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a b s t r a c t 

We combined descriptor-based analytical models for stiffness-matrix and elastic-moduli with mean- 

field methods to accelerate assessment of technologically useful properties of high-entropy alloys, such 

as strength and ductility. Model training for elastic properties uses Sure-Independence Screening (SIS) 

and Sparsifying Operator (SO) method yielding an optimal analytical model, constructed with meaning- 

ful atomic features to predict target properties. Computationally inexpensive analytical descriptors were 

trained using a database of elastic properties determined from density functional theory for binary and 

ternary subsets of Nb-Mo-Ta-W-V refractory alloys. The optimal Elastic-SISSO models, extracted from an 

exponentially large feature space, give an extremely accurate prediction of target properties, similar to or 

better than other models, with some verified from existing experiments. We also show that electronega- 

tivity variance and elastic-moduli can directly predict trends in ductility and yield strength of refractory 

HEAs, and reveals promising alloy concentration regions. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

High Entropy Alloys (HEAs) are a novel class of materials with 

ntriguing electronic properties [1,2] and often superior mechani- 

al behavior [3,4] attributed to near-equiatomic (5–35 at.%) mix- 

ng of multi-principle elements [5–7] . The unique characteristic 

f single-phase solid-solution HEAs reveals a new and larger de- 

ign space for complex solid-solution alloys [1,8–10] . Refractory- 

ased HEAs (RHEAs), a special class of HEAs, show immense po- 

ential [11] that brings these alloys under increased focus for their 

uperior electronic [12,13] and mechanical properties (like high- 

trength [14,15] ), as well as very high melting temperature [11,16–

8] , fracture resistance [19] , lower kinetic rates and increased long- 

erm high-temperature stability [20] . RHEAs has expanded the 

earch space needed for the discovery of viable candidates for a 

ariety of current and anticipated applications requiring high duc- 
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ility and fracture toughness, specific strength, and better mechan- 

cal performance at elevated temperatures. 

Computational approaches ( e.g. , density-functional theory (DFT), 

olecular dynamics (MD) and/or CALPHAD [Calculation of Phase 

iagrams]) or even empirical rules are used in combination 

o establish relationships between atomic ( e.g. , electronegativity, 

tomic mass, atomic radii, etc.) and alloy features ( e.g. , configu- 

ational entropy and mixing enthalpy) to design or tune the ap- 

lication relevant properties of RHEAs [21–24] . However, exces- 

ive computational cost and uncertainty of first-principle meth- 

ds limit the use of conventional approaches to explore ex- 

onentially large combinatorial design spaces (5 ×10 8 composi- 

ions considering 25 different elements) [25,26] . More recently, 

ata-driven mehtods interfaced with machine-learning (ML) al- 

orithms have enabled rapid filtering to reduce the vast al- 

oying (Gibbs’ compositional) space through fast-acting predic- 

ive models [26–28] . While successful, ML models oftentimes 

end to be limited by the sparcity of the datasets available to 

rain them [29,30] . On other occasions, ML-based approaches 

ave resulted in models that are difficult to interpret and are 

https://doi.org/10.1016/j.actamat.2022.117924
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http://www.elsevier.com/locate/actamat
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hus mostly ’black boxes’ establishing connections between in- 

uts and outputs through highly non-linear and convoluted 

appings. 

Here, we construct predictive models of the intrinsic mechani- 

al behavior of RHEAs to determine critical trends that are key ML 

raining information. Notably, if we consider the space of atomic 

eatures and an arbitrary set of operators used to integrate them, 

he dimensionality of such a problem can easily run into 10 8 − 10 9 

ange. The discovery of the most informative feature subspace thus 

ecomes an intractable problem using conventional dimensional- 

eduction approaches. Based on notions of Compressed Sensing 

CS) [31] , which solves for the sparse solution to an undeter- 

ined systems of equations, SISSO [32–34] uses Sure-Independent 

creening [35] (SIS), which selects at each iteration a new sub- 

et of features. Further reduction in the feature space and the de- 

elopment of a predictive model is carried out through Sparsify- 

ng Operators (SO), such as Least Absolute Shrinkage and Selec- 

ion Operator (LASSO) [36] or l 0 -norm regularized minimization in 

rder to find the most sparse solution to a linear problem. The 

ISSO-based modeling is a form of symbolic regression, which uses 

rained analytical descriptors for property prediction. SISSO has al- 

eady been shown to be a powerful automated-feature engineering 

AFE) framework that enables the construction of accurate, inter- 

retable predictive models for materials behavior, such as energy 

tability of inorganic solids [37,38] as well as oxidation behavior in 

eramics [39] , among others. 

Knowledge of mechanical behavior is critical for the design of 

echnologically useful alloys, however, the main focus of ML mod- 

ls has been on thermodynamic stability with scant attention on 

eveloping fast and inexpensive models for mechanical proper- 

ies [40] due to unavailability of reliable databases. Elastic con- 

tants ( e.g. , stiffness matrix (C i j )) and other engineering quantities 

such as yield-strength ( σ0 y )) are extremely useful for materials 

esign, yet, RHEA optimization has taken other design paths in- 

olving the use of simple (empirical) relations of atomic and ther- 

odynamic properties [29,41–44] . Mechanical properties derived 

rom elastic parameters can provide valuable insight into a RHEA’s 

rittleness, stiffness, anisotropy, ductility, bonding character, and 

trength. However, our knowledge about features affecting impor- 

ant engineering quantities, such as strength, is very limited due 

o lack of efficient computational techniques. Therefore, methods 

r models capable of accurately predicting fundamental engineer- 

ng quantities would greatly benefit the alloy design. 

