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Power-Based Attacks on Spatial DNN Accelerators

GE LI, MOHIT TIWARI, and MICHAEL ORSHANSKY, The University of Texas at Austin, USA

With proliferation of DNN-based applications, the confidentiality of DNN model is an important commercial
goal. Spatial accelerators, that parallelize matrix/vector operations, are utilized for enhancing energy efficiency
of DNN computation. Recently, model extraction attacks on simple accelerators, either with a single processing
element or running a binarized network, were demonstrated using the methodology derived from differential
power analysis (DPA) attack on cryptographic devices. This paper investigates the vulnerability of realistic
spatial accelerators using general, 8-bit, number representation.

We investigate two systolic array architectures with weight-stationary dataflow: (1) a 3 x 1 array for a
dot-product operation, and (2) a 3 X 3 array for matrix-vector multiplication. Both are implemented on the
SAKURA-G FPGA board. We show that both architectures are ultimately vulnerable. A conventional DPA
succeeds fully on the 1D array, requiring 20K power measurements. However, the 2D array exhibits higher
security even with 460K traces. We show that this is because the 2D array intrinsically entails multiple MACs
simultaneously dependent on the same input. However, we find that a novel template-based DPA with multiple
profiling phases is able to fully break the 2D array with only 40K traces. Corresponding countermeasures
need to be investigated for spatial DNN accelerators.
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1 INTRODUCTION

Progress in Deep Neural Networks (DNNs) has been driving various applications including computer
vision [10], [11], speech recognition [1], [7], medical image analysis [22], [26], malware detection
[24][30] and many others. DNNs enable learning complex features in input data [28], achieving
superior performance in a variety of tasks, compared to conventional machine learning algorithms.

Excellent performance of DNNs depends on tremendous effort to train the neural network
model. The cost of model creation can be captured in the following aspects: (1) Labor and time to
create/collect a dataset for training, (2) the cost of computing resources to run the DNN training
algorithm, and (3) the search for hyper-parameters which result in optimal DNN models. Therefore,
DNN models for specific applications need to be considered a form of intellectual property with
high commercial value. This creates a motivation to obtain the DNN models via adversarial/non-
commercial means, e.g. via attacks that extract the model. Besides the loss of commercial value,
the loss of DNN model confidentiality can also lead to security and privacy problems. An exposed
model may facilitate adversarial attacks, where an attacker crafts input samples that make the
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target model mis-classify [20], or, membership inference attacks, in which an attacker aims to learn
whether an input to the target model belongs to its private training set [27].

Model extraction attacks utilizing class probabilities (confidence scores) from model output
have been demonstrated. In [32], Tramer et al., demonstrated a model extraction attack against
some DNNs by observing outputs of API queries. In [14], Jagielski et al., showed an efficient
learning-based model extraction attack that utilizes query outputs. Query-based attacks can be
effectively defended by limiting model output. Side-channel attacks have also been demonstrated as
effective for DNN model extraction [3, 8, 9, 12, 13, 34-36]. Side-channel attacks offer a significant
risk because side-channel information emanating during DNN execution is difficult to eliminate.
Exploitation of digital side channels enables the attacker to extract coarse-grained information of
the target DNN model, such as its architecture. In [13], Hua et al., proposed a reverse-engineering
attack based on observing the accelerator off-chip memory access patterns and enumerating the
possible architectures that satisfy the constraints. In [35], Yan et al., utilized both memory access
and timing side channels to reverse-engineer the size of matrices involved in matrix multiplication
allowing to infer the DNN architecture. Hu et al., extracted the DNN architecture from the noisy
PCle and memory-bus events on a GPU platform [12]. Duddu et al. utilized execution time to infer
target DNN layer depth [9].

As this paper demonstrates, attacks that exploit device power consumption or EM emanation
enable a direct retrieval of DNN weights. In an attack modality, borrowed from attacks on crypto-
graphic implementations, the attacker feeds a large number of inputs and collects corresponding
power/EM traces using a hypothesis-testing foundation. The attacker selects a power model which
represents the power of an intermediate state of the secret-related computation, makes a hypothesis
on the secret, and evaluates the power model based on the hypothesis. The correct hypothesis
results in the highest correlation between power/EM traces and predicted power values.

Several efforts have demonstrated such attacks for DNN weight retrieval. In [3], Batina et al.,
demonstrated a correlation EM attack on a micro-controller to retrieve approximate values of single-
precision weights of a multi-layer perceptron. While the attack is demonstrated on a conventional
micro-controller, its feasibility on a customized DNN hardware accelerator with high parallelism
is unexplored. In [36], Yoshida et al., implemented an FPGA-based DNN accelerator with a single
processing element (PE) and performed a correlation EM attack to retrieve the weights, stored in a
8-bit fixed-point representation, by analyzing the multiply-and-accumulate operation. However, this
work has not studied the feasibility of an attack on a high-performance accelerator with multiple
processing elements, which is a more common deployment scenario. Dubey et al. demonstrated a
differential power attack (DPA) to retrieve the binarized weights of a model implemented in an
FPGA-based DNN accelerator with an adder tree used for accumulation [8]. The attack is only
evaluated against binarized weights. Whether the attack can be effective against a 8-bit weight
implementation, which is typically used by state-of-the-art accelerators, needs to be examined.

