
1

Revisiting Network Telemetry in COIN:
A Case for Runtime Programmability

Chris Misa, Ramakrishnan Durairajan, Reza Rejaie (University of Oregon), and Walter Willinger (NIKSUN, Inc.)

Abstract— Applications based on the Compute-In-the-Network
(COIN) paradigm require flexible network telemetry data to drive
effective allocation decisions. Telemetry systems collect such data
based on queries specifying the precise traffic metrics or features
required. Recent advances in programmable switch hardware
have led to highly efficient methods to compute query results
using in-network resources. However, current approaches fail to
meet the simultaneous requirements of dynamic traffic loads,
diverse query types, and query dynamics.

In this work, we argue that telemetry systems should be cast
as active runtime schedulers rather than static data sources.
COIN-based applications can then dynamically submit telemetry
queries on-the-fly and react to their results in a closed-loop
fashion—enabling a new generation of telemetry-driven reactive
applications. As a first step towards this vision, we present
a single-switch telemetry operation scheduling method. Our
empirical evaluation demonstrates that such a method can reduce
overheads by an order of magnitude compared to worst case
allocations. This initial exploration opens the door to a multi-tier
scheduling framework combining switch hardware with software-
based compute platforms to meet the telemetry demands of future
COIN-based applications.

I. INTRODUCTION

Network telemetry data is critical for realizing the Compute-
In-the-Network (COIN) paradigm and driving management,
load-balancing, and security decisions for edge applications.
To illustrate, consider a video streaming platform that trans-
mits live video streams between many users at the edge while
simultaneously converting streams to a number of different
formats and resolutions on-the-fly using cloud and edge com-
pute resources [1]. To reap the promised benefits of a COIN-
based realization of such a platform, allocation decisions must
be made based on detailed telemetry data about the number
of users and volumes of video traffic at each node in the
edge-cloud continuum. While application-level logs could be
used in the context of specific software implementations,
traffic-level telemetry data yields complete and application-
agnostic metrics to drive dynamic allocation decisions in such
deployments.

Specifically, network telemetry systems fulfill a critical re-
quirement of COIN-based applications by providing visibility
into current traffic conditions. Operators submit high-level,
precise, and generic queries over all packets flowing through
the network and the telemetry system returns query results,
similar to querying a streaming database. For example, a
telemetry system could allow operators of the distributed video
streaming platform to query the network to determine how

many clients are actively streaming from each content delivery
node at a given point in time. Suppose a particular content
delivery node is overloaded with clients. Operators could
then submit follow-up queries to profile the distribution of
connected clients and use this information to drive intelligent
reallocation decisions (e.g., by deploying a new CDN node
in a location central to the currently observed clients). This
example hints at several key requirements imposed by COIN-
based applications on network telemetry systems. In particular,
telemetry systems must be able to (i) efficiently compute high-
level traffic statistics (such as the number of distinct hosts
observed), (ii) provide wide visibility into traffic at different
points in the network (e.g., edge-to-fog traffic as well as fog-
to-cloud traffic), and (iii) dynamically react to changing traffic
compositions (e.g., the number of active clients) and changing
query workloads (e.g., supporting arbitrary follow-up queries
to inform (re)allocation decisions).

Since telemetry systems rely on in-network components
to gather and process data, they are themselves COIN-based
services which can be implemented and deployed along side
the applications they serve. Prior efforts [2] demonstrated that
programmable switch hardware allows telemetry systems to
execute parts of the query processing operations directly in
the data plane, reducing the volume of data that must be
exported by several orders of magnitude. The main idea is
to partition the query’s data processing operations between
switch hardware and a software-based stream processing plat-
form. Intermediate query results are exported from the switch
hardware to the stream processor which forwards the final
results to human operators or automated COIN application
managers. Other efforts have developed novel approximation
techniques for particular query types (e.g., sketches [3]) and
investigated the possibility of changing query operations on-
the-fly [4].