Here, we present descriptor-based analytical models, i.e., “Elas- 

ic SISSO”, for the fast exploration of mechanical properties over 

he vast HEA space, which will also be useful as didactic tool for 

howcasing simple correlations between target properties—features 

dentified from this method can in turn be used to train more com- 

lex ‘black box’ models, if so desired. We establish that dominant 

actors, such as high yield strength, derived from ML-predicted 

lastic parameters of body-centered cubic (bcc) RHEAs, consisting 

f 3 d (V), 4 d (Nb, Mo), and 5 d (Ta,W) transition-metal elements, 

an be directly related to fundamental elemental quantities, e.g. , 

lectronegativity variance ( χv ar ), atomic-size differences ( δ), and 
ormation enthalpy (E f orm 

). Specifically, for Ta-W-Nb-Mo-V RHEA 

ystems, we also discuss the relationship between phase stability, 

ocal environment correlation, and mechanical properties of alloy- 

ng components. While there is no consensus on a threshold that 

escribes the ductility in HEAs using Pugh’s ratio [45] , Poisson’s 

atio, or Cauchy parameter [46] , to some extent all of these quan- 

ities relate to the ductility of the alloy and, with a clear trend 

stablished (and experimentally validated in subset of systems), 

hey can be employed for design. We trained, tested, and de- 

eloped descriptor-based analytical models using SISSO-based ML 

o predict mechanical properties of solid-solutions. This system- 

tic study for various mechanical properties will benefit material 
2 
cience community in accelerating search for technological useful 

EAs. 

Different models and designs had been proposed to predict or 

nduce ductility in RHEAs, for example, whether intrinsic or ex- 

rinsic, design approaches have been taken to overcome brittle- 

ess [47] . Notably, the Valence Electron Concentration (VEC) has 

lso been linked to ductility, for example, Qi et al. studied intrinsic 

uctility in BCC alloys by comparing shear instability and crack ini- 

iation using DFT [48] by optimizing average VEC [49] . Chen et al. 

lso provided distinctions between different ranges of VECs [50] . 

. Methods 

.1. DFT elastic database 

The stiffness matrix of binary and ternary Nb-Mo-Ta-W-V based 

lloys were calculated using DFT-based stress-strain approach 

51,52] , as implemented in the plane-wave pseudo-potential Vi- 

nna Ab-initio Simulation Package (VASP) [53,54] . Both special 

uasirandom structure (SQS) [55] and supercell random approxi- 

ates (SCRAPs) [56] methods were used to mimic homogeneously 

andom disordered alloys. The Perdew, Burke, and Ernzerhof (PBE) 

eneralized gradient approximation [57] to DFT was used with a 

nergy cut-off of 520 eV. Full (volume and ionic) optimization and 

harge self-consistency were done on (2 × 2 × 2) and (4 × 4 ×
) Monkhorst-Pack [58] k −mesh for Brillouin zone integration, re- 

pectively. A high level of convergence criteria was set for elastic 

roperty calculation in both energy and forces, i.e., 10 −6 eV and 

0 −6 eV/ ̊A. 

As supercells used have differing structure along x, y, and z 

xes, when elastic distortions are applied in DFT calculations the 

lastic constants C 11 , C 22 , and C 33 , for example, will be slightly 

ifferent, rather than exactly equal due to average cubic symme- 

ry for a homogeneous solid solution. Hence, we average appro- 

riately (see below). Here, we applied 12 independent deforma- 

ions to each investigated structure, one each for the normal and 

hear strains and two strains with opposing directions. Combina- 

ion of binary and a ternary sets were chosen to map the stiff- 

ess data on the 5-dimensional HEA space. For binaries, ten sub- 

ystems were sampled using a 60-atom supercell in steps of 10% 

with a single sub-step of 5% at composition (0.25,0.75)), while 

ernaries were sampled using a 64-atom supercell with base com- 

osition of (0.125,0.125,0.75) and (0.25,0.375,0.375). The equiva- 

ent compositions were generated by shuffling the atom posi- 

ions for both binary and ternaries making it 10 different cases 

er binary and ternary, which makes up to a total of 170 com- 

inations (110 binary and 60 ternary). The macroscopic value of 

he elastic stiffness coefficients was then approximated by aver- 

ging the three independent elastic constants C ii and C i j (with 

 � = j) in a cubic crystalline system [59,60] , i.e., C 
a v g 
11 

= (C 11 +C 22 +C 33 )/3,

 

a v g 
44 

= (C 44 +C 55 +C 66 )/3, and C 
a v g 
12 

= (C 12 +C 13 +C 23 )/3. The bulk (K)-,

hear (G)-, and Young’s (E)-moduli, Poisson’s ratio ( ν) were ap- 

roximated using the Voight-Reuss-Hill approximation [61] as de- 

ailed by Wu et al. for the cubic system [62] . 

.2. Phase stability analysis 

High-throughput formation enthalpy calculation for Nb-Ta-Mo- 

-V HEAs were performed using DFT-based Green’s function 

orringa-Kohn-Rostoker electronic-structure methods [63,64] , in 

hich the coherent-potential approximation accounts properly for 

veraging over all chemically disorder configurations in structures 

65] . The gradient-corrected Perdew, Burke, and Ernzerhof (PBE) 

xchange-correlation functional [57] was used within each atomic 

ite for charge distributions and the total energy. A semi-circular 
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Table 1 

ML-predicted RHEAs with higher strength ( σ0 y ; GPa) compared to equiatomic MoNbTaW and MoNbTaVW. Results are arranged in 

increasing density. 

