Permission-Educator: App for Educating Users about
Android Permissions

Akshay Mathur!, Ethan Ewoldt?, Quamar Niyaz?, Ahmad Javaid', and Xiaoli Yang?

1 The University of Toledo, Toledo, OH 43607, USA
{akshay.mathur, ahmad.javaid}@utoledo.edu
2 Purdue University Northwest, Hammond IN 46323, USA
{eewoldt, gniyaz, yangx}@pnw.edu

Abstract. Cyberattacks and malware infestation are issues that surround most
operating systems (OS) these days. In smartphones, Android OS is more suscep-
tible to malware infection. Although Android has introduced several mechanisms
to avoid cyberattacks, including Google Play Protect, dynamic permissions, and
sign-in control notifications, cyberattacks on Android-based phones are preva-
lent and continuously increasing. Most malware apps use critical permissions to
access resources and data to compromise smartphone security. One of the key rea-
sons behind this is the lack of knowledge for the usage of permissions in users. In
this paper, we introduce Permission-Educator, a cloud-based service to educate
users about the permissions associated with the installed apps in an Android-
based smartphone. We developed an Android app as a client that allows users to
categorize the installed apps on their smartphones as system or store apps. The
user can learn about permissions for a specific app and identify the app as be-
nign or malware through the interaction of the client app with the cloud service.
We integrated the service with a web server that facilitates users to upload any
Android application package file, i.e. apk, to extract information regarding the
Android app and display it to the user.

Keywords: Smartphone security - Android - Malware Detection - App permissions -
Education

1 Introduction

To combat against the rise in malware in operating systems (OS), system developers
fix vulnerabilities in their systems through regular updates. With each new version of
Android (OS), Google also fixes the vulnerabilities discovered in the previous versions
to make it more resilient against cyberattacks and ensure the security and privacy of
its users. The first line of defense in Android is Google Play Protect that identifies
any malware apps on Google Play Store. However, there are several third-party app
stores where malware apps can still be found. Another major contributor to its security
is the permission-based resources access system, which prevents apps from gaining
unauthorized access to resources such as camera, microphone, and internal file storage.
Even with this dual-layer defense mechanism, malware attacks are still prevalent in
Android.

2 A. Mathur et al.

In the permission-based system, each permission holds rights to access a specific
resource. Therefore, an application needs the user’s consent to use certain resources.
These permissions are categorized into four levels of protection: i) Normal, ii) Danger-
ous, iii) Signature, and iv) Signature|Privileged [1]. Permissions categorized as Danger-
ous are the most sensitive among all of them as they manage users’ personal information
and they might compromise the security and privacy of users when used with malicious
intent. Hence, user approval is requested for these permissions,e.g. CALL_PHONE per-
mission that enables an app to make phone calls, or CAMERA permission to give an app
access to the device camera.

A naive user might be oblivious to whether a permission is requested by a benign
or malware app during installation. Malware developers employ several techniques to
hide the actual intent of a malware app and deceive users by making it appeared as
benign. Malware apps gain access to smartphone’s resources through over-claimed
permissions — requesting more permissions than required [2], drive-by-download — a
malicious download link [3], or permission escalation — using other permissions used
by other apps through intents [4]. Malware such as Trojan, ransomware, spyware, and
worms take advantage of an uninformed user about Android’s permission system and
compromise user’s data. Therefore, a need arises to educate users about Android per-
missions.

In this paper, we present a cloud-based service called Permission-Educator to help
users understand Android permissions and their usage in apps. Permission-Educator
provides an Android app as a client using which a user can select an app and see the
permissions associated with the installed app on the smartphone. A web interface is
developed to allow users to upload Android apps for the same purpose from a desk-
top system. We have also integrated Permission-Educator with an in-house developed
malware detection system, NATICUSdroid [5], which can analyze an installed app’s
permissions and identify the app as benign or malware. The contributions of this work
are as follows:

1. A cloud-based service, Permission-Educator, is developed to educate users about
various permissions associated with the installed apps, with the motive to educate
naive users about the importance of permissions with respect to data privacy.

