
1 IEEE CICC 2021/ Session 15: Security Instances: Shielding the Achilles' Heel of Chips/ Paper 15-2

Galvanically Isolated, Power and Electromagnetic Side-
Channel Attack Resilient Secure AES Core with 
Integrated Charge Pump based Power Management 

Meizhi Wang, Shanshan Xie, Ping Na Li, Aseem Sayal, Ge Li, 
Vishnuvardhan V. Iyer, Aditya Thimmaiah, Michael Orshansky, Ali 
E. Yilmaz, and Jaydeep P. Kulkarni
ECE Department, University of Texas at Austin
E-mail: wang.mz@utexas.edu, jaydeep@austin.utexas.edu

Abstract: A galvanic isolation (GI) technique for cryptographic cores 
is proposed to mitigate power and electromagnetic (EM) side-
channel analysis (SCA) attacks. The design uses deep N-well 
technology and an integrated charge pump-based power delivery 
and management to completely isolate VCC, VSS, and substrate 
nodes from the external supply and ground pins, improving the SCA 
resilience due to supply as well as ground bounce. Measured results 
from a 128-bit Advanced Encryption Standard (AES) core 
implemented in a 40nm CMOS show >600x and >220x improvement 
against a correlation power analysis (CPA) and coarse-grained EM 
SCA attack, respectively, while operating at 20% lower frequency, 
consuming 2.3x more power, and occupying 0.0136 mm2 larger area. 

Galvanic isolation for SCA mitigation: Cryptographic integrated 
circuits such as AES cores, are vulnerable to SCA attacks due to 
ease of physical access and unintentional data-dependent 
information leakage. Various countermeasures based on voltage 
regulator and power management techniques, such as switched 
capacitor current equalizers, analog and digital low dropout 
regulators, and buck converters have been explored [1-4]. They 
isolate the external supply pin (VCC) or randomize the supply current 
signatures to improve the resilience of the AES core against SCA 
attacks. However, the shared external ground pins (VSS) between the 
AES core and the power converter remain susceptible to SCA 
attacks. This is particularly critical in modern SoCs wherein multiple 
VSS pins are arranged in a ball grid array (BGA). Side channel 
information can be obtained by monitoring the voltage bounce and 
substrate noise coupling [5] on these VSS BGA pins, especially those 
in close proximity with the AES core (Fig. 1a). Post-layout simulation 
of a 128-bit AES core shows about 6000 VSS bounce traces on the 
top-level metal layers revealing the secret key to a correlation power 
analysis (CPA) attack confirming the vulnerability of the Vss pins to 
the SCA attacks (Fig. 1b). To mitigate the SCA vulnerability due to 
supply as well as ground bounces, we propose a galvanically 
isolated (GI) power delivery mechanism that completely separates 
the AES current loop from the external VCC/VSS pin loops (Fig. 1c). 
The proposed approach is inspired by the galvanic isolation principle 
employed in high-voltage power converters [6]. Using the 
transformer principle, the circuits connected on the secondary side 
of the high-voltage power converter are galvanically isolated and 
protected from the potentially high transient voltages and currents 
present on the primary side. The galvanic isolation for the AES core 
is achieved using a reconfigurable capacitor bank built with backend 
MoM (Metal-over-Metal) capacitors which act as an energy reservoir 
(Fig. 1d). The capacitor bank, along with an integrated power 
management unit (PMU), supplies the required charge for the AES 
computation, thus completely isolating its compute current loop from 
the external VCC/VSS supply loops. The deep N-well secures the AES 
core by reducing the substrate noise-induced side-channel leakage.   

Charge pump boost circuits: The GI-AES computation is 
performed in 3 phases (Fig. 2). In the first phase (precharge phase), 
the PMOS P1 header and NMOS N1 footer are activated, with all 
capacitors connected in parallel and precharged to VCC. In the 
second phase (compute phase), both P1 and N1 transistors are 
deactivated, isolating the capacitor bank from external VCC and VSS 
pins. The AES core is connected between VTOP and VBOT rails which 
are shared across the capacitor bank. VTOP and VBOT rails are internal 
and not routed as external pins, thus concealing the crypto-compute 
signature. Initially, only C0 capacitor supplies charge to the AES core 
with other capacitors are isolated from VTOP and VBOT rails. As C0 
charge depletes, the voltage swing across VTOP and VBOT reduces. 
This voltage swing is monitored with the help of two sense amplifiers 
and predetermined reference voltages (Vref-1,2). Once the voltage 
swing below a critical voltage (Vcrit) is detected, the PMU triggers 
voltage doubling on the first capacitor stage (C1A and C1B) by 