Despite the recent advances of in-network telemetry system
design, a fundamental question remains: how should such new
switch hardware capabilities be incorporated into a complete
end-to-end system for answering arbitrary dynamic queries
over realistic traffic as required by edge applications? Until
very recently, switch-based telemetry system design followed
a static approach, assuming that changes to running queries
or traffic compositions would require full reloading of switch
hardware programs (a process incurring seconds of network
downtime [4]). On the other hand, a number of works have
addressed the challenges of scheduling data processing graphs,
a generic version of the particular processing operations re-
quired by telemetry queries, on heterogeneous software-based
systems [5].

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, including reprinting/republishing
this material for advertising or promotional purposes, collecting new collected
works for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.



2

In this work, we present the next critical step towards
realizing the envisioned telemetry systems for COIN-based ap-
plications by developing techniques for dynamically schedul-
ing telemetry operations on switch hardware. After reviewing
state-of-the-art approaches (§II), we describe a novel time-
division scheduling method (§III), present empirical evidence
supporting our proposed techniques (§IV), and conclude with
a discussion of open challenges and opportunities (§V).

II. BACKGROUND & MOTIVATION

A. End-to-end Telemetry Systems
To illustrate the context, requirements, and challenges of

dynamically scheduling telemetry operations, we consider a
simplistic telemetry system, as shown in Figure 1, based on a
network probe implemented on a single, centrally located en-
terprise or campus switch. This probe is controlled by a central
entity which we refer to as the collector, implemented either
on enterprise-local servers or in the cloud. Network operators
or automated COIN application managers submit telemetry
tasks to the collector which then computes a schedule for
the required telemetry operations and configures the switch
and other processing platforms (local cluster, remote cloud)
to execute this schedule. As the schedule executes, the results
of telemetry queries are returned to the collector for operator
visualization, archival storage, or automatic forwarding plane
updates. Well-known protocols are established for all of these
communication channels as noted in the figure. We explain
each of these components below.

Switch
 

SYS

QSFP Green=40Gbps, Yellow=10Gbps
49

51
 
50
 
 52
 

1 2 Green=10Gbps, Yellow=1Gbps 15 16 17 18 SFP+ 31 32 33 34 47 48

Switch
 

SYS

QSFP Green=40Gbps, Yellow=10Gbps
49

51
 
50
 
 52
 

1 2 Green=10Gbps, Yellow=1Gbps 15 16 17 18 SFP+ 31 32 33 34 47 48

Intermediate
Results
(IPFIX)

Local Cluster

Network Operator or
COIN Application Manager

Probe
Switch

Remote Cloud

ProcessingArchive

Collector
Scheduler

Queries
Query
Results

Op
era

tio
ns

Final
Results

Operations

Operations

Local
Network

(REST)(JSON)

(N
ETC

ONF)
(REST)

Fig. 1: Example network telemetry system architecture.

Diverse Telemetry Queries. Following Sonata [2], network
operators express queries as directed acyclic graphs (DAGs)
of atomic operations which progressively refine a stream of
keyed-tuples from per-packet features (e.g., header values) to
high-level results (e.g., the number of distinct sources). A
limited set of such atomic operations (e.g., filter, map, reduce)
can describe a wide range of queries. For example, a query
might filter for packets to or from the current set of video

