd is the constant micro-dissolvability, a parameter that 

eeds to be calibrated such that the dissolution rate in the PD 

odel matches the measured/given activation-controlled corrosion 

ate. Since there is a linear correlation between κd and the cur- 

ent density i [9] , i.e., κd = λi , one can find the correlation con-
tant λ by using a trial simulation as follows [10] : a simulation of 

niform corrosion under activation-controlled regime is performed 

ith a trial micro-dissolvability κ trial 
d 

; if the resulting current den- 

ity is denoted by i trial , we have λ = κ trial 
d 

/ i trial . For cases like gal- 

anic corrosion where i is location-dependent, this would lead to a 

ocation-dependent κd in Eq. (15) , which could be computed from 

i ( p( x d ) , t ) (since the electrostatic solver gives the current density 

alue at each point along the metal surface), where p( x d ) is the 

oint in 
 f (the corrosion front/surface, see Fig. 4 ) that minimizes 

he distance to x d . One still would have to find λ, through a cali-
ration procedure. Each set of x d which share the same p are de- 

oted by χ(p) , as shown in Fig. 4 for the case of a smooth bound-

ry. 

Since the calibration procedure described above was based on 

 trial simulation that assumed uniform corrosion for a flat sur- 

ace, the calibrated value would not be valid on anode surfaces 

ith high curvature (where the radius of curvature is in the or- 

er of the horizon size). Such high curvatures are likely to appear 

n galvanic corrosion in which the corrosion rate can vary signifi- 

antly along the anode surface, especially near the anode-cathode 

oint. Moreover, even for flat anode surfaces, this calibration ap- 

roach would fail to predict the corrosion rate accurately at loca- 

ions near a corner of the anode (e.g., anode-cathode joint), since 

issolving points located near a corner have significantly smaller 

umber of dissolution bonds compared with those which are lo- 

ated elsewhere. This would result in unrealistically slow disso- 
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Fig. 3. A schematic of different regions and bonds defined in the PD corrosion model at the corrosion front (redrawn from [10] ). The PD horizon size is δ. Solid-solid bonds 

are considered as inert here, and diffusion in liquid is also ignored (by enforcing zero concentration at all times on liquid nodes). 

Fig. 4. Examples of dissolving points (that form the set χ(p) ) which share the current density of point p ∈ 
 f , for an arbitrary, but smooth, boundary. 
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ution rates at locations which can be critical in the evolution of 

aterial damage and failure. For example, the corrosion rate at the 

node-cathode joint in galvanic corrosion plays a significant role in 

aterial failure since these joints are likely to become stress con- 

entration locations once corrosion starts. 

While these issues could be overcome with a series of calibra- 

ions performed on a sufficient number of different geometrical 

onfigurations of the anode surface, that would lead to a rather 

omplex algorithm/implementation, as well as an increase in the 

omputational cost of the simulation. A preferred option is an an- 

lytical, instead of a numerical, calibration for this model param- 

ter. Recall that most PD models are setup using analytical rela- 

ionships between bond parameters, such as micro-modulus and 

icro-diffusivity, and material properties, like elastic modulus and 

iffusivity [ 22 , 30 ]. 

Furthermore, the dependency of mass flow density in 

q. (15) on concentration distribution becomes less reliable 

or problems with highly non-uniform current densities along an 

rbitrary corroding surface, which is the case of galvanic corrosion, 

or example. From electrochemistry, we know that anodic disso- 
6 
ution is driven by the corrosion reaction (directly related to the 

urrent density), which is determined by the potential distribution 

t the anode surface, and is only indirectly dependent on the 

oncentration distribution near the corrosion front. Therefore, we 

odify the definition of the PD mass flow density in Eq. (15) to 

ake it directly depend on the current density distribution (de- 

ermined by the PD electrostatic model, see Section 3.2.1 ) at the 

orrosion front, as follows: 

 

(
ˆ x , x d , t 

)
= ω 

i ( p ( x d ) , t ) 

‖ ̂  x − x d ‖ 

(16) 

here ω is a constant that will be calibrated analytically for a cer- 

ain curvature at p by matching the PD flux J PD 
diss 

( p, t ) (see below) 

ith a given constant dissolution flux J diss ( p, t ) . Note that here we 

se a constant ω, but other options are not precluded, for example 

ne could choose ω = ω( ‖ ̂  x − x d ‖ ) . 
Consider a flat surface as shown in Fig. 5 , J PD 

diss 
( p, t ) is con-

ributed from all dissolution bonds connected to x ∈ χ(p) and can 
d 



J. Zhao, S. Jafarzadeh, M. Rahmani et al. Electrochimica Acta 391 (2021) 138968 

Fig. 5. Computation of the PD flux at a point p at a flat anode surface. 
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e computed as [25] : 

 
PD 
diss ( p, t ) = 

δ∫ 
0 

ξ∫ 
0 

cos −1 

(
z 
ξ

)∫ 
0 

J 
(
ˆ x , x d , t 

)
ξd θd ξd z 

= 

δ∫ 
0 

ξ∫ 
0 

cos −1 

(
z 
ξ

)∫ 
0 

ω 

i ( p, t ) 

ξ
ξd θd ξd z = ωi ( p, t ) δ2 (17) 

here ξ is the bond length, θ is the angle between the bond and 

he surface, and z is the distance between x d and the surface (or 

p( x d ) ). Since J diss ( p, t ) = i ( p, t ) /qF according to Faraday’s law, by

etting J PD 
diss 

( p, t ) = J diss ( p, t ) , we obtain: 

 = 

1 

qF δ2 
. (18) 

One more step is required to make this model applicable for 

eneral corrosion problems, including galvanic corrosion. The PD 

ux definition in Eq. (17) assumes a flat surface (see Fig. 5 ). In

rder to have this analytical calibration process work for the PD 

ransport equation in Eq. (14) independent on the curvature of 

he anodic surface, we modify the transport equation as described 

ext. 

In general, uniform corrosion (same current density i every- 

here) on a metal surface of arbitrary shape, as shown in Fig. 4 ,

hould evolve perpendicular to the surface and progress with the 

ame speed everywhere. In the PD framework, this means that 

oints x d with the same distance to the surface ( z) should have 

he same rate of concentration loss, independent of the curvature 

f the surface at p( x d ) and the number of dissolution bonds con- 

ected to x d (the shape of the horizon region contained in the 

lectrolyte domain, H x d 
∩ �l ). Therefore, we can write 

∂C( x d ,t ) 

∂t 
= 

f ( z( x ) ) , where f ( z( x ) ) is the integral of the mass flow density
d d 

7 
f all dissolution bonds connected to x d , that should not depend 

n the shape of H x d 
∩ �l . Since we calibrated ω for a flat surface, 

e need to compute f ( z( x d ) ) over a flat surface: 

f ( z ( x d ) ) = 

δ∫ 
z 

cos −1 

(
z 
ξ

)∫ 
0 

ω 

i ( p ( x d ) , t ) 

ξ
ξd θd ξ = 2 ωi ( p ( x d ) , t ) 

×
{
δcos −1 z 

δ
− z ln 

[
δ

z 
+ tan 

(
cos −1 z 

δ

)]}
. (19) 

The modification to the PD model for corrosion dissolution de- 

ned by Eqs. (14) and (15) is: 

∂C ( x d , t ) 

∂t 
= 2 ωi ( p ( x d ) , t ) 

{
δcos −1 z 

δ
− z ln 

[
δ

z 
+ tan 

(
cos −1 z 

δ

)]}
(20) 

Therefore, we replace the integro-differential model in 

qs. (14) and (15) with an ordinary differential model ( Eq. (20) ) 

n which z( x d ) for each x d ∈ �diss , together with i ( p( x d ) , t ) , deter-

ines the dissolution flux. Note that computing the distance z( x d ) 

s, in a sense, computationally equivalent to evaluating the integral 

n Eq. (14) , because it involves, after discretization, searching 

hrough the nodes in H x d 
∩ �l for the one closest to x d . 

