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Abstract: A galvanic isolation (Gl) technique for cryptographic cores
is proposed to mitigate power and electromagnetic (EM) side-
channel analysis (SCA) attacks. The design uses deep N-well
technology and an integrated charge pump-based power delivery
and management to completely isolate Vcc, Vss, and substrate
nodes from the external supply and ground pins, improving the SCA
resilience due to supply as well as ground bounce. Measured results
from a 128-bit Advanced Encryption Standard (AES) core
implemented in a 40nm CMOS show >600x and >220x improvement
against a correlation power analysis (CPA) and coarse-grained EM
SCA attack, respectively, while operating at 20% lower frequency,
consuming 2.3x more power, and occupying 0.0136 mm? larger area.

Galvanic isolation for SCA mitigation: Cryptographic integrated
circuits such as AES cores, are vulnerable to SCA attacks due to
ease of physical access and unintentional data-dependent
information leakage. Various countermeasures based on voltage
regulator and power management techniques, such as switched
capacitor current equalizers, analog and digital low dropout
regulators, and buck converters have been explored [1-4]. They
isolate the external supply pin (Vcc) or randomize the supply current
signatures to improve the resilience of the AES core against SCA
attacks. However, the shared external ground pins (Vss) between the
AES core and the power converter remain susceptible to SCA
attacks. This is particularly critical in modern SoCs wherein multiple
Vss pins are arranged in a ball grid array (BGA). Side channel
information can be obtained by monitoring the voltage bounce and
substrate noise coupling [5] on these Vss BGA pins, especially those
in close proximity with the AES core (Fig. 1a). Post-layout simulation
of a 128-bit AES core shows about 6000 Vss bounce traces on the
top-level metal layers revealing the secret key to a correlation power
analysis (CPA) attack confirming the vulnerability of the Vss pins to
the SCA attacks (Fig. 1b). To mitigate the SCA vulnerability due to
supply as well as ground bounces, we propose a galvanically
isolated (Gl) power delivery mechanism that completely separates
the AES current loop from the external Vcc/Vss pin loops (Fig. 1c).
The proposed approach is inspired by the galvanic isolation principle
employed in high-voltage power converters [6]. Using the
transformer principle, the circuits connected on the secondary side
of the high-voltage power converter are galvanically isolated and
protected from the potentially high transient voltages and currents
present on the primary side. The galvanic isolation for the AES core
is achieved using a reconfigurable capacitor bank built with backend
MoM (Metal-over-Metal) capacitors which act as an energy reservoir
(Fig. 1d). The capacitor bank, along with an integrated power
management unit (PMU), supplies the required charge for the AES
computation, thus completely isolating its compute current loop from
the external Vcc/Vss supply loops. The deep N-well secures the AES
core by reducing the substrate noise-induced side-channel leakage.

Charge pump boost circuits: The GI-AES computation is
performed in 3 phases (Fig. 2). In the first phase (precharge phase),
the PMOS P1 header and NMOS N+ footer are activated, with all
capacitors connected in parallel and precharged to Vcc. In the
second phase (compute phase), both P+ and N1 transistors are
deactivated, isolating the capacitor bank from external Vcc and Vss
pins. The AES core is connected between Vtop and Vsor rails which
are shared across the capacitor bank. Vrop and Vgor rails are internal
and not routed as external pins, thus concealing the crypto-compute
signature. Initially, only Co capacitor supplies charge to the AES core
with other capacitors are isolated from Vrop and Veor rails. As Co
charge depletes, the voltage swing across Vrtor and Vsor reduces.
This voltage swing is monitored with the help of two sense amplifiers
and predetermined reference voltages (Vref-1,2). Once the voltage
swing below a critical voltage (Vi) is detected, the PMU triggers
voltage doubling on the first capacitor stage (Cia and Cig) by
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asserting the Boost1 signal, connecting
both C1a and C1sin series. As C1a and Cis
capacitors are precharged to Vcc in the
first phase, the voltage across this series-
connected capacitor stage is boosted to
2*Vee (Fig. 2b). This boosted voltage
capacitor branch (C1a and Cis in series)
when connected in parallel with the Co
capacitor, the resulting charge-pumping
operation increases the voltage swing
(VTop - VBor) across the AES core larger
than the Veit. The AES compute activity
continues and when the voltage across Vtor and Veor rails goes
below Vrit, the PMU triggers another voltage doubler capacitor stage
(C2a and Czs) by asserting Boostz signal. The capacitor bank voltage
would vary depending upon the encryption activity and utilization of
boosting stages. In the third charge-share (CS) phase, once all
voltage doubler capacitor stages are utilized, Vtop and Vsor rails are
shorted using a transistor to achieve a pre-set voltage, hiding the
AES compute signature during the subsequent precharge phase. If
AES computation is completed before the estimated time interval,
the PMU remains idle for the remaining duration of this phase. Thus,
constant timing duration, along with the fixed precharge current (or
charge) signature, ensures no data-dependent side-channel leakage
to the external supply/ground pins. Multiple voltage boosting stages
gradually transferring charge from precharged capacitor stages to
the active capacitor bank, can prolong AES computations by
maintaining Vtop-Veor swing above Vait. The AES operating
frequency is set based on Vit to mitigate any timing errors due to
variable VTop-Vsot voltage swing. Incremental charge transfers also
reduce EM emanations and mitigate EM SCA vulnerabilities. The
PMU can also enable additional off-chip capacitors based boosting
stages. Differential sense amplifiers act as level shifters to convert
Vtop/Veot swing AES outputs to full Vcc/Vss swing output scan bits.

