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Integrated computational materials engineering (ICME) calls for integrating simulation
tools and/or experiments to develop new materials and materials systems. However, imple-
mentation of ICME approaches is challenging mainly due to the considerable computational
expense of such frameworks and large dimensionality of the design space. Addressing these
challenges is thus critical to the success of ICME initiatives. We present here a specific Bayesian
optimization framework designed to address these two challenges. In particular, we propose
an active subspace batch Bayesian optimization framework. The framework makes use of
dimension reduction via the active subspace method and makes use of the ability to query in
parallel via the batch Bayesian optimization approach. The integration of these techniques
leads to significant efficiency improvements while maintaining accuracy.

L. Introduction

In many materials design applications, existing computational models that may have a role in an ICME chain are
of black-box nature—i.e. the users only have full view of the inputs and outputs—and are expensive to evaluate in
terms of computational runtime. This means that, in practice, the exact form of the objective function to be improved or
optimized in these design applications is unknown. Available information pertaining to the objective function is often
also limited to a few data points that have previously been evaluated or identified in the literature. In such situations,
Bayesian optimization is considered a suitable framework for efficiently searching the design space for improved
objective function values [1-4]. Such approaches have began to use extensively in materials discovery tasks.

By employing a Bayesian optimization technique, a metamodel, or surrogate, of the objective function is built
to provide a less computationally costly source to represent the true function for active learning tasks during the
optimization process. However, these surrogate models are also lower in fidelity and updates to the model must be made
to ensure accuracy in the optimization process. These updates typically involve intelligently querying the ground truth
function (the function we wish to optimize) and using the acquired ground truth information to update the corresponding
surrogate. A querying policy, or heuristic, is implemented along with a Bayesian optimization framework to balance
the exploration and exploitation of the search process based on current information about the ground truth objective
function. This state of information is fully represented by the associated surrogate model of the ground truth objective
function. At every stage of the design process, the querying policy is used to search the design space using surrogate
models to evaluate the potential next best queries to execute from the ground truth. In this manner, the process balances
needs of efficiency and needs of accuracy.

A key driver of loss of efficiency in an optimization process is the dimensionality of the design space. The more
design variables are available, the larger the space to search. Further, the numerical aspects of many algorithms can
deteriorate in higher dimensions, as is typically the case for Gaussian process surrogates in frequent use in Bayesian
optimization. A common solution to this issue is dimension reduction. One such class of dimension reduction technique
is subspace approximation [5]. Via a subspace approximation approach, a design problem with a high-dimensional input
space is solved more efficiently by projecting the problem onto a lower-dimensional space [6—8]. One such subspace
approximation approach introduced in Refs. [9-11] is the active subspace method. The intention behind using the active
subspace method is to map an objective function to a lower dimensional design space based on the variability of the
objective function. In particular, directions corresponding to the largest variability are identified and used to construct
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the active subspace (which later we will search) and directions of minimal variability are ignored for the time being. This
separation can be particularly effective when dealing with high-dimensional design spaces with low effective dimension.

To further clarify the challenge in such design problems, assume that a querying policy uses z points per dimension
of the design space, d, to search for the next best query. This would lead to a total of n evaluations. Increasing the
dimensionality of the design space to d + d’ requires n¢+¢’ evaluations of the querying policy, adding exponentially
to the computational cost [12]. By using the active subspace method, the problem is mapped to a lower-dimensional
subspace with largest variability of the objective function. This results in either fewer points to be evaluated or a more
effective use of the original planned number of queries.

The active subspace method, which is similar in some respects to principal component analysis but has the key
difference that it is based on the design and objective space rather than just the design (input) space, has been used
in works such as design optimization [13, 14], shape optimization [15, 16], and uncertainty quantification [17, 18].
Here, we employ the active subspace method in a Bayesian optimization framework. Our approach takes two main
search steps. The first step is applied over the active subspace only. Once a query candidate in the active subspace is
selected, it is mapped back to the original design space. This mapping is ill-posed and leads to a second step of Bayesian
optimization. In this step, the neglected space (the space orthogonal to the active subspace) is searched. This results in
two smaller problems that in general are significantly more efficient than dealing with the original design space in one
step. The active subspace itself is found iteratively and is updated throughout the process. That is, the active subspace
can change as more is learned about the ground truth.