MPEAs Mo Nb Ta V W ρ C 11 E K σ0 y σ1300 C G/K 

[at.%] [g/cc] [GPa] [GPa] [GPa] [GPa] [GPa] 

MoNbTaW 25 25 25 - 25 13.68 344 224 235 1.23 0.22 0.33 

MoNbTaVW 20 20 20 20 20 12.17 320 197 223 1.76 0.35 0.31 

RHEA0 19.99 0.70 30.02 44.91 4.38 10.69 285 160 205 1.842 0.29 0.268 

RHEA1 19.57 8.83 13.76 40.82 17.02 10.83 311 182 218 1.807 0.32 0.295 

RHEA2 17.68 9.08 10.84 41.31 21.09 10.99 317 187 220 1.781 0.32 0.302 

RHEA3 4.67 15.32 6.17 42.79 31.05 11.43 312 182 220 1.811 0.32 0.293 

RHEA4 8.64 1.94 14.54 46.28 28.60 11.82 318 192 223 1.767 0.31 0.302 

RHEA5 16.84 2.09 34.60 34.75 11.72 12.05 298 178 213 1.913 0.35 0.285 

RHEA6 3.17 23.98 5.89 28.22 38.74 12.56 328 200 229 1.864 0.38 0.317 

RHEA7 10.31 8.63 12.87 31.20 36.99 12.98 343 219 235 1.870 0.40 0.334 

RHEA8 23.31 1.31 32.20 22.91 20.27 13.17 335 218 230 1.897 0.41 0.324 

RHEA9 1.07 0.78 40.59 26.80 30.76 14.51 313 202 226 1.942 0.41 0.300 

Fig. 1. Schematic diagram for sampling, feature construction, and feature analysis 

processes. 
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ontour and Gauss-Laguerre quadratures using 24 complex ener- 

ies was used for integration. A 24 × 24 × 24 Monkhort-Pack 

58] k -mesh was used for Brillouin-zone integration of bcc Nb-Ta- 

o-W-V HEAs. 

.3. Misfit volume calculation for strength prediction 

The misfit volume of the alloys can be calculated as the deriva- 

ives of atomic volume of elements in HEAs with respect to com- 

osition as �V n = 

∂V HEA 
∂c n 

− ∑ N 
m =1 c m 

∂V HEA 
∂c m 

. The expression can be 

erived from the expression 
∑ 

n c n = 1 using conditions V HEA = 

 HEA (c 1 , c 2 , . . . , c N−1 ) and ∂ V HEA /∂ c N = 0 [66] . 

. Results 

.1. Elastic SISSO - featurization 

Featurization of the alloy sampling is carried out via a stoichio- 

etric approach, extrapolating elemental properties. Bartel et al. 

roposed these alloy-specific transformations in their Gibb’s en- 

rgy model whereby three different features are retrieved for each 

lemental property, using the stoichiometrically-weighted average 

avg), the stoichiometrically-weighted harmonic mean (red), and 

he stoichiometrically mean difference (diff) of the atomic feature 

n question [37] , which are showcased in supplemental Table S3. 

We use atomic properties: atomic number, period, atomic 

adius, Pauling (molecular) and Allen (solid-state) electroneg- 

tivity, density, heat of formation, BCC lattice constant, 

elting point, electron affinity and valence electron count 

i.e., Z, P, r a , χPauling , χAl l en , ρ, �H, a, T m , E ea , and V EC) . These 11 el-

mental features – once transformed – make up a 33-dimensional 

rimary alloy feature space are fed into the SISSO based AFE 

ramework. The feature construction was carried out by applying 

he operator set 
[
+ , −, ×, e x , e −x , −1 , 2 , 3 , 6 , 

√ 

log 
]
to the 33 alloy- 

pecific features. As shown in schematic Fig. 1 , all features were 
3 
reated by combination of the primary features and operators, 

hich were recursively added to the feature set two times. 

.2. Training, model-generation, and cross-validation 

During each SISSO iteration, the SIS method selects 10 0 0 fea- 

ures, which are added to a subset to which the l 0 norm regu- 

arized minimization Sparsifying Operator is applied so as to ob- 

ain the best linear regressor with a number of terms equal to the 

urrent iteration out of this subset by doing this every iteration 

 1 D , 2 D , and 3 D descriptors). Consequently, for the last descriptors
30 0 0 
3 

)
∼ 4 . 5 × 10 9 combinations were tested. Out of the 3 descrip- 

ors (1D, 2D, and 3D), the 3D descriptor shows the best accuracy, 

oth in training and cross-validation (CV) estimation, which indi- 

ates that over-fitting, a recurring caveat in sparse regressor, may 

tart occurring at dimensions higher than 3. 

The SISSO models used in this work were put to test in a couple 

f different ways: (i) a 5-fold/10-fold CV to understand the over- 

tting and frequency analysis of features found in CV, and (ii) the 

escriptors trained on full data. Thus, we only discuss the most 

omplete descriptors and apply them here for further sampling of 

echanical properties over complex composition space. As the sys- 

ems have cubic symmetry, the SISSO model were retrained for 

wo independent elastic constants [C 11 ; C 12 ] along with (K; G; E; 

; (inverse) Pugh’s ratio, G/K; C 44 ) that can be derived from Voigt- 

euss-Hill approximations in terms of C 11 and C 12 [61] . 

.3. Elastic parameter C 11 descriptor - cross validation and error 

nalysis 

 11 = 11 . 6 + 1 . 14 

[ 
V EC 3 a v g 

√ 

ln (P a v g ) 
] 

+ 47 . 7 
[
V EC 36 di f f 

]
−0 . 029 a 6 a v g 

[
V EC red + V EC di f f 

]
The parity plot in Fig. 2 a shows a good predictability even for a 

mall number of folds. The 5-fold CV results for the stiffness ma- 

rix parameter C 11 , for which the coefficient of determination in- 

icates that an independent SISSO descriptor trained in 80% of the 

ata is able to determine the rest 20% consistently. The inset graph 

hows the error distribution for the model and an approximation 

or the probability density, which follows a normal distribution. 

hile for the evaluation of these results five different analytical 

odels were used, Eq. (1) shows a final model using all data avail- 

ble for the extrapolation to a higher dimension space in the next 

ection. 
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Fig. 2. Actual (DFT) vs predicted (ML) (a) stiffness parameter (C 11 ; GPa), (b) Young’s moduli (E; GPa), and (c) (inverse) Pugh’s ratio (PR = G/K) from five-fold cross-validation 

test. Inset in a-c shows the error distribution around the mean, which is virtually zero for all the three cases. 
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.4. Young’s moduli (E) descriptor - cross validation and error 

nalysis 

 = −469 + 1 . 31 
V EC a v g T m,a v g √ 

�H f,a v g 
− 0 . 335 

V EC red �H f,a v g 
V EC a v g −V EC di f f 

+ 1 . 37 
V EC di f f 

E ea,di f f χ
2 
Pauling,di f f 

(2) 

Fig. 2 b corresponds to the results for the Young’s moduli ( E), 

he coefficients of determination for E is overall lower than for C 11 . 

n the case shown here, the error distribution for the 5-fold CV 

nce again has nearly a zero mean error. The final model is shown 

n Eq. (4) , which in comparison appears to be more connected to 

he composition-specific features of the electronegativities. 

