
Vol.:(0123456789)

https://doi.org/10.1007/s42102-021-00053-2

1 3

ORIGINAL ARTICLES

Connections Between the Meshfree Peridynamics 
Discretization and Graph Laplacian for Transient Diffusion 
Problems

Longzhen Wang1 · Florin Bobaru1 

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Formulations for diffusion processes based on graph Laplacian kernels have been recently 
used to solve linear transient heat transfer problems with insulated boundary conditions by 
way of a spectral-based semi-analytical approach. This has been called the “spectral graph” 
(SG) approach. In this paper, we show that the meshfree discretization for corresponding 
peridynamic (PD) models leads to a graph structure that allows us to introduce the “graph 
Laplacian PD” (GL-PD) method using the semi-analytical approach employed in the SG 
approach to solve the transient heat diffusion problems. The new method, GL-PD, can be 
seen as a “hybrid” between SG and PD with meshfree discretization. We discuss the simi-
larities and differences between the GL-PD and the SG approaches. Main differences are 
related to calibration and discretization procedures. We use a 1D heat diffusion example to 
highlight some limitations the spectral-based semi-analytical method in the SG approach 
has compared with the direct time-integration normally used in computing solutions to 
transient diffusion problems. We then propose an extension of the semi-analytical approach 
to solve transient diffusion problems with Dirichlet boundary conditions, using a recent 
scaling and squaring algorithm that calculates the matrix exponential of non-symmetric 
matrices.

Keywords  Peridynamics · Graph Laplacian · Spectral graph theory · Diffusion · Matrix 
exponential

1 � Introduction to Graph Laplacian Exponential Diffusion Kernel 
and Peridynamics

Graphs are data structures widely used in many applications [1]. Graphs can be used to 
model complex structures, for instance, molecules [2], proteins [3], social networks [4], 
images [5], Internet [6], and natural languages [7]. In chemistry and biology, identifying the  
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function of a molecule with experimental methods can be expensive and time-consuming. 
Alternatively, one can use graph theory and machine learning [8] to estimate properties of 
the new molecule/protein based on other molecules/proteins with similar structures.

By using machine learning methods to determine which class a graph belongs to, one 
needs to quantify the similarity between graphs. However, due to their complex struc-
ture, comparing graphs is an NP-problem (nondeterministic polynomial time) [1]. To 
overcome the unaffordable complexity, kernel-based methods that can capture the entire 
structure of a graph have been used [1]. One advantage of kernel-based methods is that 
data is implicitly mapped into a Hilbert space and can be easily compared [9].

In this paper, we will focus on the graph Laplacian exponential diffusion kernel, 
which is the solution to the diffusion equation on the graph domain, obtained with a 
spectral-based semi-analytical approach [9,  10]. The graph Laplacian exponential 
diffusion kernel was first introduced in 2002 and has been used in different applica-
tions, including image classification tasks [9], community detection in networks [11], 
etc. In recent papers, the graph Laplacian exponential diffusion kernel was used to 
solve heat diffusion in the additive manufacturing process. The additive manufactured 
parts are modeled as graphs and the classical heat diffusion partial diffusion equation 
(PDE) is solved [12, 13]. In these works, the procedure was called “spectral graph (SG) 
approach”. Notably, until now, as remarked in [13], the SG approach has been limited 
to problems with insulated boundaries only, i.e., zero Neumann boundary conditions. 
By constructing the graph and linking each node with all other nodes within a certain 
distance [13], effectively a nonlocal model is created. As we shall see, at least formally, 
the SG approach is similar to a peridynamic model for diffusion, while some differences 
related to calibration and discretization procedures exist between them.

Peridynamics was introduced as a nonlocal form of continuum mechanics in [14]. 
Since then, it has been successfully applied to modeling of brittle fracture [15–20], duc-
tile fracture [21–23], fracture and damage in composites [24–27], heat transfer [28–32], 
corrosion damage [33–36], etc. In peridynamics, each material point is connected 
through bonds to other points, within a certain neighborhood region called ‘the hori-
zon’. The properties of these bonds are obtained by, for example, matching the classi-
cal strain energy density under a homogeneous deformation (for elasticity) [37, 38] or 
heat flux under constant thermal gradient conditions [28]. Various methods can be used 
to discretize peridynamic formulations. The so-called “meshfree discretization” uses a 
one-point Gaussian quadrature scheme for approximating the integral operator in the 
formulation [38]. This numerical method is popular for peridynamic models because of 
its flexibility in representing unrestricted damage evolution, which helps deliver on one 
of the main advantages peridynamic models have compared with classical, PDEs-based 
models. With the meshfree spatial discretization, the peridynamic model can be treated 
as a graph, in which vertices are the nodes and edges are the peridynamic bonds.