2. An Android app and a website are developed as clients of the cloud-based service.
The app displays all the installed apps on a user’s smartphone, and the web client
allows users to upload an Android apk file from a browser to view permissions and
their purpose and identify whether the app is malware or not.

3. We bring a recently in-house developed malware detection system (NATICUS-
droid) in production by integrating it with Permission-Educator to identify an app
as benign or malware. NATICUSdroid uses the permissions of an app as features
and determines whether the app is benign or malicious.

Towards this direction, the paper is structured as follows. Section 2 provides a re-
view of related works. Section 3 and 4 discuss the architecture of Permission-Educator
and give an insight on its functionality, respectively. Section 5 concludes the paper along
with the possible future works.

Permission-Educator: App for Educating Users about Android Permissions 3

2 Related Work

Until Android Kitkat (Android release 4.4), apps were installed using a “take-it or leave-
it” approach, where a user could either install an app with its all requested permissions
or deny the installation. The app would display information on all necessary dangerous
category permissions to the user before the choice is made. From Android Marshmallow
(release 6.0) onward, users can either grant permission or deny it while running the app
based on their judgment. One could think this choice could prevent malicious intents of
apps. However, it has not made a significant change for users [6].

Another change made to facilitate this new method of granting permissions is to cre-
ate permission groups. For example, GET_ACCOUNTS, READ_CONTACTS, and WRITE_—
CONTACTS, all are being covered by the app’s request to access Contacts, i.e, granting
all through one. While this provides a choice for granting permissions during run-time
over the “take-it or leave-it” approach, the grouping may grant permissions to the app
that users may not want, but just because they are in the requested permissions group.
As a result of this grouping, earlier, an app needed to request solely READ_PHONE_—
STATE permission to find if a call is in progress or not, could now also gain access
to CALL_PHONE permission that allows making phone calls without the user’s knowl-
edge. Such functionality makes this security module translucent for users as opposed
to the prior take-it or leave-it model, which was more transparent regarding individual
permissions [7].

While a simple solution to this could be to provide a list of permissions granted in
the permission group, it would still not solve the existing problem, i.e., the user’s lack
of understanding of permissions and their purposes. While the permission models have
changed vulnerabilities are still there and user’s understanding of what all a permission
does, attitude towards different permissions, and apps that request access have not var-
ied considerably. Surveys conducted after Android Marshmallow demonstrate that even
if a naive user is constantly ‘nagged’ by the app to grant a permission the user would
give in one day without having a full understanding of them. Such a behavior of the
user makes one even more vulnerable to malware infection [7].

Felt et al. surveyed 333 participants and reported that only 17% of individuals paid
attention to permissions while installing an application, and only 6.6% (22 of 333) par-
ticipants completely understood the utility of permissions in general [8]. Ramachandran
et al. found in their survey conducted with 478 people that around 63% participants do
not review an app’s requested permissions diligently. They also found that if a user has
downloaded apps from a category before, they hint at what permissions that app can ask.
This is why they felt “very comfortable” in downloading and installing a new app from
a similar category [9]. This could be an issue as such users are at risk of downloading
potential malware.

Several studies have been published to better help non-tech savvy users handle apps
more safely. Oglaza et al. and Scoccia et al. attempt to automate the process of permis-
sion granting by learning what permissions the user accepts or denies and automatically
grant or deny runtime permission pop-ups while installing new apps [10][11]. However,
this could become counter-productive if the user is not familiar with permissions in apps
and encourages the model to grant all permissions to any app, including malware, auto-
matically. A few researchers attempt to use more mathematical-based models to predict

4 A. Mathur et al.

an app’s credibility and, in doing so, assist the user in knowing whether an app is po-
tentially harmful or not before installation. While Hamed et al. in [12] focuses solely
on permissions requested compared to the permissions already granted to other apps
on a user’s phone, Moussa et al. in [13] proposed the ACCUSE model that includes an
app’s rating and the number of downloads as a “popularity factor”” ACCUSE was even
found to outperform other malware detection models when tested against 868 malware
apps. However, these models and apps do not assist users in understanding why an app
is requesting specific permissions and what they are used for.