content delivery nodes, group these packets by unique TCP
connections, and count the total number of such connections
maintained by each content delivery node. Given massive
traffic volumes, limited compute power, and the fact that in
many scenarios exactness of telemetry results matters less than
efficiency, techniques like sampling and sketching [3] are often
used to produce approximate results with reduced resource
requirements. For example, if the result of the connection-
counting query mentioned above is used to decide when to
launch a new content delivery node, computing the precise
number of connections matters less than identifying when
the number of connections is large enough to warrant a new
allocation.
Processing Platforms. To execute the atomic operations de-
scribed by a query, telemetry systems draw on three main pro-
cessing platforms: (i) switch hardware, (ii) a local stream pro-
cessing cluster, and (iii) a remote cloud service. First, fueled by
recent advances in programmability, switch hardware [6] offers
a high-performance platform to execute operations directly in
the data plane at line rate. However, switches have a severely
limited processing capacity and cannot execute some of the
required operations for telemetry tasks such as floating point
division. Second, stream processors can perform a larger set
of general operations, such as the floating point linear algebra
required for many ML techniques. However, moving raw data
from the switch to the stream processor is challenging due
to the increasingly high rates of network traffic which also
require enormous computing power. Such computing power
may not be feasible for an organization to maintain locally.
Finally, cloud platforms are able to provide nearly limitless
compute power on-demand while mitigating the overheads
of maintaining a large pool of local resources. However,
moving data to the cloud incurs latency, may be subject to
bandwidth constraints, and further raises privacy and security
concerns. Note that we do not consider end hosts as processing
platforms because instrumenting end hosts is impractical in
many network settings (e.g., enterprise or campus networks).
System-Wide Scheduling Problem. Given a set of queries
to execute and their associated atomic operations, a telemetry
system must determine how best to execute these operations
on the given processing platforms. Since the set of operations
and their resource requirements may change over time in
response to query and traffic dynamics, the allocation of op-
erations to processing platforms must be periodically updated.
To simplify matters, we assume that the telemetry system
operates over fixed-duration time windows, called epochs, and
only changes allocations at epoch boundaries. The scheduling
problem is then as follows: for each epoch, given the current
operations, their resource requirements, and the available
processing platforms, determine what platform should execute
which operation. We note that this system-wide definition of
the scheduling problem must also be broken down into sub-
problems for each platform. In particular, the switch platform
must determine which hardware stage should execute which
operation while the local cluster and remote cloud must assign
operations to compute nodes.
Switch Hardware Sub-Problem. Due to its monitoring van-
tage point on the network forwarding path and its line rate



3

processing speed, we argue that switch hardware is an essential
ingredient in the design of telemetry systems. However, as
noted in §I, how best to schedule telemetry operations on
switch hardware given this platform’s particular constraints is
not well understood. This work develops an initial approach
to the switch hardware scheduling sub-problem, laying the
ground work for integrating switch hardware into the system-
wide scheduling problem stated above.

B. Key Challenges in Scheduling for Switch Hardware

We consider the following four challenges as critical com-
ponents of the switch hardware scheduling sub-problem in the
development of network telemetry systems for COIN-based
applications.
Challenge 1 (C1): Variable Traffic Loads. Resource re-
quirements of telemetry queries often depend directly on
properties of current network traffic, such as the number of
flows, leading to changes in resources required over a query’s
execution time. For example, consider a query which monitors
the number of bytes exchanged with each client of a CDN
node. This query must maintain a counter for each active
client and so the total number of counters required is equal
to the number of active clients, which is likely to change.
Sketch-based estimation techniques are also impacted due to
the fact that the traffic distribution determines the provable
accuracy bounds. If resources are statically assigned to task
operations, the telemetry system must conservatively allocate
for worst-case scenarios leading to inefficient utilization of
switch hardware resources. To maximize the utilization of
switch resources, telemetry systems should adjust resource
allocations at runtime based on the observed traffic [7].
Challenge 2 (C2): Query Diversity. The potential diversity of
telemetry queries described in §II-A implies a wide range of
different data aggregation granularities, latency requirements,
and accuracy tradeoffs. For example, an operator might want
to simultaneously track source, destination pairs experiencing
high TCP re-transmission rates as an indicator of congestion
while obtaining an overall estimate of source entropy to detect
changes in client to CDN node relationships. The first query
requires operations that keep track of packet sequences in each
TCP flow with high accuracy though the intended use of this
query’s results imply that some latency is acceptable. The
second query requires operations that summarize a property
over all packets on the network allowing for some trade-off
of accuracy while maintaining stringent latency requirements.
Telemetry systems should allow flexible query specifications,
such as the stream processing model, as well as specification
of per-query accuracy and latency goals.
Challenge 3 (C3): Query Dynamics. Given the large number
of management issues and security threats that need to be dealt
with, telemetry systems may be called upon to evaluate a large
number of tasks concurrently (e.g., thousands of tasks [7])
and this number may vary significantly over time. Suppose a
telemetry system is servicing a large number of COIN-based
applications like the video streaming application described
in §I. During normal operation, each of these applications
may only require a single, simple query to monitor their