In this work, we demonstrate a differential power attack to retrieve the weights from the FPGA-
based matrix multiplication accelerator. We adopt a 8-bit integer (INT8) weight representation and
implement a design with multiple processing elements performing parallel multiply-and-accumulate
(MAC) operations. The design adopts a weight-stationary dataflow. Matrix multiplication between
input activations and weights is the core computational kernel of DNNs, as computation of both
convolutional and fully-connected layers can be mapped to matrix multiplication. We propose
a multi-step DPA framework which utilizes the dependency between MAC results of different
weights to determine the value of each weight using measured power traces.

We study both 1D and 2D systolic arrays. We consider a 1D array as a separate case because it is
an important VLSI model. In addition, compared to 2D arrays, it can offer better reconfigurability,
lower memory bandwidth requirement, and better energy efficiency due to the reduced inter-PE
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communication and control logic complexity, which may be desired in certain scenarios [16, 33].
We first study a 3 X 1 systolic array. The results show that we are able to retrieve all weights in the
weight vector of the 1D array using 20K power traces with a conventional DPA. Next, we study the
scalability of the DPA attack to larger designs. We implement a 3 X 3 systolic array. The results
show that the 2D accelerator exhibits higher security. Both a conventional DPA and a stronger,
template-based DPA fail: only 30% of weights are recovered after 460K traces. We investigate
the causes of higher resistance of the 2D array to the attack compared to the 1D accelerator. We
explain the reason for higher security of a 2D array design by the fact that it intrinsically entails
multiple MAC outputs that are simultaneously dependent on the same input. We show that this is
fundamentally a feature of the weight-stationary dataflow. However, we discover that an enhanced
template-based DPA with multiple profiling phases manages to expose leakage of each PE column
step-by-step and retrieves weights from each column. The attack is able to retrieve all weights
from the 2D array with only 40K traces. The results on both 1D and 2D arrays show that both
architectures are ultimately vulnerable.
Our contribution can be summarized as follows:

e We investigate the vulnerability of a 1D systolic array. Our results show that a conventional
DPA on the 1D array succeeds fully, requiring 20K power measurements.

e We investigate the vulnerability of a 2D systolic array. However, only 30% of the model
weights are retrieved even after 460K power traces with a conventional DPA and a stronger,
template-based DPA. Our analysis finds that the higher security of a 2D array arises from
the fact that it intrinsically entails multiple MACs that are simultaneously dependent on the
same input.

e We propose a novel template-based DPA with multiple profiling phases which fully breaks
the 2D systolic array.

e We investigate Hamming distance, Hamming weight, and bit-level power models in the
attack on a 2D array.

2 DNN ACCELERATOR DESIGN
2.1 DNN and Matrix Multiplication

The computation of major DNN layers, including fully-connected layers and convolution layers,
can be mapped to matrix multiplication. The fully-connected layer computes a weighted sum of all
its input activations for each output activation. For a fully-connected layer with M input neurons
and N output neurons, this process can be summarized as the multiplication between an N X M
weight matrix and an M X 1 input activation vector, where each row of the weight matrix represents
the weights used to calculate the corresponding output activation. The convolution layer computes
a dot product between the filter weights and input feature map pixels within the filter for each
output feature map pixel. The output feature map is computed by sliding the filter with a certain
stride. This computation process can be mapped to matrix multiplication between the filter weights
and the input activations as well. For a convolution layer with C;;, input channels, Cy,; output
channels, W;, X H;, input feature map, Wr X Hy filter, stride S, and padding size P, the filter weights
can be represented by a matrix with Co,; rows and C, X Wy X Hy columns. The input feature map
pixels can be organized as a matrix with Ci, X Wr X Hy rows and Wy X Hoyr columns, where Wy,
and H,,; represent width and height of the output feature map and can be computed as:

VV:Jut:(VVin_Wf"'2P)/S+]- (1)

Hyyy = (Hin — Hp +2P) /S +1 (2)
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Fig. 1. A 1D dot product array that uses weight-stationary dataflow.

We now provide the details of the implementation of the systolic array matrix multiplication
accelerator for neural networks. We implemented two versions of the accelerator: a 1D systolic
array with 3 PEs, and a 2D systolic array with 9 PEs. Each PE of the accelerator can perform a 8-bit
MAC on signed integers. The systolic array uses a weight-stationary dataflow, similar to Google’s
TPU design [15]. Since the 1D systolic array computes the dot product while the 2D systolic array
computes the matrix-vector multiplication over the input vector, we refer to the 1D systolic array
design as the dot product accelerator and to the 2D systolic array design as the matrix-vector
multiplication (MVM) accelerator.

2.2 Dot Product Accelerator

The dot product array consists of input, weight, and result FIFOs and 3 PEs arranged in a single
column, as shown in Fig. 1. Each PE contains a multiplier and an adder, as well as registers to hold
the input, the weight and the resulting partial sum. First, the accelerator receives inputs and weights
from a host CPU and pushes them into the FIFOs. The design has the input FIFO depth of 3, which
means that the dot products for 3 3x1 input vectors are computed for each host-to-accelerator data
transfer. Next, the weights are popped into a register of the corresponding PE. After pre-loading all
weights into PEs, the main phase of the dot product computation begins.