We remark that if we wanted to calibrate ω using a surface dif- 

erent than a flat one, we would have to use that same geometry 

or computing f ( z( x d ) ) . Eq. (20) works naturally for cases where 

 is highly location-dependent, or when the curvature of the cor- 

osion surface is high (at corners, for example). In Section 4.1 , we 

ill use the discrete version of Eq. (20) to estimate the numerical 

rror of resulting current density introduced by the discretization, 

or a problem with a known (classical) analytical solution. 

We now explain how to find the corresponding p and the dis- 

ance to the surface z, for a given x . With the meshfree-type 
d 
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Fig. 6. A schematic of corrosion front after spatial discretization. 
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one-point Gaussian quadrature) spatial discretization of the do- 

ain (see Fig. 6 ), the corrosion surface 
 f is located between the 

olid nodes and liquid nodes and can be approximated by those 

iquid nodes ˜ p which are closest to solid nodes, as shown in Fig. 6 .

o determine p( x d ) , we search all x ∈ H x d 
∩ �l for the one closest

o x d . If there are multiple such points, we select the one which 

akes the angle between 
−−→ 

x d p and the nonlocal outward unit “nor- 

al” at x d , n ( x d ) , the smallest. The nonlocal outward unit “nor- 

al” at x d (which approximates the classical outward normal on 

he boundary of a domain) is [16] : 

 ( x d ) = 

∫ 
H x d ∩ �l 

(
ˆ x − x d 

)
d ̂  x ∥∥∥∥∥ ∫ 

H x d ∩ �l 

(
ˆ x − x d 

)
d ̂  x 

∥∥∥∥∥
(21) 

Since we are not tracking the corrosion front with a moving 

esh (we use a fixed and uniform discretization), to improve the 

pproximation of current density distribution along 
 f , we take 

( x d ) ≈ | | x d − ˜ p | | − �x 
2 , and used it in Eq. (20) . 

We compute the current density i ( ̃  p , t ) from Ohm’s law: 

 ( ̃  p , t ) = σ

∣∣φ( ̃  p , t ) − φ
(
˜ p R , t 

)∣∣
‖ ˜ p R − ˜ p ‖ 

. (22) 

ere, ˜ p R is the reflection/mirror node of ˜ p (see Appendix A ) 

hrough 
 f and φ( ̃  p R , t ) is the electric potential assigned at ˜ p m to 

nforce the local BC for the electric potential solver as discussed in 

ection 3.2.1 and Appendix A . If the polarization curve (or Tafel’s 

quation) is used, we can also compute i ( ̃  p , t ) using Eq. (13) with

( ̃  p , t ) = 
1 
2 [ φ( ̃  p , t ) + φ( ̃  p R , t ) ] . 

.2.3. Concentration–dependent damage models in PD simulation of 

orrosion 

Modeling of corrosion-induced damage is important in under- 

tanding stress-corrosion cracking [42] . In the combined action of 

echanical loading and environmental attack, material damage can 

e caused by strain- or chemically-induced atomic bond ruptur- 

ng. In the corresponding PD model, we will account for damage 

ccumulation (see Eq. (9) ) from both sources: corrosion-induced 

amage (monitored by d c ( x , t ) ) and mechanical strain-triggered 

amage (monitored by d s ( x , t ) ). Note that, in the context of corro- 

ion, Eq. (8) is augmented so that the condition for μ = 0 includes 

orrosion-induced bond breaking. 

A concentration-dependent damage (CDD) model was intro- 

uced in [9] to establish a relationship between corrosion and 
8 
he damage of mechanical bonds. Given the intrinsic randomness 

f the corrosion reaction (partly due to the variations in the mi- 

rostructure of the material), one can assign a probability P ( x , t ) 

f the bonds connected at x ∈ �s at time t to break, based on 

he concentration drop at x , for all (intact) mechanical bonds con- 

ected to x . In order to determine P ( x , t ) , a linear dependency

etween the corrosion-induced damage d c ( x , t ) and the concentra- 

ion C( x , t ) was proposed in [9] : 

 c ( x , t ) = { 1 , C ( x , t ) ≤ C sat 
C solid −C ( x ,t ) 
C solid −C sat 

, C sat < C ( x , t ) ≤ C solid 
(23) 

here C solid refers to the concentration of metal atoms in the in- 

act solid phase, and C sat is the saturation concentration for metal 

ons in electrolyte. Reaching C sat was assumed as a good approxi- 

ation for when the solid-to-liquid phase-change takes place. Note 

hat for activation-controlled corrosion, we assume that if a nodal 

oncentration reaches below C sat , that concentration is set to zero. 

he change in damage (from one time-step to the next, at a point) 

an then be expressed in terms of the probability P ( x , t ) as [9] : 

d c ( x , t i ) = d c ( x , t i ) − d c ( x , t i −1 ) = ( 1 − d c ( x , t i −1 ) ) P ( x , t i ) (24) 

Combining Eqs. (23) and (24) , one finds an expression for the 

robability of corrosion damage at x ∈ �s and t i in terms of the 

oncentration drop at that point: 

 ( x , t i ) = 

1 

1 − d c ( x , t i −1 ) 

(
C ( x , t i −1 ) −C ( x , t i ) 

C solid −C sat 

)
= 

C ( x , t i −1 ) −C ( x , t i ) 

C ( x , t i −1 ) −C sat 
(25) 

This quantity now allows us to break a corresponding number 

f mechanical bonds connected to x so that the damage evolves 

stochastically) according to Eq. (23) . The stochastic procedure for 

electing which mechanical bond breaks at a given time ∀ x ∈ �s is 

s follows [9] : 

1) Compute/update the concentration field at this time step. 

2) Loop over all x ∈ �s . 

a Compute the probability of breaking P at x ; if P = 0 , then

skip this x , else continue. 

b Loop over all ˆ x ∈ H x ∩ �s . 

i If the mechanical bond connecting x and ˆ x is already 

broken, then skip this bond, else continue. 

ii Generate a random number R ( x , ˆ x ) from a uniform dis- 

tribution in interval [ 0 , 1 ] ; if R ( x , ˆ x ) is smaller than or 

equal to P , then break the bond (note that each bond 
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connects two points, thus, once a bond breaks, it is con- 

sidered broken for both points). 

c End loop over all ˆ x ∈ H x ∩ �s . 

3) End loop over all x ∈ �s . 

Note that Eq. (23) gives the expected corrosion-induced dam- 

ge value d c at point x , based on the concentration drop at that 

oint only. After performing the bond-breaking procedure for all 

 ∈ �diss , the damage index d at each x ∈ �s is computed from 

q. (9) . However, as we can see in this procedure, a mechanical 

ond x − ˆ x can be broken due to either x or ˆ x , which means that

he damage index at a point x ∈ �s , at the end of a time step,

an also be affected by bond-breaking events due to concentra- 

ion drop at ˆ x ∈ H x ∩ �diss . This means that the damage index com- 

uted by Eq. (9) may have a slightly larger values than what is 

xpected from Eq. (23) . As a result, there could be material points 

hat reach d = 1 (totally detached from other solid points) that still 

ave C > C sat . Physically, this would mean that a small part of the 

olid (a speck, defined by a node) is now surrounded by electrolyte 

nd would dissolve rather instantaneously. This leads to the con- 

lusion that we can assume this location to, effectively, now be 

lectrolyte phase. This was the reason for the damage-dependent 

orrosion (DDC) model to be used in [9] , where such nodes where 

witched from a the solid phase to the liquid phase (by chang- 

ng the micro-diffusivity of transport bonds connected to them). In 

he absence of DDC, given the “effective” diffusion in solid used in 

9] to calibrate the model to a given corrosion rate, one obtains 

n ever expanding corrosion-affected layer, which is not physically 

bserved (see [38] ). 