.5. Pugh’s ratio (PR) descriptor - cross validation and error analysis 

Lastly, the inverse Pugh’s ratio model in Fig. 2 c is performing 

ith less accuracy than the C 11 and E. Evaluating a single model, 

ather than two, adds uncertainty instead of performing at the 

owest accuracy of the two models G and K (see Table. S1). The 

nal analytical equation for Pugh’s ratio is shown in Eq. (3) . 

 R = 3 . 82 − 0 . 293 

[ 

χAl l en,a v g a a v g √ 

V EC a v g 

] 

−0 . 0191 

[ 

exp 
(
V EC di f f 

)
χPauling,a v g E ea,red 

] 

−0 . 105 

[
ρred 

E ea,di f f χPauling,di f f �H f,a v g 

]
While Bartel et al. trained a SISSO descriptor for the ther- 

odynamic properties of crystalline compounds by supplying 

ompound-specific properties, the final descriptor for Gibbs’ en- 

rgy only chose the reduced mass from these transformed features, 

esides calculated atomic volume and temperature [37] . Descrip- 

ors shown here are dependent solely on compound-specific fea- 

ures, we hypothesize the complexity in elastic properties of binary 

nd ternary compounds can be captured by non-linear features ar- 

anged in a linear combination. The complexity of the models is 

hen assumed to translate to higher dimensions. Elastic stiffness 

onstants naturally arise from tensor analysis of the strain-stress 

esponse of materials and the factors governing this response get 

s complex as the number of constituents grows. The SISSO-chosen 

escriptors shown here deviate enough from the linearity of the 

ommon rule-of-mixtures estimation to deliver a better approxi- 

ation as the complexity of the alloy grows. The compromise for 

ccuracy when using this descriptor is then compared to results of 

FT. 
4 
.6. Target property descriptor analysis 

If a feature is selected in each term of five three-dimensional 

3D) SISSO equations in 5-fold cross-validation test, then the high- 

st frequency a feature can get is 15. To better understand these 

esults, we present a descriptor analysis in Fig. 3 , which consists 

f counting features by appearance inside a term for every equa- 

ion and displaying 10 features with highest frequency. The most 

requent features are the one those consistently appear in the an- 

lytical 3D models. The final equations may resemble the alloy- 

pecific features chosen by the CV method, however, this selection 

f features is not guaranteed in other cases. 

Final models ( Eqs. (1) –(3) ) and CV analysis within SISSO frame- 

ork show some common alloy-specific features. For example, ma- 

ority of descriptors include the VEC and Pauling electronegativity 

s a shared feature. The feature analysis in Fig. 3 is provided to un- 

erstand feature presence and different mathematical operations 

n SISSO models. Moreover, the ranking of the atomic properties 

y appearance in the cross-validation method is not analogous to 

eature importance since they are not the operator coupled fea- 

ures used in SISSO, but it gives a qualitative idea about the basic 

uilding blocks of the descriptors, i.e., the composition-weighted 

eatures. 

While it appears that the accuracy is correlated to the confi- 

ence of the CV in selecting the same alloy-specific features as in 

nalytical SISSO models, this is not necessarily true for each case. 

or example, C 11 and E have higher confidence in their top fea- 

ures in contrast to the Pugh’s ratio model. Yet, the diverse fea- 

ures selected in each run are inherently correlated in that they 

reate multiple top performing descriptors once coupled with the 

parsyfying operators in SISSO method. Fig. 3 reveals the elemen- 

al features such as VEC selected in each model, which was found 

ost significant for predicting elastic properties and consistently 

ppears in the cross-validation. 

Analytical models such as those available in Eq. (1) –(3) and Ta- 

le S1 are easy to use, which will expand new non-data-intensive 

pproaches for rapid space exploration of complex materials in- 

luding high-entropy alloys. For engineering purposes where the 

uctility is an important performance factor, an inexpensive an- 

lytical model can be useful for composition optimization from 

arge alloy design space. 

. Application to the quinary alloy 

.1. Interpretation of target properties and its interdependence on 

hysical features 

Unlike other ‘black-box’ ML methods, it is possible to create a 

irect relation with a specific feature from the get-go by analyzing 

he analytical function. We can go one step forward and evaluate a 
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Fig. 3. (a-c) Descriptor analysis ranks feature appearance in C 11 , E, and Pugh’s ratio in the CV method. 

Fig. 4. Chosen features (top-panel) stiffness matrix element (C 11 ), and (bottom-panel) Young’s moduli ( E) descriptor. 
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uinary random sampling and reveal how a subset of features (for 

ach model, e.g., C 11 , and E) contributes to the ML models given in

ig. 4 . These analytical models for elastic parameters were evalu- 

ted over 10 0,0 0 0 points in the Mo-Nb-Ta-V-W RHEA space. 