The paper is organized as follows: graph concepts and graph Laplacian exponential 
diffusion kernel (“spectral graph approach”) are reviewed in Sect. 2.1. The peridynamic 
diffusion model for transient diffusion is reviewed in Sect.  2.2. In Sect.  3, using the 
2D transient heat transfer setup, we explain the similarities and differences between 
the GL-PD approach and the SG approach. Differences related to the calibration and 
discretization procedures are highlighted. In Sect. 4, a numerical example for 1D tran-
sient heat transfer is used to show the limitations of the spectral-based semi-analytical 
approach. In Sect. 5, we introduce an extension of the semi-analytical approach to 1D 
and 2D diffusion problems with Dirichlet boundary conditions. In Sect. 6, we present 
conclusions and future work.
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2 � The Graph Laplacian Exponential Diffusion Kernel 
and the Peridynamic Model for Diffusion

2.1 � Review of Graphs and the Graph Laplacian Exponential Diffusion Kernel

In mathematics, a graph G consists of a set of vertices V =
{
v1, v2,…

}
 and another set of 

edges E =
{
e1, e2,…

}
 such that each edge is identified with an unordered pair of vertices 

[39]. Graphs are commonly represented as diagrams in which vertices are nodes and edges 
are represented by lines connecting nodes [39], as shown in Fig. 1. In this paper, we study 
the weighted undirected simple graphs (no multiple edges or loops).

Although graphs can be represented as diagrams, matrices are a convenient way to rep-
resent graphs, especially in computational studies [39]. There are different matrices used in 
graph theory [39]; here, we focus only on the adjacency and Laplacian matrices.

The adjacency matrix of an N-vertex weighted undirected simple graph G is an N by  
N real-symmetric matrix A(G) =

[
aij
]
 , with aij being the weight of the edge between nodes 𝑖  

and  𝑗, if there is an edge between the ith and jth vertices, and aij = 0 if not. In the weighted undi- 
rected graph in Fig. 1, the vertices’ coordinates in a two-dimensional Cartesian coordinate 
system are shown, and the weights of edges are equal to the inverse of the edges length 
square. For example, the length of edge between vertex v1 and vertex v2 is 2.5 and the 
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Fig. 1   Undirected graph (v: vertices, e: edges) and its corresponding adjacency, degree, and Laplacian 
matrices.
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weight of this edge is 0.16. The degree matrix of an N-vertex weighted undirected simple 
graph G is an N by N diagonal matrix D(G) =

[
dij
]
 , with dii being the degree of the ith ver-

tex, which is the sum of the weights of edges connected to the ith vertex.
The Laplacian matrix of an N-vertices weighted undirected simple graph G is defined as 

L(G) = D(G) − A(G) . The matrix representation of the graph is shown in Fig. 1.
The negative Laplacian matrix can be seen as a proper discretization of the classical 

Laplacian operator [40, 41]. For example, on a square grid in 2D (see Fig. 2) with grid 
spacing Δx = Δy = h , the finite difference approximation of the continuous Laplace opera-
tor at node 5, of coordinates (x5, y5) , is �

2
�

�x2
(x5, y5) +

�
2
�

�y2

(
x5, y5

)
≈

�4−2�5+�6

(Δx)2
+

�2−2�5+�8

(Δy)2
=

1

h2
(�4 + �6 + �2 + �8 − 4�5) . If the square grid is seen as a graph, node 5 is connected to 

four neighboring nodes (nodes 2, 4, 6, and 8). In the graph, the edge weight is the inverse 
of edge length square, same as in Fig. 1. The continuous Laplacian at node 5 can then be 
approximated by the negative Laplacian matrix multiplied by vector � , which leads to:

 �
2
�

�x2
(x5, y5) +

�
2
�

�y2

(
x5, y5

)
≈

1

h2
(�4 + �6 + �2 + �8 − 4�5) , (see Fig.  3). Thus, −L is the 

same as the finite difference approximation of the continuous Laplacian operator [9]. In the 
limit h → 0 , this approximation becomes exact [9].

In some recent publications [12, 13], the spectral graph theory (which studies eigenvec-
tors of matrices of graphs, e.g., adjacent matrix and Laplacian matrix) is used to predict heat 
diffusion in parts built by additive manufacturing processes. In these references, the problem 
domain is discretized first into nodes, then each node is connected to all the other nodes 

Fig. 2   A domain discretized by a uniform grid (left) and the 5-point stencil for finite difference approxima-
tions (right)
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Fig. 3   The approximation of the continuous Laplacian using the Laplacian matrix
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which are located within a certain distance b, called “neighborhood distance”. The concept 
of the neighborhood for a graph vertex in the SG approach is identical to that of the horizon 
region in PD. A graph can then be defined by treating the nodes in this discretization as 
its vertices and the connections among nodes as the graph’s edges. Using this graph, one 
can solve heat transfer problems as discussed in [9] (with a spectral-based semi-analytical 
approach, see below) and use this for graph classification problems. References [12, 13] used  
this spectral graph (SG) approach to solve transient heat transfer problems with insulated 
boundary conditions and applied it to specific additive manufacturing problems.

In this paper, we use a 2D transient heat transfer problem as an example to show the 
relationship between the SG approach and PD. The problem setup is shown in Fig. 4.