An important update to the CDD + DDC model in [9] has ap- 

eared in [10] . There, it was recognized that it was sufficient to 

onitor changes in the Diffusion-based Corrosion Layer (DCL, a 

ayer of thickness δ at the corrosion surface), and only model 

ransport through PD transport bonds whose end nodes are either 

olid-liquid or liquid-liquid. The numerical calibration to match a 

ertain corrosion rate for the model in [10] was performed to de- 

ermine the micro-dissolvability of an dissolution (anode-liquid) 

ond, as explained above in the paragraph after Eq. (15) . While the 

DC part of the coupled corrosion-damage model was still used in 

10] , it had become redundant. Because of the numerical calibra- 

ion procedure, the model in [10] can work with or without the 

DC part. However, the new PD formulation for corrosion disso- 

ution, see Eq. (20) , introduced here, does not work with DDC be- 

ause it uses an analytical calibration, which assumes dissolution 

appens only through dissolution bonds, and phase-change takes 

lace only when the concentration at a node drops below C sat : 

if C ( x , t ) ≤ C sat then x ∈ �l 

if C sat < C ( x , t ) ≤ C solid then x ∈ �s 
. (26) 

In the context of the new coupled corrosion-damage model, 

qs. (20) and (25) , adding the DDC part would artificially speed up 

he corrosion rate. Therefore, the coupled corrosion-induced dam- 

ge model we use here is based on Eqs. (20) , (25) , and (26) . 

.3. PD corrosion–fracture model 

In previous sections, we reviewed the mechanical fracture 

odel and introduced different ingredients of the modified corro- 

ion model. In this section, we introduce the coupling strategy for 

hese models and discuss their numerical implementation. 

The elasticity (with fracture), electrostatics, and mass transfer 

with damage and phase-change) models are coupled into a PD 

odel called the PD corrosion-fracture (PD-CF) model and consists 

f the following set of equations: 
9 
Elasticity Eqs. (7) and ( (10) ): 

 

H x 

cs μ
ξ + η

ξ + η
d V ˆ x = 0 ∀ x ∈ �s ( displacement ) (27) 

here s = 

‖ ξ+ η‖−‖ ξ‖ 
‖ ξ‖ (bond strain) 

Electrostatics Eqs. (11) and ( (22) ): ∫ 
H x 

φ
(
ˆ x 
)

− φ( x 
)

‖ ̂  x − x ‖ 
2 

d V ˆ x = 0 ∀ x ∈ �l ( electric potential ) 

i ( ̃  p , t ) = σ

∣∣φ( ̃  p , t ) − φ
(˜ p R , t 

)∣∣
‖ ̃  p R − ˜ p ‖ 

( current density ) (28) 

Corrosion Eqs. (20) , ( (25) and (26) ): 

∂C ( x , t ) 

∂t 
= 2 ωi ( p ( x ) , t ) 

{
δcos −1 z 

δ
− z ln 

[
δ

z 
+ tan 

(
cos −1 z 

δ

)]}
∀

∈ �diss ( mass transport ) 

P ( x , t i ) = 

C ( x , t i −1 ) −C ( x , t i ) 

C ( x , t i −1 ) −C sat 
∀ x 

∈ �s ( bond − breaking probability ) {
if C ( x , t ) ≤ C sat then x ∈ �l 

if C sat < C ( x , t ) ≤ C solid then x ∈ �s 
( phase − change ) (2

Bond damage (corrosion- and strain-induced bond breaking) is 

efined as: 

(
x , ̂  x , t 

)
= 

⎧ ⎨ ⎩ 

1 if x , ̂  x ∈ �s and s 
(
x , ̂  x , t 

′ )
< s 0 and 

R 
(
x , ̂  x , t 

′ )
> P 

(
x , t 

′ )
, ∀ t 

′ ∈ [ 0 , t ] 

0 otherwise 

(30) 

here R is the random number generated for each bond in the 

lgorithm given in the previous section. 

These equations are accompanied by appropriate initial and 

Cs. The initial concentration distribution for the corrosion and the 

ocal BCs to be enforced for electrostatics and elasticity are speci- 

ed for each of the examples considered here in Sections 4 and 5 .

n Appendix A , we explain how we enforce local BCs in PD models. 

In the PD-CF model, the elasticity model ( Eq. (27) ) computes 

he displacements field ( u ) and bond strains ( s ) in the solid;

he electrostatic model ( Eq. (28) ) computes the electric potential 

istribution ( φ) in the electrolyte and current density distribu- 

ion ( i ) on electrode surfaces; the corrosion model ( Eq. (29) ) up-

ates the distribution of metal concentrations ( C), computes the 

orrosion-induced bond-breaking probability ( P ) and determines 

he necessary phase changes from the dissolution process; the 

amage model ( Eq. (30) ) updates the strain- and corrosion-induced 

ond-failure in the solid. To visualize damage results, in a post- 

rocessing phase, we determine the total nodal damage index 

alue ( d) by Eq. (9) . Note that in the PD-CF model, d( x , t ) ≈
 s ( x , t ) + ( 1 − d s ) × d c ( x , t ) in which d c represents the corrosion- 

nduced damage index and d s is mechanical strain-triggered dam- 

ge index. 

The implementation of the PD-CF model is shown in Fig. 7 . 

n the main solver, the corrosion solvers are called at each time- 

tep, and the electric potential and displacement fields are up- 

ated at the first time-step and any time step if any of the solid 

odes becomes liquid in the previous time step. In the electro- 

tatic solver, because the FNM is used to impose BCs, the elec- 

ric potential needs to be solved iteratively, with the solution in 

he domain and constraint in the fictitious region updated after 

ach iteration, until two sequential solutions differ by less than a 

iven tolerance. Since this system is linear, we use the Conjugate 

radient (CG) method to solve it. The Euclidean norm is used to 

easure the difference between two solutions, and the tolerance 
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Fig. 7. Workflow of the PD corrosion-fracture (PD-CF) model. 
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a

s set to 1e-6. The displacement field is solved by the Nonlinear 

onjugate Gradient (NCG) method [ 43 , 44 ] and, ideally, should be 

pdated every time new corrosion damage happens. However, in 

his work, to save computational time, we update it as frequently 

s the electric potential field. The influence of this treatment on 

he stress corrosion cracking behavior is insignificant [11] . If any 

echanical bond breaks after we updated the displacement field, 

he update needs to be repeated until equilibrium is satisfied and 

o more bonds break in the process. The simulation stops when 

he final time-step is reached, or when the number of successive 

pdates of displacement field exceed a certain value, e.g., 50, since 

his would be an indication of unstable crack growth, and a differ- 

nt solver (e.g., explicit) may need to be used. 

The corrosion rate may depend on the stress field [36] . While 

e will show an example solving a coupled corrosion-fracture 

roblem (in which changes in sample geometry induced by the 

alvanic dissolution process leads to higher tensile stresses/strains 

nd fracture) in Section 5 , here we assume the corrosion rate to 

e independent of the stress field. It is, however, possible to intro- 

uce the stress-dependent corrosion rate model into a PD model 

f corrosion, as has been presented in [36] . The examples shown 

n Section 4 do not employ the mechanical solver, because no me- 

hanical loadings are involved. The full model is used in the exam- 

le in Section 5 , where we simulate the combined effects of gal- 

anic corrosion and failure induced by corrosion and mechanical 

oadings. 

To discretize the PD IDEs, we use the meshfree method with 

ne-point Gaussian quadrature, in which handling damage and 

racture is natural [24] . Uniform grids are used to discretize the 

omain, both electrolyte and solid regions. Detailed descriptions of 
he discretization used can be found in [10] . 
J

10 
. Verification and validation of the PD corrosion model 

In this section, we first verify the new PD corrosion model 

gainst a problem with the corresponding classical analytical so- 

ution. Then, validation against experimental data is provided. We 

nly consider activation-controlled corrosion, therefore mass trans- 

ort between any two points in the electrolyte domain is ignored. 