Stiffness constant C 11 : Analytical model for the C 11 in 

q. (1) strongly depends on the VEC, as obvious from Fig. 4 (top- 

anel). The symmetry of the system constrains the values of all 

he weighted transformations for VEC to be completely correlated, 

.e., the relation of C 11 with the average, harmonic average and 

ifference-average is always the same. Therefore, the average of 

he periods (in periodic table) are correlated to some extent with 

he number of electrons, especially, when only looking at five dif- 

erent elements distributed over 3 different periods. This feature is 

resent in the final descriptor, but only harmonic average of pe- 

iods appeared during cross-validation. The period in this system 

s constrained to integer values, which indicates an even stronger 

orrelation between different averaging methods. Here, the aver- 

ge melting point difference between lowest and highest points 

ndicate a higher C 11 , so not only high differences between con- 

tituents yields a high C 11 , but also small difference stabilizes the 

igh stiffness. For example, a maximum in C 11 was obtained for the 

ptimal range of average lattice parameter (via Vegard’s rule), i.e., 

.15 ̊A and 3.20 ̊A . In supplemental Fig. S3, we provide a short dis-

ussion on the usefulness of descriptor-based analytical approaches 

or property prediction in complex alloys over that of simple rules. 

he observations that the difference on electronegativity correlates 
5 
ell to mechanical properties of HEAs in this work agrees well 

ith existing literature [67] . 

Young’s modulus E: Descriptor for E in Eq. (2) strongly depends 

n VEC and χ , as shown in Fig. 4 (bottom-panel). As expected, av- 

rage electronegativities have different correlation to E due to the 

ifference in their physical origin. Allen average electronegativity 

as an optimum value for E, while Pauling has an overall positive 

orrelation. The χdi f f 

Pauling 
shows good correlation with χa v g 

Pauling 
[see 

ig. 4 (top-panel)] except for the onset where χdi f f 

Pauling 
converges 

t single point while χa v g 
Pauling 

shows wide distribution. Moreover, 

e need to be cautious here because former represents the aver- 

ges of absolute χ and later is average of difference in χ . On the 

ther hand, the electron affinity shows a higher range of stiffness 

t elevated values, and VEC shows a similar correlation with C 11 . 

his last statement is true for all features, and E and C 11 are so 

losely correlated that the shape of feature-target correlations are 

imilar. 

The average of lattice constant has proven to deviate by a small 

argin from the experimental lattice parameter, which follows a 

egative slope after a maximum value of 3.17 ̊A for both C 11 and 

. Gorban et al. [68] also observed the same trend, which was at- 

ributed to size mismatch and weakening atomic interactions at a 

arger lattice parameter. A positive trend in modulus of elasticity at 

 higher electron count has been observed, i.e. , 6e − [68,69] , SISSO 

odels presented in this work show similar behavior. 
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Fig. 5. (a) t-SNE dimensional reduction of the quinary space with highlighted unary-enriched zones, the color scheme indicates that this point contains more than 50% 

molar of this respective element, (b) Pugh’s ratio, and (c) Cauchy pressure C 12 −C 44 mapped in top of t-SNE, as predicted by the SISSO models. 
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Fig. 6. The descriptor predicted C 44 was compared with C 44 estimated using in- 

dependent elastic parameters, i.e., C 44 ≈ ( C 11 − C 12 )/2, assuming zero anisotropy of 

disorder bcc Bravais lattice. 
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.2. Pugh’s ratio – evaluating derived parameters from stiffness 

atrix 

The inverse Pugh’s ratio (G/K) and Cauchy pressure (C 12 − C 44 ) 

re empirically defined quantities, which are commonly used to 

redict the ductility of complex alloys. Originally, Pugh [45] dis- 

ussed the ratio of (G/K < 0.57 or K/G > 1.75) and found it

orrelated with the ductility of elemental metals (fcc, bcc, and 

cp), where bulk moduli (K) assesses the resistance to fracture 

hile shear modulus (G) the tendency for increased fracture re- 

istance after the onset of plastic deformation. Indeed, Gschnei- 

ner Jr. et al. used existing experimental data from large num- 

er of materials to categorize brittle-to-ductile transition at G/K < 

 . 57 , [70] where the lower (higher) ratio indicates ductility (brit- 

leness). Here, we use the inverse Pugh’s ratio (PR = G/K) simply 

o span a 0 ≤ PR ≤ 1 range, and ductility is indicated by G/K < 

 . 57 . For HEAs, the randomly sampled 10 0,0 0 0 compositions in

he quinary alloy space (composition vector) were mapped on a 

wo-dimensional space using a t-distributed Stochastic Neighbor 

mbedding (t-SNE) scheme in Fig. 5 a, where the clustering al- 

orithm separates the unary-rich composition. The percentage of 

omposition is more evenly distributed away from t-SNE corners 

n Fig. 5 a. The (inverse) Pugh’s ratio (G/K) in Fig. 5 b is below the

nisotropy-specific ductile-to-brittle critical point, as evaluated us- 

ng the descriptor in Eq. (3) . The HEAs have a positive Cauchy pres-

ure ( C 12 − C 44 < 0 ), as shown in Fig. 5 c. 

Recently, Senkov et al. [71] expanded the correlation between 

hese two quantities by taking the ratio of Cauchy pressure and 

ulk moduli. The anisotropy-specific critical value for the Pugh’s 

atio in Fig. 5 b was found in good agreement with Pettifor’s con- 

ition for incipient brittleness, i.e., C 12 − C 44 < 0 . Although this 

ould be considered ductile for elements and simple compounds, 

he ductility of HEAs is more complex, and such predictions must 

e seen as qualitative. Physically, the Pugh’s ratio predicted for 

HEAs in Fig. 5 b shows the ability of an alloy to deform, where

maller value ( G/K < 0 . 57 ) shows higher deformability (ductile) 

hile higher value ( G/K > 0 . 57 ) signifies lower deformability (brit- 

le). Models for Pugh’s ratio and Cauchy pressure show similar 

rends, i.e., the minimum for one in the quinary space is the max- 

mum for the other. Notably, both models predict high ductility for 

EAs in the same composition region. The model also shows a soft 

radient between consecutive alloys in the t-SNE. Similarly, Pugh’s 

atio follows expected positive correlation with V EC, meaning that 

he alloy system is expected to show higher ductility as the V EC a v g 
ecreases. Both the bulk moduli (K) and shear moduli (G) have 

 positive slope with V EC a v g , whereas G has a steeper increment. 

his suggests that the alloy tends to get harder for compression or 

hear. Yet, the shear mechanism will be more affected as the bond 

nergy of the crystal becomes stronger. The average and the dif- 
t

6 
erence of the lattice parameter show different correlations to the 

ugh’s ratio. 

