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We combined descriptor-based analytical models for stiffness-matrix and elastic-moduli with mean-
field methods to accelerate assessment of technologically useful properties of high-entropy alloys, such
as strength and ductility. Model training for elastic properties uses Sure-Independence Screening (SIS)
and Sparsifying Operator (SO) method yielding an optimal analytical model, constructed with meaning-
ful atomic features to predict target properties. Computationally inexpensive analytical descriptors were
trained using a database of elastic properties determined from density functional theory for binary and
ternary subsets of Nb-Mo-Ta-W-V refractory alloys. The optimal Elastic-SISSO models, extracted from an
exponentially large feature space, give an extremely accurate prediction of target properties, similar to or
better than other models, with some verified from existing experiments. We also show that electronega-
tivity variance and elastic-moduli can directly predict trends in ductility and yield strength of refractory
HEAs, and reveals promising alloy concentration regions.
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1. Introduction

High Entropy Alloys (HEAs) are a novel class of materials with
intriguing electronic properties [1,2] and often superior mechani-
cal behavior [3,4] attributed to near-equiatomic (5-35 at.%) mix-
ing of multi-principle elements [5-7]. The unique characteristic
of single-phase solid-solution HEAs reveals a new and larger de-
sign space for complex solid-solution alloys [1,8-10]. Refractory-
based HEAs (RHEAs), a special class of HEAs, show immense po-
tential [11] that brings these alloys under increased focus for their
superior electronic [12,13] and mechanical properties (like high-
strength [14,15]), as well as very high melting temperature [11,16-
18], fracture resistance [19], lower kinetic rates and increased long-
term high-temperature stability [20]. RHEAs has expanded the
search space needed for the discovery of viable candidates for a
variety of current and anticipated applications requiring high duc-
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tility and fracture toughness, specific strength, and better mechan-
ical performance at elevated temperatures.

Computational approaches (e.g., density-functional theory (DFT),
molecular dynamics (MD) and/or CALPHAD [Calculation of Phase
Diagrams]) or even empirical rules are used in combination
to establish relationships between atomic (e.g.,, electronegativity,
atomic mass, atomic radii, etc.) and alloy features (e.g., configu-
rational entropy and mixing enthalpy) to design or tune the ap-
plication relevant properties of RHEAs [21-24|. However, exces-
sive computational cost and uncertainty of first-principle meth-
ods limit the use of conventional approaches to explore ex-
ponentially large combinatorial design spaces (5x108 composi-
tions considering 25 different elements) [25,26]. More recently,
data-driven mehtods interfaced with machine-learning (ML) al-
gorithms have enabled rapid filtering to reduce the vast al-
loying (Gibbs’ compositional) space through fast-acting predic-
tive models [26-28]. While successful, ML models oftentimes
tend to be limited by the sparcity of the datasets available to
train them [29,30]. On other occasions, ML-based approaches
have resulted in models that are difficult to interpret and are
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thus mostly ’black boxes’ establishing connections between in-
puts and outputs through highly non-linear and convoluted
mappings.

Here, we construct predictive models of the intrinsic mechani-
cal behavior of RHEAs to determine critical trends that are key ML
training information. Notably, if we consider the space of atomic
features and an arbitrary set of operators used to integrate them,
the dimensionality of such a problem can easily run into 108 — 10°
range. The discovery of the most informative feature subspace thus
becomes an intractable problem using conventional dimensional-
reduction approaches. Based on notions of Compressed Sensing
(CS) [31], which solves for the sparse solution to an undeter-
mined systems of equations, SISSO [32-34] uses Sure-Independent
Screening [35] (SIS), which selects at each iteration a new sub-
set of features. Further reduction in the feature space and the de-
velopment of a predictive model is carried out through Sparsify-
ing Operators (SO), such as Least Absolute Shrinkage and Selec-
tion Operator (LASSO) [36] or lp-norm regularized minimization in
order to find the most sparse solution to a linear problem. The
SISSO-based modeling is a form of symbolic regression, which uses
trained analytical descriptors for property prediction. SISSO has al-
ready been shown to be a powerful automated-feature engineering
(AFE) framework that enables the construction of accurate, inter-
pretable predictive models for materials behavior, such as energy
stability of inorganic solids [37,38] as well as oxidation behavior in
ceramics [39], among others.

Knowledge of mechanical behavior is critical for the design of
technologically useful alloys, however, the main focus of ML mod-
els has been on thermodynamic stability with scant attention on
developing fast and inexpensive models for mechanical proper-
ties [40] due to unavailability of reliable databases. Elastic con-
stants (e.g., stiffness matrix (C;;)) and other engineering quantities
(such as yield-strength (ogy)) are extremely useful for materials
design, yet, RHEA optimization has taken other design paths in-
volving the use of simple (empirical) relations of atomic and ther-
modynamic properties [29,41-44]. Mechanical properties derived
from elastic parameters can provide valuable insight into a RHEA'’s
brittleness, stiffness, anisotropy, ductility, bonding character, and
strength. However, our knowledge about features affecting impor-
tant engineering quantities, such as strength, is very limited due
to lack of efficient computational techniques. Therefore, methods
or models capable of accurately predicting fundamental engineer-
ing quantities would greatly benefit the alloy design.