.1. Verification of the new PD formulation for galvanic corrosion 

To verify the new corrosion model for galvanic corrosion, we 

onsider the example shown in Fig. 8 . The cathode and anode are 

n electric contact by a perfect conductor, in the presence of an 

lectrolyte with conductivity σ . The electrode potential of cathode 

nd anode are φc and φa , respectively. The whole domain is infinite 

n the x direction and the electrolyte region has an initial height of 

 0 . 

If both electrodes are nonpolarizable, the classical formulation 

or the electric potential distribution in the electrolyte domain is: 

 

∇ 
2 φ = 0 

φ( x, y = 0 , t ) = φc 

φ( x, y = h ( t ) , t ) = φa 

(31) 

here h (t) is the height of the electrolyte domain at time t . The 

lassical solution of Eq. (31) is: 

( y ) = φa − y 

h ( t ) 
( φa − φc ) (32) 

nd the mass flux at the anode surface is: 

 = 

σ ( φa − φc ) 

qF h ( t ) 
(33) 
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Fig. 8. Sketch of the example used to verify the PD galvanic corrosion model (re- 

drawn from [6] ). 

Table 1. 

Parameter values for the example shown in Fig. 8 . 

Parameters Value Parameters Value 

φa 0 . 6 V F 96 , 485 C / mol 

φc 0 . 1 V h 0 0 . 1 m 

σ 2 . 5 S / m L 0 . 1 m 

C solid 143 mol / L q 2 
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Table 2. 

Numerical errors (for 

different values of 

m ) for the resulting 

current density when 

the discrete version 

of Eq. (20) is used to 

update the concentra- 

tion in the corrosion 

dissolution model. 

m -value | i m PD −i 0 
i 0 

| 
2 7.15e-2 

4 2.18e-2 

8 6.4e-3 

16 1.8e-3 

32 5.2e-4 
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here q is charge number of a metal ion and F is Faraday’s con- 

tant. Values for these parameters are provided in Table 1 . Note 

hat the width of the domain is set to L in the PD simulation, and

eriodic BCs are imposed at x = ± L 
2 , to effectively make the do- 

ain infinite in the x direction. To accomplish this, two fictitious 

egions ( ̃  A and ˜ B ), with their width equal to the horizon size, are 

dded outside the domain, as shown in Fig. 9 . The electric poten- 

ial in these fictitious regions is mapped from that of the corre- 

ponding subdomains ( A and B ) in the solution domain, so that 

he left and right boundaries of the solution domain are effectively 

onnected by periodicity. 

We first compute the electric potential in the electrolyte do- 

ain to verify our PD electrostatic model. We choose δ = 4 mm 

nd �x = 1 mm for the simulation. The relative difference (using 

he Euclidean norm) of the electric potential compared to the clas- 

ical solution (see Eq. (32) ) is 1.67e-6, when the tolerance for con- 

ergence is set to 1e-6. The uniform current density at the anode 

urface computed by Eq. (22) is 12.50183 A / m 
2 , while the classical 

olution is 12.5 A / m 
2 , leading to a relative difference of 1.46e-4. 

ote that the convergence study on the electric potential is not 

eeded for this problem, because the exact solution has a linear 

istribution and the FNM enforces the local BCs exactly, i.e., the PD 

olution matches the analytical classical solution exactly regardless 

f the grid density. In fact, a finer grid leads to a larger error due

o accumulation of round-off numerical errors. 

Next, we analyze the numerical error introduced by using the 

iscretized form of Eq. (20) to update the concentration in the cor- 

osion dissolution model. Assuming that at a point on the anode 

urface the given current density (e.g., obtained from the electric 

otential) is i 0 , the relative difference between i 0 and the result- 

ng current density i m generated by using the discrete form of 

PD 

11 
q. (20) can be written as: 

i m 

PD − i 0 

i 0 

∣∣∣∣ = 

∣∣∣∣∣1 − 2 

m 
2 

m ∑ 

k =1 

{ 

m cos −1 z k 
m 

− z k ln 

[ 
m 

z k 
+ tan 

(
cos −1 z k 

m 

)]
(34) 

here m is the ratio of horizon size and grid size ( δ/ �x ) , and

 k = k − 1 / 2 . This relative error only depends on the value of m

nd should drop as m increases (or as 1 /m decreases). The error for 

ifferent m -values is given in Table 2 ; as expected, larger m -value

eads to smaller error (with a convergence rate close to quadratic). 

owever, as we increase the m -value (with δ fixed), the scaling 

f the total computational cost also increases significantly, since 

ith this type of numerical solution, the scaling is O ( N 
2 ) , where N

s the total number of nodes used in the discretization [45] . Note 

lso that a larger m -value does not necessarily improve the accu- 

acy because of concurrent increase in round-off error. It is pos- 

ible to choose different m -values for each model in the coupled 

D-CF model to balance cost and accuracy. When a large m -value 

s needed to capture some fine details, the fast convolution-based 

D method recently introduced, may be used as an alternative ap- 

roach, since it has been shown to lead to significant computa- 

ional efficiencies [ 45 , 46 ]. Here, considering that the relative error 

n i PD is acceptable when m = 4 , we use this value. Note that since

e calibrated the PD models, for any horizon size, to match a given 

urrent density (see Eq. (18) ), these numerical errors are indepen- 

ent of the horizon size. 

To verify the coupling of the electrostatic model and the cor- 

osion dissolution model, we test the corrosion evolution for the 

roblem in Fig. 8 by checking the corrosion depth z h = ( h − h 0 ) as 

 function of time t . The solution for the corrosion depth in the 

lassical model is [6] : 

 h = 

√ 

2 σ t ( φa − φc ) 

qF c solid 
+ h 2 

0 
− h 0 (35) 

The evolution of corrosion depth obtained by the PD corrosion 

odel (using effective corrosion depth, see Appendix B ) agrees 

ith the classical solution, as shown in Fig. 10 . The relative dif- 

erence of the final depth between them is 2.07%, which is close 

o the numerical error in the effective current density for m = 4 

hown in Table 2 . Note that the relative difference in electric po- 

ential between the PD and classical solutions, and the approxi- 

ation of the current density by Eq. (22) , also contribute to the 

elative difference in corrosion depth between the PD and classical 

odels. 
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Fig. 9. Schematic of the implementation of periodic BCs in PD simulations. 

Fig. 10. Comparison of the corrosion depth vs. time between PD solution and classical solution ( Eq. (35) ) for the problem shown in Fig. 8 . Computing the effective corrosion 

depth in PD corrosion model is described in Appendix B 

12 
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Fig. 11. (a) Geometry and BCs for the galvanic corrosion problem (adapted from [2] ); (b) piecewise linear interpolation of the experimentally obtained polarization curves 

for mild steel and AE44 in [2] (details are given in Table 3 ). 

Table 3. 

Data used in the piecewise linear interpolation of the polarization curves from [2] 

(to be used in the Tafel’s equation). 

Alloy φ ( V , SCE ) i 0 ( A / m 
2 ) β ( V ) φ0 ( V , SCE) 

Anode AE44 ( −∞ , −1 . 48 ) 0 . 014 0 . 021 −1 . 55 

[ −1 . 48 , −1 . 41 ] 21 . 145 0 . 166 −1 . 48 

( −1 . 41 , ∞ ) 58 . 107 0 . 4 00 −1 . 41 

Cathode Mild steel 0 . 00125 −0 . 153 −0 . 58 

Table 4. 

Material properties for the galvanic problem 

shown in Fig. 11 (a). 