ICME applications often have the ability to use resources (computational typically, but also experimental) in
parallel[19]. However, typical Bayesian optimization approaches are sequential in nature and therefore cannot make
use of these potential parallel capabilities. To address this, we integrate with our dimension reduction approach the
batch Bayesian optimization framework. The key idea in this approach is to identify optimal batches of computational
experiments that can then be run in parallel rather than typical sequential querying policies. Different strategies are
recommended in Refs. [20-26] to perform optimization in a batch setting.

A challenge in any Bayesian optimization framework is constructing surrogates to properly represent the true
objective function. A set of hyperparameters control the behavior of these surrogates and their selection thus impacts
characteristics such as smoothness and/or noise sensitivity. Since a Bayesian optimization framework is usually working
with minimal data and in many cases, high-dimensional design spaces, traditional hyperparameter fitting strategies (e.g.,
maximum likelihood, cross validation) may not yet match well the true hyperparameters of the underlying ground truth
process. This increases the risk of model mismatch which can lead to longer search processes [25].

Following Ref. [25], we employ a batch Bayesian optimization approach to eliminate the hyperparameter estimation
stage in constructing surrogate models. Instead, several sets of hyperparameters are generated to construct different
surrogate models, each representing the objective function differently to avoid a single representation that may not
match well with the true objective function. Bayesian optimization is then carried out using all these surrogates one by
one, each of which can lead to a different decision regarding the best next query. We then solve a clustering problem
using the obtained set of query candidates and a batch of points is selected to query from the ground truth objective
function. It has been shown in Refs. [19, 25] that batch Bayesian optimization can significantly improve the design
efficiency and outperforms the pure Bayesian optimization framework as it allows more flexibility to the system in the
way it models an objective function.

In this work, we develop a new Bayesian optimization framework by combining the notions of batch Bayesian
optimization and the active subspace method. We seek more efficiency gains in comparison to implementing batch
Bayesian optimization or the active subspace method alone by applying the active subspace method on every different
representation of the true objective function obtained via constructing surrogates with different sets of hyperparameters.
In other words, at every step of the framework, the active subspace of the objective function is calculated several times,
each time using a different surrogate that represents the true objective function, then the two-step search process is
completed for all active subspaces to obtain a set of query candidates. Finally, a clustering problem is solved over the
query candidates to select a batch of designs to query the objective function and update the corresponding data set.
This process is found to significantly improve on traditional sequential Bayesian optimization, as well as Bayesian
optimization using the active subspace or batch methods in isolation.

The rest of the paper proceeds as follows. First, background is provided to discuss each ingredient of the proposed
framework. Gaussian process regression is introduced as a surrogate to model an objective function, followed by
presenting knowledge gradient as the query policy. The active subspace method and batch Bayesian optimization are
then discussed in detail. We then present our approach to implement the active subspace method within a batch Bayesian
optimization framework by providing an algorithm to explain every step of the process. Finally, we apply our proposed
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approach on benchmark problems as well as a materials design problem involving dual phase steels. We then provide
concluding remarks and discuss avenues of future work.

I1. Background
We consider an optimization problem as
X' = argrgg;&f(X) 1)

where f(x) is a black-box expensive to evaluate objective function defined on the design space X.