Although the studies mentioned above attempted to reduce malware app installation
or help in handling run-time permission pop-ups, many users still do not comprehend
the purpose of permissions. This lack of knowledge can inhibit the previous efforts
from providing sufficient protection. Consequently, Permission-Educator focuses on
educating users about permissions and potential malware for installed apps on user’s
smartphones to make better decisions in granting permissions to apps.

Website

Clients

Fig. 1: Permission-Educator Architecture

Permission-Educator: App for Educating Users about Android Permissions 5
3 Permission-Educator

We believe by educating naive users about Android and its permission-based security
model we can contribute more towards preventing malware attacks. The purpose of
permission educator is to inform and make users understand the role permissions play
in safeguarding our data and privacy. This app not only gives a detailed description of
what a permission intends to do, but also uses these permissions to detect any potential
malware applications on the device. This is intended to give the user an idea as which
permissions can play a crucial role in data privacy. The proposed web application also
allows the user to check whether the apk at hand is malicious or not, and give a detailed
description of the permissions used in apk.The source code of Permission-Educator is
released on Github for adoption by the research community[14]. The overall architec-
ture of Permission-Educator is shown in Fig. 1.

Algorithm 1: Pseudo code for separation of System and Store Apps

Input:

installedApps[]: Apps installed on phone
1 storeApps, storeAppNames, systemApps, systemAppNames =[];
2 for applnfo in installedApps do
3 label = pm.getApplicationLabel(appInfo);
4 if appInfo.FLAGS == TRUE &
FLAG.SYSTEM ==1& FLAGUPDATED_SYSTEM_APP == 1
then
5 systemApps.add (appInfo);

‘ systemAppNames.add (label);

7 else if appInfo.FLAGS == TRUE &
FLAG.SYSTEM ==0& FLAGUPDATED_SYSTEM _APP ==
then
8 ‘ storeApps.add (appInfo);

storeAppNames.add (label);

3.1 Clients

There are two clients of Permission-Educator — an Android app and a website — that
communicate with the cloud service.

Android App: The app is developed on Android Studio and evaluated on Google
Pixel 2 Android Emulator running Android 7.1.1. This app will be compatible with the
latest Android versions as well. It categorizes all the apps in a user’s smartphone into
System and Store apps and allows them to select an app from one of these categories.
System apps are pre-installed and signed with the manufacturer’s certificate, while Store
apps are usually installed from different app stores. This grouping was done for two

6 A. Mathur et al.

reasons: i) It provides a simple method of sorting the apps into more organized groups
by offering a simple user interface, and ii) it allows the user to see differences in the
type, category, and frequency of permissions System and Store Apps. We separated the
apps using ApplicationInfo class and its two flags — FLAG_SYSTEM and FLAG_—
UPDATED_SYSTEM_APP. The former is used to discern whether an app is installed in
the device’s system image, which, if set to true, the app was present when the user first
booted up the device. The latter is then used to discern whether the application has been
installed as an update to a built-in system application, which means system applications
that the user can use. Algorithm 1 shows the pseudo-code for separating system and
store apps.

The Website: The website was developed using HTML 5 and integrated with JavaScript
for dynamic components. The purpose of the website is to provide a summary of any
uploaded Android app (apk) from a Desktop system similar to VirusTotal [15]. It pro-
vides information for the permissions used in the app, the purpose and category of each
permission, and the overall behavior of the app (malware or benign). We also used
Jinja2 library [16] for integrating the website’s front-end with the Python back-end.

3.2 Cloud Service

We have used a Flask server at the backend of cloud service. NATICUSdroid was
hosted on the Flask server. The server receives all the queries using POST requests.
The database to store permissions information was implemented using MySQL Server.