Parameters σ C AE 44 
solid 

q 

Value 2 . 5 S / m 67860 mol / m 
3 2 
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.2. Validation against experimental results from the literature 

The previous example verified the PD electrostatic model and 

he modified corrosion dissolution model. In this subsection, we 

alidate the model against a galvanic corrosion experiment which 

ppeared in [3] . We compare the PD results with experimental ob- 

ervations, as well as with results obtained by a FEM-based model 

uilt in COMSOL (see Appendix C ) for the classical formulation of 

he problem. The model in COMSOL uses the Arbitrary Lagrangian- 

ulerian method to track the corrosion front as a moving boundary 

2] . 

The setup of the problem is shown in Fig. 11 (a). The classical 

ormulation for the electric potential distribution in the electrolyte 

omain is: 

 

∇ 
2 φ = 0 

∇ n φ( x = 0 , 10 < y < 20 , t ) = 0 
∇ n φ( x = 20 , 10 < y < 20 , t ) = 0 
∇ n φ( 0 < x < 20 , y = 15 , t ) = 0 

∇ n φ( 0 < x < 10 , y = 5 , t ) = −i c /σ
∇ n φ( 10 < x < 20 , y = 5 , t ) = −i a /σ

(36) 

n which ∇ n φ = ∇φ · n , i a and i c are defined by the Tafel’s equation 
see Eq. (13) ) which can be determined by fitting the polarization 

urves of corresponding galvanic couples. The polarization curves 

e use for the AE44 – mild steel couple are shown in Fig. 11 (b)

hich are (piecewise) linear interpolations of the experimentally 

btained curves in [2] . The coefficients in the Tafel’s equation are 

iven in Table 3 . Note that the sign of cathodic and anodic cur-

ent densities is negative and positive, respectively. Other material 

roperties for this problem are provided in Table 4 . These param- 

ters are used in both PD and COMSOL simulations. 
13 
The comparison between COMSOL results and PD results (with 

= 0 . 4 mm ) in terms of the initial potential distribution is shown 

n Fig. 12 . The COMSOL result is selected after a convergence study 

ith respect to the mesh size (see Appendix C for details on the 

OMSOL model) and then, before plotting, post-processed by the 

riging interpolation (necessary because of the adaptive mesh used 

n COMSOL) and plotting that at the nodes of the uniform grid 

sed in the PD model. The agreement between the two solutions 

s very good. 

For a quantitative comparison, we plot the initial current den- 

ity distribution along the electrode surface in Fig. 13 . From the 

oom-in images, we can see that the PD solution, as the horizon 

ize decreases ( m -value is fixed to be 4), approaches the result 

ound by COMSOL. In the experimental results, there is a smooth 

ransition of current density at the galvanic joint, and its minimum 

alue is around -50 A / m 
2 , while the PD and COMSOL results show 

uch smaller values (around -120 A / m 
2 ), and a sudden jump at 

he galvanic joint. We notice that, in the experiment (see [2] ), the 

patial resolution of the current density variation at the joint is 

ighly dependent on the scan rate, or the data acquisition time at 

ach measurement point, but the author did not perform a con- 

ergence study on the scan rate. A slower scan rate may lead to 

harper transition at the joint. Another possible factor is that, in 

he real physical system, there exists a transition zone between 

ifferent materials, while in our models, we assumed a sudden 

aterial change at the joint. Note that the difference between the 

D and COMSOL results near the interface is due to the finer dis- 

retization used by COMSOL near the interface (automatic adaptive 

efinement). 

The experimental profile and that obtained by the PD model for 

he AE44 – mild steel galvanic couple after 3 days of corrosion are 

hown in Fig. 14 (a) and (b), respectively. Although the magnitude 

f corrosion depth obtained by PD simulation is slightly smaller 

han that from the experiment, their patterns agree very well. 

The comparison for the final corrosion depth between experi- 

ental measurements, COMSOL and PD results, is shown in Fig. 15 . 

n Appendix B we explain how we computed the effective corro- 

ion depth in the PD corrosion model. The corrosion profile ob- 

ained by the COMSOL model differs considerably from the exper- 

mental one or the one found by the PD corrosion model. Notice, 

owever, that the results presented in Refs. [ 5 , 6 , 47 ] show patterns

imilar to experimental measurements. That is because an artifi- 

ial step in the geometry of the galvanic joint was used in pro- 

ucing those results. While this artificial step is mentioned in Ref. 

31] , it was not mentioned in [32] but its insertion is obvious from 

he plots shown there. To obtain COMSOL results closer to those 

easured in experiments, we therefore modify the geometry and 



J. Zhao, S. Jafarzadeh, M. Rahmani et al. Electrochimica Acta 391 (2021) 138968 

Fig. 12. Electric potential distribution for AE44 – mild steel galvanic couple obtained by (a) PD; (b) COMSOL. 

Fig. 13. Initial current density along the electrode surface for AE44 – mild steel couple: convergence study for PD solutions; COMSOL (our work), and experimental results 

from [3] . 

Fig. 14. Corrosion profiles for the AE44 – mild steel galvanic couple obtained from (a) experiments [3] ; (b) PD corrosion model ( δ = 0 . 4 mm ). 
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nsert the small step at the galvanic joint before the start of the 

OMSOL simulation. This extra treatment, which reduces the gen- 

rality of the COMSOL model, is necessary because of difficulties 

ith assigning proper BCs in the classical model at the interface, 

nd it allows the corrosion front to start moving in a way similar 

o what is observed experimentally (see Appendix C ). The size of 

he artificial step determines the smallest mesh size used, and, as 

ts size goes to zero, the maximum corrosion depth obtained ap- 

ears to converge, as results shown in Appendix C indicate. Note 

lso that in [ 2 , 4 ], the authors did not specify whether or not they

nserted this artificial step into their COMSOL model. However, the 

orrosion depth profiles for the AE44 – mild steel galvanic couple 

btained there show a pattern close to our COMSOL results that 

se the artificial step, and it is, therefore, reasonable to assume 

hat they made use of the step there as well. 

As shown in Fig. 15 , both PD and the modified-geometry COM- 

OL models generate slightly smaller maximum corrosion depths 

han measured in experiments. Some possible explanations are: (1) 

he geometry of the electrolyte domain used in simulations is dif- 
14 
erent from the real conditions (our electrolyte “bath” has “walls”

t the ends of the sample, while the electrochemical cell used in 

xperiments is likely larger than the sample; also, our model is a 

D approximation of an actual 3D experiment); (2) other corro- 

ion mechanisms, not included here (e.g. crevice or micro-galvanic 

orrosion, stress-dependent corrosion rate), may accelerate the cor- 

osion at the interface between the anode and the cathode, as 

ell as at the edge of the anode; (3) the deposition of corrosion 

roducts on the corrosion surface (not considered here), can affect 

he dissolution of metal atoms into the electrolyte and the elec- 

ric potential around the surface and thus impact the evolution of 

orrosion [ 7 , 8 ]. Note that the specific shape at the bottom of the

rench carved by the galvanic corrosion process is very important 

hen mechanical loadings are involved because it affects the stress 

rofile in that critical region, from which cracks can initiate and 

ropagate (see next section). Microscale experimentation that can 

uantify, in detail, the shape of the bottom of the trench as gal- 

anic corrosion attack progresses, could be used for further valida- 

ion of the PD models presented here. 
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Fig. 15. Corrosion depths obtained from the PD corrosion model ( δ = 0 . 4 mm ), COMSOL with and without the artificial step (our work), and experiments from [3] for AE44 

– mild steel galvanic couple. See Appendix B for how we computed the corrosion depth in the PD corrosion model. 
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The COMSOL curve obtained with the artificial step (see Fig. 15 ), 

ppears to be slightly steeper and deeper at the galvanic interface 

han the PD curves. This is because: (1) the adaptive mesh re- 

nement technique the COMSOL model employs generates a much 

ner mesh near the interface than the uniform grid used in PD 

odels, leading to a slightly larger current density at the inter- 

ace than that obtained by the PD corrosion model (see Fig. 13 ); 

nd (2), the discretized PD corrosion dissolution model effec- 

ively induces a slightly slower corrosion rate, as demonstrated in 

ection 4.1 , that could be mitigated by using a larger m -value (not

ursued here due to increasing computational cost). 