base-line activity. However, in the worse-case, all of these
applications could detect allocation imbalances and begin sub-
mitting follow-up queries at the same time, leading to a spike
in the number of query requests submitted to the telemetry
system. Ultimately, telemetry systems should maximize the
number of queries that can be executed given arbitrary query
arrival patterns and the available resources while meeting the
specified accuracy and latency goals.
Challenge 4 (C4): Network-Wide Execution. The traffic
which a query applies to may be split among multiple sections
of the network or may pass through multiple devices eligible
for executing telemetry operations. In such cases, the query’s
operations must be carefully distributed across the network
to ensure that all relevant traffic is observed. The current
work does not address this challenge, noting that a solid
understanding of the challenges of scheduling telemetry oper-
ations on a single switch is prerequisite to understanding the
network-wide challenge. In future work, we plan to investigate
the design of a network-wide scheduler which generates a
global schedule based on topology and forwarding information
that is then translated to multiple independent switch-level
schedules.

C. Prior Efforts and Their Limitations
Though prior efforts have developed telemetry systems

that leverage switch hardware to satisfy a number of the
challenges discussed in §II-B, no single approach is capable
of simultaneously addressing all challenges posed by an end-
to-end deployment for COIN-based applications.
Hardware-Only Approach. A number of efforts show that
telemetry queries can be implemented using switch hard-
ware [2], but these solutions focus on one particular type
of task and do not consider the challenges of simultaneously
adapting telemetry operations to traffic and query dynamics.
Hardware-Software Hybrid Approach. A recent innovative
approach to switch-based telemetry system design, taken in
Sonata [2], is to combine switch hardware with a software
stream processing system. This approach satisfies C2 by
extending beyond limited hardware. However, allocation deci-
sions are made statically so this approach struggles to satisfy
C1 and C3.
Dynamic Allocation Approach. Another approach, taken
by DREAM [7], is to dynamically adjust the allocation of
telemetry resources to tasks on-the-fly based on estimated
task accuracy. While this approach addresses C1 by making
adaptive allocations, it requires specialized accuracy estima-
tion methods limiting its ability to address C2.
In-Band Approach. Several prior works have explored the
possibility of applying adaptive sampling methods to in-band
network telemetry (e.g., Sel-INT [8]). However, these methods
focus on monitoring the state and behavior of network devices
and do not consider the problem of scheduling multiple
telemetry queries on limited switch hardware resources.

III. SCHEDULING SWITCH RESOURCES

In this section, we outline design issues and argue that
our approach satisfies C1 by dynamically updating resource



4

allocations, C2 by leveraging a telemetry interpreter built into
switch hardware, and C3 by maintaining a dynamic pool of
queries.

A. Example Scenario
To concretely illustrate the role of a switch resource sched-

uler, we return to the video streaming platform discussed in §I.
Suppose that, at a certain point in the platform’s deployment,
two content delivery nodes are active and running on near-
edge clusters in separate parts of the network. Now, suppose
that at some point in time, a large number of new clients form
connections to one of these nodes leading to a load imbalance.
To detect this load imbalance, the platform must periodically
submit queries to monitor the number of connections made to
each CDN node. Once an imbalance is detected, the platform
has a large number of potential actions to re-balance load
along the edge-cloud continuum. While the current effort
does not investigate the details of these actions, we note
that any action should be informed and triggered by detailed
traffic-level telemetry information describing features such as
the distribution of bytes per flow, the source entropy among
clients, or per-client packet-loss statistics. The scheduler for
switch resources must be prepared to answer these types of
time-varying queries from a potentially large number of COIN-
based requesting applications.