Flask Server: Flask server is a Python-based micro web framework. It is classified as
a micro framework as it does not require particular tools or libraries [17]. We deployed
a malware detection system, NATICUSdroid, on this server. The server receives per-
missions or apks from the clients and send the requested information in String format.
NATICUSdroid is an Android malware detection system that our research team has
recently developed [5]. It is an adaptive, lightweight, fast, and robust ML-based frame-
work developed to detect Android malware spreading from third-party Android app
stores and phishing attacks. We analyzed an extensive and recent collection of benign
and malicious Android apps and found that several ‘dangerous’ native and custom An-
droid permissions were used frequently in both benign and malware apps. A rigorous
feature selection process yielded a combination of 56 native and custom permissions,
which were critical in the classification process. We used these as features for training
a Random Forest Classifier that classifies apps with an accuracy of 96.9%. Since the
classifier was trained using only permissions from both malware and benign apps, it
provides the most appropriate insight on which apps could potentially be malicious.

MySQL server: The MySQL server hosts a database that holds two tables — permis-
sions and missed_permissions. The permissions table consists of three fields — perm_—
name, perm_about, and perm_category. perm_name stores permission name as
mentioned in AndroidManifest.xml file, perm_about stores permission infor-
mation retrieved from Android Developers website [1] and several other sources to have

Permission-Educator: App for Educating Users about Android Permissions 7

as much detail about the permission as possible, and perm_category stores permis-
sion category, i.e. Normal, Dangerous, Signature, and Privileged. The field perm_-
name is the primary key for this table. All three fields store string values. Once a per-
mission is clicked on the client, the permission name is sent to the MySQL server, where
a query retrieves the information and category of the permission and returns it to the
client. missed_permissions table consists of two fields — perm_name and perm_cat—
egory. Both the fields store string values and similar information as in the permissions
table. This table is used for keeping a record of permissions which are used in apps, but
do not exist in the permissions table, as there are several custom permissions whose
information are not available easily.

4 Results

As Permission-Educator focuses on individuals who are not as fluent in Android tech-
nology and permissions, the goal is to provide a simple and informative User Interface
(UD).

4.1 The App

A user interface (UI) overview of the Android client app is shown in Figure 2. Figure
2a is the home screen of the app that provides the user a choice of selecting an app
from two groups: one that comes pre-loaded on the phone during startup and whose
files are not accessible by the user (System apps), and the other downloaded by the user
from app stores or pre-downloaded apks that can be installed and uninstalled by the
user (Store apps).

Figures 2b and 2d show the UI of “System Apps” and “Store Apps” activities. Once
the user chooses system or store apps, a drop-down menu is provided listing all the apps
in that category shown in Figure 2d. Once an app is selected, we provide a clickable list
of all the permissions used by the chosen app, as shown in Figure 2b. This allows the
user to see the details for each permission (either has access to or will request if it has
not done so already) for the selected app. This is the first step in educating the user
on app permissions, learning what an app has access to on their phone. However, that
information alone is not sufficient. The users may not know the full context of every
permission. For this reason, we provide the user with more information on what each
permission means and what it lets the app access on the user’s phone. To access this
feature, the user needs to click on the permission of their choice, and they are redirected
to a new screen where the chosen permission’s information is retrieved from the server
database and displayed as shown in Figures 2¢ and 2e.

Once the permissions of a chosen app are shown, a button at the bottom Check
for Malware is provided that sends (when pressed) all the permissions mentioned in
the app’s AndroidManifest .xml file to the server. A permission vector is created
by matching the final permissions set defined for NATICUSdroid to the permissions
received at the server. This vector is then passed to the model, which classifies the
permission vector as malicious or benign. The predicted class is sent back to the client,
which is displayed to the user in a dialog box as shown in Figure 2f.