Note that our galvanic corrosion model is general and work for 

ny kind of galvanic joints, as long as the corrosion processes are 

ell described by the mechanisms included in the model. An ad- 

itional validation for the AE44 – AA6063 galvanic couple is pro- 

ided in Appendix D . 

The DCL formed below the corrosion front can degrade mate- 

ial’s performance, and can play a significant role in material fail- 

re when mechanical loadings are applied to the galvanic couple 

48] . In the next section, we investigate the coupling of galvanic 

orrosion and fracture, when both corrosion attack and mechanical 

oadings are present. Such a multi-physical problem can be easily 

reated with PD models but is difficult to simulate using classical 

odels. 

. Application of the PD–CF model to galvanic 

orrosion–induced fracture 

In this section, we investigate the coupling effect between gal- 

anic corrosion and mechanical loading on material failure. Gal- 

anic corrosion usually generates localized and deep trenches at a 

aterial interface. As stresses rise/concentrate at these locations, 

racks can easily initiate and grow catastrophically. To date, no 

odel has attempted to predict the coupling of these two criti- 
15 
al mechanisms involved in material degradation and failure. Such 

 multi-physical problem can be easily treated using PD models. 

We consider the 2D thin plate galvanic couple (mild steel and 

E44, see Fig. 11 (a)) under plane stress conditions and subject to 

he mechanical loadings and environmental conditions shown in 

ig. 16 . As galvanic corrosion progresses at the interface, bending 

reates a region a higher tensile stresses at the corrosion trench, 

nd a crack may initiate and propagate, if conditions meet the brit- 

le fracture criterion discussed in Section 3.1 . Note that the load- 

ng conditions and geometry have significant effects on the stress 

oncentration at the joint of the galvanic couple. In addition, once 

 crack initiates in the region damaged by galvanic corrosion, its 

tress intensity factor also depends on the loading conditions and 

eometry [49] . In actual 3D structures, conditions along the crack 

ront vary from plane stress near its edges to plane strain in its 

entral part [49] . The thin plate couple we chose here is only for 

emonstrating our models’ capabilities to handle the coupled ef- 

ect of galvanic corrosion and fracture induced by it. A full 3D 

xample will be pursued once experimental data for this coupled 

roblem become available. 

The local mechanical BCs to be enforced are: 

 

u y ( 0 < x < δ, y = 5 , t ) = u 0 
u y 

(
− δ

2 
< x < 

δ
2 
, y = 0 , t 

)
= 0 

u x ( x = 20 , 0 < y < 5 , t ) = 0 
u y ( x = 20 , 0 < y < 5 , t ) = 0 

(37) 

In the corresponding PD mechanical model, the displacement 

n the right side is fixed in all directions through a thickness equal 

o the horizon size δ. At the left top of the cathode domain, a δ × δ
quare region is displaced at the start of the simulation by a fixed 

mount ( u 0 = 50 μm ) and is kept constant in time, while another

quare region (of same dimension) at the central bottom location 

f the couple is fixed in the vertical direction. In this example, we 

hoose δ = 4 mm and �x = 1 mm . 
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Fig. 16. Geometry and BCs for the galvanic couple under combined mechanical loading and galvanic corrosion attack. 

Table 5. 

Mechanical properties for materials in the galvanic couple 

( Fig. 16 ). 

Parameters Steel AE44 Interface 

Young’s modulus (GPa) 205 [51] 45 [52] 125 

Fracture energy ( kJ / m 
2 ) 65 [53] 1.5 [54] 0.1 

l

f

t

l

p

t

i

e

m

a

s

[

t

n

t  

A

T

f

s

a

b

S

t

s

i

i

t

N

t

n

m

t

r

t

r  

n

t

m

f

b

c

d

p

t

t

d

f

d

b

g

s

e

i

Since we did not find experimental data for this type of prob- 

em to compare our PD results with, we simply assume a certain 

racture toughness ( 100 J / m 
2 ) for the interface between the metals, 

o allow a crack to propagate at some point (not too early, not too 

ate) during the formation of the galvanic corrosion trench in our 

articular example. Material properties for the alloys and the in- 

erface are given in Table 5 . The Young’s modulus for the interface 

s assumed to be the average of the two alloys [50] , i.e., 125 GPa . 

As mentioned previously, the DCL reduces the material prop- 

rties at the corrosion front. According to experimental measure- 

ents (performed on a number of material systems, such as Mg 

nd Al alloys), the DCL can be several micrometers thick and is 

eamlessly attached to the bulk with gradual change of properties 

38–40] . Under external loadings, microcracks can accumulate in 

he DCL in a brittle fashion and grow into the bulk, leading to sig- 

ificant loss of overall ductility in the structure. 

Contours of the damage index obtained by the PD simula- 

ion for the problem setup seen in Fig. 16 are given in Fig. 17 .

 simulation movie is also included in Supplementary Materials. 

he system does not crack under the applied bending loads be- 

ore corrosion starts, as shown in Fig. 17 (a). As galvanic corro- 

ion progresses, the geometry changes gradually, creating higher 

nd higher tensile stresses at the bottom of the trench. A few PD 

onds start to break because of reaching their critical strain (see 

ection 3.1 ), but once they do, strains nearby relax and any po- 
16 
ential crack growth arrests, and the next call to the corrosion 

olver is made. After about 41.6 hrs. of corrosion time, as shown 

n Fig. 17 (c), a crack suddenly initiates and propagates along the 

nterface. The crack arrests at some point before reaching the bot- 

om of the interface, because of the displacement-controlled BCs. 

ote that here we only considered a brittle fracture model. Plas- 

ic deformations can also strongly influence crack growth but were 

ot considered in this work. 

While galvanic corrosion influences the state of stress in our 

odel (by changing the geometry of the sample as the corrosion 

rench increases), we did not consider here stress-dependent cor- 

osion rate, the possible direct effect tensile stresses could have on 

he corrosion itself. A PD model that uses a stress-dependent cor- 

osion rate has been introduced and validated in [ 11 , 36 ]. We do

ot consider it here for simplicity, but once experimental data on 

he coupled corrosion-fracture problems become available, such a 

odel can easily be tested. For the same reason, we do not account 

or the conditions that are specific to crevice corrosion, which has 

een recently investigated with a PD model in [55] . The example 

hosen here is demonstrate that possible coupling of degradation 

ue to galvanic corrosion and that due to critical strains that take 

lace in the trench created by the galvanic corrosion process. 

Note also that temperature can have a significant influence on 

he corrosion rate, as well as on the mechanical properties (elas- 

icity, plasticity, fracture). Our model can incorporate such depen- 

encies easily and examples of such effects in thermomechanical 

racture have been shown using PD formulations in, e.g. [44] . Such 

ependencies are, however, beyond the scope of the present work. 

To solve this coupled problem using COMSOL or other PDE- 

ased classical models, one needs to consider a model for crack 

rowth. One option is to use cohesive elements with their corre- 

ponding damage models defined throughout the domain of inter- 

st. Beside the complexity of coupling these physical mechanisms, 

ntroducing cohesive elements can significantly increase the com- 
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Fig. 17. Damage index for the AE44 – mild steel galvanic couple under stress corrosion cracking at (a) t = 0 hrs , (b) t = 36 hrs , and (c) t = 41 . 6 hrs . See also the movie in 

Supplementary Materials. 
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utational cost by creating new nodes and increasing the band- 

idth of matrices. The PD model, on the other hand, simplifies this 

rocess and allows treatment of complex problems with little ef- 

ort. For realistic, complex problems, the advantages of PD formu- 

ations over traditional methods stand out. 