A. Gaussian Process Regression

Gaussian processes are powerful statistical tools capable of modeling an objective function as a stochastic process by
conditioning a probabilistic model to training data. The easy manipulation and ability to incorporate prior knowledge in
addition to the flexibility of a Gaussian Process, have put it among popular choices for modeling purposes in engineering
applications. Using a Gaussian process to model an objective function, every point in the input space has a corresponding
normal distribution in the objective space defined by mean and covariance functions [27]. Assuming there are N points
available as our prior knowledge about the objective function denoted by {Xy,yn }, where Xy = (X, ...,Xy) are N
input designs and yy = (f(X1),. .., f(Xn)) are the corresponding objective values, the posterior distribution of the
objective function at any input location x is

for®) [ Xnsyw ~ N (100, 0203 @
where
u(x) = KXy, x)T [KXn, Xn) + 021 yy
0p(X) = k(x,%) - K(Xn,x)" 3)
[K(Xn,Xn) + 07 1] 'K (X, X)

and k is a real-valued kernel function over the input space. Then, K(Xy, Xy ) is a N X N matrix with m, n entry as
k(X X,,), and K(Xp, x) isa N x 1 vector with m’ h entry as k(X,,, X). The term o-,%, is to incorporate model observation
error based on experiments. In this work, the squared exponential function is chosen as the kernel defined by

d 7\2
(xp —xp)
n_ 2 _ h
k(x,x") = og exp ( ; —21,21 4)
where d is the dimensionality of the input space, 0'3 is the signal variance, and I, where h = 1,2,...,d, is the

characteristic length-scale to define the correlation within the dimension & of the input space. The parameters o> and I,
are the hyperparameters for a Gaussian process model, which can be obtained by a maximum likelihood method [27].

B. Knowledge Gradient
An important part of any Bayesian optimization framework is the acquisition function or the heuristic to evaluate
the expected gains of potential function evaluations as the next experiment to run. There have been many different
acquisition functions developed for this purpose such as expected improvement (EI) [2], upper confidence bound (UCB)
[28], and knowledge gradient (KG) [29-31]. In this work, knowledge gradient is used as the acquisition function.
Assume that a function is modeled by a Gaussian process and its posterior distribution at location x, given the
available data, is f(x). Consequently, the best expected objective value is

f]z:rgé\z(E[f(x)lxl:N’ytN] )

Then, by making an additional query and updating the posterior distribution of the function, again, the best expected
objective value is

f;]+1 = Té\z( E[f(X)[X1:n4+1, Y1:N+1] (6)
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and the idea is to select a query as the next experiment to maximize fy,_, — fr since this difference shows the
improvement in the objective value. Note that since the Gaussian process is a stochastic representation of the objective
function, one needs to calculate the expected value of the improvement [12].

Using knowledge gradient as the acquisition function, the value of being in a current system’s knowledge state is
VN (HN) = maxxe, E[f(X)[X1:n, y1:n ], and the expected improvement to the objective value if the design X is queried
next, will be

vEON (x) = E[VN T (HN (%)) - VYV (HN)|HY] (7

and we look for a design to maximize Eq. (7) as the next query. More details on calculation of knowledge gradient are
discussed in Refs. [29-31]

C. Active Subspace Method

The active subspace method (ASM) is a dimensionality reduction technique to approximate an objective function
in a lower dimensional space. This lower dimensional space, known as the active subspace, is formed by linearly
independent vectors in the original input space which the objective function has the largest variability along those
directions. Approximating a function in a lower dimensional space reduces the computational costs regarding learning
the function in machine learning objectives [9, 12, 32]. As mentioned above, in Bayesian optimization, an acquisition
function is employed to search the design space and look for the most valuable query in every stage by estimating the
expected gains. Limiting the searching process to a subspace speeds up optimization tasks and reduces resource usage.
Additionally, since the active subspace is formed by directions with the largest variability of the function, it includes
the highest amount of information about the function in comparison to any other subspaces. Eliminating other less
informative directions helps to preserve computational resources and therefore, significant efficiency gains are obtained
in this regard.

X r
<)) 2

1-D active subspace

All points with the same
ey projection on a selected
point of the active subspace

Fig 1. An example of determining the active subspace and inverse mapping problem solutions of a 2-dimensional
design space.