B. Scope of Our Approach
For simplicity, in the current work we consider only interac-

tions between the switch and collector (leaving the integration
of a local cluster and cloud resources for future work) and
assume (see §II-A) a central collector which coordinates the
execution of telemetry tasks using a single switch’s hardware
resources over a series of epochs. At the beginning of each
epoch, the collector decides which operations from the pool of
currently submitted queries can and should be run on switch
hardware and sends a command to the switch with instruc-
tions for how to execute these operations (i.e., a hardware
configuration). During the epoch, the switch hardware executes
these operations over all packets flowing through the switch
at line rate. At the end of the epoch, operation results in the
form of aggregate counters are either returned to the collector
or sent to the stream processor for further operations (as
shown in Figure 1). This process repeats indefinitely during
the telemetry system’s deployment as submitted queries are
answered and new queries are submitted.

C. Runtime Programmable Approach to Switch Hardware
As COIN-based applications change their allocation deci-

sions and telemetry requirements, the operations to be ex-
ecuted on switch hardware must also change on the fly,
a capability that was considered infeasible until recently.
Programmable switch hardware generally entails two stages
of determining hardware operations. In the first stage, a static
hardware description is written in languages like P4 [9] and
compiled into a binary executable determining how generic
hardware resources (e.g., match-action tables, SRAM) are to

be connected and configured. This static configuration exposes
a control plane API which allows the second runtime stage
to control some aspects of packet forwarding dynamically.
Previous telemetry proposals compiled query operations into
the static switch program, allowing great flexibility of query
operations, but limiting the ability to change queries during
runtime.

A key enabler of the runtime approach to switch program-
ming is the observation that, by exposing a sufficiently rich pa-
rameter space, the static hardware program essentially acts as
an interpreter, executing any telemetry operations configured
via the control plane. Several recent efforts have leveraged
this observation and described systems where queries can be
added and removed from switch hardware on-the-fly [4]. We
envision such telemetry operation interpreters can be statically
compiled into the hardware pipelines of one or more switches
in a network to provide the execution environment for runtime
telemetry operations.

D. Switch Scheduling Sub-Problem

Given a set of queries and their associated DAGs of op-
erations, as well as a runtime telemetry operation interpreter
(§III-C) compiled into a static switch pipeline, the switch hard-
ware scheduling sub-problem determines how best to assign
resources (e.g., ALU operations, memory) to operations in
each epoch. We assume that local stream processor and cloud
platforms are available to execute operations that cannot fit in
switch hardware, but focus only on issues around scheduling
for switch hardware. Given this focus, the main goal of the
scheduler is to maximize switch utilization since doing so
reduces load on other platforms.
Inputs to Scheduler. In addition to descriptions of what
operations to run and the available switch resources, the
scheduler must also take into account how much and what
type of resource each operation requires. We determine these
requirements based on history, maintained by the collector,
of the past resource requirements for each operation. Historic
resource requirements can be maintained automatically for any
query specified as a generic DAG of operations by maintaining
per-operation estimates.

TimeEpoch

Re
so
ur
ce
s

O
pe

ra
tio

ns

Features

(a) Original epoch.

TimeEpoch

Re
so
ur
ce
s

O
pe

ra
tio

ns

Features

(b) Subdivided epoch.

Fig. 2: Dividing epochs with time-division multiplexing ex-
poses more opportunities for scheduling operations on fixed
switch hardware resources.