Here, we present descriptor-based analytical models, i.e., “Elas-
tic SISSO”, for the fast exploration of mechanical properties over
the vast HEA space, which will also be useful as didactic tool for
showcasing simple correlations between target properties—features
identified from this method can in turn be used to train more com-
plex ‘black box’ models, if so desired. We establish that dominant
factors, such as high yield strength, derived from ML-predicted
elastic parameters of body-centered cubic (bcc) RHEAs, consisting
of 3d (V), 4d (Nb, Mo), and 5d (Ta,W) transition-metal elements,
can be directly related to fundamental elemental quantities, e.g.,
electronegativity variance (xyqr), atomic-size differences (§), and
formation enthalpy (Ef,,,). Specifically, for Ta-W-Nb-Mo-V RHEA
systems, we also discuss the relationship between phase stability,
local environment correlation, and mechanical properties of alloy-
ing components. While there is no consensus on a threshold that
describes the ductility in HEAs using Pugh’s ratio [45], Poisson’s
ratio, or Cauchy parameter [46], to some extent all of these quan-
tities relate to the ductility of the alloy and, with a clear trend
established (and experimentally validated in subset of systems),
they can be employed for design. We trained, tested, and de-
veloped descriptor-based analytical models using SISSO-based ML
to predict mechanical properties of solid-solutions. This system-
atic study for various mechanical properties will benefit material
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science community in accelerating search for technological useful
HEAs.

Different models and designs had been proposed to predict or
induce ductility in RHEAs, for example, whether intrinsic or ex-
trinsic, design approaches have been taken to overcome brittle-
ness [47]. Notably, the Valence Electron Concentration (VEC) has
also been linked to ductility, for example, Qi et al. studied intrinsic
ductility in BCC alloys by comparing shear instability and crack ini-
tiation using DFT [48] by optimizing average VEC [49]. Chen et al.
also provided distinctions between different ranges of VECs [50].

2. Methods
2.1. DFT elastic database

The stiffness matrix of binary and ternary Nb-Mo-Ta-W-V based
alloys were calculated using DFT-based stress-strain approach
[51,52], as implemented in the plane-wave pseudo-potential Vi-
enna Ab-initio Simulation Package (VASP) [53,54]. Both special
quasirandom structure (SQS) [55] and supercell random approxi-
mates (SCRAPs) [56] methods were used to mimic homogeneously
random disordered alloys. The Perdew, Burke, and Ernzerhof (PBE)
generalized gradient approximation [57] to DFT was used with a
energy cut-off of 520 eV. Full (volume and ionic) optimization and
charge self-consistency were done on (2 x 2 x 2) and (4 x 4 x
4) Monkhorst-Pack [58] k—mesh for Brillouin zone integration, re-
spectively. A high level of convergence criteria was set for elastic
property calculation in both energy and forces, i.e., 106 eV and
10-6 eV/A.

As supercells used have differing structure along x, y, and z
axes, when elastic distortions are applied in DFT calculations the
elastic constants Cy;, Cyy, and Cs3, for example, will be slightly
different, rather than exactly equal due to average cubic symme-
try for a homogeneous solid solution. Hence, we average appro-
priately (see below). Here, we applied 12 independent deforma-
tions to each investigated structure, one each for the normal and
shear strains and two strains with opposing directions. Combina-
tion of binary and a ternary sets were chosen to map the stiff-
ness data on the 5-dimensional HEA space. For binaries, ten sub-
systems were sampled using a 60-atom supercell in steps of 10%
(with a single sub-step of 5% at composition (0.25,0.75)), while
ternaries were sampled using a 64-atom supercell with base com-
position of (0.125,0.125,0.75) and (0.25,0.375,0.375). The equiva-
lent compositions were generated by shuffling the atom posi-
tions for both binary and ternaries making it 10 different cases
per binary and ternary, which makes up to a total of 170 com-
binations (110 binary and 60 ternary). The macroscopic value of
the elastic stiffness coefficients was then approximated by aver-
aging the three independent elastic constants C; and C;; (with
i#j) in a cubic crystalline system [59,60], i.e., CJ;¥=(Cy;+Cy2+C33)/3,
CZZgZ(C44+C55+C66)/3, and C?gg:(C12+C]3+C23)/3. The bulk (K)-,
shear (G)-, and Young’s (E)-moduli, Poisson’s ratio (v) were ap-
proximated using the Voight-Reuss-Hill approximation[61] as de-
tailed by Wu et al. for the cubic system [62].

2.2. Phase stability analysis

High-throughput formation enthalpy calculation for Nb-Ta-Mo-
W-V HEAs were performed using DFT-based Green’s function
Korringa-Kohn-Rostoker electronic-structure methods [63,64], in
which the coherent-potential approximation accounts properly for
averaging over all chemically disorder configurations in structures
[65]. The gradient-corrected Perdew, Burke, and Ernzerhof (PBE)
exchange-correlation functional [57] was used within each atomic
site for charge distributions and the total energy. A semi-circular
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ML-predicted RHEAs with higher strength (oqy; GPa) compared to equiatomic MoNbTaW and MoNbTaVW. Results are arranged in

increasing density.