.3. SISSO prediction of C 44 and isotropy dilemma 

DFT methods often do not provide accurate estimate of shear 

onstant (C 44 ) in isotropic disordered solids such bcc and fcc alloys. 

owever, the C 44 can be directly estimated using the independent 

tiffness constants (C 11 and C 12 ) in a system with cubic symmetry, 

ssuming isotropic behavior. To exemplify this, we show in Fig. 6 a 

omparison between the ML predicted C 44 and others derived from 

elation [ C 11 − C 12 ] / 2 . Notably, the C 44 derived from the isotropic 

ssumption correlates well to ML predictions. The small prediction 

rror of 7.34 GPa (RMSE) in C 44 corresponds to an average devia- 

ion of 8.6% from the model. 

.4. High-throughput prediction of high strength HEAs and its origin 

HEAs are expected to not only match the current state-of-the- 

rt structural materials properties of conventional as well com- 

lex alloys, but they are expected to have lower density, opti- 

al stiffness, i.e., low brittleness or higher ductility. However, the 

arge composition space of HEAs restricts the exploration of phys- 

cal space beyond equiatomic compositions. We show in Fig. 7 

hat our computationally inexpensive analytical ML models fa- 
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Fig. 7. (a) Yield-strength ( σ0 y ) and (b) formation enthalpy ( �H f orm at 0 K) vs composition (c i , i = Nb/Ta, Mo/W, V). The parabolic-dashed line shows the high electronegativity 

variance ( �χv ar ), while arrow-head from NbTaMoW to NbTaMoWV RHEA (solid-white circle) shows experimentally observed increasing trend. Our observation suggests that 

its not the single parameter but the interplay of different quantities, such as chemical entropy, �χv ar , and �H f orm , that are responsible for higher strength. 
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ilitates quick search of technologically useful alloys over multi- 

imensional spaces. 

The SISSO predicted analytical model of stiffness matrix (C i j ) 

Eq. (1) and see supplemental Table S1) were used to estimate 

he zero-temperature flow stress ( τy 0 ), or critically resolved shear 
tress for edge dislocations in a BCC matrix, using the reduced- 

rder model developed by Maresca and Curtin [66] . The main pa- 

ameters ruling the strength model are the elastic constants and 

he misfit volume, the latter is calculated through Vegard’s ‘law’ 

sing experimental values of atomic volumes. Our DFT results for 

olid-solution and associated elemental volumes could be used but 

he critically resolved shear stress is related more to the yield- 

trength of the material through the Taylor factor. Therefore, for 

he current work, we used calculated σy 0 for the yield-strength at 

 Kas well as the approximation for finite-temperature (1300 ◦C) 
nd finite strain-rate (0.001), which builds up on the 0K approx- 

mation. Our estimates of σ0 y in Fig. 7 a suggests towards a re- 

ion in (Nb-Ta)-(Mo-W)-V compositions space that shows higher 

trength, which is different from high mixing entropy ( �S mix ) re- 

ion (marked by solid white dot) doesn’t necessarily correlate with 

echanical or electronic behavior. In contrast to the usual expec- 

ations, however, we found that the region of high yield-strength 

n Fig. 7 a directly correlates with higher thermodynamic stability 

 �H mix ) as shown in Fig. 7 b. The increasing trends (ML predicted) 

n yield-strength from quaternary NbTaMoW (1.12 GPa) to quinary 

bTaMoWV (2.00 GPa) matches with experiments [72,73] , where 

dding V was found to increase the strength of the alloy. 

The dashed parabolic region marked in Fig. 7 a,b shows the re- 

ion of high electronegativity variance ( �χv ar ) (also see supple- 

ental Fig. S1a). The �χv ar increases with increase in V and Nb/Ta 

ore compared to Mo/W because of higher V electronegativity 

ompared to others. We hypothesize that the large �χv ar may lead 

o strong charge imbalance in the neighboring environment of V as 

arge χ pulls more charge, which adds local lattice distortion and 

ence provide local solid-solution strengthening. The strong corre- 

ation between σ0 y in Fig. 7 a and �H mix in Fig. 7 b possibly arises 

rom V addition that enhances the local-lattice distortion and the 

lloy stability, as discussed by Song et al. [12] and Singh et al. 

56] Our assessment suggests that optimal combination of entropy 

as a proxy for alloy complexity), phase stability, and �χv ar results 

nto higher yield-strength. 

The Young’s moduli (E) is another important design character- 

stics that shows the tensile stiffness of materials such as HEAs. 

eneral convention suggests that maximizing E should also maxi- 
7 
ize the strength, e.g., high σ0 y . To understand this, we plot E vs 

0 y [in GPa] in Fig. 8 a that shows a optimal E-region (150 < E < 250)

n which σ0 y is higher (marked by dashed lines), however, beyond 

he marked region, σ0 y falls off quickly. We found an inverse rela- 

ion between E in Fig. 8 b and σ0 y in Fig. 8 c with �χv ar , i.e., E ( σ0 y )

ecreases (increases) with increasing (decreasing) �χv ar . This con- 

rms our idea of finding optimal tensile stiffness range rather than 

aximizing it while designing new RHEAs. 

From our analysis, we predict new RHEA compositions as 

hown in Table 1 , where C 11 , E, K, τ0 y , and σY S are tabu-

ated along with chemical composition of each alloying ele- 

ent. The RHEAs are arranged in order of increasing density ( ρ
n g/cc), which becomes critical depending on area of applica- 

ion. Notably, predicted RHEAs with higher σY S directly corre- 

ates with higher V (20+ at.%) concentration, this further em- 

hasizes our hypothesis of optimal concentration of V in RHEAs 

mproves both phase stability and mechanical behavior. This can 

e attributed to the fact that higher Allen-scale electronegativ- 

ty of V pulls charges from neighboring sites and creates strong 

olid-solution strengthening through local lattice distortions. The 

ize effect ( δ) plot in supplemental Fig. S2b also shows the 

igher effect in the optimal region with higher σY S marked in 

ig. 7 d. Moreover, alloys with higher V concentration in predicted 

HEAs show increase in energy stability, see supplemental Table 

2. 