. Conclusion 

A new peridynamic (PD) model for coupled galvanic corrosion 

nd fracture was introduced. The coupled model consists of a PD 

lectrostatic solver to compute the electric potential distribution 

ver the electrolyte domain, a reformulated PD corrosion disso- 

ution model which is applicable to problems with highly non- 

niform current densities along arbitrary-shape corroding surfaces 

a common occurrence in galvanic corrosion problems), and a lin- 

ar elastic-brittle fracture PD model. 

The reformulated PD corrosion dissolution model was estab- 

ished based on the electrochemical view of the corrosion process. 

his change enabled an analytical calibration for the corrosion rate 

nd replaced the original integro-differential equation for corro- 

ion dissolution with an ordinary differential equation, leading to a 

implified algorithm/implementation and decreased computational 

ost of simulation compared to the original PD corrosion model. 

he new model works well even in cases where the current den- 

ity is highly location-dependent, or when the curvature of the cor- 

osion surface is high (near reentrant corners, for example), as in 

he case of galvanic corrosion. 

The model was verified for a 2D uniform corrosion case in 

erms of the initial electric potential and current density, and time- 

ependent corrosion depth. Validating the model against experi- 

ental results available from the literature for two galvanic cou- 

les (AE44 (Mg alloy) – mild steel and AE44 – AA6063 (Al alloy)) 
17 
as performed. Results obtained with an FEM-based model built 

sing COMSOL were compared with the PD results. It was found 

hat for FEM-based or phase-field models of corrosion in galvanic 

ouples, a “step-down” needs to be artificially inserted in the ge- 

metry at the material interface of the couple in order for these 

odels to produce reasonable results. The step appears to be nec- 

ssary in models based on partial differential equations because 

f difficulties in assigning proper boundary conditions at the gal- 

anic couple interface, to correctly initialize the motion of the cor- 

osion front. The need for introducing such geometrical artifacts in 

 model reduces its generality. Moreover, such artificial modifica- 

ions to the sample geometry may lead to erroneous results when 

echanical loadings are applied to a galvanic couple system, be- 

ause the stress profile near the interface would be different from 

he actual one, at least in the early stages of the corrosion process. 

f there is a strong stress-dependency of the corrosion rate, the 

ikelihood of obtaining wrong results for coupled problems (e.g., 

alvanic corrosion and fracture) may be further enhanced. The PD 

odel introduced here does not require the artificial change in ge- 

metry at the interface to obtain results that match the experi- 

ental observations. 

A coupled corrosion-fracture problem was solved using the new 

D model, demonstrating how fracture can initiate and grow from 

he sharp trench created by galvanic corrosion. This showed the 

odel’s potential for simulating failure caused by the combined 

alvanic corrosion attack and mechanical loadings. 
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Fig. A1. Schematic of a PD domain ( �), its boundary ( ∂�), and its fictitious region 

( ̃ �). 

Fig. A2. An illustration of the electrolyte domain ( �), boundaries ( ∂�) and ficti- 

tious region ( ̃  �) in the PD electrostatic model for a general corrosion problem. The 

PD horizon size is δ. 
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ppendix A. Imposing boundary conditions in PD elastic and 

lectrostatic solvers 

Unlike classical local methods, the BCs in peridynamic models 

re intrinsically nonlocal. However, when solving practical prob- 

ems, imposing local-type BCs in nonlocal/PD models is usually de- 

ired/needed because, in reality, conditions (on the unknown func- 

ion values or its flux) are imposed at the surfaces of a body, not 

hrough a finite layer near the surface. The natural representation 

f such conditions (based on measurements) is via local BCs. Vari- 

us methods to impose local BCs in PD models have been investi- 

ated in [ 32 , 56 , 57 ]. 

For the elastic solver in this work, the local BCs involved (see 

he example in Section 5 ) is of the Dirichlet type, and the accu-

acy of the BCs is not a major concern considering the purpose of 

he example. Therefore, we assign the value of the Dirichlet BCs 

irectly to those PD nodes nearby, as described in Section 5 . 

The electrostatic solver, however, involves Robin-type BCs and 

equires more accurate representation of the local BCs to be 

nforced. Therefore, we use the fictitious nodes method (FNM) 

 32 , 57 , 58 ]. In FNM for PD models, certain constraints are specified

n the fictitious region ˜ � = { x / ∈ �| distance (x , ∂�) < δ} (the “col-
ar” outside of the solution domain � shown in Fig. A1 ), so that 

esired local BCs on ∂� are satisfied or approximately satisfied. 

here are a couple of different FNMs to enforce local BCs in PD 

odels. In this paper, we use the autonomous mirror-based one 

or mirror FNM) [16] , which is designed to handle arbitrary bound- 

ry shapes, to enforce the local BCs at metal surfaces for the elec- 

rostatic solver. The fictitious region overlaps a solid region with 

hickness δ below the metal surface, as shown in Fig. A2 . A brief 

eview of the autonomous mirror FNM and a simplification per- 

ormed for the problem in this work are provided next . 

Consider a body occupying the domain � ∈ R 
d , d = 2 or 3, and

n extended fictitious region ˜ � = { x ∈ R 
d \ �| distance (x , ∂�) <

} , as shown in Fig. A3 . The mirror FNM assigns the constraint ˜ u (x )

t each x ∈ 
˜ � based on u ( x R ) and u ( x P ) in which x P = OPro j ∂�(x )

s the orthogonal projection of x onto ∂� and x R = Re f ∂�(x ) = 

 + 2( x P − x ) is the reflection, or mirror point, of x through/across 

�. For x ∈ 
˜ �, when ∂�x = { ∂� ∩ H x } is continuous and the nor-

al to ∂ �x at each y ∈ ∂ �x is unique (i.e., ∂ �x ∈ G 
1 ), we have
18 
→ 

 x P = αn ( x P ) , in which α ∈ R 
− and n ( x P ) is the outward unit nor-

al vector at x P . 

In the mirror FNM, to impose the local Dirichlet BC u (x ) = 

 D (x ) for x ∈ ∂ �D and the Neumann BC ∇ n u (x ) = q for ∈ ∂ �N ,

˜  (x ) at x ∈ 
˜ �D is assigned as: 

˜  ( x ) = 2 u 
(
x P 

)
− u 

(
x R 

)
(A1) 

nd ˜ u (x ) at x ∈ 
˜ �N is assigned as: 

˜  ( x ) = u 
(
x R 

)
+ ‖ x − x R ‖ q (A2) 

espectively. For the local Robin BC ∇ n u (x ) = f ( u (x ) ) for ∈ ∂ �R ,

e have, for x ∈ 
˜ �R : 

˜  ( x ) = u 
(
x R 

)
+ ‖ x − x R ‖ f 

(
u 
(
x P 

))
= u 

(
x R 

)
+ ‖ x − x R ‖ f 

( 

u 
(
x R 

)
+ ˜ u ( x ) 

2 

) 

(A3) 

https://doi.org/10.1016/j.electacta.2021.138968
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Fig. A3. A schematic of orthogonal projection x P of x onto ∂� and the reflection x R of x through/across ∂� in mirror-based FNM [32] . 

Fig. A4. Illustration of enforcing a local Dirichlet BC in the mirror FNM (redrawn from [32] ). 
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n which the approximation u ( x P ) = 
u ( x R )+ ̃ u (x ) 

2 is made by assum- 

ng that the value of u , or ˜ u , between x and x R are close to a linear

istribution. ˜ u (x ) in Eq. (A3) requires to be solved using a non- 

inear solver if function f is nonlinear. Constraints applied on ficti- 

ious nodes vary with the solution step. See Fig. A4 for illustrations 

f how local Dirichlet BCs are enforced in the mirror FNM at each 

olution step. 