Time-Division Multiplexing. Runtime programmability en-
ables time-division multiplexing of switch resources to trade-
off slightly reduced accuracy for increased scalability. Specif-
ically, available telemetry resources can be multiplexed across



5

different sets of operations over time, allowing the system
to ultimately execute a larger number of tasks in pursuit of
C3. Figure 2 shows an example of two resource multiplexing
strategies. In Figure 2(a), resources are allocated to n = 4
operations during an epoch of length ⌧ where n is limited
by the available hardware resources. In Figure 2(b), the epoch
duration is divided into k = 4 subepochs of length ⌧ 0 = ⌧

k and
resources can now be allocated to operations across any com-
bination of k ⇤n slots per epoch. In cases where an operation
is not executed in each consecutive subepoch, cluster sampling
theory provides estimates of the induced error after gathering
subepoch results to drive future allocation decisions. This is in
stark contrast to sketch-based approximation methods where
assumptions about traffic composition are built into table sizes
and not easily verifiable or modifyable based on observed
results alone.
Optimal and Heuristic Solutions. Given the inputs described
above, the task of the switch hardware scheduler can be
mapped into a constrained optimization problem. At a high
level, constraints are imposed by switch hardware resources
and objectives are formulated in terms of maximizing opera-
tion accuracy or minimizing traffic sent to the collector. While
prior efforts attempted to solve similar optimization problems
statically based on large, representative traffic samples [2],
we note that in the runtime programmable approach, sched-
ules can be updated incrementally in response to observed
traffic compositions. Our approach of maintaining aggregate
moving averages of the traffic features relevant for scheduling
decisions allows formulation of simpler optimization problems
which can often be solved by modern optimization frameworks
in tens of milliseconds. When an optimal solution cannot be
found, our system falls back on heuristic approaches.

IV. INITIAL EVALUATION

In this section, we offer initial empirical evaluation of the
techniques described previously, showing that (i) dynamic
allocation can reduce hardware resource requirements and
(ii) our time-division approximation method yields comparable
performance to other approximation methods while offering
an efficient implementation path .
Hardware Prototype. We develop a prototype telemetry
system based on a Broadcom switch ASIC with the Broad-
Scan runtime programmable telemetry module. This module
implements the telemetry operation interpreter described in
§III-C and allows operations to be modified by efficient
DMA-accelerated writes into ASIC memory. We evaluate our
prototype by using tcpreplay [10] and replay the 2019
CAIDA Internet traces [11] from a server connected to the
switch via a 40Gbps optical link.
Metrics. Since each counter must be exported as a result
tuple, we use the number of tuples sent to the collector as
a proxy for memory usage in our prototype. This metric is
also an indicator of load on the collector or other down-stream
processing platforms.

A. Dynamic Resource Allocation
First, we address the question of how dynamically schedul-

ing shared resources between queries can improve resource

requirements when scaling to large numbers of monitoring
tasks. We start by considering a task based on the MRT
algorithm [12] that submits a variable number of queries to
iteratively zoom in on heavy-hitters in the CAIDA trace. On
our prototype system, this task takes ⇠23 1-second epochs to
find the heavy hitters. For each epoch, we gather the number of
queries submitted and the number of tuples returned yielding
an excerpt of the task’s resource requirements over time. To
approximate overall resource requirements, we combine sev-
eral such excerpts in an epoch-level simulation. In particular,
we simulate the resource requirements of a given number of
tasks executing over 1000 epochs where each task submits
a particular empirically-measured resource excerpt in a loop
separated by a gap determined by a Poisson distribution with
a mean rate of 2 seconds.

0 20 40 60 80
Tasks

Q
ue

rie
s

102

103

104

Mean Max Baseline

(a) Queries submitted.

0 20 40 60 80
Tasks

Tu
pl

es

102

103

104

105

(b) Tuples returned.

Fig. 3: Per-epoch resource usage when running multiple tasks
showing worst case and the observed maximum and mean
values per epoch. Error bars show std. deviations over 100
trials of the simulation.