Following the Refs. [10, 12, 33], assuming a scalar function f that takes m dimensional input x from the design
space X, V, f represents the gradient of the objective function at location x in X. Initially, we need to compute the
covariance of the gradient, C, defined as

C=E[Vx/(x)Vx /()] ®)
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If the objective function has a black-box nature, as it does in many engineering design problems, the gradient can be
approximated by Monte Carlo approaches. Assuming there are M samples available from previous function evaluations,
the covariance matrix is formed as

1 M
Cx - zl] Vaf (%) Ve f (x:)T ©9)

By computing the eigenvalues and eigenvectors of the covariance matrix, the effectiveness of directions defined by
eigenvectors can be defined by the respective eigenvalues. Based on the eigenvalue decomposition, the covariance
matrix can be written as

C = Waw’" (10)

where W is the matrix formed by eigenvectors and A is a diagonal matrix of eigenvalues. To build an rn-dimensional
active subspace, the eigenvectors corresponding to the first n largest eigenvalues are selected.

W=[U V], A:[ﬂl l (11)
A2

The matrix U has n eigenvectors corresponding to the first n largest eigenvectors forming A; and is called the
transformation matrix. Any design point in X can be transformed to the active subspace using the transformation matrix:

z=UTx (12)
and the function g represents the original function f in the active subspace as

g(z) = g(Ux) ~ f(x) (13)

Once the transformation matrix U is found, all evaluated design points from the objective function f are projected to the
active subspace
Zy =UXy (14)

and a new Gaussian process is built using the projected design points in the active subspace

8@) | Zn.yy ~ N (n(2).0°(2)) ()

where g(z) is the posterior distribution of the objective function in the active subspace. Now, we seek to learn the
objective function g in the active subspace instead of the original objective function f.

Employing the active subspace method requires applying the acquisition function (knowledge gradient in this work)
in 2 steps. The first step is applied over the objective function g, searching the active subspace for a query candidate
which maximizes the utility function defined in Eq. (7) using the knowledge gradient as the heuristic

z* = arg max vKON (z) (16)
ze€Zy

where Zy is a set of alternative design points in the active subspace generated by Latin Hypercube space filling
technique to choose the next best design to query. Next, when z* is defined, it needs to be mapped back to X, however,
the challenge is there are infinite number of solutions for this mapping back problem. We suggest a method to overcome
this problem by using the orthogonality of eigenvectors of a symmetric matrix. Note that we divided the eigenvectors of
covariance matrix C in Eq. (10) into matrices U and V in Eq. (11). Now, the subspace formed by the linear combination
of eigenvectors in V is a hyperplane orthogonal to the active subspace:

3

-n
= ak—e>k (17)
1

ﬁ
P

=~
1l

where ay is a random number that for simplicity, is generated from 0 to 1 and € is an eigenvector in V. Then, by
writing the equation of vectors generated by linearly combining eigenvectors in V passing from a point in X with the
projection z* on the active subspace, we obtain a subspace of X that is orthogonal to the active subspace with the same
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ﬁ
projection z*. Using the orthogonal vector P and x*, a design with projection z* on the active subspace, the equation of
this orthogonal hyperplane is given by

x()-x"(1) _x(2)-x"(2) _  _x(m)—x"(m) _ (18)
P P Pm)
where a design vector in X, x = [x(1),x(2),...,x(m)]T, is obtained by solving m sub-equations for a given 7. To

ensure that the design x remains within the bounds of the defined design space, before calculating Eq. (18), the lower
and upper bounds for ¢ should be found by putting the design boundaries in the equation and solving for different ¢
values. Then, a range of values for ¢ is selected to have every design point x corresponding to a particular ¢ inside X.

D. Batch Bayesian Optimization

Let us assume we have N previously evaluated designs regarding an objective function f as the prior knowledge
denoted by Dy = {x;, yi}f\i |- To perform Bayesian optimization, a Gaussian process is fit to this data to model the
objective function f, using it to search for the best next experiment to run. The obtained representation of the function
or in general, any inference about the function given the data is depending on hyperparameters chosen to initialize the
Gaussian process. For example, in this work, we are using the squared exponential function as the kernel equipped with a
Gaussian process and the hyperparameters are signal variance and length scales as defined in Eq. (4). Length scales have
the largest impact on defining the characteristics of a Gaussian process while signal variance has less impact but still
important to have an acceptable value, however, it is easier to set it to an optimal value based on data and expert opinion.
Correct hyperparameters to fit a Gaussian process to data can be found by a maximum likelihood method [27]. A
potential problem with optimizing hyperparameters is that, most often, Bayesian optimization frameworks are employed
to optimize expensive to evaluate objective function and they work with minimal data [25]. Therefore, in sparse
high-dimensional input spaces, their optimized values may be depended on the limited number of data available [19].