MPEAs Mo Nb Ta \'% W P Cn E K ooy 01300 G/K
[at.%] [g/cc] [GPa] [GPa] [GPa]  [GPa] [GPa]

MoNbTaW 25 25 25 - 25 13.68 344 224 235 1.23 0.22 0.33

MoNbTaVW 20 20 20 20 20 12.17 320 197 223 1.76 0.35 0.31

RHEAO 19.99 0.70 30.02 4491 438 10.69 285 160 205 1.842 0.29 0.268
RHEA1 19.57 8.83 13.76 40.82 17.02 10.83 311 182 218 1.807 0.32 0.295
RHEA2 17.68 9.08 10.84 41.31 21.09 10.99 317 187 220 1.781 0.32 0.302
RHEA3 4.67 15.32 6.17 42.79 31.05 1143 312 182 220 1.811 0.32 0.293
RHEA4 8.64 1.94 14.54 46.28 28.60 11.82 318 192 223 1.767 0.31 0.302
RHEA5 16.84 2.09 34.60 34.75 11.72 12.05 298 178 213 1913 0.35 0.285
RHEA6 3.17 23.98 5.89 28.22 38.74 12.56 328 200 229 1.864 0.38 0.317
RHEA7 10.31 8.63 12.87 31.20 36.99 12.98 343 219 235 1.870 0.40 0.334
RHEAS8 23.31 1.31 32.20 22.91 20.27 13.17 335 218 230 1.897 0.41 0.324
RHEA9 1.07 0.78 40.59 26.80 30.76 14.51 313 202 226 1.942 0.41 0.300

Mo-Nb-Ta-V-W Z,r Nattens - Eoaca, AHy. T, P.VEC)
5C2=10 binaries Composition-specific
5C3=10 ternaries transformation afof? + ayflog(fy)
Zveds Zaiffs++ sV ECrea, VECaifg) i xzn
[+ e 1235/ log 1 Feature
O " Construction
[z‘, o (VEC,e)*  AHy, (Zuug + Zoea)* ¥ VECrea, -+ I I
495,023 tou featares L,

fof3fafeh

Fig. 1. Schematic diagram for sampling, feature construction, and feature analysis
processes.

contour and Gauss-Laguerre quadratures using 24 complex ener-
gies was used for integration. A 24x 24 x 24 Monkhort-Pack
[58] k-mesh was used for Brillouin-zone integration of bcc Nb-Ta-
Mo-W-V HEAs.

2.3. Misfit volume calculation for strength prediction

The misfit volume of the alloys can be calculated as the deriva-
tives of atomic volume of elements in HEAs with respect to com-
position as AV, = aV“EA Zm 1Cm— BV“EA The expression can be
derived from the expressmn > ncn _1 using conditions Viyga =
VHEA(C] ,Cy iy CN—]) and BVHEA/BCN =0 [66]

3. Results
3.1. Elastic SISSO - featurization

Featurization of the alloy sampling is carried out via a stoichio-
metric approach, extrapolating elemental properties. Bartel et al.
proposed these alloy-specific transformations in their Gibb’s en-
ergy model whereby three different features are retrieved for each
elemental property, using the stoichiometrically-weighted average
(avg), the stoichiometrically-weighted harmonic mean (red), and
the stoichiometrically mean difference (diff) of the atomic feature
in question [37], which are showcased in supplemental Table S3.

We use atomic properties: atomic number, period, atomic
radius, Pauling (molecular) and Allen (solid-state) electroneg-
ativity, density, heat of formation, BCC lattice constant,
melting point, electron affinity and valence electron count
(i.e.,Z P, 1a, Xpauling: Xallen- 0 AH, @, T, Eea, and VEC). These 11 el-
emental features — once transformed - make up a 33-dimensional
primary alloy feature space are fed into the SISSO based AFE
framework. The feature construction was carried out by applying
the operator set [+, —, x,e¥,e™,~1.2.36  og] to the 33 alloy-
specific features. As shown in schematlc Fig. 1, all features were

created by combination of the primary features and operators,
which were recursively added to the feature set two times.

3.2. Training, model-generation, and cross-validation

During each SISSO iteration, the SIS method selects 1000 fea-
tures, which are added to a subset to which the Iy norm regu-
larized minimization Sparsifying Operator is applied so as to ob-
tain the best linear regressor with a number of terms equal to the
current iteration out of this subset by doing this every iteration
(1D, 2D, and 3D descriptors). Consequently, for the last descriptors

3090) ~ 4.5 x 10° combinations were tested. Out of the 3 descrip-
tors (1D, 2D, and 3D), the 3D descriptor shows the best accuracy,
both in training and cross-validation (CV) estimation, which indi-
cates that over-fitting, a recurring caveat in sparse regressor, may
start occurring at dimensions higher than 3.

The SISSO models used in this work were put to test in a couple
of different ways: (i) a 5-fold/10-fold CV to understand the over-
fitting and frequency analysis of features found in CV, and (ii) the
descriptors trained on full data. Thus, we only discuss the most
complete descriptors and apply them here for further sampling of
mechanical properties over complex composition space. As the sys-
tems have cubic symmetry, the SISSO model were retrained for
two independent elastic constants [Cyq; Cq2] along with (K; G; E;
v; (inverse) Pugh'’s ratio, G/K; C44) that can be derived from Voigt-
Reuss-Hill approximations in terms of Cy; and Cqy [61].

3.3. Elastic parameter Cy; descriptor - cross validation and error
analysis

Cir = 1.6+ 1.14[ VEGy/In(Pusg) | + 47.7[VECH, ]

—0.029a8,5[VECrea + VECyigy

The parity plot in Fig. 2a shows a good predictability even for a
small number of folds. The 5-fold CV results for the stiffness ma-
trix parameter Cq;, for which the coefficient of determination in-
dicates that an independent SISSO descriptor trained in 80% of the
data is able to determine the rest 20% consistently. The inset graph
shows the error distribution for the model and an approximation
for the probability density, which follows a normal distribution.
While for the evaluation of these results five different analytical
models were used, Eq. (1) shows a final model using all data avail-
able for the extrapolation to a higher dimension space in the next
section.
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Fig. 2. Actual (DFT) vs predicted (ML) (a) stiffness parameter (Cy;; GPa), (b) Young’s moduli (E; GPa), and (c) (inverse) Pugh’s ratio (PR=G/K) from five-fold cross-validation
test. Inset in a-c shows the error distribution around the mean, which is virtually zero for all the three cases.

