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ABSTRACT: Van der Waals (vdW) heterostructures are con-
structed by different two-dimensional (2D) monolayers vertically
stacked and weakly coupled by van der Waals interactions. VAW
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manner. Here, we present a computational framework that
combines first-principles electronic structure calculations, 2D
material database, and supervised machine learning methods to
construct efficient data-driven models capable of predicting
electronic and structural properties of vdW heterostructures from their constituent monolayer properties. We apply this approach
to predict the band gap, band edges, interlayer distance, and interlayer binding energy of vdW heterostructures. Our data-driven
model will open avenues for efficient screening and discovery of low-dimensional vdW heterostructures and moiré superlattices with
desired electronic and optical properties for targeted device applications.
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B INTRODUCTION

The seminal discovery of graphene has motivated the search
for two-dimensional (2D) materials beyond graphene.' Several
libraries of 2D compounds”~® have been established with a
diverse set of compositions and crystal structures, offering
exciting opportunities for theoretical and experimental
exploration of their physical and chemical properties” as well
as potential applications in areas such as flexible electronics,"
photonics,'" and topological quantum materials.'” The unique
weak van der Waals (vdW) interaction in layered 2D materials
allows one to arbitrarily stack different 2D monolayers,
forming van der Waals heterostructures. These vdW
heterostructures may possess emergent physical properties
capable of significantly expanding the applicaitons of low-
dimensional systems."”

Unlike traditional heterostructures, vdW heterostructures
are not limited by lattice mismatch. Their properties may be
strongly influenced by the interlayer twist angle and stacking
order, which can provide a large material design space. Tuning
these variables allows for the realization of atomically sharp
interfaces'* and the precise control of material properties. Such
fine tunability of electronic band structure has been observed
in twisted bilayer graphene leading to intriguing super-
conductivity and correlated physics at the so-called “magic
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angle”.ls’16 Stacking configuration has also been shown to have

significant effects on the vdW heterostructure and offers a
unique avenue for tuning material properties.”” The atomic
registry of the individual layers may depend on their crystal
symmetry and relative in-plane shift, e.g., AA and AB stacking
configurations. Theoretical studies have shown that these
different stacking configurations not only affect interlayer
binding energies and interlayer distances, but also significantly
impact electronic structures and other properties.'” Thus,
combining and stacking different monolayers into vdW
heterostructures may allow the fabrication of artificial low-
dimensional materials with tailored electronic band gap and
band alignment for 2D electronic and optoelectronic
applications. For example, vdW heterostructures with Type I
band alignment could offer potential 2D materials for
engineering dielectric environment to confine and tune the
intralayer exciton,'’ while vdW heterostructures with Type II
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Figure 1. General schematic of computational and machine learning workflow.

band alignment can be useful for enabling the interlayer
exciton with long lifetime.”’

Given the growing number of 2D monolayers, the vdW
heterostructure space grows combinatorially. Fabrication and
characterization of vdW heterostructures via trial-and-error
become an increasingly difficult task. Even high-throughput
first-principles approaches become extremely expensive.
Recently, machine learning methods have been applied to
circumvent this problem. Tawfik et al.”' constructed 267
bilayers out of 53 different monolayers and trained machine
learning models to predict the interlayer distance and band gap
by using the property-labeled materials-fragments (PLMF)
descriptors.”” Their best-performing models achieve a testing
R? score of 0.9 and a mean-squared error (MSE) of 0.012 A*for
predicting the interlayer distance using 267 training data. For
the band gap model, they achieved a testing R* score of 0.9 and
MSE of 0.04 eV? using only S3 training data. Choudhary et
al>® leveraged a 2D material database in the JARVIS-DFT
library to predict the band edges and work function of
monolayers by using classical force-field inspired descriptors
(CFID). Their model predicts the monolayer valence band
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maximum (VBM) and conduction band minimum (CBM)
with a mean-absolute-error of 0.67 eV and 0.62 eV,
respectively. Dong et al.”* recently proposed a low-cost
method of obtaining the electronic band structure of bilayers
via band-folding. They applied their model to 703 vdW bilayer
heterostructures based on 1T and 2H prototype structures and
performed a comprehensive analysis of their electronic
structures. Thus, it is highly desirable to establish accurate
machine learning models that can predict a rich set of material
properties for a large number of vdW heterostructures with a
variety of stacking configurations and prototype structures
from the existing 2D material database.

Here, we present a data-driven framework combining first-
principles electronic structure calculations, existing 2D material
database, and supervised machine learning, which allows for
efficient and accurate prediction of electronic and structural
properties of vdW heterostructures. Our framework can predict
the physical properties of heterostructures such as ionization
energy (IE), electron affinity (EA), and electronic band gap
(E,), interlayer distance (dy), and interlayer binding energy
(E,) by only using the properties of the constituent
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Figure 2. Crystal structures and symmetries of the monolayer prototypes used to create vdW heterostructures. (a) 1H-MoS,, (b) 1T-CdL, (c)
hexagonal GaSe, (d) hexagonal GaSe, (e) y-GeSe, (f) graphene, and (g) hBN.

monolayers. The approach reduces the computational costs of
first-principles calculations and enables an efficient way to
explore larger numbers of theoretical configurations of vdW
heterostructures while avoiding brute-force exploration of large
combinatorial space. Our model goes beyond Anderson’s rule
for electronic band gap prediction.”