Heat flow in 2D can be described, under some limiting conditions (see Sect. 4) by the 
following linear partial differential equation (PDE) [42]:

where �(x, t) is the temperature ( K ) at point x and time t , x is the vector of components 
(x, y) , t is time ( s ), � is the density ( kg∕m3 ), c is the specific heat capacity ( J kg−1 K−1 ), � is 
the thermal conductivity ( W m−1 K−1 ), and ∇2 is the Laplacian operator. For simplicity, here  
we set the values of � , c , � to equal one and define the following initial-boundary value 
problem (IBVP):

Following [12, 13], to numerically solve this linear IBVP, the problem domain is discre-
tized into nodes, not necessarily equally spaced, each node being connected to all neigh-
boring nodes which are located within a certain distance, the neighborhood distance b . In 
the 1D example in [13], the weight of edge was defined as Aij = 1∕c2

ij
, cij ≤ b, i ≠ j , where  

cij is the Euclidean distance between node i and node j , and b is the radius defining the  
neighborhood. For the 3D example in [13], the weight of edge was chosen to be a 

(1)�c
��(x, t)

�t
= �∇2

�(x, t) = �(
�
2
�(x, t)

�x2
+

�
2
�(x, t)

�y2
)

(2)

��(x, t)

�t
= ∇2

�(x, t),∀x ∈ Ω
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Fig. 4   Domain and boundary 
conditions for a linear 2D tran-
sient heat transfer problem with 
insulated boundaries
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bell-shaped function, Aij = e
−c2

ij
∕�2

, cij ≤ b, i ≠ j , where � is the standard deviation for dis-
tances cij . After the problem domain is discretized and a graph is constructed, the Laplacian  
operator ∇2 is replaced by the specific negative Laplacian matrix L , corresponding to that 
particular discretization. After replacing the continuous Laplacian, the discretized form is 
called the “heat equation on the graph” [9]. After the spatial discretization, the temperature 
field �(x, t) becomes a vector �(t) =

[
�1(t) �2(t) ⋯ �N−1(t) �N(t)

]
 , where N is the total 

number of nodes.

This linear, first-order system of differential equations has an exact solution [43]:

where �0 is the vector that contains the initial temperature at all nodes.
To calculate the matrix exponential term, eigen-decomposition is used below. The 

eigenvalues � of this N × N Laplacian matrix L are found solving the equation:

For each eigenvalue � , the corresponding eigenvector v is the solution to the linear 
system:

Once eigenvalues and eigenvectors are found, the Laplacian matrix L can be written as

where � is the eigenvector matrix whose columns are eigenvectors of L and Λ is the diago-
nal matrix whose diagonal elements are the eigenvalues of L [44]. Based on the defini-
tion of the Laplacian matrix L(G) = D(G) − A(G) , the adjacency matrix A of an undirected 
simple graph is symmetric. Since the degree matrix D is diagonal, the Laplacian matrix is 
symmetric [41], and, therefore, its eigenvectors � are orthogonal [44]. Thus, the Laplacian 
matrix can be expressed as

By replacing L in Eq. (4), the exact solution can be written as

where the term e−�Λ�T t is called the graph Laplacian exponential diffusion kernel [45, 46].
We can further simplify this expression by using the Taylor expansion about time 0, to 

find:

(3)
��(t)

�t
= −L�(t)

(4)�(t) = e−Lt�0

(5)det(L − �I) = 0
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(7)L = �Λ�−1
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T t
�0
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+ t2
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+
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−
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With this change, the semi-analytical solution to the diffusion IBVP with insulated bound-
ary conditions becomes

To make a connection between edges’ weights in the graph and the diffusion material 
parameters (density, specific heat capacity, thermal conductivity), a so-called “gain factor” g is 
used in the exponential factor (see [13]):

To obtain the “gain factor”, a problem-dependent calibration (note the difference between 
the gain factors obtained in references [12] and [13]) was proposed. The numerical solution in 
Eq. (12) is compared with exact solutions of the classical heat equation (if they exist), or with 
numerical solutions obtained by other methods ([13] used the finite element method). From 
[12] and [13], it appears that this calibration procedure has to be performed anytime a different 
domain shape is used. Having to find another numerical solution for the calibration step seems 
to defy the purpose of creating an efficient model, as intended in [13]. Nevertheless, the cali-
bration step presented in [13] is as follows: for a given domain, piecewise constant initial con-
ditions are applied and the problem with insulated boundaries conditions is solved; the tem-
perature at one node (located at the center of the initially heated region) is monitored to steady 
state and the factor g that minimizes the least-square error (in time) between the solution from 
Eq. (12) and the exact (or alternative numerical) solution is the calibrated “gain factor”. Note 
that it is also likely that if one changes the location of the point used in the calibration pro-
cedure (for instance, using a point on the boundary of the region instead of its “center”), the 
value of the gain factor would change, even if the domain and discretization are kept the same.

With this calibrated solution, the temperature field at any time can then be directly calcu-
lated with the given constructed graph and initial temperature from Eq. (12). Note that this 
solution method can only be used under certain special conditions (insulated boundary condi-
tions, linear problems, no heat sources or sinks, etc.), and has some additional limitations. All 
these are discussed in Sect. 4.