During the computation phase, the inputs are propagated from input FIFOs to PEs. The prop-
agation of inputs is arranged in a diagonal wave-front format: the start of data propagation for
adjacent rows of input FIFOs differs by one clock cycle, as shown in Fig. 2. Each clock cycle the
inputs multiply the weight in each PE. The result is accumulated with the partial sum from a
previous PE. The updated partial sum is propagated down to the next PE. The first PE performs
only multiplication as there is no previous partial sum. It takes 5 clock cycles to compute the dot
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Fig. 2. The diagonal wave-front propagation of inputs in the dot product accelerator.

Weight FIFOs
Host CPU
Input FIFOs l
Input Data : Diagonal '
0 0 X31 X
Host CPU
—_—
0 X32 | X2 | X
. X33 X23 X13 l
Host CPU
Result FIFOs

Fig. 3. A 2D spatial matrix-vector multiplication array.

products for 3 input vectors. The results are pushed into the result FIFO, and read out by the host
machine.
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Fig. 4. The diagonal wave-front propagation of inputs in the matrix-vector multiplication accelerator.

2.3 Matrix-Vector Multiplication Accelerator

The matrix-vector multiplication accelerator is a 2D array with multiple PE columns, as shown in
Fig. 3. The weight and result FIFOs, of the same size as before, are implemented for each PE column.
The PE design is unchanged, and propagates inputs from left to right, across PE columns. As before,
the accelerator receives inputs and weights from the host CPU and loads the weight matrix into the
3 X 3 systolic array. During computation, the inputs are arranged in a diagonal wave-front format,
Fig. 4. For each host-to-accelerator data transfer, the matrix-vector multiplication of 3 3 X 1 input
vectors is computed, taking 7 clock cycles. The host CPU reads out the content of the result FIFOs.

3 DPA-STYLE ATTACK: SETUP

In this section, we demonstrate a DPA on the dot product and MVM accelerators.

3.1 Threat Model

We consider two types of attackers. The first type can only observe the inputs to the target device
and measure power signatures of the device [25]. The second type has a full access to an identical
device with the ability to modify the secret values and collect power profiles to facilitate attacks on
the target device [6], [17]. We also assume that implementation details of the target device, with
the exception of secret weights, are known to the attacker [8]. This is reasonable since the neural
network model is often trained after a large effort while the implementation of hardware is usually
widely known (public).

3.2 Experimental Setup

We synthesized and implemented the dot product and matrix-vector multiplication accelerators,
individually, on the SAKURA-G FPGA board. The multiplier and adder of each PE are implemented
using a DSP slice. On the FPGA, we floor-planned multiple square physical regions next to one
another, assigned one region to each PE, and constrained the implementation of each PE to utilize
the resources within its corresponding region. We assigned a trigger signal, which indicates the
start of computation, to one of the user GPIO pins of the FPGA board. We used the PicoScope 2408B
to capture power traces. FPGA clock frequency is set to 1.5MHz. The power traces are collected at
500MS/s. We choose a low FPGA clock frequency due to sampling rate limit (1GS/s maximum) of
the oscilloscope.

Fig. 5 shows one power trace for the dot product and matrix-vector multiplication accelerators.
We use a 5-th order low-pass Chebyshev Type I filter with the 0.002 dB passband ripple and a
pass-edge frequency of 25MHz to process the raw power traces. The red dash line highlights the
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Fig. 5. Measured power traces processed by the low pass filter. Left: A trace from the dot product accelerator.
Right: A trace from the matrix-vector multiplication accelerator.

clock cycles where PEs are involved in a MAC operation on inputs and weights. These clock cycles
are the focus of the DPA. The voltage pulses in the middle of the highlighted region have a larger
peak-to-peak value compared to other pulses, since more PEs are active at each MAC operation in
these clock cycles due to the diagonal wave-front of inputs. We note that the MVM accelerator
shows larger voltage pulses, because a larger systolic array is used.

4 DPA ON DOT PRODUCT ACCELERATOR

We demonstrate how the DPA framework can be modified to successfully attack the dot product
accelerator. The strategy allows the attack to succeed in fully identifying the weight vector pre-
loaded on the accelerator. We demonstrate the details of the modified DPA framework that utilizes
the dependence of the instantaneous MAC output on the earlier-processed weights. Without such
a modification, the naive extension of the DPA, as it is used in attacks on common cryptographic
ciphers, e.g. AES, fails.

We start by revisiting the algorithm for attacking AES [4]:

o The attacker collects N power traces with T samples per trace. Each trace corresponds to one
encryption on a random input plaintext. The attacker arranges the collected power traces
into a N X T matrix.

e For a target AES key byte, and for each AES encryption, the attacker calculates a hypothetical
power value based on all 256 possible values of the key byte. The calculated hypothetical
power values are arranged in a 256 X N matrix.

e The attacker calculates Pearson correlation between each row of the power model matrix
and each column of the power trace matrix. The correlation coefficients are arranged in a
256 X T matrix. The row index with the largest value of the correlation matrix represents the
attacker’s best guess of the target key byte.