B METHODS

General Workflow. At a high level, a diagram of our workflow is
shown in Figure 1. First, material data and ground-state crystal
structures are mined from 2D material databases. The ground-state
monolayer structures are stacked vertically to create a large material
design space of unique bilayer heterostructures, which include both
AA and AB stacking configurations. We then sample the vdW
heterostructure design space. The bilayer unit cell and atom positions
are subsequently optimized, and the corresponding electronic band
structures are calculated usinog high-throughput density functional
theory (DFT) calculations.”® From our DFT calculations, we
determine five target material properties: electronic band gap (E,),
electron affinity (EA), ionization energy (IE), interlayer distance (d,),
and interlayer binding energy (E,). Concurrently, the monolayer
material data is featurized and aggregated to construct a set of unique
bilayer machine learning descriptors for the entire material design
space. Using nearly 800 vdW bilayer heterostructures and their
corresponding DFT target properties, we train supervised machine
learning models for the five target properties above. The data-driven
models are then used to make predictions on the remaining, unlabeled
bilayer material space.

2D Material Data Mining for Establishing vdW Hetero-
structure Design Space. The 2D monolayer crystal structures used
in our framework were obtained from the Computational 2D
Materials Database (C2DB),” an extensive, open-source database
that contains crystal structures and material properties from high-
throughput DFT calculations and many-body perturbation theory
calculations within GW approximation.”” The C2DB database
contains over 3000 different 2D monolayers found in 50 different
crystal structure prototypes based on the symmetry and stoichiometry
of common 2D materials, such as hexagonal boron nitride (hBN) and
transition metal dichalcogenides (TMDs). For this work, we select
monolayers with unary and binary compounds from seven 2D
prototypes based on the crystal structures of MoS,, Cdl,, GaS, GaSe,
GeSe, hBN, and graphene, as shown in Figure 2 and detailed in Table
1. We then filter this subset to include only those 2D monolayers that
satisfy five criteria: (1) possessing hexagonal lattice symmetry, (2)
having a nonzero band gap, (3) excluding monolayers with Cr, Fe, V,

Table 1. Prototype Names, Chemical Formula, Space
Group, and Number of the Selected 2D Monolayers

2D prototypes  general formula  space group  no. of 2D monolayers

MoS, XY, P6m2 57
Cdl, XY, P3ml 53
GaS X,Y, P6m2 28
GaSe XY, P3ml 19
GeSe XY P3ml 17
C X, P6/mmm

hBN XY P6m2

Co, Mn, or Ni elements, (4) excluding monolayers with
antiferromagnetic or ferromagnetic stable phase, and (S) excluding
monolayers with low thermodynamic or kinetic stability as defined by
the C2DB database. While the magnetic heterostructures are of great
interest, the proper electronic structure calculations require extensive
computational resources to carefully check different magnetic
configurations, Hubbard-U corrections, and magnetic anisotropies
such as exchange and single-ion anisotropy for each heterostructure.
For this reason, it would be too challenging and highly demanding for
the present work, thus Criteria (3) and (4) were applied. For the
same consideration of high computational cost, Criteria (1) was also
included. After filtering, we obtained 181 unique monolayers from
which vdW bilayer heterostructures are built. A complete list of the
181 monolayers used in the work is listed in Table S1. The monolayer
crystals obtained from the C2DB possess a wide range of lattice
constants and optoelectronic properties. Except for the graphene
prototype (C), all of the monolayers are binary compounds with a
generalized chemical formula of XY, XY,, and X,Y,. In many cases, the
X species is a metal atom. The monolayers include both direct and
indirect band gap semiconductors with band gaps ranging from 0 to
5.94 eV and in-plane lattice constants ranging from 2.46 to 5.23 A.
After performing data mining of the 181 monolayers, we use their
crystallographic information to construct a large set of vdW
heterostructures from the 16290 possible combinations of mono-
layers. In this project, we construct commensurate heterostructures, in
which the crystal structures of the constituent monolayers are scaled
to a common in-plane lattice constant. To minimize the strain effects
due to large lattice mismatch, as well as mitigate the computational
costs of DFT, we focus on those heterobilayers that form
commensurate stacking with minimal lattice scaling. Therefore, we
accept only pairs of monolayers with a lattice mismatch of 3% or less,
where the lattice mismatch is defined as la; — a,|/a,, where g, and a,
represent the lattice constants of the two individual monolayers with
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Figure 3. (a) Distribution of bilayer vdW heterostructures with Type I, II, and III band alignment. An illustration of top and side views of an
example vdW heterostructure bilayer in the (b) AA stacking configuration and (c) AB stacking configuration. Interlayer distance d, is calculated as
the vertical distance between the lowest atom of the top layer and the highest atom of the bottom layer.

a, being the smaller lattice constant. The heterostructure in-plane
lattice constant is determined by the average in-plane lattice value of
the two monolayers, and each is scaled accordingly. The scaled
monolayers are stacked vertically with a starting interlayer distance of
3.40 A. To reduce the image interaction from the periodic boundary
condition used in DFT, a large vacuum is added along the out-of-
plane direction (i.e., c-axis). We ensure that all of the heterostructures
have the same out-of-plane lattice length (c = 38 A), which guarantees
at least 18 A of vacuum for each. Since the in-plane lattice constants of
each constituent monolayer are identical after scaling, stacking
configurations are well defined for the heterostructures. Therefore,
it is possible to create different stacking configurations through simple
translations and rotations of the top monolayer with respect to the
bottom layer following their point group symmetry. In this work, we
consider the AA and AB stacking configurations only. Ultimately, our
bilayer material space consists of 1950 AA and 1950 AB structures
with minimal lattice mismatch.