1.2

0 025 05 075 1
X

Fig 2. Different representations of an unknown function with two data points available.

In contrast to other Bayesian optimization methods that use a single model to represent the objective function, in
batch Bayesian optimization, the idea is to build a variety of models by assigning different hyperparameters to these
models. Thus, we are able to make different smoothness assumptions and reduce the risk of model mismatch as a results
of setting improper hyperparameters [25]. Since each model makes a different inference about the objective function
given data, they suggest different designs as the best next design to query when evaluating an acquisition function
(knowledge gradient in this work):

Xiin = argmeax VKG’N (X|GP(DN> gl:n)) (19)
Xey

where there are n different Gaussian processes built with different set of hyperparameters, 6, given data D. Once these
query candidates are obtained, a k-medoid problem is solved to select k designs to query next. The value of k defines the
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number of queries we are able to make in parallel, known as the batch size. By solving the k-medoid problem, k clusters
of data points are formed via choosing k points as medoids in a way to minimize the distance between data points and
the medoids. In Ref [34], a batch Bayesian optimization framework is introduced that is capable of optimizing an
objective function in presence of one or more models representing a quantity of interest.

In the following section, we will present a framework to employ the active subspace method and batch Bayesian
optimization simultaneously to take advantage of both techniques to increase the efficiency of design optimization
problems.

I11. Approach

In this section, we introduce a framework to incorporate the active subspace method in batch Bayesian optimization.
Both approaches are proposed separately for efficiency gain purposes in design problems, but we seek to exploit them at
the same time to investigate if it is possible to further improve the design performance.

A step by step process of our proposed framework is presented in algorithm (1). Dataset D contains all data initially
available observed from the objective function to be optimized. Number of alternative models, n, defines the number
of Gaussian processes each with a different set of hyperparameters and the batch size, k, is an indication of possible
parallel queries from the objective function. Once the Gaussian processes are initialized, the active subspaces according
to different function representations are determined. Note that, while the data used to build the Gaussian processes
is the same, the dissimilarity in hyperparameters results in different shape representation of the function. Therefore,
the active subspaces that are obtained based on the function gradients are not identical. Next, dataset D needs to be
transformed to these active subspaces and new Gaussian processes are constructed using the transformed data. An
important point is, one needs to transform length-scale hyperparameters as well to comply with the dimensionality of the
active subspaces. Now, we are ready to apply the first step of knowledge gradient to search for the best next experiment
in each active subspace. Thus, a set of design points in each active subspace is generated. After making the decision in
every active subspace, the selected designs are mapped back to the original design space. According to Egs. (17) and
(18), any design point in the subspace orthogonal to the active subspace defined by linear combination of eigenvectors
in matrix V from Eq. (11), has the same projection on the active subspace and can be used to generate solutions to
the inverse mapping problem. Accordingly, the second step of knowledge gradient is applied over the solution sets of
inverse mapping problems regarding each active subspace.

Algorithm 1 : Implementing the active subspace method in batch Bayesian optimization

1: given Initial dataset D, Number of alternative models n, and Batch size k.

2: Obtain n samples from the hyperparameter space via Latin Hypercube technique (6;.,,).

3: Initialize n Gaussian processes (GP;.,) given D and 6.),.

repeat until termination
Find the active subspaces corresponding to n Gaussian processes using Egs. (9), (10), (11).
Project the data available and length-scales in the original space X to the active subspaces Zi., using Eq. (12).
Construct n GPs of the objective function in the active subspaces ., using projected data and length-scales.
Generate Latin Hypercube samples in each active subspace.
Apply the first-step knowledge gradient to select a design point in each active subspace using Eq. (16).
Inverse map the selected design points to the original space using Eqs. (17), (18).