In the DPA on AES, each key byte of the entire key is extracted individually. The attacker typically
focuses on the last round of AES encryption. We propose the following strategy for an attack on
a DNN. The attack focuses on a single 8-bit weight at a time. The attacker first collects N power
traces, each corresponding to a single dot product computation. Then, the attacker locates the clock
cycles in the power traces where the MAC operation involving the weight occurred. We propose
that the power model be based on the Hamming distance of the register holding the MAC result
between consecutive inputs for each weight. The DPA starts analysis from the first weight in the
weight vector and targets weights serially.
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(a) DPA on w11. (b) DPA on wo;. (c) DPA on w3;.

Fig. 6. DPA results with 100K power traces. DPA fails to retrieve correct wi1 value directly, (a). If assume w11
is known, DPA succeeded to further retrieve wa1 and w31, (b) and (c). Red curves represent correct values:
w11 = 120, wop = 73 and w31 = —96.

First, we follow the above framework directly. We collect 100K power traces from the FPGA
board, each corresponding to a dot product computation of three random 3 X 1 input vectors (the
input FIFO depth is 3) and the fixed (secret) 3 X 1 weight vector. We start by focusing on the first
weight w1, which is associated with the first PE in the column. We use the Hamming distance of
Reg C of PE1, over the first two consecutive inputs to form the power model. If we denote the two
inputs as x1; and x21, the power model Hy; is:

Hyp = HW[(x11 X wi1) @ (x21 X w11)] 3)
We use the phase of the power traces that corresponds to the switching of the target register
and organize data into a 100000 X 334 matrix. Then, for each possible value of wy1, we calculate
Hj 1. The resulting power models are arranged in a 256 X 100000 matrix. Finally, we correlate each
row of the power model matrix with each column of the power trace matrix, and select the value
of wy1 with the largest correlation as the attack guess.
Unfortunately, this direct procedure fails to retrieve the correct value of w11, Fig. 6a. We describe
a solution for finding w1 later. We first describe the strategy for extracting other weights, assuming
wi1 has already been retrieved and the partial sums produced by wi; can be calculated. We now
construct the power model Hy; for wo; as:

Hy = HW[(Z;XU X wi1) ® (Z;xzi X wi1)] (4)

In Equation 4, x12 and xa2 are the first two inputs within the input FIFO for wy;. We correlate

the power models with the targeted portion of the power traces. The correlation coefficients for all

possible values of we; are shown in Fig. 6b. This time the guess for wo; is based on the highest
correlation corresponding to the correct value. The power model Hs; for the next weight w3 is:

Hzi = HW[(Z;XU X wit) @ (Zilx% X wi1)] )

Here, x13 and x93 are the first two consecutive input values into the input FIFO for ws;. The
correlation for ws; is in Fig. 6¢. The attack again succeeds to retrieve the correct value of ws.

Based on the above discussion the weight wi; seems to be the bottleneck: wi; needs to be

retrieved first in order to retrieve the subsequent weights wo; and waj. It is critical to understand

why the DPA fails to retrieve wy; directly. We note that w; is the first element in the weight vector.

This means that the previous partial sum input to PE1 is zero. Therefore, the MAC associated
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Fig. 7. Pairwise correlation across power models of all possible guesses on w1 (multiplication only, left) and
wa1 (multiplication and accumulation, right).

with wy; involves only multiplication. In contrast, the MACs related to wo; and ws; involve both
multiplication and accumulation.

DPA examines the correlation between power traces and power models. It is critical that the
hypothetical power models based on the incorrect guesses of the secret do not show correlation
with the model based on the correct guess. If there is aliasing (correlation between the power model
of the correct guess and that of a different guess), it will cause the incorrect guess to also show
high correlation. This effectively reduces the confidence in the correct guess. In block ciphers, such
as AES, this issue does not arise due to the fundamental non-linearity of the S-box [21].

In our case, aliasing occurs. We investigate this further to understand the difference in the
behavior of wi; and wa;. We calculate pairwise correlation across 256 rows of the power model
matrix for w1, based on the DPA described above, and repeat the calculation for wo;. Fig. 7 shows
the results plotted as 2D color maps. It can be seen that power models of different guesses on w1
show large correlation indicating large aliasing. Power models of different guesses of wa; show
only a large self-correlation. Note that the difference is due to the absence of accumulation. (In the
case of wy; extraction, the role of accumulation is intriguing and we plan to explore it further in
the future.)

To overcome the difficulty of retrieving wy; directly, we use the MACs involving additional,
subsequent weights to extract the correct wy;. Since the product generated by wy; also determines
the MAC outputs for wy; and w31, the hypothetical power model will show high correlation only
for the correct weight combinations. To achieve this, we modify the attack procedure to be:

e Perform DPA on wy;. Construct the power model matrix using Equation 3 and the power
trace matrix. Calculate the correlation between each row of the power model matrix and each
column of the power trace matrix. Sort all guesses on w11 based on the maximum correlation
found in the time window. Since the rank of correct guess on wi; is close to 50, we record
the w11 guesses corresponding to 50 highest correlations.

e For each recorded guess on w1, perform DPA on ws;. Construct the power model matrix
using Equation 4 and the power trace matrix and calculate the correlations. Record the guess
on wy; with the highest correlation and its corresponding wy; guess. This results in 50
(w11, wa1) guesses.

o With each recorded (w11, wa1) guess, perform DPA on ws;. Construct the power model
matrix using Equation 5 and the power trace matrix and calculate the correlations. Record
the guess on ws; with the highest correlation and its corresponding (w11, wa1) guess. Return
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(a) DPA with 100K traces. (b) DPA with 20K traces.