Each bilayer can be classified by the combination of their
monolayer prototypes, yielding 27 different heterobilayer prototypes,
as shown in Figure 3a. The C—C bilayer class was excluded during the
filtering process. As many monolayers are mostly of the MoS, and
CdI, prototypes, bilayers from these prototypes dominate the
proposed design space. Furthermore, we classify the types of band
offset (i.e, Type L, Type II, or Type III) for all bilayers according to
Anderson’s rule based on the monolayer band edges (see Figure 3a).
Our bilayer material space consists of 41% Type I, 35% Type II, and
24% Type III heterostructures. Figure 3b,c shows the vdW
heterobilayer structure of the MoS,—MoS, prototype in the AA and
AB stacking configuration, respectively. According to Anderson’s rule,
the vacuum levels of two semiconductors on either side of the
heterostructure should be aligned at the same energy level. We thus
align the vacuum level of the two monolayers to be at 0 eV and
establish the position of Ecgy and Eygy for both monolayers with
respect to the vacuum level. The band gap of vdW heterostructures
was then estimated by the difference between the lower CBM energy
and the higher VBM energy of the two monolayers. This approach
works in the limit of large vacuum separation between the two
semiconductors. However, given the relatively vdW weak interaction
in vdW heterostructure, it may work qualitatively but not
quantitatively since the charge transfer or chemical bonding effects
are often minimal in vdW heterostructures. Nevertheless, this
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Anderson’s rule-based approach is a crude estimation, compared to
direct first-principles DFT calculations where all of the atomic
coordinates, interlayer distance, and Fermi level are fully equilibrated
across the vdW heterostructure with all interlayer interactions
included such as potential charge transfer.

Labeling Bilayer vdW Heterostructures using High-
Throughput DFT Calculations. We sampled over 800 AA and
AB stacked bilayers (~20% of the bilayer material space) with the
sampling weights proportional to the size of the structural prototypes
of bilayer vdW heterostructures (see Figure 3a), ensuring that the
sampled data is representative of the total material design space and
that there are, at least, a few bilayers from each prototype in the
training data. This subset of bilayers was then cast into the DFT for
structural optimization and electronic band structure calculation
through our high-throughput workflow. The DFT calculations®® were
carried out using the Vienna ab initio simulation package (VASP).*®
Structural optimization and electronic structure calculations were
performed using a plane-wave cutoff energy of 500 eV, the Perdew—
Burke—Ernzerhof (PBE) exchange-correlation functional within the
generalized gradient approximation (GGA),” and a Monkhorst—Pack
k-point grid of 11 X 11 X 1. To account for the weak vdW interlayer
interaction, we employed the optB86b-vdW functional,>® which has
been shown to give good results for vdW heterostructures.>* For the
structural relaxation, the atomic force convergence threshold was set
to 0.02 €V/A and the electronic energy convergence threshold was set
to 1 X 107 eV. The electronic band structure was calculated along
the high-symmetry k path of '-K—M-I'. To mitigate image
interactions due to the periodic boundary conditions used in the
plane-wave DFT calculations, we applied a dipole correction to the
total energy along the out-of-plane z-direction.>>**

Five target material properties (Eg, EA, IE, dy, and E,) are extracted
from the DFT calculations. The interlayer distance is the vertical
distance between the lowest atom of the top layer and the top atom of
the bottom layer (Figure 3b), which ensures that the distance is
consistent for all structure prototypes. Ey, is defined by

(EMU! 4 pML2 _ pHet)

By I (1)

where E™® is the total energy of the heterostructure bilayer, EM"' and

EM™ are the total energy of the constituent monolayers, and A is the
surface area. It is important to note that the above definition of Ej,

https://doi.org/10.1021/acsami.2c04403
ACS Appl. Mater. Interfaces 2022, 14, 25907—-25919


https://pubs.acs.org/doi/10.1021/acsami.2c04403?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c04403?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c04403?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c04403?fig=fig3&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.2c04403?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Materials & Interfaces www.acsami.org Research Article

(a) E (b) 60 (k) A E
E E VAC
60 E i )  ————
E 507 A
504 1
E 404
£ 40 £ IE EA
8 307 83°9
E B —
204 203 %
S
¢ d—r————————— ot <2
2 3 4 -1.0 -05 00 05 [0}
do (A) Ado (A) 5 | Er Eg
I NI N - ——
(c) | (d) .
80 1204
] 1004
60 ]
2] =
=] 4 =1 ]
§ 407 S 607 (N PbSe,-BaBr,
] E a - <
1 404 " T AB (Eg = 1.781)
20+ 20 3 F - _ AA (E; = 1.903)
i E = - ’—\ - )>;
0 L o117 2
75 100 0 20 40 60
Ep (meV/A?) AE, (meV/A?) 1
2
& Of————————— - ]
PN~ ——— |
(e) (f) . -1 / g
60- 703 -2 " N
i 3 - —
- 60 — — ———
| 504 -3 —_—— —]
= g0 TR — ————
% 0 T § 4O§ - G M K G
o : o 30% Wave Vector
20+ 203
] 10 (m) PbSe,-BaBr,
] ] 4+
3 %% 00000
O-FTrrrrrrrrrrrTr 0 T T T T T T T T T T 17T M:'o'.."" .o.
0 1 2 3 -05 0.0 05 3] ,0090288300508832282085 000000
Eq (eV) AEg (eV) 1968eg030000° ooe
5 poo® 0000000, %04
booe 1 ....
(9) (h) 0
60 ] 3
E 50 o O-peegge —.'"";.'“.',...'o'b'wn::ln
50 E w g, ° ®
E ] -14 000, o .3.’..
405 40 ...::m:g:. 000000000009°" 04
2 3 2]
3 30 3 307
o o
20 20
E ] G M K G
10 104 Wave Vector
0- ——T— otr—-r—r-rr—rrrrrrrrrr
4 6 02 00 02 04 (n) PbSe,-BaBr,
EA (eV) AEA (eV)
M )]
50 50
40 40 s
] ] °
= 1 = ] N
5304 5 304
o B o ]
o 1 o
207 20
10 107
04— - Pk ————______ . . T . . v T
4'1 é g'; _6,5 010 0 5 10 15 20 25 30 35
IE (eV) AIE (eV) A (z-direction)