2.2 � The Peridynamic Model for Diffusion

In this section, we briefly review the bond-based peridynamic (PD) diffusion model.
The bond-based peridynamic model for diffusion problem, studied in [28], replaces the 

Laplacian term with an integral term of temperature (or concentration) differences. Since spa-
tial integration is well defined irrespective of possible discontinuities, the model can naturally 
handle problems in which such discontinuities may appear and evolve [15, 29]. This is the 
reason why peridynamic formulations are widely used to solve problems with discontinuities 
such as cracks [16], damage [47], dissolution [48], etc.

In peridynamics, each point is connected and interacts with all other points within a certain 
region, called the horizon region, as shown in Fig. 5. The bond-based PD equation for diffu-
sion is [28]:

(11)�(t) = �e−Λt�T
�0

(12)�(t) = �e−gΛt�T
�0

(13)�c
��(x, t)

�t
= ∫ H

�

k(x, x̂)
�
�
x̂, t

�
− �(x, t)

‖x̂ − x‖2
dx̂
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where H
�
 is the horizon of x , k(x, x̂) is the (x, x̂) bond micro-conductivity ( W m−3 K−1 ). 

Instead of using ‖x̂ − x‖2 in the kernel denominator, one can also use, for example, ‖x̂ − x‖1 
or ‖x̂ − x‖0 (see [49, 50]).

The peridynamic heat flux at point x across surface S is defined by [28]:

where H
�
∕S is the portion of H

�
 on one side of the surface S and n is the exterior normal to 

the surface.
The micro-conductivity function k

(
x, x̂

)
 describes the properties of bonds between 

material points inside the horizon. In PD, the calibration is normally done at the continuum 
level [28], but it can also be done at the discrete level [51]. In this paper, we use a calibra-
tion performed at the continuum level, given by an analytical formula. This means that it 
does not have to be repeated for each and every discretization tried. To obtain a physically 
based micro-conductivity function, the peridynamic heat flux is calibrated to the classical  
heat flux for a given linear temperature profile [29]. With this calibration, and for the par- 
ticular profile of a micro-conductivity function that is constant over the horizon, in 2D, one  
obtains k(x, x̂) = 4�

��2
 (see [28,  29]), where � is the thermal conductivity and � is the  

horizon size (the radius of the horizon region when this is taken to be a circular disk). 
Other profiles for the micro-conductivity function over the horizon region can be selected, 
including linear (“conical”), Gaussian, semi-elliptical, etc. [52,  50]. Different micro- 
conductivity functions may lead to different convergence rates to the classical solution (see 
[52]) as the horizon � decreases to zero while the ratio between � and the discretization 
spacing is maintained constant (the so-called �-convergence, see [37]).

To numerically approximate solutions to Eq. (13), a variety of numerical methods can 
be used, including the one-point Gaussian quadrature (which leads to a “meshfree” discre-
tization method) [28, 37], the finite element method [53, 54], the fast convolution-based 
method [55, 56], etc. In the meshfree method, there are no elements or other geometrical 
connections between nodes [38]. The advantage of the meshfree method in discretizing PD 

(14)Q(x, S, t) = −∫ H
�
∕S

k(x, x̂)
�
(
x̂, t

)
− �(x, t)

(x̂ − x) ∙ n
dx̂

Horizon

PD bonds

PD nodes

Fig. 5   Schematic diagram of a peridynamic discretization (based on the one-point Gaussian quadrature in 
space) showing a few nodes and their bonds that create a graph structure for this PD discretization
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models rests in its flexibility for representing unrestricted damage evolution. Damage in 
this method is determined by individual bond failure events. This definition of damage is a 
much richer quantity than, for example, the scalar variable in continuum damage mechan-
ics (see [57]). In some sense, PD damage is a mapping, not necessarily continuous, from 
the vector space of bonds at a point x to a vector space of dimension equal to the number 
of bonds at a node, whose elements have entries zero or one, depending on whether the 
particular bond is broken or intact. In the discretized version, PD damage is therefore a 
vector state (see [58]). Note that the “damage index” usually employed in PD models (the 
ratio between the number of broken bonds to the number of bonds at a node) is simply a 
way to monitor the actual evolution of the PD damage and allow for an easy representation 
of it. Other than the meshfree method, the continuous and discontinuous Galerkin finite 
element methods have also been used in PD modeling [53]. The advantage of using a finite 
element method is the potential use of established finite element software to solve peridy-
namic models. However, these methods cannot handle arbitrary evolution of damage and 
fracture with the ease that the meshfree discretization can ([59, 60]).