Fig. 8. Modified DPA framework successfully retrieves (w11, w21, w31) with 100K power traces, (a). 20K traces
is identified as the minimum number of traces required for a successful attack, (b). Red curves represent the
correct combination: (w11, w1, ws1) = (120, 73,-96).

the (w11, wa1, wa1) guess with the highest correlation among all 50 recorded combinations
as the final guess.

The time complexity of the modified DPA framework depends on how many guesses of w1
are recorded. The number of wy; guesses to record leads to a linear increase in computation
complexity. We apply the above modified DPA framework to 100K power traces. The correct guess
on (w11, wa1, wa1) is successfully retrieved, as shown in Fig. 8a. We start with 10K power traces
and increase the number of traces used in steps of 10K, repeating the experiments. We identify 20K
traces as the Measurement to Disclosure (MTD) for the dot product accelerator. The correlation
plot of DPA with 20K power traces is shown in Fig. 8b. We summarize the results of the attack
on the dot product accelerator in Table 1. The Rank column shows the rank of the correct guess
on (wi1, woi, wg1) among all 50 recorded combinations and the Correlation column shows the
Pearson correlation of the correct guess at 20K (MTD) power traces.

Weight Correct Guess | Rank | Correlation | MTD
(w11, w1, wa1) | (120, 73, -96) 1 0.0628 20000
Table 1. DPA results on the dot product accelerator. The correct weights can be retrieved with 20K traces.

5 HIGHER SECURITY OF MATRIX-VECTOR MULTIPLICATION ACCELERATOR

In this section, we study the vulnerability of a 2D matrix-vector multiplication accelerator to a
DPA-style attack. We find that the 2D accelerator exhibits higher security. Both a conventional DPA
and a stronger template-based DPA fail. We investigate the causes of higher resistance of the 2D
array to the attack compared to the dot product accelerator. We explain the reason for higher security
of a 2D array design by the fact that it intrinsically results in multiple instantaneous MAC outputs
being dependent on the same input. We show that this is a fundamental feature of the commonly-used
weight-stationary dataflow.

We first investigate the conventional DPA attack that uses the approach described above. A con-
ventional DPA does not require access to an identical profiled device. We collect 460K power traces
from the matrix-vector multiplication accelerator. (We stopped at 460K traces due to measurement
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time budget.) For each PE column, the top 50 guesses of the first weight of each column (wq; for
column 1, wyo for column 2, wy3 for column 3) are recorded and the relevant phases of power traces
are selected. However, the conventional DPA fails to retrieve the weights, as shown in Table 2,
where NA indicates that the correct weight combination does not appear in the 50 recorded weight
pairs.

Weight Correct Guess | Rank | Correlation | MTD
(w11, wa1, w31) | (23,-107, 74) NA NA NA
(W12, W92, W32) (120, 73, -96) NA NA NA
(w13, was, waz) | (-6, -31, 17) 1 0.0640 | 20000

Table 2. Results of conventional DPA on the matrix-vector multiplication accelerator. Conventional DPA fails
to retrieve (w11, wa1, w31) and (w12, wag2, w32) with 460K power traces: the correct weight combination does
not even appear in the 50 recorded weight pairs. (w13, w23, wa3) can be retrieved with 20K traces.

We now investigate a template-based DPA, which assumes a stronger adversary. Since DPA relies
on the analysis of power consumed by MACs, to improve the effective SNR, we propose a profiling
technique that removes all non-MAC power. We assume an attacker has full access to an identical
device, which can be used for profiling. Hence, the attacker can modify the secret weights of the
profiled device and collect its power traces. Specifically, the attacker sets all the weights of the
profiled device to zero. A trace (template) from the profiled device captures the systolic array power
minus the MAC power. The attacker produces a power template for each observed input. This
means the same number of template power traces need to be collected from the profiled device as
the target power traces. The attacker subtracts the template power trace from the target power
trace, which is then used for DPA. We note that the proposed attack is different from the template
attack of Chari et al. [6], which constructs a template using the mean trace and the noise covariance
matrix for each key value. We call our attack the template-based DPA to reflect the fact that an
identical device is used for profiling.

Correct Guess | Rank | Correlation | MTD
(23, -107, 74) 32 0.0623 NA

(ng, Wo2, W32) (120, 73, -96) NA NA NA

(w13, was, wss) (-6, -31, 17) 1 0.0633 20000
Table 3. Results of the template-based DPA on matrix-vector multiplication accelerator. Template-based
DPA fails to retrieve (w11, wa1,w31) and (wi2, woa, w32) with 460K traces. The correct combination
for (w11, w21, w31) appears in the 50 recorded weight pairs but does not show the highest correlation.
(w13, was, wss) can be retrieved with 20K traces.