Figure 4. Distribution of the (a, b) interlayer distance d, and its difference between AA and AB (Ad = dj® — dj*), (c, d) interlayer binding energy
E, and its difference between AA and AB (AE, = Ep® — Ef*), (e, f) band gap E, and its difference between AA and AB (AEg = EQB - E?A), (g h)
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AA vs AB band structure plot, (m) project band structure plot with respect to the constituent monolayers, and (n) local potential plot for each vdW
heterostructure.
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results in a positive value for those bilayers with favorable attractive
interaction across the interface (i.e., the ground-state total energy of
the bilayer is lower than that of the monolayers). The band gap is
taken as the difference between VBM, Eygy;, and CBM, Ecpy. The IE
and EA of the bilayer vdW heterostructure are determined by

IE = Evac - EVBM (2)

EA = Evac - ECBM (3)

where E,,. is the vacuum level. In some bilayers, the formation of a
dipole results in two vacuum energy levels. For these cases, we average
the vacuum energy level when determining the EA and IE.
Additionally, the E,, EA, and IE are related by

Eg =1E — EA (4)

We exploit this relationship later in our machine learning models to
predict E, indirectly by using the two separate predictions for IE and
EA.

Descriptors and Machine Learning of Bilayer vdW
Heterostructures. Material descriptors are an essential part of any
machine learning model and must capture the underlying material
information. For our purposes, we construct a series of bilayer
descriptors based on the descriptors of the constituent monolayers.
Monolayer descriptors are constructed using material proPerties from
the C2DB database and Matminer Python package.’”* From the
Matminer library, we featurize the monolayer density of state (DOS)
using the DOSFeaturizer and Hybridization featurizers, as well as the
atomic composition using the ElementalProperty featurizer. The
Hybridization featurizer quantifies the s, p, d, and f orbital character
of the band edges. The ElementalProperty featurizer calculates
composition-based features using various fundamental elemental
properties such as the melting point, covalent radius, and electro-
negativity. The DOSFeaturizer featurizes the valence and conduction
band edges, returning the major atomic orbital character contributor
(e.g, “s”), the corresponding fraction or “score” that the major orbital
contributes to the band edge, the major atomic species contributor
(e.g, “Mo”), and the amount of hybridization determined by an
entropy score (ie, xInx). We further engineer this descriptor by
encoding the orbital characters (s, p, d, or f) using one-hot encoding,
a commonly used categorical data encoder that creates a binary
“dummy variable” for each categorical feature.”® The atomic species
are encoded by using several atomic properties (ie, Mendeleev
number, atomic mass, electronegativity, atomic radius, etc.).

To compose a descriptor vector for a bilayer, the unique feature
vectors of the monolayers are combined using an aggregation
function. An aggregation function is a simple calculation that
combines multiple data points into one, such as the average, median,
mode, range, etc. Several aggregation methods were tested, as well as
combinations of different aggregations functions, but this approach
yielded an excessively high-dimensional feature space consisting of
many highly correlated features. Therefore, in this work, the
monolayer features are aggregated by taking the average only. This
approach ensures a unique bilayer descriptor vector that is invariant
with respect to stacking order (e.g., MoS,—MoSe, and MoSe,—MoS,)
while still encoding the physical and electronic characteristics of its
constituent monolayers.

In addition, we include the CBM and VBM of the constituent
monolayers (min_cbm, max_cbm, min_vbm, max vbm). We also
take the difference between the minimum CBM and the maximum
VBM (min_cbm-max_vbm). These descriptors attempt to encode
Anderson’s rule as the monolayer band edges are aligned with respect
to the vacuum energy. We construct a few more descriptors to
distinguish the bilayer stacking configurations and band edge
alignment. These include the stacktype (encoded as AB = 0 and
AA = 1) and one-hot encoding of the vdW heterostructure band
alignment (Type L, II, and III) from Anderson’s rule. After building
our descriptors, we filter out those descriptors with zero/low variance
and other descriptors with extreme skewness (or asymmetry). After
filtering, we obtained 91 bilayer descriptors, which are used to train
our machine learning models. A complete list of our descriptors can

be found in Table S2, including a discussion on the work function
feature.

From the labeled training data, we remove any bilayers with
interlayer distance dy < 2.5 A and interlayer binding energy E, > 40
meV/A? as these bilayers are generally unstable or form chemical
bonds at the interface, which leaves us with 776 vdW bilayers. We use
all of the 776 vdW bilayers to train the models for an interlayer
distance d, and an interlayer binding energy E,. For training the
models for electronic properties (i.e., E, EA, and IE), we remove
metallic and Type III bilayers, as the zero band gap vdW
heterostructures may complicate the machine learning models, leaving
595 vdW bilayers for training E,, EA, and IE. The training data is
finally scaled to have zero mean and unit standard deviation.