Measurement results: Fig. 7 shows the die-photograph of a 40nm
AES test-chip implementing proposed galvanic isolation technique.
Oscilloscope waveform traces from a stand-alone charge pump
voltage boost circuit (no AES load) demonstrate successful
triggering of multiple boosting stages and increasing the voltage
swing across Vrtop and Vsor rails (Fig. 3a). Observed Vrtor/Vsot
waveforms during 3 phase operations, PMU control signal
waveforms and trigger points matched to the system flow chart
confirm the functionality of the proposed GI-AES design (Fig. 3b &
3c). The ground bounce on four randomly located Vss grid nodes is
monitored for both designs (Fig. 3d & 3e). Test vector leakage
assessment (TVLA) is performed using two sets, each containing
20,000 fixed plaintexts and 20,000 random plaintexts [7]. The
proposed GI-AES design succeeds in reducing the maximum
absolute t-value by ~6.5x in time-domain and ~25x in frequency-
domain under 4.5 threshold, protecting the design against power
SCA (Fig. 4a). Correlation-based SCA attacks are performed on
power (Fig. 4b) and coarse-grained EM signatures (Fig. 4c) [8]. With
the baseline AES, the CPA attack reveals the first correct key byte
after ~5000 traces, the correct key correlation is 47% higher than the
next possible key guess. Fig. 5a and 5b show the power and EM
SCA attack setup. The coarse-grain EM SCA attack uses a 10-mm
H-field probe 1-mm above the package and reveals the first key byte
after ~9000 traces. With the proposed GI-AES, no correct key byte
is detected by CPA even after 3 million traces and by coarse-grain
EM SCA after 2 million traces, increasing the measurements to
disclose (MTD) key bytes by >600x and >220x respectively. The GI-
AES technique’s ability to mitigate fine-grain EM SCA attacks [9] is
currently under investigation. Fig.6 compares the GI-AES measured
results with prior schemes. Test-chip summary is shown in Fig. 5c.
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Fig. 1. (a) Ground and substrate bounces in BGA arranged Vss pins
(b) Baseline AES post-layout simulation and CPA results (c) & (d)
Proposed Galvanically Isolated (Gl) AES operates in the crypto
logic domain, completely isolated from the external domain
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Fig. 2. (a) Block diagram of the proposed Gl AES system with PMU
and dual side level shifter circuit (b) Capacitor bank diagram with
three boosts settings (c) Capacitor bank switching patterns for
baseline AES and Gl AES (three phases)
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Fig. 3. Experimental demonstration (a) Stand-alone charge pump
voltage boost circuit (b)&(c) Gl AES core operation: control signal
with Vtopr/Veot and flow chart (d)&(e) Four randomly located Vss
nodes for ground bounce monitoring on Baseline and Gl AES
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Fig. 4. Measured results (a) Power SCA TVLA in time and
frequency domains (b) CPA results of (i) Baseline AES and (ii) Gl
AES (c) Measured coarse-grained EM signal and SCA results of
Baseline and Gl AES
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Fig. 5. Measurement setup for (a) power and (b) coarse- gralned EM
SCA (c) Test-chip measurement summary

Fig. 6. Galvanically isolated AES performance summary and prior
work comparison