Weight
(w11, wa1, wa1)

The attack just described allows extracting some, but not all, weights, even after collecting a
much larger number of traces (460K traces). Table 3 shows that the template-based DPA fails to
retrieve the weights of 2 out of 3 columns.

We verify our conclusions on the 2D matrix-vector multiplication accelerator by performing
the attack using simulated noise-free power traces. We generate the simulated traces by modeling
the register switching in each PE. The power consumption of each PE at a specific clock cycle is
modeled as:

P, =a-HD(Reg A) + - HD(Reg C) (6)
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The power contribution of Reg A and Reg C defines each term of the equation. HD(-) denotes
the Hamming distance of the register values over two consecutive clock cycles. Coefficients a and
B are used to adjust the contributions of registers in different PEs, based on their load capacitance.
Specifically, for PE1, PE2, PE4, PE5, PE7 and PES, we use « = 3 and 8 = 2; for PE3, PE6 and PE9,
we use o = 1 and = 2. We sum the power of each PE to get the total power at a specific clock
cycle. This represents the power averaged over one clock cycle. We repeat the register-switching
calculation for each compute-active clock cycle of the 2D systolic array, obtaining a simulated trace
with 7 samples.

We generate 460K simulated noise-free traces using the same inputs as the 460K measured traces.
We perform both the conventional DPA and template-based DPA with the simulated traces and
summarize the results in Table 4 and 5.

Weight Correct Guess | Rank | Correlation | MTD
(W11, WwWo1, W31) (23, -107, 74) 45 0.2627 NA
(W12, W92, W32) (120, 73, -96) NA NA NA
(W13, w23, W33) (-6, -31, 17) 1 0.3878 10000

Table 4. Results of conventional DPA on matrix-vector multiplication accelerator with simulated noise-free
traces. Only (w13, wa3, w33) are retrieved, which matches results in Table 2.

Weight Correct Guess | Rank | Correlation | MTD
(W11, Wwa1, W31) (23, -107, 74) 35 0.2952 NA
(ng, W92, W32) (120, 73, -96) NA NA NA
(w13, was, waz) | (-6, -31, 17) 1 0.4420 | 10000

Table 5. Results of template-based DPA on matrix-vector multiplication accelerator with simulated noise-free
traces. Contribution of Reg A is removed from the simulated traces. Only (w13, wa3, w33) are retrieved, which
matches results in Table 3.

We also explored the Hamming weight power models and bit-level power models in the template-
based DPA. For a specific PE at a specific clock cycle, the Hamming weight power model is
constructed as the Hamming weight of Reg C. The bit-level power model is constructed as the
Hamming distance of a single bit of Reg C [19] over two consecutive cycles. (We selected one bit to
explore the behavior but we believe the results do not depend on which bit is used.) We substitute
the power models given by Equation 3 to 5 with the Hamming weight and bit-level power models
and repeat the DPA described above. Unfortunately, none of the weights could be retrieved with
the new power models even with 460K power traces, as shown in Table 6 and 7. We believe that
the failure of the Hamming weight power model is due to the inaccurate capture of the PE power
consumption while the failure of the bit-level model is due to the interference of switching of
different register bits.

The 2D matrix-vector multiplication accelerator appears significantly less vulnerable to a DPA-style
attack compared to a simpler 1D array. To understand the source of the improved resistance to DPA
we conduct additional experiments. We investigate the exploratory case where only a single column
of PE of the 3 X 3 systolic array is activated. In this case, the accelerator is essentially performing a
dot product of the input vector with the weight column. The difference is that inputs still propagate
horizontally across the PEs and contribute to power. We implement this case by pre-loading the
weights of the target PE column only and pre-loading zero weights to the remaining PE columns.
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Weight Correct Guess | Rank | Correlation | MTD
(Wll; w21, W31) (23, -107, 74) NA NA NA
(W12, W99, W32) (120, 73, -96) NA NA NA
(ng, Wos, W33) (-6, -31, 17) NA NA NA

Table 6. Results of template-based DPA on matrix-vector multiplication accelerator with the Hamming weight
power model. None of the weights can be retrieved with 460K traces.

Weight Correct Guess | Rank | Correlation | MTD
(Wlls Wwa1, W31) (23, -107, 74) 17 0.0080 NA
(w12, wag, w3a) | (120, 73, -96) 6 0.0100 NA
(W13, Wos3, W33) (-6, -31, 17) 6 0.0085 NA

Table 7. Results of template-based DPA on matrix-vector multiplication accelerator with the bit-level power
model. None of the weights can be retrieved with 460K traces.

MAGC:s of these columns do not contribute power since all their partial sums remain zero. For
consistency with the previous template-based experiment, we assume the attacker has access to
an identical device to collect power traces. We perform exploratory study for each individual PE
column: the PE column is active while other columns are inactive. In each study, the templates (to
be subtracted) are based on 100K traces. Table 8 summarizes the results of the exploratory studies
for the individual PE columns.