Before applying various supervised learning models, feature or
descriptor selection is first performed using the least absolute
shrinkage and selection operation (LASSO). The LASSO estimator
is given by

N
~Lasso 1

2
P »
p = arg min 52 X—ﬂo—vaﬁ}. +/12|ﬂ}.|
b i=1 j=1 j=1 (s)
where the first term is a cost function based on least-square linear
fitting and the second term is the I, penalty term. The [, penalty
function can force certain coefficients corresponding to less predictive
feature variables to be exactly zero, yielding a sparse model consisting
of a subset of the original feature variables. Hyperparameter 4 controls
the extent of regularization, whereas when A = 0, the resulting model
is reduced to the ordinary least-squares (OLS) regression. The 4 value
is determined through a five-fold cross-validation in our experiments.

The LASSO is a regularization technique commonly adopted for
descriptor selection in machine learning, which can improve both
prediction accuracy and interpretability by descriptor subset selection
through model coeflicient regularization. To select a suitable subset of
descriptors, we first apply LASSO linear regression on the complete
list of descriptors and fit the model. The LASSO selected descriptors
are then fed into other machine learning models. We use the scikit-
learn Python library®® to build our machine learning pipelines. A
comprehensive list of the models is used in this work including
AdaBoost, Elastic Net (EN), Gradient Boosted Trees (GBT), K-
Neighbor Regression (KNN), Kernel Ridge Regression (KRR),
LASSO, Random Forest (RF), Ridge Regression (Ridge), Support
Vector Regression (SVR), Stacked Ensemble Method (SEM). More
details can be found in Table S3. We include both linear, nonlinear,
and ensemble machine learning models to predict our target
properties.

To estimate each model’s performance on unseen data (i.e., the
generalization error), we employ a repeated k-fold cross-validation. In
a repeated k-fold cross-validation, a conventional train/validation/test
split is repeated multiple times. For smaller data sets, the repeated k-
fold validation can better estimate the generalization error compared
to other cross-validation techniques like single k-fold or leave-one-
out.””™ For this work, we apply a five-fold cross-validation (k = 5)
over 20 repetitions (for total 100 fits) and take the average test score
as our estimate of the generalization error estimate. To measure the
model’s accuracy, we use the mean-absolute error (MAE) as our
primary metric, but we also report the mean-squared error (MSE),
root-mean-squared error (RMSE), and the coefficient of determi-
nation (R?).

B RESULTS AND DISCUSSION

Hight-Throughput DFT Results. The DFT-calculated
equilibrium interlayer distance (d,) for those bilayers ranges
between 1.48 and 4.39 A, with an average of 3.36 A. These
results agree with other DFT studies of vdW heterostruc-
tures."”*" The d, is strongly influenced by the stacking
configuration. The average d, for the AA and AB stacking is
3.64 and 3.09 A, respectively, as displayed in Figure 4a. The
difference in d, between the AA and AB stacked bilayers (see
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Figure 5. (a—c) Top 1S descriptors for the Eg, EA, and IE and their LASSO coefficients. (d) Average repeated k-fold cross-validation MAE for
different machine learning algorithms. The black vertical line represents the standard deviation of the testing MAE.

Figure 4b) can be as large as 1.1 A in favor of the AB stacking
configuration. The preference for the AB stacking is likely due
to steric effects from the atoms facing each other across the
vdW gap. As shown in Figure 4¢,d, E,, is also influenced by the
stacking configuration. All of the calculated E, for our set of
bilayers are positive (see eq 1), suggesting that all display
attractive forces between the constituent monolayers as
expected. The AB stacking configuration is the lower-energy
configuration for the majority of vdW heterostructures
(~96%) displaying larger interlayer binding energy, consistent
with the above shorter interlayer distance d,. The average
binding energy for the AA and AB stacking is 14.0 and 19.8
meV/A? respectively. The difference between the AA and AB
stacking is ~6 meV/A? but can be as high as 10—20 meV/A2
The prevalence of a low-energy AB stacking configuration in
contrast to AA stacking is also likely due to steric effects.
Generally, we found that the E;, will increase monotonically as
the d, decreases. Compounds that displayed d, < 2.5 A
generally did not form stable bilayers and instead are likely to
form chemical bonds at the interface. Correspondingly, these
compounds displayed E, > 40 meV/A% The large difference in
the equilibrium interlayer distance in the AA and AB stacking
configurations is likely to have other important effects on the
bilayer geometry. For example, the energy difference can drive
the reconstruction of the moiré superlattice.”** Our results
indicate that the moiré superlattice made of these vdW
heterostructures will undergo atomic reconstruction with
spatially varying out-of-plane bending and in-plane tension
and compression, which will ultimately impact the interactions
between the quasiparticles in the moiré superlattice.

The electronic properties (i.e., Ey, EA, and IE) are collected
from the DFT calculations and the band edges are shifted
relative to the vacuum energy (see Figure 4k). We find that the
electronic structure of the bilayers is not as strongly influenced
by the bilayer stacking configuration as their interlayer distance
and interlayer binding energy, as indicated by the strongly
overlapped distribution in Figure 4e—j. We find that the band
gap energies range from ~0 eV to nearly 4 eV, allowing for
photon absorption in the infrared to the visible regions. The
change in band gaps between the AA and AB stacked bilayer
IAEgl can be as large as 82 meV, suggesting that stacking
configuration does affect band gap, which is particularly
important for the formation of Moiré exciton in twist bilayer
and multilayer vdW heterostructures.** For all of the bilayers
used in high-throughput DFT calculations, we collect the
relevant target properties as well as plot the electronic band
structure and local potential that are provided in the
Supporting Information. Among the 595 vdW bilayers, we
identify 85 vdW heterostructures with direct band gap. A
complete list of 85 direct band gap vdW heterostructures can
be found in Table S4.