Figure 3 shows the mean and maximum of the per-
epoch resource requirements computed in our simulation.
We also plot baseline requirements based on a worst-case
static allocation for all simulated tasks. These results illustrate
that dynamic allocation can potentially reduce the resource
requirements by an order of magnitude when multiple tasks are
contending for shared resources—said differently, an effective
solution to C3 improves overall system scalability.

B. Performance of Time-Division Multiplexing
Next, we evaluate the performance of our time-division

multiplexing technique (§III) in its ability to reduce load
on the collector while maintaining reasonable accuracy. We
consider an example query from Sonata [2] which detects
potential DDoS attack victims by selecting destinations re-
ceiving from more than a given number of sources. We
measure query accuracy as the F1 score (harmonic mean of
precision and recall) compared to ground truth and resource
requirements as the number of tuples returned to the collector.
In addition to our subepoch multiplexing scheme, we compare
with three conventional approaches: flow sampling, which
takes a simple random sample of all five-tuple flows [13];
packet sampling, which takes a simple random sample of all
packets; and sketching which uses a bloom filter to keep track
of distinct elements in the first query operation [4]. We run
these experiments in simulation over two representative traces
of ISP-level traffic from CAIDA [11] and MAWILab [14]
(captured on Sept. 1st, 2019).



6

(a) CAIDA (b) MAWILab

Fig. 4: Comparison of accuracy vs. tuples returned for time-
division multiplexing and conventional approaches.

Figure 4 shows the median percentage of tuples (compared
to an oracle method) against the median F1 score for the
four techniques considered. The key observation is that time-
division multiplexing achieves a similar tradeoff between
measurement accuracy and the number of tuples returned to
the collector compared to conventional approaches. However,
unlike conventional approaches, time-division multiplexing
generates sound error estimations based on observations alone
and is hence well-suited for dynamic telemetry systems.

V. OUTLOOK

Our evaluation in §IV demonstrates that dynamically
scheduling operations in switch hardware can improve the
scalability of this platform with respect to traffic and query
load. However, a number of critical challenges and oppor-
tunities arise when extending this approach to a network-
wide deployment throughout the edge-cloud continuum. First,
we note that telemetry systems can directly leverage tech-
niques developed for other COIN applications, such as sensor
networks [15], to efficiently schedule operations on edge
and cloud software platforms. This opportunity raises several
challenges in the need to preserve the privacy and anonymity
of network traffic when incorporating compute entities outside
of the original network. Second, while we focus on a scenario
where the telemetry scheduler has direct access to centrally-
located switch hardware, as hinted at in C4 (§II-B), COIN-
based deployments may need to monitor traffic distributed
across several sections of the network or services deployed
across heterogeneous administrative domains. For example, a
telemetry system might need to distribute query operations
across programmable switches on the edge and generic teleme-
try data provided by cloud services in the core. Critical issues
must be addressed in how to virtualize query operations over
these diverse data sources. Finally, we note the need to address
a multi-tiered scheduling problem to allocate query operations
on each particular compute platform (switch hardware, edge
stream processor, cloud resources) and to coordinate schedul-
ing between different platforms. Scheduling solutions for each
particular compute resource must ultimately be united in a
global scheduling framework which maps query-level goals,
such as accuracy or latency, into the specific switch, stream
processor, and cloud platforms.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
feedback. We also thank Shahram Davari and Broadcom, Inc.
for providing hardware and technical support for our prototype
telemetry system. This work is supported by the National
Science Foundation through CNS 1850297, a Ripple faculty
fellowship, and a Ripple graduate fellowship. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of NSF, Ripple, or Broadcom.

REFERENCES

[1] G. Gao and Y. Wen, “Video transcoding for adaptive bitrate streaming
over edge-cloud continuum,” Digital Communications and Networks,
2020. https://doi.org/10.1016/j.dcan.2020.12.006. Accessed: May 17th,
2021.

[2] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: query-driven streaming network telemetry,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pp. 357–371, 2018.