Weight Correct Guess | Rank | Correlation | MTD
(w11, wat, w31) | (23,-107, 74) 1 0.0448 30000
(Wia, Was, waz) | (120, 73,-96) | 1 0.0359 | 20000
(w13, waz, was) | (-6, -31, 17) 1 0.0651 | 30000

Table 8. Results of template-based DPA for exploratory studies. Template-based DPA successfully retrieves
weights of each individual PE column, while other PE columns are inactive. Corresponding MTDs are identified.

The experiments demonstrate that all weights in each PE column were retrieved, needing at
most 30K traces. This confirms the vulnerability of the dot product to DPA. It also proves that
simultaneous MACs of different PE columns create a higher resistance to DPA by contributing power
interfering with the selection of the correct hypothesis.

We believe that this behavior, in which MAC operations of different columns cause issues for
DPA, is a general characteristic of 2D accelerators based on the weight-stationary dataflow. The
behavior is caused by multiple MAC outputs depending on the same inputs simultaneously. This is
because the weight-stationary dataflow results in inputs to the matrix-vector multiplication array
to be arranged in a diagonal wave-front format, as shown in Fig. 4. The MAC outputs of a PE and
the PE on its lower left in its adjacent column (if applicable), will be affected by the same input(s)
simultaneously. To illustrate this dataflow feature, we focus on PE2, PE3 and PE5. The MAC output
to be computed in PE3, and the previous partial sum to PE5, are determined by the same input at a
specific clock cycle. PE5 accumulates its input-weight products with the previous partial sum. This
means the same input affects the MAC outputs of both PE3 and PE5 simultaneously, Fig. 9.

We assess the interference by examining the correlation between switching of Reg C of different
PEs in the same clock cycle. Since Reg C holds a MAC output of each PE, the power due to the
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Cycle i-1 Cycle i Cycle i+1
"EHOE ETE OB B
W12 * X11

. - . . -

W12 * X11 + W22 * X12

Fig. 9. lllustration of multiple simultaneous MAC outputs dependent on the same input with PE2, PE3, and
PES5: At cycle i — 1, input X711 propagates to PE2 (Left); At cycle i, the MAC output to be computed in PE3
and the previous partial sum to PE5 are determined by the same input X11 (Middle); At cycle i + 1, the MAC
output of both PE3 and PE5 depends on input X171 (Right).

switching of Reg C represents each PE’s MAC power for the purpose of DPA correlation analysis.
We calculate the pairwise correlation of Hamming distances of Reg C in PE1 to PES, Table 9.

PE1 | PE2 | PE3 | PE4 | PE5 | PE6 | PE7 | PES8
PE1 | 1.00 0 0 0 0 0 0 |-0.01
PE2 0 1.00 | 0 |0.01 0 0 0 0
PE3 0 0 1.00| 0 | 0.29 0 0.01 0
PE4 0 0.01 0 1.00 | O 0 0 0
PE5 0 0 [029| 0 1.00 0 0.01 0
PE6 0 0 0 0 0 1.00 0 |-0.13
PE7 0 0 [001] 0 |o0.01 0 1.00 0
PE8 | -0.01 | 0 0 0 0 [-013] O 1.00

Table 9. Pairwise correlation of Hamming Distance of Reg C in PE1 to PES.

We observe that some PEs exhibit large correlation in addition to self-correlation. Specifically,
PEs whose MAC results are simultaneously affected by the same inputs show non-zero correlation:
(PE2, PE4), (PE3, PE5), (PE5, PE7) and (PE6, PE8). Some of them, (PE3, PE5) and (PE6, PE8), show
high correlation. As discussed earlier, such correlation will interfere with DPA’s effectiveness and
reduce the confidence of the correct hypothesis for a target PE.

In contrast, for a 1D array, such interference does not occur since the inputs stop propagation
after being consumed by the PEs and the same input is never used across multiple PEs. The MAC
outputs of different PEs in the 1D array, at any clock cycle, are determined by different inputs.
Thus, MAC power of different PEs will not show correlation as shown by zero correlations between
(PE1, PE4, PE7) and between (PE2, PE5, PES8) in Table 9.

6 BREAKING 2D ACCELERATOR WITH ENHANCED TEMPLATE DPA

In this section, we demonstrate a stronger template-based DPA that succeeds in fully retrieving
the weights of the 2D array. The attack requires multiple profiling phases. We call it multi-phase
template-based DPA.

ACM J. Emerg. Technol. Comput. Syst., Vol. Special issue on Trustworthy AL No. 1, Article . Publication date: August 2021.



Power-Based Attacks on Spatial DNN Accelerators 15

(a) DPA on (w11, w21, w31). (b) DPA on (w12, waz, w32). (c) DPA on (w13, w23, w33).

Fig. 10. Multi-phase template-based DPA results with 60K traces. The attack succeeds to fully retrieve the
weights on matrix-vector multiplication accelerator. Red curves represent the correct combination.

As discussed, 2D array exhibits higher resistance to DPA due to parallel MAC operations of
different PE columns. To fully retrieve the weights, it is critical to focus on each PE column
individually and remove the interference of other columns. However, localizing leakage from each
PE column is challenging because the power trace captures aggregate power of the entire 2D
array. However, it is possible to expose the leakage of each PE column via a sequential analysis.
Specifically, we identify the most vulnerable PE column, extract its weights, remove the effect of
the column by template, and move to the next most vulnerable remaining PE column. The process
can be repeated until the weights from all PE columns are retrieved. The main question is how to
find the most vulnerable PE column of the 2D array.