Predictions of Electronic Structure Properties Using
the Machine Learning Models. After the DFT calculations
and filtering steps, 595 bilayers are used to train the machine
learning models. First, these structures are passed with the full
set of features to the LASSO estimator. The LASSO estimator
reduced the number of descriptors from 91 to 59 descriptors
for the E, pipeline. For the EA and IE models, the descriptor
space is reduced to 55 for both targets. A complete list of the
E, EA, and IE LASSO selected descriptor variables and their
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Pearson’s correlation can be found in Figures S4—S9. Since the
descriptor space is normalized, the magnitudes of the LASSO
coeflicients can be used to assess the “importance” of the
descriptors relative to the other descriptors. The top 15
descriptors for the E, EA, and IE and their LASSO coefficients
are displayed in Figure Sa—c, respectively. We see that VBM
and CBM of the monolayers are two of the best descriptors for
the electronic structure properties. The maximum VBM of the
two monolayers is a strong predictor of the bilayer IE.
Likewise, the minimum CBM of the two monolayers is a
strong predictor of the bilayer EA. This arises from the fact
that when the band edges of the monolayers are aligned, we
can use the difference between the highest (maximum) VBM
and lowest (minimum) CBM of the two constituent
monolayers to obtain a crude estimate of the bilayer band
gap energy, ie.,, Anderson’s rule. Furthermore, the average
band gap of the two monolayers is also a strong predictor of
bilayer band gap energy. We find that the stacking
configuration descriptor (“stacktype”) is a weaker predictor
of the band gap, because the band gap differences between the
AA and AB stacking configurations are relatively smaller
compared to the band gap and band edge difference in the
different 2D monolayers.

The LASSO descriptors are used to train a series of
additional linear and nonlinear models. To compare each
model prediction performance, we evaluate the models using a
repeated k-fold cross-validation. The average test MAE for the
E, EA, and IE models is displayed in Figure 5d, while Table 2
provides the average testing and training MAE. With the
exception of the KRR model with the rbf kernel, all of the
tested machine learning models yield predictions with MAEs as
low as 0.09 eV across all target properties (E,, EA, and IE).
Additionally, we see that the standard deviation of the test

Table 2. Average Testing and Training MAE from Repeated
k-Fold Cross-Validation for the Band Gap (E,), Electron
Affinity (EA), and Ionization Energy (IE) Models”

EA MAE IE MAE
machine learning algorithm  E, MAE (eV) (eV) (eVv)
Random Forest Regressor 0.117 (0.044)  0.107 0.090

(0.040) (0.034)
Gradient Boosting Trees 0.122 (0.065) 0.113 0.085

(0.064) (0.046)
Stacked Ensemble Regressor  0.122 (0.075)  0.112 0.090

(0.069) (0.064)
Kernel Ridge (polynomial 0.138 (0.082) 0.133 0.109

kernel) (0.081) (0.061)
SVR (ibf kernel) 0.154 (0.097)  0.151 0.133

(0.098) (0.083)
Elastic Net 0.175 (0.155)  0.178 0.109

(0.156) (0.097)
Ridge Regression 0.176 (0.154) 0.178 0.109

(0.155) (0.096)
LASSO 0.176 (0.155)  0.179 0.111

(0.157) (0.098)
SVR (linear kernel) 0.176 (0.153)  0.170 0.108

(0.147) (0.097)
AdaBoost 0.180 (0.162)  0.199 0.149

(0.179) (0.134)
SVR (polynomial kernel) 0.191 (0.125)  0.198 0.186

(0.129) (0.120)
Kernel Ridge (rbf kernel) 0.212 (0.161) n/a n/a
K-Neighbors Regressor 0277 (0.212)  0.267 0.271

(0.202) (0.207)

“The training MAEs are shown inside the parenthesis.

error is small (only within a few tenths of eV), suggesting that
many of the models are stable (ie., robust against small
changes in the data due to the resampling). Since we can
achieve multiple models with low prediction error, model
selection is a question of the strengths and weaknesses of the
individual model. For example, the tree-based methods like RF
and GBT are capable of fitting nonlinear data and are generally
robust against high-dimensional data sets and the curse of
dimensionality. However, these models tend to capture the
noise along with the underlying relationship (i.e., overfitting)
and are unable to extrapolate beyond the training data. On the
other hand, linear models are unable to map nonlinear
relationships, but they are less complex and easy to interpret.
In addition, overfitting can be mitigated in linear models by
employing regularization methods to minimize model variance
at a cost of bias. The KRR model with the rbf kernel is
discarded due to its high error for the EA and IE. The RF and
GBT models yield the lowest testing error. However, these
models have a greater discrepancy between the training and
testing error, suggesting overfitting (high bias, low variance). In
contrast, the regularized linear models (LASSO, Ridge, and
Elastic Net) show higher errors on the test data compared to
the more complex models but display less overfitting when
comparing the training and test errors.

To balance the strengths and weaknesses of different
models, we proceed to employ a stacked ensemble method
(SEM) rather than deploying a single model for predictions on
the unlabeled vdW bilayer heterostructures. In machine
learning, an SEM is an approach where multiple base machine
learning models are combined (or “stacked”) into a single,
higher-level meta-learner. The meta-learner learns the best way
to combine the predictions of the base models, which then
makes the final prediction. SEM has been shown to yield better
machine learning performance when compared to individual
models.*> Here, we use the GBT, Ridge Regression, linear
SVR, and a polynomial kernel ridge regression as the base
models. These models were chosen as the base models to
promote diversity to include a variety of model types (ie.,
linear, tree-based, kernel-methods) and they also gave low
prediction error when applied individually. The base model
predictions were passed to an ordinary least-squares regression
meta-estimator. As shown in Table 2, the testing (training)
MAE for the SEM model is 0.122 (0.075), 0.112 (0.069), and
0.09 (0.064) eV for the E,, EA, and IE properties, respectively.
The MAE, MSE, RSME, and R” testing and training metrics for
all E,, EA, and IE models can be found in Tables S5—S7,
respectively.