@ 9 ®» 0k

Apply the second-step knowledge gradient to inverse mapped design points.

11:  Select the best design point in the original space regarding every different alternative model.

12:  Solve a k-medoid problem to select k design points from the set of candidate design points X;.,,.
13:  Query k design points from the objective function to update the dataset D and GPy.,,.

14: return The design point with the largest objective value in D.

After finding the best query candidate in the original input space associated to every different alternative model or
Gaussian process, a set of candidate design points, X;., is formed. Then, we need to cluster these design points where
the number of clusters is defined by the batch size ,k. A k-medoid problem is solved to pick the most agreed samples and
reduce the number of candidate queries to k design points, so that they can be evaluated in parallel from the objective
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function. In the final step of the process, the dataset D and all Gaussian processes are updated by adding newly observed
data points. The whole process is repeated until a termination requirement such as exhausting the number of allowed
function evaluations or computational time is met. The final solution to the design problem is determined by comparing
objective value of all observed data points in D to pick the best design.

IV. Benchmark Applications

To investigate the performance of our proposed approach that combines the notions of batch Bayesian optimization
and the active subspace method, it is applied on the test problems listed in Table 1 to look for the solution that maximizes
each function. While Adjiman and Branin test problems provide highly smooth response surfaces, Himmelblau suggests
greater variations in the objective space. The Bird test problem is a more complex one to challenge the performance of
our approach as it is a multi-modal function with larger function variations. Yet, all test problems are differentiable and
smooth enough to make sure achieving reasonable fits in batch processing to obtain the gradients for finding the active
subspaces respectively. All the test problems are defined on 2-dimensional input spaces with domains shown in Table 1.

Table 1. Test problem’s input domains

Test Problem Input Domain
Adjiman x1=[-12] xp=[-11]
Bird X1 =[-55] x2=[-55]

Branin X1 =[015] x, =[015]
Himmelblau x;=[-55] x,=[-55]

For comparison purposes, we have done the optimization with 4 different methods:
1) Std: standard sequential Bayesian optimization

2) ASM: sequential Bayesian optimization using the active subspace method
3) Batch: batch Bayesian optimization

4) Batch+ASM: batch Bayesian optimization using the active subspace method

A concern when comparing the batch and sequential optimization approaches is that in sequential optimization,
the system has extra information achieved from every single query made in previous iterations of the process while in
batch optimization, it selects a batch of design points to query and the information regarding any of these queries is
only effective for the next batch of queries, not the queries in the same batch of design points. To make this clear, we
can use the following example, assuming the system is allowed to make only 2 queries from the expensive function.
In sequential optimization, the system has the information obtained from the first query to make decision about the
second query, however, this is not the case when querying a batch of 2 design points. On the other hand, batch Bayesian
optimization has the advantage to make different inferences about the data, but it might not be as advantageous as
adding data points to the system. To address this concern and balance the differences between sequential and batch
optimization approaches, we define a query initialization cost to all cases. This way, no matter how many queries from
the function will be made in a single iteration of the process, an initialization cost of one function evaluation will be
added to the overall cost of an iteration. Therefore, every iteration of the sequential optimization costs 2 function
evaluations. Following, if the batch size is set to k, the cost of each iteration will be k + 1 function evaluations. Thus,
we are able to query more design points as the result of a larger batch size, but still, a proper batch size helps to balance
number of function evaluations and exploit the information of previous queries.

Since the study of how changing system parameters impacts the optimization process is not in the scope of this
work, we set them based on expert opinion to get nicely comparable results. For all the test problems, the batch size (k)
and number of alternative models or Gaussian processes (n) are set to 3 and 60, respectively. The initial dataset (D) for
all cases contains 5 data points. Finally, the budget is limited to 100 function evaluations and all the results presented
are averaged over 30 replication of simulations with different starting points.