3.4. Young’s moduli (E) descriptor - cross validation and error
analysis

E— 469 + 1.31VECulnas _ 335 VEGuAHra VECuy;
= Sl : VECag—VECy; P Edir X2
f.avg g rf ea.dif f Xpauling.dif f

(2)

Fig. 2 b corresponds to the results for the Young's moduli (E),
the coefficients of determination for E is overall lower than for Cy;.
In the case shown here, the error distribution for the 5-fold CV
once again has nearly a zero mean error. The final model is shown
in Eq. (4), which in comparison appears to be more connected to
the composition-specific features of the electronegativities.

3.5. Pugh’s ratio (PR) descriptor - cross validation and error analysis

Lastly, the inverse Pugh’s ratio model in Fig. 2¢ is performing
with less accuracy than the Cq; and E. Evaluating a single model,
rather than two, adds uncertainty instead of performing at the
lowest accuracy of the two models G and K (see Table. S1). The
final analytical equation for Pugh’s ratio is shown in Eq. (3).

PR = 3.82 — 0,293 | XAllen.avefovg

avg
exp(VECy
—0.0191 M
XPauling,augEea,red
Pred
—0.105
|:Eea,diffXPauling,diffAHf,avgi|

While Bartel et al. trained a SISSO descriptor for the ther-
modynamic properties of crystalline compounds by supplying
compound-specific properties, the final descriptor for Gibbs' en-
ergy only chose the reduced mass from these transformed features,
besides calculated atomic volume and temperature [37]. Descrip-
tors shown here are dependent solely on compound-specific fea-
tures, we hypothesize the complexity in elastic properties of binary
and ternary compounds can be captured by non-linear features ar-
ranged in a linear combination. The complexity of the models is
then assumed to translate to higher dimensions. Elastic stiffness
constants naturally arise from tensor analysis of the strain-stress
response of materials and the factors governing this response get
as complex as the number of constituents grows. The SISSO-chosen
descriptors shown here deviate enough from the linearity of the
common rule-of-mixtures estimation to deliver a better approxi-
mation as the complexity of the alloy grows. The compromise for
accuracy when using this descriptor is then compared to results of
DFT.

3.6. Target property descriptor analysis

If a feature is selected in each term of five three-dimensional
(3D) SISSO equations in 5-fold cross-validation test, then the high-
est frequency a feature can get is 15. To better understand these
results, we present a descriptor analysis in Fig. 3, which consists
of counting features by appearance inside a term for every equa-
tion and displaying 10 features with highest frequency. The most
frequent features are the one those consistently appear in the an-
alytical 3D models. The final equations may resemble the alloy-
specific features chosen by the CV method, however, this selection
of features is not guaranteed in other cases.

Final models (Eqs. (1)-(3)) and CV analysis within SISSO frame-
work show some common alloy-specific features. For example, ma-
jority of descriptors include the VEC and Pauling electronegativity
as a shared feature. The feature analysis in Fig. 3 is provided to un-
derstand feature presence and different mathematical operations
in SISSO models. Moreover, the ranking of the atomic properties
by appearance in the cross-validation method is not analogous to
feature importance since they are not the operator coupled fea-
tures used in SISSO, but it gives a qualitative idea about the basic
building blocks of the descriptors, i.e., the composition-weighted
features.

While it appears that the accuracy is correlated to the confi-
dence of the CV in selecting the same alloy-specific features as in
analytical SISSO models, this is not necessarily true for each case.
For example, C;; and E have higher confidence in their top fea-
tures in contrast to the Pugh’s ratio model. Yet, the diverse fea-
tures selected in each run are inherently correlated in that they
create multiple top performing descriptors once coupled with the
sparsyfying operators in SISSO method. Fig. 3 reveals the elemen-
tal features such as VEC selected in each model, which was found
most significant for predicting elastic properties and consistently
appears in the cross-validation.

Analytical models such as those available in Eq. (1)-(3) and Ta-
ble S1 are easy to use, which will expand new non-data-intensive
approaches for rapid space exploration of complex materials in-
cluding high-entropy alloys. For engineering purposes where the
ductility is an important performance factor, an inexpensive an-
alytical model can be useful for composition optimization from
large alloy design space.

4. Application to the quinary alloy

4.1. Interpretation of target properties and its interdependence on
physical features

Unlike other ‘black-box’ ML methods, it is possible to create a
direct relation with a specific feature from the get-go by analyzing
the analytical function. We can go one step forward and evaluate a
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Fig. 4. Chosen features (top-panel) stiffness matrix element (Cy;), and (bottom-panel) Young’s moduli (E) descriptor.