8 A. Mathur et al.

Permission-Educator Permission-Educator Permission-Educator
Select System or Store Apps Select App to See Permissions TS
android.permission.ACCESS_COARSE_LOCA
Google Play Store - TION — —
android.permission.ACCESS_FINE_LOCATION
droid. ion.SEND_SMS
android.permission T DT o

android.permission.RECEIVE_SMS
Allows an app to access approximate
android.permission.READ_SMS geographical location.

android.permission. WRITE_EXTERNAL_STORA
GE

android.permission.READ_EXTERNAL_STORA
GE

android.permission.READ_PHONE_STATE

Permission Category
android.permission.ACCESS_COARSE_LOCATI
ON

Dangerous

android.permission.READ_CONTACTS

(a) Main Page of the (b) System Apps (e.g. (c) Information of per-
App Google Play Store) mission for System app

Permission-Educator Permission-Educator

Select App to See Permissions

Permission Name:
com.android.smoketest android.permission.READ_PHONE_STATE
android TE
ClevCalc
android STORA
Avengers Mod Permission Description:
. Allows read only access to phone state, . :
andey - ; : Y P Classification of App
ListApplications including the current cellular network
android STORA information, the status of any ongoing calls, Malware
SE APiDemos and a list of any PhoneAccounts registered on
the device.
CANCEL
Launcher for Android
Permission-Educator
com.android.gesture.builder Permission Category
com.android.smoketest.tests Dangerous

(d) Store Apps (e.g. (e) Information of per- (f) Dialog box for App
Launcher for Android) mission for Store app Classification

Fig. 2: User interfaces for Android app client of Permission-Educator

Permission-Educator: App for Educating Users about Android Permissions 9

@ Permission Educator X +

< C A Notsecure | permissioneducator.net:5000 Yo

t Apps Reading list

Welcome to Permission Educator!

Drag your apk file here or click in this area to browse for it.

Upload

(a) Home Page of Permission Educator Website

@ pemission Educator x + © - © x

<« C A Notsecure | permissioneducator.net:5000/upload L

Ubuntu Phone Experience

Permissions:

““ s

Allows an app to create windows shown on top of all other apps. Very few apps
android.permission.SYSTEM_ALERT_WINDOW should use this permission; these windows are intended for system-level Signature
interaction with the user.

An interface for sending In-app Billing requests and managing In-app Billing

com.android.vending.BILLING transactions using Google Play.

Dangerous

Allows an application to receive a broadcast after the system finishes booting.
android.permission.RECEIVE_BOOT_COMPLETED ~ Though holding this permission has no security implications, it can have a Normal
negative impact on the user experience.

Classification: Malware

(b) Information for an uploaded App file, Ubuntu Phone Experience

Fig. 3: The UI of the Website

10 A. Mathur et al.

4.2 The Website

The website provides similar information as the app. Figure 3a shows the Home page
of the website. The user can select or drag and drop an apk file from the system and
click on ”Upload” to send it to the server. The server, upon receiving the apk as a POST
request, starts extracting the name of the app and the permissions mentioned in the An—
droidManifest.xml file. These permissions are then queried in the database for
corresponding information on its utility and category. If the permission name is avail-
able in the database, its information and category are retrieved and stored in a dictionary.
The permissions are also used to create a vector of binary permission by matching the
final permissions set defined for NATICUSdroid, which is fed to the pre-trained model.
It returns a ‘benign’ or ‘malicious’ classification for the app. The permission dictionary
and the classification result are returned to the web page to display this information, as
seen in Figure 3b, for an app Ubuntu Phone Experience.

In the background missed_permissions table keeps track of the permissions
for which there was a miss in the permissions table. This helped keep track of
permissions and information that still need to be added to the database to have a high hit
ratio. Upon collecting several such permissions, the permissions table is updated.
An example of such permissions would be the custom permissions that are not native
to the Android APIs, such as, WRITE_USE_APP_FEATURE_SURVEY, and so on, about
which information is not readily available.