3 � The Spectral‑Based Semi‑Analytical Approach for the Bond‑Based 
Peridynamic Diffusion Model

In this section, we show that the meshfree discretization for PD leads to a graph structure; 
on this graph, we construct the graph Laplacian matrix and solve the transient heat trans-
fer problem using the semi-analytical method as done in the SG method. We call this, for 
clarity, the “graph Laplacian PD” (GL-PD) method. While the GL-PD is similar to the SG 
approach, some important differences are:

•	 the calibration procedures are different: in GL-PD, a general calibration is used for 
a specific choice of the micro-conductivity functional form; these parameters can be 
obtained analytically, and then be used for problems with arbitrary domain geometry 
and boundary conditions; in SG, a calibration has to be performed for each new prob-
lem (problems with different material, different node discretization, or different neigh-
borhood radius); and

•	 the specific definition of the terms in the adjacency matrix is different: the SG and 
GL-PD could use the same discretization schemes, but, as implemented in [12] and 
[13], SG uses randomly distributed nodes that do not carry an associated volume, while 
in GL-PD, nodes come with their associated volume (area in 2D, length in 1D).

With the meshfree discretization in GL-PD, the domain is discretized into cells (with 
nodes at the “center” of the cell) and each node is connected through bonds to all other 
nodes within its horizon. To discretize Eq. (13), the integral is replaced by a finite Riemann 
sum (based on the one-point Gaussian quadrature). After discretization, the bond-based 
peridynamics model can be seen as an undirected and weighted graph. The nodes can be 
treated as the vertices in SG. The concept of bonds is similar to that of the graph edges in 
SG. However, the conductivity properties are different because they are obtained using dif-
ferent calibration procedures: in SG, they depend on the edge length and gain factor, while 
in GL-PD, they depend on the micro-conductivity and may or may not depend on the bond 
length (see the constant or varying micro-conductivity over the horizon; this choice is at 
the latitude of the modeler).
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If we use a uniform node discretization, then all nodes have the same area in 2D (volume  
in 3D and length in 1D), except, at most, for nodes at the boundary [61]. Note that non- 
uniform discretization can also be used in PD models [62–64]. With the meshfree discretization,  
Eq. (13) becomes ([28]):

where Vij is the portion of the “volume” of node xj actually covered by the horizon of node 
xi.

Similar to the choice made in Sect. 2.1, for simplicity, we set the values of � , c , � to be 
equal to one. We use the constant micro-conductivity function with k

(
xi, xj

)
=

4

��2
 (2D). 

The discretized form becomes (notice the switch in the numerator, useful later for matching  
the definition of the Laplacian matrix):

In the meshfree peridynamic diffusion model, bond properties (length, micro-conductivity) 
and nodal “volumes” define the weights of the graph edges. For the edge between nodes i and 
j , the weight is APD

ij
=

k(xi,xj)Vij

(xj−xi)
2  . In the case of constant micro-conductivity, the weight 

becomes APD
ij

=
4

��2

Vij

(xj−xi)
2 . With this notation, we can write:

After rearranging terms, the degree of a vertex/node becomes apparent:

where deg(vi) is the degree of node i (see Sect. 2.1): deg
�
vi
�
=
∑

jA
PD
ij

 . To see how this is 
similar to the form shown in Eq. (3), we rewrite as follows:

where �ij is the Kronecker delta symbol.
Based on the degree matrix and the Laplacian matrix definitions shown in Sect.  2.1, 

�ijdeg
(
vi
)
 is the (i,j) element in the (diagonal) degree matrix D , and �ijdeg

(
vi
)
− APD

ij
 is the 

element lPD
ij

 in the Laplacian matrix. Notice that the value of element lPD
ij

 depends on the hori-
zon size and nodal discretization. To distinguish from the previous matrices used in Sect. 2.1, 
we use the notation LPD to represent the Laplacian matrix obtained with peridynamics.

By writing the temperature field as a vector of nodal temperatures, 
�(t) =

[
�1(t) �2(t) ⋯ �N−1(t) �N(t)

]
 , we get the following equation:

(15)𝜌c𝜃̇
(
xi, t

)
=
∑

j
k(xi, xj)

𝜃
(
xj, t

)
− 𝜃(xi, t)(

xj − xi

)2 Vij

(16)𝜃̇
(
xi, t

)
=
∑

j

−4

𝜋𝛿2

Vij(
xj − xi

)2
[
𝜃
(
xi, t

)
− 𝜃(xj, t)

]

(17)𝜃̇
(
xi, t

)
= −

∑
j
APD
ij

[
𝜃
(
xi, t

)
− 𝜃(xj, t)

]

(18)
𝜃̇
(
xi, t

)
= −𝜃

(
xi, t

)∑
j
APD
ij

+
∑

j
APD
ij
𝜃
(
xj, t

)
= −𝜃

(
xi, t

)
deg

(
vi
)
+
∑

j
APD
ij
𝜃
(
xj, t

)

(19)𝜃̇
(
xi, t

)
= −

∑
j

[
𝛿ijdeg

(
vi
)
− APD

ij

]
𝜃
(
xj, t

)
= −

∑
j
[lPD
ij
]𝜃(xj, t)

(20)
d�(t)

dt
= −LPD�(t)
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This equation is similar to Eq.  (3) in Sect. 2.1. The exact solution of this linear first-
order system of differential equations is

where �0 is a vector that contains the initial temperature at all nodes. In bond-based peridy-
namics, bond properties are symmetric: property value between nodes i and j is the same 
as the value for the bond between nodes j and i . Thus, the adjacency matrix APD is sym-
metric. Since the degree matrix D is diagonal, the Laplacian matrix, LPD = DPD − APD , is 
also symmetric.