quinary random sampling and reveal how a subset of features (for
each model, e.g., Cy1, and E) contributes to the ML models given in
Fig. 4. These analytical models for elastic parameters were evalu-
ated over 100,000 points in the Mo-Nb-Ta-V-W RHEA space.
Stiffness constant Cy;: Analytical model for the C;; in
Eq. (1) strongly depends on the VEC, as obvious from Fig. 4 (top-
panel). The symmetry of the system constrains the values of all
the weighted transformations for VEC to be completely correlated,
i.e,, the relation of Cy; with the average, harmonic average and
difference-average is always the same. Therefore, the average of
the periods (in periodic table) are correlated to some extent with
the number of electrons, especially, when only looking at five dif-
ferent elements distributed over 3 different periods. This feature is
present in the final descriptor, but only harmonic average of pe-
riods appeared during cross-validation. The period in this system
is constrained to integer values, which indicates an even stronger
correlation between different averaging methods. Here, the aver-
age melting point difference between lowest and highest points
indicate a higher Cq;, so not only high differences between con-
stituents yields a high Cqy, but also small difference stabilizes the
high stiffness. For example, a maximum in C;; was obtained for the
optimal range of average lattice parameter (via Vegard’s rule), i.e.,
3.15A and 3.20A . In supplemental Fig. S3, we provide a short dis-
cussion on the usefulness of descriptor-based analytical approaches
for property prediction in complex alloys over that of simple rules.
The observations that the difference on electronegativity correlates

well to mechanical properties of HEAs in this work agrees well
with existing literature [67].

Young’s modulus E: Descriptor for E in Eq. (2) strongly depends
on VEC and y, as shown in Fig. 4 (bottom-panel). As expected, av-
erage electronegativities have different correlation to E due to the
difference in their physical origin. Allen average electronegativity
has an optimum value for E, while Pauling has an overall positive

correlation. The Xg;ﬁﬁng shows good correlation with Xﬁ;’flmg [see
Fig. 4 (top-panel)] except for the onset where Xdiff converges

Pauling
at single point while Xl‘};’f”ng shows wide distribution. Moreover,
we need to be cautious here because former represents the aver-
ages of absolute x and later is average of difference in x. On the
other hand, the electron affinity shows a higher range of stiffness
at elevated values, and VEC shows a similar correlation with Cy;.
This last statement is true for all features, and E and C;; are so
closely correlated that the shape of feature-target correlations are
similar.

The average of lattice constant has proven to deviate by a small
margin from the experimental lattice parameter, which follows a
negative slope after a maximum value of 3.17A for both C;; and
E. Gorban et al. [68] also observed the same trend, which was at-
tributed to size mismatch and weakening atomic interactions at a
larger lattice parameter. A positive trend in modulus of elasticity at
a higher electron count has been observed, i.e., 6e~ [68,69], SISSO
models presented in this work show similar behavior.



G. Vazquez, P. Singh, D. Sauceda et al.

Acta Materialia 232 (2022) 117924

130
045

120
040

035

E5Y

$ 0.30

DRIES)

025

0.20

0.15

Fig. 5. (a) t-SNE dimensional reduction of the quinary space with highlighted unary-enriched zones, the color scheme indicates that this point contains more than 50%
molar of this respective element, (b) Pugh’s ratio, and (c) Cauchy pressure C;,—C44 mapped in top of t-SNE, as predicted by the SISSO models.

4.2. Pugh’s ratio - evaluating derived parameters from stiffness
matrix

The inverse Pugh’s ratio (G/K) and Cauchy pressure (Ci3— Cg4)
are empirically defined quantities, which are commonly used to
predict the ductility of complex alloys. Originally, Pugh [45] dis-
cussed the ratio of (G/K < 0.57 or K/G >1.75) and found it
correlated with the ductility of elemental metals (fcc, bcc, and
hcp), where bulk moduli (K) assesses the resistance to fracture
while shear modulus (G) the tendency for increased fracture re-
sistance after the onset of plastic deformation. Indeed, Gschnei-
dner Jr. et al. used existing experimental data from large num-
ber of materials to categorize brittle-to-ductile transition at G/K <
0.57, [70] where the lower (higher) ratio indicates ductility (brit-
tleness). Here, we use the inverse Pugh’s ratio (PR=G/K) simply
to span a 0 <PR <1 range, and ductility is indicated by G/K <
0.57. For HEAs, the randomly sampled 100,000 compositions in
the quinary alloy space (composition vector) were mapped on a
two-dimensional space using a t-distributed Stochastic Neighbor
Embedding (t-SNE) scheme in Fig. 5a, where the clustering al-
gorithm separates the unary-rich composition. The percentage of
composition is more evenly distributed away from t-SNE corners
in Fig. 5a. The (inverse) Pugh’s ratio (G/K) in Fig. 5b is below the
anisotropy-specific ductile-to-brittle critical point, as evaluated us-
ing the descriptor in Eq. (3). The HEAs have a positive Cauchy pres-
sure (Cqp — C44 < 0), as shown in Fig. 5c.

Recently, Senkov et al. [71] expanded the correlation between
these two quantities by taking the ratio of Cauchy pressure and
bulk moduli. The anisotropy-specific critical value for the Pugh’s
ratio in Fig. 5b was found in good agreement with Pettifor’s con-
dition for incipient brittleness, i.e., Ci;; — C44 < 0. Although this
would be considered ductile for elements and simple compounds,
the ductility of HEAs is more complex, and such predictions must
be seen as qualitative. Physically, the Pugh’s ratio predicted for
RHEAs in Fig. 5b shows the ability of an alloy to deform, where
smaller value (G/K < 0.57) shows higher deformability (ductile)
while higher value (G/K > 0.57) signifies lower deformability (brit-
tle). Models for Pugh’s ratio and Cauchy pressure show similar
trends, i.e., the minimum for one in the quinary space is the max-
imum for the other. Notably, both models predict high ductility for
HEAs in the same composition region. The model also shows a soft
gradient between consecutive alloys in the t-SNE. Similarly, Pugh’s
ratio follows expected positive correlation with VEC, meaning that
the alloy system is expected to show higher ductility as the VEC;yg
decreases. Both the bulk moduli (K) and shear moduli (G) have
a positive slope with VECq,, whereas G has a steeper increment.
This suggests that the alloy tends to get harder for compression or
shear. Yet, the shear mechanism will be more affected as the bond
energy of the crystal becomes stronger. The average and the dif-
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Fig. 6. The descriptor predicted C44 was compared with C44 estimated using in-

dependent elastic parameters, i.e., C44 ~ (C;; — Cy2)/2, assuming zero anisotropy of
disorder bcc Bravais lattice.
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ference of the lattice parameter show different correlations to the
Pugh'’s ratio.