In Fig. 3, the optimization results regarding all test problems are illustrated. The first conclusion is that using batch
optimization and the active subspace method, the performance of optimization process is improved significantly in all
cases except the Bird test problem. That might be because it is hard for the active subspace approach to identify the
gradients in such multi-modal functions. Although it is not possible to make a direct comparison between the batch and



Downloaded by TEXAS A & M UNIVERSITY on July 29, 2022 | http://arc.aiaa.org | DOI: 10.2514/6.2022-0075

vAdji,m,a“,,,,_,‘ ‘ ‘Bird‘

120
100
80
o)
&=
% 60
=
40
20
O . N L . . . L . N . L N . . . . .
0 20 40 60 80 100
Cost Cost
220+ Branin ‘ v 400 Himmelblau
190
160
=
&=
x 130
<
=
100
70
0 20 40 60 80 100 0 20 40 60 80 100

Cost Cost

95% CI (Std) = 95% CI(ASM) = 95% CI (Batch)  95% CI (Batch+ASM)
=——Mean (Std) =—Mean (ASM) ==Mean (Batch) === Mean (Batch+ASM)

Fig 3. Results showing means and 95% confidence intervals of applying different Bayesian optimization tech-
niques to optimize the test functions averaged over 30 replication of simulations. Std, ASM, Batch, and
Batch+ASM correspond to standard sequential, active subspace method, batch, and combination of batch and
active subspace method Bayesian optimization respectively.

active subspace approaches, the results suggest smaller confidence intervals when performing batch optimization. Next,
it is seen that by taking advantage of both batch optimization and the active subspace method in a single framework, the
results are improved noticeably, outperforming all other methods. In general, it is shown that at any cost values, a better
design suggesting greater objective value is found if both batch optimization and active subspace methods are employed.

Finally, note that in the sequential optimization cases, the expensive function has been set up to evaluate 50 data
points according to the total budget considered for the whole process. On the other hand, in batch optimization with
batch size of 3, the expensive function has been set up only 25 times and 75 data points are gathered. This setting is
especially important when a real experiment needs to be done in a laboratory and setting up the process is complicated
and time-consuming.

V. Demonstration Problem
In this section, we introduce a material design problem and the motivation behind using our proposed algorithm to
solve the problem. An important application of optimization algorithms in material science and engineering is to design
a material to obtain a desired mechanical response. The design problem we are dealing with here is to optimize the
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mechanical response of dual-phase advanced high strength steels. This branch of materials are getting more attention
than ever due to their applications in automotive industry [35]. Dual-phase steels consist of two phases, a soft phase and
a harder martensite phase to strengthen the soft phase and define the overall characteristics of the steel. Designing a
dual-phase steel to get a desired mechanical response is done by controlling the properties of different phases like each
phase’s volume fraction [36].

A finite element model is built to estimate the mechanical response of dual-phase steels in different volume fractions
of the hard martensite phase which is defined based on the annealing temperature and composition of alloying elements.
The mechanical response in this case is Normalized Strain Hardening Rate of the material represented mathematically as
%(%) with 7 as the stress value and € as the strain level. the aim of the optimization problem here is to find the values
of annealing temperature, 774 and the composition of alloying elements X¢, Xps, and Xs; to obtain the maximum
normalized strain hardening rate.
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Fig 4. The response of finite element model at different annealing temperatures and Carbon weight percentages.

In Ref. [37] a sequential Bayesian optimization framework is employed to optimize the normalized strain hardening
rate using all four design variables. However, for simplicity and since the goal in this work is to compare the performance
of some Bayesian optimization techniques, we only seek to search in the space of temperature and carbon and other two
variables are fixed. The annealing temperature ranges from 650°C to 850°C, and the weight percentage of X¢ varies in
the range [0.05-1]. The weight percentages of X7, and Xg; are set to 0.5. The response surface of the finite element
model is illustrated in Fig. 4. We have got this illustration by fitting a surface to the sets of data points obtained in the
works done in Refs. [36-38].