[3] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation, pp. 29–42, 2013.

[4] Y. Zhou, D. Zhang, K. Gao, C. Sun, J. Cao, Y. Wang, M. Xu, and J. Wu,
“Newton: intent-driven network traffic monitoring,” in Proceedings of
the 16th International Conference on emerging Networking EXperiments
and Technologies, pp. 295–308, 2020.

[5] A. Shukla and Y. Simmhan, “Model-driven scheduling for distributed
stream processing systems,” Journal of Parallel and Distributed Com-
puting, vol. 117, pp. 98–114, 2018.

[6] “Product brief tofino page.” https://barefootnetworks.com/products/
brief-tofino/. Accessed: May 17th, 2021.

[7] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: dy-
namic resource allocation for software-defined measurement,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 419–
430, 2014.

[8] S. Tang, D. Li, B. Niu, J. Peng, and Z. Zhu, “Sel-int: A runtime-
programmable selective in-band network telemetry system,” IEEE trans-
actions on network and service management, vol. 17, no. 2, pp. 708–721,
2019.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[10] “Tcpreplay - pcap editing and replaying utilities.” https://tcpreplay.
appneta.com/. Accessed: May 17th, 2021.

[11] “The CAIDA UCSD anonymized Internet traces dataset - 2019.” https:
//www.caida.org/data/monitors/passive-equinix-nyc.xml. Accessed: May
17th, 2021.

[12] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards pro-
grammable network measurement,” IEEE/ACM Transactions on Net-
working, vol. 19, no. 1, pp. 115–128, 2011.

[13] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen, “cSamp: a system for network-wide flow monitoring,”
in Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, pp. 233–246, 2008.

[14] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: com-
bining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking,” in Proceedings of the 6th International
Conference on emerging Networking EXperiments and Technologies,
pp. 1–12, 2010.

[15] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Transactions on emerging telecommunications technologies, vol. 25,
no. 1, pp. 81–93, 2014.

https://doi.org/10.1016/j.dcan.2020.12.006
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/
https://www.caida.org/data/monitors/passive-equinix-nyc.xml
https://www.caida.org/data/monitors/passive-equinix-nyc.xml


7

Chris Misa is a PhD student at the University of Oregon. His research
interests include interfaces and systems for processing network traffic data
streams. Chris’s work has been recognized by several research fellowships
including a Ripple graduate fellowship.

Ramakrishnan Durairajan is an Assistant Professor in the Department of
Computer and Information Science at the University of Oregon. His research
has been recognized with multiple NSF awards, Ripple faculty fellowship,
UO faculty research award, several best paper awards, and has been covered
in several fora.

Reza Rejaie is currently a Professor at the University of Oregon. He received
a NSF CAREER Award for his work on Peer-to-Peer streaming in 2005 and
a European Union Marie Curie Fellowship in 2009. Reza is a Fellow of IEEE
(2017) and a Senior member of the ACM (2006).

Walter Willinger is Chief Scientist at NIKSUN, Inc. Before joining NIKSUN,
he worked at AT&T Labs-Research and at Bellcore Applied Research. He is
co-recipient of the 1995 W.R. Bennett Prize Paper Award, the 1996 W.R.G.
Baker Prize Award, and of the 2005 and 2016 ACM/SIGCOMM Test-of-Time
Paper Awards.


	Introduction
	Background & Motivation
	End-to-end Telemetry Systems
	Key Challenges in Scheduling for Switch Hardware
	Prior Efforts and Their Limitations

	Scheduling Switch Resources
	Example Scenario
	Scope of Our Approach
	Runtime Programmable Approach to Switch Hardware
	Switch Scheduling Sub-Problem

	Initial Evaluation
	Dynamic Resource Allocation
	Performance of Time-Division Multiplexing

	Outlook
	References
	Biographies
	Chris Misa
	Ramakrishnan Durairajan
	Reza Rejaie
	Walter Willinger