asserting the Boost1 signal, connecting 
both C1A and C1B in series. As C1A and C1B 
capacitors are precharged to VCC in the 
first phase, the voltage across this series-
connected capacitor stage is boosted to 
2*Vcc (Fig. 2b). This boosted voltage 
capacitor branch (C1A and C1B in series) 
when connected in parallel with the C0 
capacitor, the resulting charge-pumping 
operation increases the voltage swing 
(VTOP - VBOT) across the AES core larger 
than the Vcrit. The AES compute activity 
continues and when the voltage across VTOP and VBOT rails goes 
below Vcrit, the PMU triggers another voltage doubler capacitor stage 
(C2A and C2B) by asserting Boost2 signal. The capacitor bank voltage 
would vary depending upon the encryption activity and utilization of 
boosting stages. In the third charge-share (CS) phase, once all 
voltage doubler capacitor stages are utilized, VTOP and VBOT rails are 
shorted using a transistor to achieve a pre-set voltage, hiding the 
AES compute signature during the subsequent precharge phase. If 
AES computation is completed before the estimated time interval, 
the PMU remains idle for the remaining duration of this phase. Thus, 
constant timing duration, along with the fixed precharge current (or 
charge) signature, ensures no data-dependent side-channel leakage 
to the external supply/ground pins. Multiple voltage boosting stages 
gradually transferring charge from precharged capacitor stages to 
the active capacitor bank, can prolong AES computations by 
maintaining VTOP-VBOT swing above Vcrit. The AES operating 
frequency is set based on Vcrit to mitigate any timing errors due to 
variable VTOP-VBOT voltage swing. Incremental charge transfers also 
reduce EM emanations and mitigate EM SCA vulnerabilities. The 
PMU can also enable additional off-chip capacitors based boosting 
stages. Differential sense amplifiers act as level shifters to convert 
VTOP/VBOT swing AES outputs to full VCC/VSS swing output scan bits.  

Measurement results: Fig. 7 shows the die-photograph of a 40nm 
AES test-chip implementing proposed galvanic isolation technique. 
Oscilloscope waveform traces from a stand-alone charge pump 
voltage boost circuit (no AES load) demonstrate successful 
triggering of multiple boosting stages and increasing the voltage 
swing across VTOP and VBOT rails (Fig. 3a). Observed VTOP/VBOT 
waveforms during 3 phase operations, PMU control signal 
waveforms and trigger points matched to the system flow chart 
confirm the functionality of the proposed GI-AES design (Fig. 3b & 
3c). The ground bounce on four randomly located VSS grid nodes is 
monitored for both designs (Fig. 3d & 3e).  Test vector leakage 
assessment (TVLA) is performed using two sets, each containing 
20,000 fixed plaintexts and 20,000 random plaintexts [7]. The 
proposed GI-AES design succeeds in reducing the maximum 
absolute t-value by ~6.5x in time-domain and ~25x in frequency-
domain under 4.5 threshold, protecting the design against power 
SCA (Fig. 4a). Correlation-based SCA attacks are performed on 
power (Fig. 4b) and coarse-grained EM signatures (Fig. 4c) [8]. With 
the baseline AES, the CPA attack reveals the first correct key byte 
after ~5000 traces, the correct key correlation is 47% higher than the 
next possible key guess. Fig. 5a and 5b show the power and EM 
SCA attack setup. The coarse-grain EM SCA attack uses a 10-mm 
H-field probe 1-mm above the package and reveals the first key byte
after ~9000 traces. With the proposed GI-AES, no correct key byte
is detected by CPA even after 3 million traces and by coarse-grain
EM SCA after 2 million traces, increasing the measurements to
disclose (MTD) key bytes by >600x and >220x respectively. The GI-
AES technique’s ability to mitigate fine-grain EM SCA attacks [9] is
currently under investigation. Fig.6 compares the GI-AES measured
results with prior schemes. Test-chip summary is shown in Fig. 5c.
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Fig. 1. (a) Ground and substrate bounces in BGA arranged VSS pins 
(b) Baseline AES post-layout simulation and CPA results (c) & (d)
Proposed Galvanically Isolated (GI) AES operates in the crypto
logic domain, completely isolated from the external domain
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Fig. 2. (a) Block diagram of the proposed GI AES system with PMU 
and dual side level shifter circuit (b) Capacitor bank diagram with 
three boosts settings (c) Capacitor bank switching patterns for 
baseline AES and GI AES (three phases) 
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Fig. 6. Galvanically isolated AES performance summary and prior 
work comparison 