4.3. SISSO prediction of C44 and isotropy dilemma

DFT methods often do not provide accurate estimate of shear
constant (Cy4) in isotropic disordered solids such bcc and fcc alloys.
However, the C44 can be directly estimated using the independent
stiffness constants (Cy; and Cy3) in a system with cubic symmetry,
assuming isotropic behavior. To exemplify this, we show in Fig. 6 a
comparison between the ML predicted C44 and others derived from
relation [Cy; — Cq2]/2. Notably, the C44 derived from the isotropic
assumption correlates well to ML predictions. The small prediction
error of 7.34 GPa (RMSE) in C44 corresponds to an average devia-
tion of 8.6% from the model.

4.4. High-throughput prediction of high strength HEAs and its origin

HEAs are expected to not only match the current state-of-the-
art structural materials properties of conventional as well com-
plex alloys, but they are expected to have lower density, opti-
mal stiffness, i.e., low brittleness or higher ductility. However, the
large composition space of HEAs restricts the exploration of phys-
ical space beyond equiatomic compositions. We show in Fig. 7
that our computationally inexpensive analytical ML models fa-
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Fig. 7. (a) Yield-strength (ogy) and (b) formation enthalpy (AHy,m, at 0 K) vs composition (c;, i=Nb/Ta, Mo/W, V). The parabolic-dashed line shows the high electronegativity
variance (A xyar), while arrow-head from NbTaMoW to NbTaMoWV RHEA (solid-white circle) shows experimentally observed increasing trend. Our observation suggests that
its not the single parameter but the interplay of different quantities, such as chemical entropy, A xvar, and AHyq, that are responsible for higher strength.

cilitates quick search of technologically useful alloys over multi-
dimensional spaces.

The SISSO predicted analytical model of stiffness matrix (C;;)
(Eq. (1) and see supplemental Table S1) were used to estimate
the zero-temperature flow stress (y), or critically resolved shear
stress for edge dislocations in a BCC matrix, using the reduced-
order model developed by Maresca and Curtin [66]. The main pa-
rameters ruling the strength model are the elastic constants and
the misfit volume, the latter is calculated through Vegard’s ‘law’
using experimental values of atomic volumes. Our DFT results for
solid-solution and associated elemental volumes could be used but
the critically resolved shear stress is related more to the yield-
strength of the material through the Taylor factor. Therefore, for
the current work, we used calculated oy, for the yield-strength at
0 Kas well as the approximation for finite-temperature (1300°C)
and finite strain-rate (0.001), which builds up on the OK approx-
imation. Our estimates of og, in Fig. 7a suggests towards a re-
gion in (Nb-Ta)-(Mo-W)-V compositions space that shows higher
strength, which is different from high mixing entropy (AS,,;) re-
gion (marked by solid white dot) doesn’t necessarily correlate with
mechanical or electronic behavior. In contrast to the usual expec-
tations, however, we found that the region of high yield-strength
in Fig. 7a directly correlates with higher thermodynamic stability
(AH,,;,) as shown in Fig. 7b. The increasing trends (ML predicted)
in yield-strength from quaternary NbTaMoW (1.12 GPa) to quinary
NbTaMoWV (2.00 GPa) matches with experiments [72,73], where
adding V was found to increase the strength of the alloy.

The dashed parabolic region marked in Fig. 7a,b shows the re-
gion of high electronegativity variance (A xyqr) (also see supple-
mental Fig. S1a). The A yyqr increases with increase in V and Nb/Ta
more compared to Mo/W because of higher V electronegativity
compared to others. We hypothesize that the large A xyq may lead
to strong charge imbalance in the neighboring environment of V as
large x pulls more charge, which adds local lattice distortion and
hence provide local solid-solution strengthening. The strong corre-
lation between oy, in Fig. 7a and AHp;, in Fig. 7b possibly arises
from V addition that enhances the local-lattice distortion and the
alloy stability, as discussed by Song et al. [12] and Singh et al.
[56] Our assessment suggests that optimal combination of entropy
(as a proxy for alloy complexity), phase stability, and A - results
into higher yield-strength.

The Young’s moduli (E) is another important design character-
istics that shows the tensile stiffness of materials such as HEAs.
General convention suggests that maximizing E should also maxi-

mize the strength, e.g., high ogy. To understand this, we plot E vs
ogy [in GPa] in Fig. 8a that shows a optimal E-region (150<E<250)
in which oy, is higher (marked by dashed lines), however, beyond
the marked region, ogy falls off quickly. We found an inverse rela-
tion between E in Fig. 8b and oy, in Fig. 8c with A xyqr, i.e., E (0qy)
decreases (increases) with increasing (decreasing) A xyqr. This con-
firms our idea of finding optimal tensile stiffness range rather than
maximizing it while designing new RHEAs.