Using previous results, we observe that the rightmost PE column (PE3, PE6 and PE9) appears to
be the easiest to break. The attack can break the column with 20K power traces while the other
columns remain secure even after 460K power traces. The reason for this behavior is that input
propagation stops at the rightmost PE column. We believe that the PE column furthest from inputs
is the most vulnerable one and its weights can be retrieved most easily. Based on the hypothesis, we
propose the following attack. For simplicity, we use the term “trace” to refer to a power trace and
“template trace” to refer to a power trace collected from a profiled device with the fixed weights.

e Perform DPA on column 3 (PE3, PE6, PE9). Run DPA for 1D array. Retrieve weights (w13, was, wss).

e Set the weights of PE3, PE6 and PE9 on the profiled device to (wi3, was, wss). Set other
weights to zero. Collect a phase-1 template trace for each input of the original set of traces.

e Subtract phase-1 template traces from the corresponding original traces. Perform DPA on
column 2 (PE2, PE5, PES) using updated traces. Run DPA for 1D array. Retrieve weights
(W12, wa2, W32).

o Set the weights of PE3, PE6 and PE9 on the profiled device to (w3, was, wss). Set the weights
of PE2, PE5 and PE8 to (wig, Waa, W32). Set other weights to zero. Collect a phase-2 template
trace for each input of the original set of traces.

e Subtract phase-2 template traces from the corresponding original traces. Perform DPA on
column 1 (PE1, PE4, PE7) using updated traces. Run DPA for 1D array. Retrieve the final set
of weights (w11, wa1, w31).

We collect 60K traces from the matrix-vector multiplication accelerator and perform the above
attack. The process requires 120K template traces to be collected in total. The attack succeeds in
retrieving all weights from the 2D array, Fig.10. We summarize the results for each PE column in
Table 10, identifying the MTD for each column.
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Weight Correct Guess | Rank | Correlation | MTD
(W11, W21, W31) (23, -107, 74) 1 0.0588 20000
(Wia, waz, w32) | (120,73,-96) | 1 0.0398 | 40000
(ng, Wos3s, W33) (-6, -31, 17) 1 0.0755 20000

Table 10. Results of multi-phase template-based DPA for matrix-vector multiplication accelerator. The attack
retrieves all weights from the accelerator with a MTD of 40K traces.

We now analyze the time complexity of the multi-phase template-based DPA. The attack needs
to apply a 1D DPA for each profiling phase of an individual PE column. Therefore, the complexity of
the attack is proportional to the number of PEs in the 2D array. The cost of template construction is
proportional to the number of PE columns. The complexity also depends on the number of guesses
to record for the first weight of each PE column.

7 DISCUSSION

The time complexity of the DPA-based model extraction attack scales up linearly with the number
of weights. Each weight vector loaded onto the systolic array is retrieved individually. To retrieve a
large DNN model, the cost scales up with the model size. The linear increase of cost due to model
size is inevitable in both side-channel-based [3, 8, 36] and query-based [5, 14] model extraction
attacks. Techniques to reduce MTD of each individual weight vector need to be investigated for a
higher attack efficiency.

Attacks based on EM measurements have the potential to further improve attack efficiency. EM
attacks allow to localize leakage from individual components of the circuit, which can improve the
SNR of the collected traces significantly. We anticipate that EM attacks with a high resolution EM
probe, that is able to localize leakage from individual PE columns or even PEs, can break the 1D/2D
arrays faster.

In this work, spatial DNN accelerators are shown to be vulnerable to DPA-based model extraction
attacks. It is useful to consider some countermeasures to reduce or even eliminate side-channel
leakage. Various countermeasures for embedded cryptographic hardware have been demonstrated
over the years, such as masking [2], [23], which adds random values to intermediate computations,
and hiding [29], [31], [18], which aims to hide the power draw of the actual computation. These
techniques are likely to also work on DNN accelerators. For instance, the masking scheme could be
adopted to obfuscate the intermediate partial sums generated by MAC operations, which would
break the correlation between the power models and the actual power consumption. Hiding could
be realized by using dual-rail logic, or adding noise to hide the actual MAC power.

8 CONCLUSION

We investigate the vulnerability of spatial DNN accelerators using a general 8-bit number repre-
sentation to DPA-style attacks. Specifically, we investigate two systolic array architectures based
on the weight-stationary dataflow: (1) a 3 X 1 array for a dot-product operation, and (2) a 3 X 3
array for matrix-vector multiplication. Both are implemented on the SAKURA-G FPGA board. We
show that both architectures are ultimately vulnerable. A conventional DPA succeeds fully on
the 1D array, requiring 20K power measurements. However, the 2D array exhibits higher security
even with 460K traces. We show that this is because the 2D array intrinsically entails multiple
MACs simultaneously dependent on the same input. However, we find that a novel template-based
DPA with multiple profiling phases is able to fully break the 2D array with only 40K traces. Novel
countermeasures need to be investigated to protect spatial DNN accelerators from such attacks.
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