Note that in this work, we use a single model to estimate the objective value at different design points (single
fidelity Bayesian optimization) while in Refs. [19, 32, 36—39] several models have been used to estimate the objective
value in different accuracy (fidelity) levels and costs (multifidelity Bayesian optimization) and is shown to be a more
efficient approach. Thus, extending our proposed approach to a multifidelity framework using the method used in
Refs. [19, 32, 36-41] can be the subject of the future work.

Initializing the finite element model and running simulations are both very expensive procedures in matter of
computational time. Therefore, efficiency gains are of interests in this regard via using batch optimization technique and
employing the active subspace method. The same setting as in the test problems have been used here as well such as
the batch size, number of alternative models, and number of starting data points. The budget is limited to 60 function
queries, including the query initialization cost.

The results of applying all four methods, averaged over 30 replication of simulations with different starting points
are shown in Fig. 5. Both approaches employing the batch optimization technique or the active subspace method are
outperforming the standard sequential Bayesian optimization. Also, the large confidence intervals associated to the
standard approach points to the fact that there are some simulations that the system has been struggling getting close to
the optimal design region while the other approaches have quickly found the path toward the desired design region in
every single simulation. These results also show that combining the batch and active subspace methods is suggesting
the best outcome. This way, we have gathered the benefits of both approaches: using batch processing to reduce model
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Fig 5. The means and 95% confidence intervals of largest objective values found as a function of cost, averaged
over 30 replication of simulations with different starting points.

mismatch risks, and employing the active subspace method to search only important regions of the design space.

Finally, the same set of experiments is run, but this time, all the initial observations are filtered to make sure they are
far from the optimal design region. Basically, we are interested to see how quickly they find the optimal region and
start querying the design points close to it. As seen in Fig. 6, while the standard optimization approach needs more
resources to recover and get close to the optimal design region, other methods have found the optimal solution in a much
faster manner. Again, the combination of batch optimization and active subspace method has outperformed all other
approaches, suggesting a very small uncertainty region around the mean as an indication of consistency of the approach.
This is a big advantage over the sequential Bayesian optimization since in real-life design problems, it is not possible to
repeat the experiments several times and there is only one shot to find the optimum design. However, all approaches
finally get there.

95% CI (Std) 95% CI (Batch)

15 =—Mean (Std) ==Mean (Batch)
95% CI (ASM) 95% CI (Batch+ASM)
=——=Mean (ASM) === Mean (Batch+ASM)
10 . . . .

0 10 20 30 40 50 60
Cost

Fig 6. The largest objective values found as a function of cost, averaged over 30 replications with different
starting points far from the optimal design region.
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VI. Conclusions and Future Work

In this paper, we presented a new Bayesian optimization framework that implements the active subspace method and
batch optimization process simultaneously. While the active subspace method and batch optimization approach have
been developed separately aiming to improve the efficiency of Bayesian optimization frameworks, we have shown that
taking advantage of both techniques in a single framework can further enhance the efficiency of a design process. To
show the effectiveness of the proposed approach, it has been applied on different benchmark problems and the results
are compared to standard Bayesian optimization, Bayesian optimization using the active subspace method and batch
Bayesian optimization with the same initialization settings. It has been shown that, in addition to better performance,
this new framework suggests more consistent results by comparing 95% confidence intervals around the achieved
maximum objective values at any cost value for all methods, obtained by replicating the simulations several times.
Finally, the results of applying the method on a real-world engineering problem of designing a material to maximize a
desired property has been presented. Since the objective function is a finite element model which is computationally
expensive to evaluate, any improvements in the optimization process is demanding, and the results suggest a better
design than other methods at any values of cost.

Since increasing the efficiency of design processes is desirable in engineering applications, in future works, we aim
to make further improvements to this proposed optimization framework by extending it to a multifidelity framework via
incorporating multiple models estimating the same objective value in different fidelity levels. We would thus be able to
extract required information about the true objective values without spending too many resources on directly evaluating
the expensive objective function. Thus, better designs are expected at much lower costs.
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