Taking the same steps as shown in Sect. 2.1, by performing eigen-decomposition on LPD 
and using Taylor series expansion about zero, the temperature field �(t) is

where �PD is the eigenvector matrix whose columns are eigenvectors of LPD and ΛPD is 
the eigenvalue matrix whose diagonal elements are eigenvalues of LPD [44]. We have 
thus shown that the GL-PD is similar to the SG approach in [12, 13]. However, these two 
methods are not identical because of the differences in terms of how each graph is defined 
(based on their corresponding spatial domain discretizations), and the calibration proce-
dures for the parameters involved: the gain factor in SG and the micro-conductivity in 
GL-PD.

By considering the PD meshfree discretization as an undirected weighted graph, we 
can say that the new GL-PD approach can be seen as a “hybrid” between the SG and the 
meshfree PD discretization. Note that while we selected the constant profile for the micro-
conductivity function, and uniform node discretization in the derivations shown above for 
GL-PD, these choices are by no means restrictive: other profiles can be selected for the 
micro-conductivity functions [50], and non-uniform node discretizations can also be used 
[64]. The differences between the SG approach and GL-PD are how one computes the 
weights of the graph edges, and these differences come from the two main sources men-
tioned at the beginning of this section: the calibration procedure and the type of discretiza-
tion used. In what follows, we discuss these differences in more detail.

The calibration process is one difference between the SG approach and GL-PD. As 
discussed in Sect. 2.1, in the SG, one calibrates, at the discrete level, the gain factor by 
comparing the solution obtained with Eq. (12) with a known solution, either an exact solu-
tion or one obtained with an alternative numerical method, like the FEM. The calibration 
is problem dependent, discretization dependent, and also depends on the truncation time 
considered to be close enough to the steady-state. It also depends on the location in the 
domain at which the error is measured in determining the value of the gain factor. In con-
trast, in GL-PD one calibrates, at the continuum level, the micro-conductivities by enforc-
ing a match between the peridynamic flux to the classical heat-flux for a linear temperature 
field, in the bulk. In this way, the GL-PD model has linear consistency, in the bulk. This 
guarantees convergence to the classical solution in the limit of the horizon ( �-convergence) 
going to zero, for any domain or given boundary conditions [28, 50].

Another difference between the SG approach and GL-PD is in terms of how weights 
in the graph are defined. The GL-PD is more physically based than SG because the nodes 
have volumes associated with them, and the units for micro-conductivity are those of con-
ductivity per unit volume. In SG, corresponding quantities have their physical meaning 
obscured into the least square minimization procedure. The gain factor in SG changes 

(21)�(t) = e−L
PDt
�0

(22)�(t) = �
PDe−Λ

PDt
�
PDT

�0
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under different node discretizations, and their associated “volumes” are implicitly, not 
explicitly, influencing the gain factor value. To see the implications of these different dis-
cretizations and definitions of weights, consider a given randomly generated node distribu-
tion in a cube. In GL-PD, each node has an associated volume with it, and nodes in regions 
of slightly lower density have larger volumes. This is then reflected in the weights in the 
graph (elements in the adjacency matrix are defined using these volumes, see Eq. (16)). On 
the other hand, in SG, given the definition of the adjacency matrix elements (see Sect. 2.1), 
this “directionality” of low or high density is lost. If the exact solution is a constant tem-
perature, for example, the error from the SG will be higher than that from GL-PD, by the 
nature of the solution method. In other words, with SG one has to use either a uniform 
node distribution or a random distribution which has an almost uniform spatial node den-
sity distribution, since otherwise the method does not satisfy linear consistency.

In the calibration process of GL-PD, the material points are assumed to have a full horizon. 
By applying the calibrated micro-conductivities to material points that do not have a full hori-
zon (e.g., points on a boundary), the effective behavior at these points will be different. This is 
called the PD surface effect, which can be reduced or eliminated using PD surface correction 
methods in [61,  51]. However, the calibration process in SG does not consider the surface 
effect, as the gain factor is a single value for the entire domain. Although the calibration pro-
cess of SG is different from PD, it would be interesting to investigate the behavior of SG solu-
tion near the boundaries, especially since SG has been used in additive manufacturing applica-
tions in which the region of interest is always at the boundary. This is planned for the future.

4 � Limitations of the Spectral‑Based Semi‑analytical Approach 
for Diffusion Problems

In this section, we discuss some limitations the spectral-based semi-analytical approach for 
diffusion problem has. The semi-analytical solution in Eqs. (12) and (22) is only feasible  
for a homogeneous linear diffusion equation with insulated (Neumann-type) boundary condi- 
tions (see next section for an extension to Dirichlet boundary conditions). For nonlinear dif- 
fusion equations, like when material parameters ( � , c , � ) depend on temperature, the bond 
micro-conductivities may vary with time. Consequently, the Laplacian matrix, its eigen-
vectors, and its eigenvalues may be different through time, requiring their re-computation 
(which costs O(N3) ) and thus leading to an inefficient algorithm. Thus, the spectral-based 
semi-analytical approach is not feasible for nonlinear diffusion equations, such as filtration 
problems [65], turbulent diffusion [66], corrosion damage [36], fracture [67], etc.