5 Conclusion and Future Work

Permission-Educator app works to bridge the knowledge gap of users about Android
permissions and preventing malware infection. It helps educate the user by providing
information such as the utility of the permission in the app, its defined category and
helps in determining whether the app is malicious. A working, dynamic website also
helps check an app’s declared permissions, utility, and nature. This is done with the
help of a cloud-based service, where the permission information is stored in a MySQL
database and nature of the app is determined by a malware detection system NATI-
CUSdroid, both hosted on the server. The app and the website have not been published
publicly and are still in production. However, they have been evaluated on a private
network and the results presented are through test cases.

We aim to bring more information to the user about apps that can help determine the
use of permissions and whether they should be granted to an app. A quiz module could
also be added to the app, which can regularly check users’ knowledge about permissions
to observe a possible change in users’ knowledge or attitude towards permissions. The
app can then be released on Google Play Store. This will enable us to get more feedback
from the users and improve the app over time.

6 Acknowledgement

This project was partially supported by National Science Foundation Grant Awards
#1903419 and #1903423.

Permission-Educator: App for Educating Users about Android Permissions 11

References

10.

11.

12.

13.

14.

15.
16.
17.

. Android for Developers. https://developer.android.com/, December 2019. Accessed: 2020-

04-24.

. Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android

permissions demystified. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 627-638. ACM, 2011.

. Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Malware guard extension: Using sgx to conceal cache attacks. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages 3—24. Springer,

2017.

. R. Mathew. Study of privilege escalation attack on android and its countermeasures. 2012.
. Akshay Mathur, Laxmi Mounika Podila, Keyur Kulkarni, Quamar Niyaz, and Ahmad Y

Javaid. Naticusdroid: A malware detection framework for android using native and custom
permissions. Journal of Information Security and Applications, 58:102696, 2021.

. Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor, Jaeyeon Jung, Norman Sadeh,

and David Wetherall. A conundrum of permissions: Installing applications on an android
smartphone. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 7398 LNCS:68-79, 2012.

. Efthimios Alepis and Constantinos Patsakis. Unravelling Security Issues of Runtime Per-

missions in Android. Journal of Hardware and Systems Security, 3(1):45-63, 2019.

. Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David

Wagner. Android permissions: User attention, comprehension, and behavior. SOUPS 2012
- Proceedings of the 8th Symposium on Usable Privacy and Security, 2012.

. Selvakumar Ramachandran, Andrea Dimitri, Maulahikmah Galinium, Muhammad Tahir, In-

dirajith Viji Ananth, Christian H. Schunck, and Maurizio Talamo. Understanding and grant-
ing android permissions: A user survey. Proceedings - International Carnahan Conference
on Security Technology, 2017-October:1-6, 2017.

Gian Luca Scoccia, Ivano Malavolta, Marco Autili, Amleto Di Salle, and Paola Inverardi.
User-centric android flexible permissions. Proceedings - 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion, ICSE-C 2017, (1):365-367, 2017.

Arnaud Oglaza, Romain Laborde, Abdelmalek Benzekri, and Francois Barrére. A
recommender-based system for assisting non technical users in managing Android permis-
sions. Proceedings - 2016 11th International Conference on Availability, Reliability and
Security, ARES 2016, pages 1-9, 2016.

Asma Hamed and Hella Kaffel Ben Ayed. Privacy risk assessment and users’ awareness for
mobile apps permissions. Proceedings of IEEE/ACS International Conference on Computer
Systems and Applications, AICCSA, 0, 2016.

Majda Moussa, Massimiliano Di Penta, Giuliano Antoniol, and Giovanni Beltrame. AC-
CUSE: Helping Users to Minimize Android App Privacy Concerns. Proceedings - 2017
IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems,

MOBILESoft 2017, pages 144—-148, 2017.

Akshay Mathur and Ethan Ewoldt. Permission ~ Educator App.
https://github.com/akshaymathurO5/Permission_Educator.

VirusTotal. https://www.virustotal.com/, Accessed: 2021-07-05.

Jinja2. https://jinja.palletsprojects.com/en/3.0.x/, Accessed: 2021-07-05.

Flask (web framework), 2012. https://en.wikipedia.org/wiki/Flask_(web_framework), Ac-
cessed: 2021-07-05.