Owing to the diversity of the monolayer prototypes and
compositions, the vdW bilayer material space is equally diverse,
consisting of many different bilayer families (i.e., MoS,—CdL,
GaSe—Cdl,). However, some monolayer prototypes, such as
the MoS, and CdI, prototypes, have more compounds than
others. This means that the vdW heterostructure material
space is composed of many bilayers from these prototypes.
This introduces an imbalance with respect to bilayer
prototypes (see Figure 3a). In machine learning models, it is
important to assess if this bias in the data will adversely affect
the model performance. To evaluate if our SEM machine
learning model is biased toward the larger prototype classes,
we compared the residuals for the top seven prototype classes
and the combined residuals for the remaining 20 classes, as
shown in Figure 6a. We find that the residuals are comparable
across the prototype classes, where the middle 50% of residuals
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Figure 6. (a) Distribution of band gap residuals for different bilayer prototypes. (b) DFT- and ML-predicted band gap where the orange and blue
colors represent Type I and Type II band alignments, respectively. The size of the datapoint corresponds to the lattice mismatch percent. The

prediction of E, using (c) Anderson’s rule, (d) machine learning model
EA — IE.

of E, and (e) machine learning model of EA and IE with E, defined by E, =

are within roughly +0.1 eV. Comparing the residual
distributions of the top seven and the remaining 20 combined,
with the exception of a few outliers, we find that the residuals
of the smaller classes are not significantly greater than the top
seven. We further evaluate the model with respect to the band
alignment class. From Figure 6b, we see that the model can
accurately predict both the Type I and Type II bilayers found
in the training data. Furthermore, we see no relationship
between the model error and the extent of lattice mismatch.
Considering these results along with our previous repeated k-
fold cross-validation, we are confident that the SEM model is
accurate and able to generalize successfully on the unseen vdW
heterostructure space.

Figure 6¢c—e shows the band gap estimations/predictions
using Anderson’s rule, the machine learning model of E,, and
the machine learning model of EA and IE (with E, defined by
E, = EA — IE), respectively. Anderson’s rule estimates the
band gap by the difference between the minimum CBM and
the maximum VBM of the two monolayers. While this
approach does give qualitative agreement with the trend of
the DFT-calculated results, it does not account for important
interlayer interactions, such as charge transfer and dipole
formation, which may affect the band structure of vdW
heterostructures. Using Anderson’s rule, we can make crude
estimates of the band gap energy. However, using machine
learning models, we can directly predict the E, of bilayer vdW
heterostructures with the direct band gap model or indirectly
with the IE and EA models. Our machine learning models
show a significant decrease in the MAE compared to the
application of Anderson’s rule. Furthermore, our model
contains many different monolayers from a variety of bilayer
prototypes. This suggests that our machine learning model is
robust against the monolayer composition and structure (i.e.,
monolayer prototypes).

25915

25,46 . . .
Anderson’s rule assumes no interlayer interactions or

charge transfer between two materials at the junction.
Therefore, it may work in the case of weak coupling such as
vdW interaction in the vdW heterostructures.**"*® However,
additional effects such as charge transfer, charge redistribution,
and interfacial dipoles may need to be taken into account. For
example, charge transfer has been experimentally observed in
MoS,-WS,* and graphene—WS, vdW heterostructures.”
Our machine learning models show that while Anderson’s rule
works well for qualitative prediction of band alignment, it does
show a larger MAE from Anderson’s rule compared to our
machine learning model, which not only considers the band
edges of the individual monolayers as Anderson’s rule does but
also includes other factors that are embedded in our material
descriptors beyond the band edges of monolayers.
Predictions of Interlayer Distance and Interlayer
Binding Energy. After the DFT calculations and filtering
steps, 776 bilayers are used to train the machine learning
models for the interlayer distance d; and interlayer binding
energy E,, the LASSO estimator reduces the descriptor space
from 91 descriptors to 64 and 50, respectively. Similarly, the
relative descriptor importance can be gauged from the .
The top 15 descriptors for the d, and E, and their
corresponding % values are shown in Figure 7ab. A
complete list of the d, and E,, LASSO selected descriptors and
Pearson’s correlation can be found in Figures S10—S13. Unlike
the electronic property models, the interlayer distance d,
strongly depends on the stacking configuration. This is
successfully learned by the LASSO estimator where the
“stacktype” descriptor is one of the top descriptors for both
the interlayer distance and interlayer binding energy models.
The stacking configuration is encoded as 0 for AB and 1 for
AA. Therefore, for the interlayer distance model, the positive
model parameter associated with the “stacktype” descriptor
suggests that interlayer distance dy increases with the AA type,
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interlayer distance (d,). The “x” data points correspond to the training data, while “o” represents the predictions on the unlabeled bilayers. Orange
and blue colors represent AB and AA stacked bilayer vdW heterostructures, respectively.
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while for the interlayer binding energy model, the negative
model parameter associated with the “stacktype” descriptor
indicates that interlayer binding energy E, decreases with the
AA type. The average vdW radius is correlated with a decrease
in dy. We also see that the higher the average hybridization of
the monolayer VBM (avg_vbm_hybridization), the lower dj,
suggesting that an increase in hybridization will reduce the
vdW distance between the two layers, which is consistent with
our DFT calculations and physical intuition.