From our analysis, we predict new RHEA compositions as
shown in Table 1, where Cy;, E, K, 7p,, and oys are tabu-
lated along with chemical composition of each alloying ele-
ment. The RHEAs are arranged in order of increasing density (p
in g/cc), which becomes critical depending on area of applica-
tion. Notably, predicted RHEAs with higher oys directly corre-
lates with higher V (20+ at.%) concentration, this further em-
phasizes our hypothesis of optimal concentration of V in RHEAs
improves both phase stability and mechanical behavior. This can
be attributed to the fact that higher Allen-scale electronegativ-
ity of V pulls charges from neighboring sites and creates strong
solid-solution strengthening through local lattice distortions. The
size effect (§) plot in supplemental Fig. S2b also shows the
higher effect in the optimal region with higher oys marked in
Fig. 7d. Moreover, alloys with higher V concentration in predicted
RHEAs show increase in energy stability, see supplemental Table
S2.

Discussion on ductility: The criteria to evaluate the ductile be-
havior based on elastic constants in BCC HEA has been reported at
several instances [45,74,75]. However, it is impossible that all ma-
terial properties or all type of alloys can be fit using same kind of
model or approach. Nonetheless, the Pugh ratio offers good corre-
lation with ductility of materials [45], and, as noted above, sup-
ported by existing experimental data from large number of ma-
terials [70]. Indeed, this is reflected in our data, see Figs. 8a and
9a. Poisson’s ratio v, considering the relationship between v and
(G/K), has the potential to assess the ductile behavior of MPEAs
(Fig. 9b), where the brittle-to-ductile transition limit corresponds
to v > 0.26 [76]. Similarly, the large positive Cauchy pressure in
Fig. 9c represents an increased degree of the metallic bonding that
correlates with ductility [76], whereas the negative value is indica-
tive of brittleness (or more covalent bonding) [77]. Recently, Lee
et al. [76] have reported ductility in NbTaTiV RHEA, which fur-
ther supports our idea that state-of-the-art, ab-initio calculations
and machine-learning approaches may be helpful for refractory-
based alloys. This also establishes the quality of prediction of high-
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Table 2

The Cy1, Ci2, Cas, bulk-moduli, and elastic-moduli of diverse HEAs (some outside the training
chemistry) predicted from the SISSO model show good agreement with DFT.

System Cn Ci Caa K E
ML DFT ML DFT ML DFT ML DFT ML DFT
MoNbTaVW 321 328 172 169 74 79 223 222 197 213
CrMoNbTaV 315 330 160 159 77 85 213 216 206 226
CrMoNbTaW 370 378 172 168 99 105 241 238 244 275
CrMoNbVW 363 372 169 170 97 101 236 237 235 265
CrMoTaVW 372 393 171 170 100 111 242 244 248 290
CrNbTaVW 322 360 166 156 78 102 222 224 204 266
NbTaTiVZr 171 190 150 104 10 43 146 132 116 116
Table 3
The misfit-volume and strength calculation with different elemental misfits results into expected deviations.
AVo AVyp AVrq AWy AVy SacVZ 10 (GPa)  Cy Ciz Cag
Mo-Nb-Ta-V-W
Maresca and Curtin’s reduced model -0.628  1.713 1.877 -2.484 -0.478  2.650 0.610 346.8 157.7  90.5
Vegard’s law (misfit factor)/SISSO (elastic constants)  -0.681 1.760 1.810 -2.424 -0465 2.586 0.576 320.8 1720 73.0
Mo-Nb-Ta-W
Maresca and Curtin’s reduced model -1.293 1.135 1.168 - -1.010  1.336 0.450 375.5 167.3 101.6
Vegard’s law (misfit factor)/SISSO (elastic constants)  -1.287  1.154  1.204 - -1.071 1.396 0.402 3442 182.0 86.2

MoW

[al A
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Fig. 9. We plot the (a) Pugh’s ratio, (b) Poisson’s ratio, and (c) Cauchy pressure (Ci-C44 in GPa) that highlights the optimal region of strength lies slightly away from

high-entropy region.

strength regions in Fig. 7a.

4.5. Application of the proposed SISSO model to systems outside the
training chemistry

In Table 2, we demonstrate the application of the SISSO models
to several stoichiometric HEAs with chemistries outside the chem-
ical space used in the model training. As shown in Table 2, we

found good agreement between descriptor predicted elastic con-
stants and DFT. If we focus on ML vs DFT results in Table 2, er-
ror in prediction for most cases is within 1-5%. Notably, the C;;
for NbTaTiVZr is the only exception that shows large error, i.e., Cy
(171 vs 190 GPa, i.e.,, ~10% error), C;, (150 vs 104 GPa, i.e., ~44%
error), C44 (10 vs 43 GPa, i.e., ~77% error). In our limited under-
standing to this aspect, we believe the possible reason in under
predicting C;;’s can be two-fold - (i) Ti/Zr not included in the train-
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Fig. 10. Actual vs predicted (a) misfit volume, and (b) strength (o; GPa) from ten-fold cross-validation test. Inset in a,b shows the error distribution around the mean, which

is virtually zero for both the cases.

ing datasets, and (ii) crystal anisotropy of Ti/Zr (hexagonal parent
phase). Here, we mainly attribute this fact to crystal anisotropy
of Ti/Zr as C;; are strongly direction dependent, which is not in-
cluded in our training dataset. Despite minor disagreements, these
results are promising, as they tentatively suggest that the model is
capable of making safe extrapolations. We want to emphasize that
more insights are needed into the extrapolation of the SISSO based
descriptors and the chosen featurization for the complete general-
ization of the proposed descriptor. A more thorough investigation,
beyond the scope of this work, is necessary to ascertain the ability
of this model to extrapolate, with reasonable accuracy, beyond the
training chemistry.