Discussion on ductility: The criteria to evaluate the ductile be- 

avior based on elastic constants in BCC HEA has been reported at 

everal instances [45,74,75] . However, it is impossible that all ma- 

erial properties or all type of alloys can be fit using same kind of 

odel or approach. Nonetheless, the Pugh ratio offers good corre- 

ation with ductility of materials [45] , and, as noted above, sup- 

orted by existing experimental data from large number of ma- 

erials [70] . Indeed, this is reflected in our data, see Figs. 8 a and

 a. Poisson’s ratio ν , considering the relationship between ν and 

G/K), has the potential to assess the ductile behavior of MPEAs 

 Fig. 9 b), where the brittle-to-ductile transition limit corresponds 

o ν > 0 . 26 [76] . Similarly, the large positive Cauchy pressure in

ig. 9 c represents an increased degree of the metallic bonding that 

orrelates with ductility [76] , whereas the negative value is indica- 

ive of brittleness (or more covalent bonding) [77] . Recently, Lee 

t al. [76] have reported ductility in NbTaTiV RHEA, which fur- 

her supports our idea that state-of-the-art, ab-initio calculations 

nd machine-learning approaches may be helpful for refractory- 

ased alloys. This also establishes the quality of prediction of high- 
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Fig. 8. (a) Compositions with higher yield-strength ( σ0 y ; 1.5 < σ0 y < 2.25 GPa) away from high-entropy region (see Table 1 ) are highlighted vs optimal Young’s moduli range 

(E; 150 < E < 250 GPa). (b,c) Electronegativity variance ( χv ar ) was found to show strong correlation with (E, σ0 y ). 

Table 2 

The C 11 , C 12 , C 44 , bulk-moduli, and elastic-moduli of diverse HEAs (some outside the training 

chemistry) predicted from the SISSO model show good agreement with DFT. 

System C 11 C 12 C 44 K E 

ML DFT ML DFT ML DFT ML DFT ML DFT 

MoNbTaVW 321 328 172 169 74 79 223 222 197 213 

CrMoNbTaV 315 330 160 159 77 85 213 216 206 226 

CrMoNbTaW 370 378 172 168 99 105 241 238 244 275 

CrMoNbVW 363 372 169 170 97 101 236 237 235 265 

CrMoTaVW 372 393 171 170 100 111 242 244 248 290 

CrNbTaVW 322 360 166 156 78 102 222 224 204 266 

NbTaTiVZr 171 190 150 104 10 43 146 132 116 116 

Table 3 

The misfit-volume and strength calculation with different elemental misfits results into expected deviations. 

�V Mo �V Nb �V Ta �V V �V W 
∑ 

n c n V 
2 
n τy, 0 (GPa) C 11 C 12 C 44 

Mo-Nb-Ta-V-W 

Maresca and Curtin’s reduced model -0.628 1.713 1.877 -2.484 -0.478 2.650 0.610 346.8 157.7 90.5 

Vegard’s law (misfit factor)/SISSO (elastic constants) -0.681 1.760 1.810 -2.424 -0.465 2.586 0.576 320.8 172.0 73.0 

Mo-Nb-Ta-W 

Maresca and Curtin’s reduced model -1.293 1.135 1.168 - -1.010 1.336 0.450 375.5 167.3 101.6 

Vegard’s law (misfit factor)/SISSO (elastic constants) -1.287 1.154 1.204 - -1.071 1.396 0.402 344.2 182.0 86.2 

Fig. 9. We plot the (a) Pugh’s ratio, (b) Poisson’s ratio, and (c) Cauchy pressure (C 12 -C 44 in GPa) that highlights the optimal region of strength lies slightly away from 

high-entropy region. 
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trength regions in Fig. 7 a. 

.5. Application of the proposed SISSO model to systems outside the 

raining chemistry 

In Table 2 , we demonstrate the application of the SISSO models 

o several stoichiometric HEAs with chemistries outside the chem- 

cal space used in the model training. As shown in Table 2 , we
8 
ound good agreement between descriptor predicted elastic con- 

tants and DFT. If we focus on ML vs DFT results in Table 2 , er-

or in prediction for most cases is within 1–5%. Notably, the C i j 
or NbTaTiVZr is the only exception that shows large error, i.e., C 11 
171 vs 190 GPa, i.e., ∼10% error), C 12 (150 vs 104 GPa, i.e., ∼44%

rror), C 44 (10 vs 43 GPa, i.e., ∼77% error). In our limited under- 

tanding to this aspect, we believe the possible reason in under 

redicting C i j ’s can be two-fold - (i) Ti/Zr not included in the train-
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Fig. 10. Actual vs predicted (a) misfit volume, and (b) strength ( σ ; GPa) from ten-fold cross-validation test. Inset in a,b shows the error distribution around the mean, which 

is virtually zero for both the cases. 
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ng datasets, and (ii) crystal anisotropy of Ti/Zr (hexagonal parent 

hase). Here, we mainly attribute this fact to crystal anisotropy 

f Ti/Zr as C i j are strongly direction dependent, which is not in- 

luded in our training dataset. Despite minor disagreements, these 

esults are promising, as they tentatively suggest that the model is 

apable of making safe extrapolations. We want to emphasize that 

ore insights are needed into the extrapolation of the SISSO based 

escriptors and the chosen featurization for the complete general- 

zation of the proposed descriptor. A more thorough investigation, 

eyond the scope of this work, is necessary to ascertain the ability 

f this model to extrapolate, with reasonable accuracy, beyond the 

raining chemistry. 