We again evaluate several machine learning models by
repeated k-fold cross-validation. We apply five-fold cross-
validation repeated over 20 iterations. Like the previous case,
we use GBT, SVR (linear), KRR (polynomial), and Ridge as
base models for the Stacked Ensemble Method (SEM). The
average training and testing errors are given in Table 3. The

Table 3. Average Testing (Training) MAE from Repeated k-
Fold Cross-Validation for Interlayer Distance d, and
Interlayer Binding Energy E, Models

dy MAE (A)
0.119 (0.078)
0.119 (0.044)
0.122 (0.067)
0.130 (0.078)

E, MAE (meV/A?)
1.387 (0.902)
1.514 (0.564)
1.496 (0.817)
1.438 (0.826)

machine learning algorithm
Stacked Ensemble Method (SEM)
Random Forest
Gradient Boosted Trees
Kernel Ridge (poly)

SVR (linear) 0.136 (0.122) 1.707 (1.534)
Elastic Net 0.139 (0.124) 1.784 (1.631)
Ridge 0.140 (0.125) 1.786 (1.638)
LASSO 0.141 (0.125) 1.807 (1.633)
Ordinary Least Squares 0.142 (0.125) 1.799 (1.633)
SVR (rbf) 0.152 (0.099) 1.974 (1.639)
AdaBoost 0.156 (0.133) 2278 (1.980)
SVR (poly) 0.193 (0.121) 2.458 (1.971)

K-Neighbors Regressor 0.294 (0.237) 2.953 (2.392)

MAE for the d, predictions ranges from 0.119 A for the SEM
model to 0.294 A for the KNN model. The MAE for the E,
ranges from 1.39 to 2.953 meV/A2% For all metrics, refer to
Tables S8 and S9 for the dj and E, models, respectively. Figure
7c—h shows the DFT vs ML predictions with the
corresponding training and testing R* score for the Stacked
Ensemble Method, Random Forest, and Linear SVR models
for predictions on the unlabeled bilayers. We observe that the
residuals are greater in the d, and E, models, compared to the
electronic property models (E, EA, and IE). The machine
learning models can predict the interlayer distance within a few
tenths of A. The E, is predicted to be within a few meV/A? of
the DFT-calculated energy, especially at larger E,. It is
important to note that the models for the d, and E, are
more sensitive to the class imbalance of the vdW
heterostructure classes. Figure S14 shows that much of the
prediction variance is from those bilayers coming from the
smaller bilayer classes. We also see that the machine learning
models tend to slightly underfit the E, compared with the
DFT-calculated energies. Like the electronic predictions, the
RF and GBT ensemble methods display a lower testing MAE
but greater variance when compared to the linear models (i.e.,
bias-variance trade-off). The SEM model displays the lowest
testing MAE when predicting both dj and E,.

We deploy the models on the unlabeled bilayers and
obtained the predictions of the d, and Ey,. Figure 7i displays the
binding energy vs the interlayer distance. There is a clear
separation between the AA (blue) and AB (orange) interlayer
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distances near 3.40 A. We attempt to construct a crude
mathematical relationship between d, and E, by fitting a 2nd-
order polynomial using the DFT-calculated results and the
machine learning predictions. The fitting yields Ep*'(d,) =
1.12d3— 16.35d, + 58.73 and EM(d,) = 1.65d>— 19.86d, +
64.51, for the DFT and machine learning-predicted data,
respectively. The similarity between the DFT and ML fits
suggests that the machine learning approach is sufficient to
make confident predictions on the unlabeled vdW hetero-
structure design space. Conventionally, the equilibrium
interlayer distance is found by a multistep calculation where
the interlayer distance is manually altered, obtaining the
corresponding system energy at each step until a local
minimum is found. These machine learning models offer the
opportunity to reduce the number of calculations required to
determine an equilibrium interlayer distance by knowing
beforehand the equilibrium interlayer distance. The clear
separation of the AA and AB stacking configurations in the
equilibrium interlayer distance by the machine learning model
predictions supports the earlier observation in the high-
throughput DFT calculations. That is, the majority of moiré
superlattices made of twisted vdW heterostructures are
expected to undergo atomic reconstruction, which will further
impact the underlying electronic structure.

B CONCLUSIONS

In summary, we presented a computational framework to
establish the relationship between 2D monolayers and their
vdW heterostructures by combining first-principles DFT
calculations, machine learning approach, and existing 2D
material database. We constructed a large material library of
vdW bilayer heterostructures, which were encoded into a series
of descriptors from their constituent monolayers. To predict
the atomic and electronic structure of vdW heterostructures,
our models were built on top of our large and diverse dataset
of nearly 4,000 unique bilayer structures from seven different
hexagonal monolayer prototypes. The developed machine
learning models were found to predict the bilayer E, IE, EA,
dy and E, with low error, providing a valuable tool for
screening the vast vdW heterostructure material space with a
significantly reduced computational cost for a wide range of
optoelectronic applications. Our results also suggest that the
majority of the vdW heterostructures have a large difference in
the equilibrium interlayer distance for AA and AB stacking
configurations. Consequently, their corresponding twisted
moiré heterostructures are expected to undergo atomic
reconstruction with spatially varying out-of-plane bending
and in-plane tension and compression, which will ultimately
impact the interactions between the quasiparticles in the moiré
superlattice.
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