4.6. Analytical model for misfit-volume and yield-strength

While Maresca and Curtin [66] estimated the misfit volume
using experimental values, all the numbers and details are not
clearly stated. We emphasize that the misfit volume calculated
with different atomic volumes are expected to show deviations
when used with the reduced strength model, as shown in Table 3.
Another source of uncertainty comes from elastic constants deter-
mined from the rule of mixing and the SISSO descriptors. However,
descriptors-based analytical models are more close to reality as all
possible alloying effects are included, while the rule of mixtures
do not.

We developed the analytical SISSO model to predict alloy mis-
fit volume factor (see method section) trained on same binary and
ternary, which is similar to analytical descriptors in Eqs. (1)-(3).
The misfit volume descriptor can directly be used with Maresca
and Curtin’s reduced strength model [66]. In Fig. 10a, the 10-fold
cross-validation test shows the accuracy of 0.89 (R?) with an RMSE
of 0.38. While this is a good value for predictions within the train-
ing data, the uncertainty transmitted to the strength model may
grow larger. The model presented in Eq. (4) shows that accurate
analytical models for misfit volumes can be developed, however,
we need more accurate high-fidelity data from experiments or ab-
initio methods.

— —0.0654 — 93800 S

XPaulingV Qavg
Adiff
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We further emphasize that the ML-trained strength models for
MPEAs are not so readily available in literature due to the lack of
the training dataset. However, we could develop a sparse strength
database for HEAs consisting of 114 experimental HEAs (fcc, bcc,
and fcc+bec). The featurization used was also alloy specific but
simpler, using only averages and thermodynamical parameters. A
10-fold cross-validation test was used to showcase the overall con-
fidence of the SISSO model in Fig. 10b. An error using the 3D de-
scriptor is prone to overfitting as cross-validation accuracy dropped
to 0.60 from 0.74 (trained on all whole dataset). We believe that
the possibility of large prediction error comes from limited ex-
perimental data with unknown experimental conditions, sample
type and quality, and other unknown critical quantities. This indi-
cates towards the need of more reliable dataset creation from well-
defined experimental sources and conditions for robust machine-
learning strength model. Our work also points out the fact that for
intelligent design in materials discovery, i.e., in absence of reliable
data, mean-filed approaches can be useful for accelerated filtering
of multi-dimensional hyperspace such as high-entropy alloys.

Caveats in DFT vs ML-predicted shear moduli: In refractory-based
alloys, the shear or trigonal elastic parameter (C44) of individ-
ual elements, especially, Nb is underestimated in most electronic-
structure methods (DFT: 17 GPa [78]; Expt: 31 GPa [79]), indepen-
dent of DFT methods or exchange-correlation functional [80]. This
issue has been discussed at length in literature, e.g., by Koci et al.
[78], who attribute it to transverse-phonon mode-driven anoma-
lous band dispersion; more recently, as DFT typically freezes core
states, it was associated with warping of the low-lying core levels
during shearing, which was not addressed previously. Nonetheless,
this issue limits the reliable data generation for RHEAs. And, inter-
estingly, our SISSO-trained analytical model shows better accuracy
for Nb, i.e., 24 GPa compared to experiments (31 GPa) [79].

5. Summary and discussion

In this work, descriptor-based machine-learning (ML) frame-
work models were developed to efficiently scan and predict HEA
elastic properties. The power of descriptor-based analytical models
for fast exploration of the alloy space was exemplified for refrac-
tory based Nb-Ta-Mo-W-V HEAs. The reliable, optimal, and inter-
pretable analytical descriptors were trained with SISSO based ML
method on an elastic property database obtained from density-
functional theory calculations. A detailed analysis of target prop-
erties was also carried out to correlate common elemental/alloy
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features for optimized descriptor to better interpret proposed ana-
lytical models, distinctly different from black-box ML models.

The descriptor-predicted stiffness matrix (C;;) of Nb-Ta-Mo-W-
V HEAs were used to assess technologically useful quantities, such
as yield-strength, that identify high-strength regions that correlate
more with optimal combination of entropy (not high-entropy re-
gion), regions with large size effect (§), large electronegativity vari-
ance (xyar), and regions of high phase stability (lower formation
energy). Our predicted trends match limited existing experiments,
further establishing inexpensive descriptor-based methods can ac-
celerate design of technologically useful alloys.

Elastic relations, like trends in Cauchy stability (Ci3-C44 < 0),
show similar behavior as yield-strength in the quinary space sug-
gesting a more direct approach to estimate ductility using analyt-
ical descriptors. To further emphasize this point, we note that the
alloy compositions with excellent mechanical properties is not nec-
essarily those with highest chemical entropy or valence-electron
count. For example, compositions with high-strength and high
phase-stability (lower formation enthalpy) were found in lower-
entropy regions, again questioning the focus on maximizing en-
tropy to achieve better mechanical behavior.

Our results emphasize that computationally inexpensive mod-
els are important for thorough and accurate search of the vast HEA
composition space to identify regions with desirable target proper-
ties. For that, an unconstrained search of the alloy space permits
a further possibility to optimize HEA compositions. The applica-
tion of the model to chemistries (beyond those used to train it)
are promising, although additional work is needed to ensure the
safety of such extrapolations. Regardless, the model is considered
to be useful for further design of the Nb-Ta-Mo-W-V based systems
with superior mechanical proeprties.
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