To show why the spectral-based semi-analytical approach in Sect. 2.1 is limited to insu-
lated boundary conditions, here we use a simple 1D transient heat transfer problem. We 
shall see that the Laplacian matrix under Dirichlet boundary conditions is not symmetric.

Fig. 6   Discretization of a 1D 
peridynamic bar

1 93 4 5 6 7 82 10

Horizon

Bond

Node
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In this sample problem, the length of the bar is 1 m , the node discretization is 0.1 m , 
and the horizon size is chosen to be 0.25 m . The problem domain after discretization is 
shown below (see Fig. 6).

We choose to construct the Laplacian matrix using the steps in Sect. 2.2, due to its sim-
plicity in calibration. For simplicity, we set the values of � , c , � to be equal to one. We 
use the constant micro-conductivity function with k

(
xi, xj

)
=

1

�
 (1D) [28]. After construc- 

tion, the matrix form corresponding to Eq. (20) is

In this discretization, the insulated boundary condition is satisfied implicitly.
For a problem with Dirichlet boundary conditions at both ends, the values for �1 and �10 

are known and the matrix form of Eq. (20) is

As shown in Eq. (24), the matrix L is no longer symmetric. In such a case, the eigen-
vectors of matrix L may not be orthogonal and the spectral form in Eq. (22) is no longer 
applicable.

Moreover, if a non-zero Neumann boundary condition is applied to the boundary nodes, 
the heat flux term needs to be added to the right hand side of Eq. (23) and the solution in 
Eq. (4) does not hold. Therefore, the application area of this procedure is limited to homo-
geneous linear diffusion with insulated boundary conditions.

In addition, one has to consider that computing eigenvalues and eigenvectors carries the 
computational cost of O(N3) . If N is very large, this cost is prohibitive. For such cases, the 
direct integration approach will be the only option since, for example, at each time step, the 
computational cost for the one point Gaussian quadrature is O(N2) and the cost of the fast 
convolution-based method is O(N logN).

5 � Extension of the Spectral‑Based Semi‑analytical Solution for Graph 
Laplacian to Problems with Dirichlet BCs

In this section, we will show for the first time how to modify the semi-analytical approach 
shown in Sect.  2.1 to solve transient heat transfer problems with Dirichlet boundary condi-
tions, for which symmetry of the Laplacian matrix is lost and the spectral decomposition is 
not available. The semi-analytical method was previously limited to linear diffusion problems 
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with homogeneous Neumann boundary conditions. In our extension, we apply the Dirichlet 
boundary conditions using the “naïve” fictitious node method [50]. A more accurate method to 
impose local boundary conditions in at PD model is the “mirror-based” fictitious node method 
[30], but that would not work here because those conditions change with time (as the solu-
tion inside the domain changes in time), and then one can no longer use the semi-analytical 
approach. One could also use the direct imposition of the Dirichlet conditions only at the nodes 
at the surface, but in that case, the differences compared with the classical solutions are larger.

Although the semi-analytical solution in Eq. (22) is not suitable for problems with Dir-
ichlet boundary conditions, one can still obtain a solution to the problem using Eq.  (21) 
and computing its solution via, for example, the matrix exponential function in Matlab 
[68], “expm(A)”. This function is based on a scaling and squaring algorithm with a Padé 
approximation [69, 70]. In this function, the matrix A is scaled by a power of 2 to reduce 
the matrix norm to a value in the order of 1, then one computes a Padé approximation 
to the scaled matrix, and repeatedly square it to eliminate the effect of the scaling. The 
approximation eA ≈ (rm(2

−sA))2
s

 , where rm(x) = pm(x)∕qm(x) is the Padé approximant to  
ex , and the choice of integers m and s are discussed in detail in [69, 70]. We solved two 
numerical examples in 1D and 2D using this procedure.

5.1 � Example 1: A 1D Bar with Dirichlet Boundary Conditions

We consider a 1D transient heat transfer problem with Dirichlet boundary conditions for a 
bar of length L = 1m with an initial temperature of �(x, 0) = 2 ◦C . Both ends of the bar are 
maintained at 1 ◦C . For simplicity, here we set the values of � , c , � to equal one.

Using separation of variables [43], the analytical solution [71] of the classical heat 
equation for this problem is

where � =
�

�c
 is the thermal diffusivity. In the numerical results shown below, we truncate 

the series after n = 100.
To solve the 1D problem using Eq. (21), the domain is uniformly discretized with 200 

nodes, and the horizon size is set to 0.05 m. The Laplacian matrix is then obtained using 
the GL-PD method (see Sect. 3). To apply the Dirichlet boundary conditions, we use the 
naïve fictitious nodes method [50] by assigning the boundary conditions values to all ficti-
tious points corresponding to a boundary point, as shown in Fig. 7.