.6. Analytical model for misfit-volume and yield-strength 

While Maresca and Curtin [66] estimated the misfit volume 

sing experimental values, all the numbers and details are not 

learly stated. We emphasize that the misfit volume calculated 

ith different atomic volumes are expected to show deviations 

hen used with the reduced strength model, as shown in Table 3 . 

nother source of uncertainty comes from elastic constants deter- 

ined from the rule of mixing and the SISSO descriptors. However, 

escriptors-based analytical models are more close to reality as all 

ossible alloying effects are included, while the rule of mixtures 

o not. 

We developed the analytical SISSO model to predict alloy mis- 

t volume factor (see method section) trained on same binary and 

ernary, which is similar to analytical descriptors in Eqs. (1) –(3) . 

he misfit volume descriptor can directly be used with Maresca 

nd Curtin’s reduced strength model [66] . In Fig. 10 a, the 10-fold 

ross-validation test shows the accuracy of 0.89 (R 2 ) with an RMSE 

f 0.38. While this is a good value for predictions within the train- 

ng data, the uncertainty transmitted to the strength model may 

row larger. The model presented in Eq. (4) shows that accurate 

nalytical models for misfit volumes can be developed, however, 

e need more accurate high-fidelity data from experiments or ab- 

nitio methods. 

 
mis f it = −0 . 0654 − 93800 

a di f f 

χ a v g 
Pauling 

√ 

a a v g 

+3760 0 0 
a di f f 

χ a v g 
Pauling 

( a a v g + a red ) 

−1320 0 0 
a d i f f 

χ a v g 
Pauling 

a a v g a red 
9 
We further emphasize that the ML-trained strength models for 

PEAs are not so readily available in literature due to the lack of 

he training dataset. However, we could develop a sparse strength 

atabase for HEAs consisting of 114 experimental HEAs (fcc, bcc, 

nd fcc+bcc). The featurization used was also alloy specific but 

impler, using only averages and thermodynamical parameters. A 

0-fold cross-validation test was used to showcase the overall con- 

dence of the SISSO model in Fig. 10 b. An error using the 3D de-

criptor is prone to overfitting as cross-validation accuracy dropped 

o 0.60 from 0.74 (trained on all whole dataset). We believe that 

he possibility of large prediction error comes from limited ex- 

erimental data with unknown experimental conditions, sample 

ype and quality, and other unknown critical quantities. This indi- 

ates towards the need of more reliable dataset creation from well- 

efined experimental sources and conditions for robust machine- 

earning strength model. Our work also points out the fact that for 

ntelligent design in materials discovery, i.e., in absence of reliable 

ata, mean-filed approaches can be useful for accelerated filtering 

f multi-dimensional hyperspace such as high-entropy alloys. 

Caveats in DFT vs ML-predicted shear moduli: In refractory-based 

lloys, the shear or trigonal elastic parameter (C 44 ) of individ- 

al elements, especially, Nb is underestimated in most electronic- 

tructure methods (DFT: 17 GPa [78] ; Expt: 31 GPa [79] ), indepen- 

ent of DFT methods or exchange-correlation functional [80] . This 

ssue has been discussed at length in literature, e.g. , by Koci et al. 

78] , who attribute it to transverse-phonon mode-driven anoma- 

ous band dispersion; more recently, as DFT typically freezes core 

tates, it was associated with warping of the low-lying core levels 

uring shearing, which was not addressed previously. Nonetheless, 

his issue limits the reliable data generation for RHEAs. And, inter- 

stingly, our SISSO-trained analytical model shows better accuracy 

or Nb, i.e., 24 GPa compared to experiments (31 GPa) [79] . 

. Summary and discussion 

In this work, descriptor-based machine-learning (ML) frame- 

ork models were developed to efficiently scan and predict HEA 

lastic properties. The power of descriptor-based analytical models 

or fast exploration of the alloy space was exemplified for refrac- 

ory based Nb-Ta-Mo-W-V HEAs. The reliable, optimal, and inter- 

retable analytical descriptors were trained with SISSO based ML 

ethod on an elastic property database obtained from density- 

unctional theory calculations. A detailed analysis of target prop- 

rties was also carried out to correlate common elemental/alloy 
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[

eatures for optimized descriptor to better interpret proposed ana- 

ytical models, distinctly different from black-box ML models. 

The descriptor-predicted stiffness matrix (C i j ) of Nb-Ta-Mo-W- 

 HEAs were used to assess technologically useful quantities, such 

s yield-strength, that identify high-strength regions that correlate 

ore with optimal combination of entropy (not high-entropy re- 

ion), regions with large size effect ( δ), large electronegativity vari- 
nce ( χv ar ), and regions of high phase stability (lower formation 

nergy). Our predicted trends match limited existing experiments, 

urther establishing inexpensive descriptor-based methods can ac- 

elerate design of technologically useful alloys. 

Elastic relations, like trends in Cauchy stability (C 12 -C 44 < 0 ), 

how similar behavior as yield-strength in the quinary space sug- 

esting a more direct approach to estimate ductility using analyt- 

cal descriptors. To further emphasize this point, we note that the 

lloy compositions with excellent mechanical properties is not nec- 

ssarily those with highest chemical entropy or valence-electron 

ount. For example, compositions with high-strength and high 

hase-stability (lower formation enthalpy) were found in lower- 

ntropy regions, again questioning the focus on maximizing en- 

ropy to achieve better mechanical behavior. 

Our results emphasize that computationally inexpensive mod- 

ls are important for thorough and accurate search of the vast HEA 

omposition space to identify regions with desirable target proper- 

ies. For that, an unconstrained search of the alloy space permits 

 further possibility to optimize HEA compositions. The applica- 

ion of the model to chemistries (beyond those used to train it) 

re promising, although additional work is needed to ensure the 

afety of such extrapolations. Regardless, the model is considered 

o be useful for further design of the Nb-Ta-Mo-W-V based systems 

ith superior mechanical proeprties. 
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