For the nonlinear robin boundary condition (at the electrode 

urfaces) in the galvanic corrosion problem we are solving (see 

ection 4.2 ), instead of using a nonlinear solver to solve Eq. (A3) ,

ne can replace Eq. (A3) by: 

˜ ( x ) = φ
(
x R 

)
− W ( w 0 ) 

b 
(A4) 

or x ∈ 
˜ �R where y = W ( w 0 ) is the Lambert W function which sat-

sfies y e y = w 0 and 

 0 = − i 0 ln 10 

2 σβ
× ‖ 

−−→ 

x x R ‖ × 10 

⎛ ⎝ 

φ( x R ) + ̃ φ( x ) 

2 
−φ0 

β

⎞ ⎠ 

(A5) 
19 
here i 0 , σ , β and φ0 are parameters determined by the polariza- 

ion curve and given in Table 3 . 

ppendix B. Computing effective corrosion depth 

The corrosion depth distribution for a problem with general 

eometry is usually measured, when available, in the direction 

ormal to the original surface. For the problems considered in 

his work, that direction is the vertical direction. Therefore, we 

ill measure the depth at each horizontal coordinate x . For a fair 

omparison of corrosion depth obtained by our PD model and 

y a classical model (analytical or numerical) or experiments, we 

ill consider both the fully corroded region (( d( x , t ) = 1 ) and the

iffusion-based corrosion layer ( d( x , t ) ∈ ( 0 , 1 ) ) when computing 

he total mass loss. The effective corrosion depth can then be com- 

uted at x = x 0 as: 

 h ( x 0 , t ) = 

1 

C solid −C sat 

∫ 
ψ ( x 0 ,t ) 

[ C solid −C ( x 0 , y, t ) ] dy (B1) 



J. Zhao, S. Jafarzadeh, M. Rahmani et al. Electrochimica Acta 391 (2021) 138968 

Fig. B1. A schematic of ψ( x 0 ) over which the PD effective corrosion depth is com- 

puted in this work. 
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Fig. C1. A schematic of the artificial geometric step at the interface between the 

anode and the cathode. 

Table C1. 

Convergence study on the maximum corrosion depth as the height of the 

initial step decreases, for the AE44 – AA6063 galvanic couple. 

Step height ( mm ) No. of elements Max. corrosion depth ( mm ) 

1 1001 0.236905914 

0.5 1040 0.240754949 

0.2 1078 0.249791228 

0.1 1180 0.255897817 

0.01 1886 0.259696086 

0.001 3850 0.260926697 

0.0001 8464 0.261126347 
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here ψ(x 0 , t) = { x (x, y ) | x = x 0 and d(x , t = 0) = 0 and d(x , t) >

 } . The nodes with d( x , t = 0 ) = 0 are those solid at the initial

ime, while nodes with d( x , t ) > 0 include liquid and partially 

amaged ones at the current time. The schematic of ψ( x 0 ) is 

hown in Fig. B1 . 

ppendix C. COMSOL modeling of galvanic corrosion 

In COMSOL MultiPhysics®, the dissolution/corrosion process is 

odeled through the deformation of the boundary using the Ar- 

itrary Lagrangian-Eulerian Method [47] . The deformation is deter- 

ined by relating the boundary velocity to the electrode corrosion 

elocity, by the following equation: 

 diss , tot = 

∂y 

∂t 
· n | anode = 

∑ 

j 

M j 

ρ j 

∑ 

k 

ϑ j,k i k 

q k F 
(C1) 

here n is the normal vector to the boundary, M j and ρ j are mo- 

ar mass and density of the species j, respectively, ϑ j,k , i k and q k 
re the stoichiometric coefficient of species j, local current density, 

nd the number of participating electrons, respectively, associated 

ith the electrode reactions of index k . 

While Eq. (C1) assumes that deformation/dissolution occurs 

nly in the normal direction of the dissolving electrode (an- 

de) boundary, a pointwise constraint is applied to non-dissolving 

oundaries (cathode) to prevent any dissolution in their normal di- 

ections (zero normal displacement): 

 y · n | cathode = 0 . (C2) 

Such treatments may cause challenges for cases with shared 

odes at the anode-cathode interface (e.g., the galvanic corrosion 

hown in Fig. 11 (a)), where the deformation/dissolution may grow 

nto the cathode. To resolve this issue, one may extend the cathode 

oundary by introducing a small geometric step at the cathode- 

node interface, as shown in Fig. C1 . 

To build the geometry with small step incorporated at the 

node-cathode interface the whole domain was constructed using 

wo separate shapes with a difference in height. The two shapes 

ere then connected using the Booleans and Partitions module. 

or the physics of the problem, the secondary current distribu- 

ion and deformed geometry modules were used. Then, the elec- 

rolyte domain and two electrode surfaces were defined in the 

odel. The cathodic reduction reaction was assigned to the cath- 

de electrode surface, while the anodic corrosion reaction and the 
20 
esulting boundary movement were defined at the anode electrode 

urface. The stoichiometric coefficients for dissolving-depositing 

pecies were defined for the anode part. To apply a constraint for 

he planar non-depositing walls in order to enforce a zero bound- 

ry movement in the normal direction of surfaces other than the 

node, zero normal displacement BC was used in the Multiphysics 

etting. 

For the COMSOL modeling of the galvanic corrosion problem in 

ig. 11 (a), the FE mesh at the initial stage is shown in Fig. C2 .

here are in total 7 one-node vertex elements, 183 two-node edge 

lements and 7189 three-node triangular elements, while the num- 

er of mesh points is 3687. As we explained above, the small step- 

own ( 0 . 1 mm ) at the interface between the anode and the cathode

s necessary. 

The height of this vertical geometric step controls the mesh 

esolution. Table C1 represents the result for maximum corrosion 

epth as the height of the step decreases, for the AE44 – AA6063 

alvanic couple. 

ppendix D. Galvanic corrosion of a AE44 – AA6063 couple 

In this appendix, we use the AE44 – AA6063 galvanic couple 

est the PD and COMSOL models and compare their results with 

he experimental data provided in [3] . The coefficients used to fit 
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Fig. C2. Finite element mesh in COMSOL for the galvanic cell shown in Fig. 11 (a). Notice the artifical step on the bottom side. 

Fig. D1. Quantitative comparison of the final corrosion depth for AE44 – AA6063 galvanic couple between experimental measurement [3] , PD simulation and COMSOL 

simulation. 

Table D1. 

Data used in the Tafel’s equation for AA6063 [2] . 

i 0 ( A / m 
2 ) b c ( V ) b c ( V ) ϕ 0 ( V , SCE) 

AA6063 φ ≤ −1 . 363 0 . 142 −0 . 0701 −1 . 363 

φ > −1 . 363 0 . 142 −0 . 0051 −1 . 363 
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he polarization curve for AA6063 are shown in Table D1 , while 

hose for AE44 can be found in Table 3 . 

The quantitative comparison of the final corrosion depth be- 

ween experimental measurement, PD simulation and COMSOL 

imulation (with the artificial step at the joint included), after 3 

ays of corrosion, is shown in Fig. D1 . As we can see, the corro-

ion depth obtained from PD simulation agrees with that from the 

OMSOL simulation. However, they have two significant differences 

ompared with the corrosion depth from the experiment. First, in 
21 
he experiment, the corrosion does not take place exactly along the 

nterface between two materials. Some part of the AA6063 (which 

s supposed to be cathode) is also corroded. Second, in the exper- 

ment, the corrosion trench is localized near the interface, and is 

ery deep, while the computations show a much shallower trench 

nd considerable reach of corrosion along the AE44 surface. It is 

ighly possible that some other forms of corrosion, such as crevice 

nd micro-galvanic corrosions, take place at the interface and play 

 significant role here. While we did not consider these mecha- 

isms into our model here, some of them have been separately 

nvestigated with PD formulations (see [ 35 , 55 ]), and future devel- 

pments will include them. 
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