(25)
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Fig. 7   The discretized bar and fictitious nodes at both ends
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The temperature profiles and point-wise relative differences between the analytical 
solution of the classical problem and the solution from GL-PD at different times are 
given in Fig. 8. Since we are comparing the solutions of a nonlocal model to that of the 
local model, the term ‘relative difference’ is used instead of ‘error’. The results show 
that the relative difference is less than 5%, similar to what was seen for the problem 
with homogeneous Neumann boundary conditions in previous studies [12, 13].

We now test the rate of convergence ( �-convergence, see Sect. 2.2) for the GL-PD and 
compare it with that of the numerically integrated (forward Euler) meshfree PD. The 
naïve fictitious node method is used in both methods to apply the boundary conditions. 
The relative differences between these two methods (as the horizon size decreases) and 
the classical analytical solution are plotted below. The temperature at the middle of the 

Fig. 8   The analytical solution for the classical heat transfer problem and the GL-PD solution at (a) 0.01 s, 
(c) 0.05 s, (e) 0.4 s. Relative differences between these solutions at (b) 0.01 s, (d) 0.05 s, (f) 0.4 s

Fig. 9   The δ convergence for the 
numerically integrated meshfree 
PD and the GL-PD
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bar at 0.05 s is used to calculate the relative differences. As shown in Fig. 9, the two 
solution methods have very similar rates of �-convergence.

5.2 � Example 2: A 2D Plate with an Insulated Crack and Dirichlet and Neumann 
Boundary Conditions

To demonstrate the two-dimensional capability of the GL-PD method, we solve the prob-
lem of heat flow in a plate with an insulated crack, previously considered in [29] and solved 
there with the time-integrated meshfree PD. Results are compared with those for the cor-
responding classical model solved using ABAQUS.

A square plate, length L = 2 cm and width W = 2 cm , has a single insulated horizon-
tal crack of length 2a (a = 0.5 cm) . The thermal diffusivity is 1.14 cm2∕s . The initial tem-
perature of the plate is 0◦C . The left and right boundaries are insulated (heat flux q = 0 W/
m2), while the top and bottom boundaries are, respectively, kept at 100◦C and 10◦C . As in 
Sect. 5.1, fictitious nodes are used to apply the Dirichlet boundary conditions (see Fig. 10).

Fig. 10   Problem setup for a plate 
with an insulating crack

Fig. 11   The temperature distribution at time t = 0.5 s for GL-PD (left), for the classical model (middle), and 
the relative difference (right)
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In the solution given by ABAQUS, a total of 6,595 linear quadrilateral elements are used. 
In the GL-PD solution, the domain is uniformly discretized with 10,000 nodes, the horizon 
size is 0.1 cm, and the m value is 5. Temperature results and the relative difference between the 
two solution methods at t = 0.5 s are shown in Fig. 11. The relative difference is computed by 
||�PD − �

FEM||∕||�FEM|| . The mean value of relative difference at all nodes is 0.0124. Note that 
the classical solution, for this example, around the insulated crack tips blows up (as the mesh 
density increases) in terms of the temperature gradient. For a fixed horizon size in the PD for-
mulation, the heat flux at the tips does not blow up, as the mesh is refined. This is one of the 
reasons for the larger differences noticed between the two solutions near the crack tips.

6 � Conclusion and Future Work

In this work, we found strong connections between some recent “spectral graph” (SG) 
approaches used for diffusion problems (based on graph Laplacian) and the meshfree peri-
dynamic (PD) model for diffusion. We showed that one can use the one-point Gaussian 
spatial integration for the peridynamic diffusion model to obtain a graph. Based on that 
graph, one can then define the Laplacian matrix and use the spectral-based semi-analytical  
approach to find a solution. We call this method the “graph Laplacian PD” (GL-PD) 
method. The GL-PD method can be seen as a “hybrid” between the SG and PD with mesh-
free discretization. While the GL-PD is similar to SG, these two solution methods differ 
from one another in terms of how the entries in the Laplacian matrix are defined. These 
differences are induced by the different calibration methods and the different discretiza-
tions used: The GL-PD is more physically based than the SG because the nodes have vol-
umes associated with them, and the units for micro-conductivity are those of conductiv-
ity per unit volume, whereas in SG, corresponding quantities have their physical meaning 
obscured into the least square minimization procedure.

The SG method is limited to solving linear and homogeneous diffusion problems with 
insulated boundary conditions. Here, we extended the semi-analytical approach (and use 
it in the GL-PD context) to problems with Dirichlet boundary conditions. We apply the 
Dirichlet boundary conditions using the “naïve” fictitious nodes method and replace the 
spectral decomposition method with a scaling and squaring algorithm with a Padé approxi-
mation to calculate the matrix exponential for non-symmetric matrices. Results showed 
that the semi-analytical method has the same �-convergence properties as the meshfree dis-
cretization with direct time-integration (forward Euler) of the PD model.

In the future, we will extend the graph Laplacian method to include non-zero Neumann 
and Robin boundary conditions. This study showed that peridynamic models may potentially 
be used to solve problems in graph theory, like graph classification, community detection, etc.

Funding  This work was supported by the National Science Foundation under CDS&E CMMI award No. 
1953346.
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