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A B S T R A C T   

While phase change material based heat sinks have been shown to act as highly efficient transient cooling de
vices, the effective implementation of these components is prevented by a lack of design guidelines. Here, we 
develop an analytical framework for optimizing the design of rectangular and cylindrical phase change material 
composite heat sinks. This is accomplished through the definition of two design objectives: (1) maximize thermal 
buffering capacity at a given time, and (2) maximize the time the system can achieve a minimum thermal 
buffering capacity threshold. In this context, thermal buffering capacity can be quantified in terms of heat ab
sorption rate or temperature, depending on the boundary condition applied. We demonstrate that, in finite 
volumes, there exist two design regimes where the thermal buffering capacity is either limited by the rate at 
which the system can absorb thermal energy or by the total thermal capacitance of the system. We present 
analytical expressions describing the optimal volume fraction for each combination of design objectives, form 
factors, and boundary conditions derived from appropriate analytical solutions for the melting problem. 
Analytically predicted optimal volume fractions are validated with numerical and experimental results from 
existing literature and original work. This collective toolbox enables thermal engineers to make rational de
cisions on architecture to optimize components under specific thermal loads and specific system constraints.   

1. Introduction 

Thermal energy storage (TES) systems containing phase change 
materials (PCMs) have been established as highly efficient components 
for transient cooling [1,2] but are hindered by a lack of cohesive ge
ometry and composition design guidelines, resulting in under
performing PCM structures developed through arbitrary or empirical 
methods. While the basic principles of heat transfer during melting and 
solidification processes are well-understood [3-5], the translation of the 
fundamental physics into rational module design principles for this type 
of nonlinear thermal device are not well-defined. This is contrasted with 
other common thermal management components such as heat sinks 
[6,7], heat pipes [8-10], heat exchangers [6,11] which have had 
extensive development of definite design principles. TES systems can be 
primarily defined by their (1) power density, which describes the rate of 
heat transfer through the material, and their (2) energy density, which 
quantifies the amount of the thermal energy that can be absorbed [12- 

15]. Phase change materials (PCMs) are notable for their high energy 
density, which can be utilized through the phase transition, but are often 
lacking in power density [12,16]. As a result, it is often desirable to 
combine high thermal conductivity materials with PCMs to form high 
performance composites, within which the composition or structure 
may be tuned to modify resultant system properties [13,15]. Currently, 
it is not understood how composition and architecture can be used to 
select for a chosen response profile or thermal buffering capacity under 
realistic application constraints. 

Thermal buffering capacity is a term which can be used as a 
description of the performance of a TES cooling device, which describes 
a TES system’s ability to dampen transient thermal loads and can be 
considered in terms of heat absorption rate or temperature, depending 
on the boundary condition applied. The characteristic response of a 
standard PCM system is demonstrated schematically in Fig. 1a under an 
applied heat flux thermal load, and in Fig. 1b for an applied constant 
temperature thermal load. For constant boundary conditions with an 
applied constant temperature thermal load, the heat flux into the 
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material system is an appropriate performance metric for thermal 
buffering capacity, whereas for an applied heat flux thermal load the 
temperature of the heated boundary is the appropriate choice. 

Composite materials can be defined as systems containing two or 
more components, where the properties of those materials can be 
combined to calculate a set of effective properties which accurately 

model the composite’s macroscopic behavior. PCM composite systems 
take many geometries which most often fall into the categories of: 
composite dispersions [17-20], macro-/micro- porous media (eg. lattices 
or foams) [13,21-25] , and finned heat sinks [26-28]. Additionally, 
composites systems can also be formed using combinations of charac
teristic elements from these categories such as the fins and foams [29- 

Nomenclature 

Variables 
Cp Specific heat at constant pressure, (Jkg−1K−1) 
f Melt fraction 
k Thermal conductivity, (Wm−1K−1) 
Lv Volumetric latent heat of fusion, (Jkg−1) 
q’’ Heat flux,(Wm−2)

r Radius,(m)

Ra Rayleigh number, (unitless) 
St Stefan number, (unitless) 
t Time,(s)
T Temperature,(C)

y Vertical location,(m)

δ melt front location,(m)

ρ Density,(kgm−3)

ϕ Volume fraction, (unitless) Intrinsic material property 

Subscripts 
0 At heated boundary, y = 0 or r = r0 
cart Based in Cartesian coordinates 
cyl Based in Cylindrical coordinates 
eff Effective 
f Farthest edge of system 
i Constituent index 
l Of the liquid 
m Melting 
metal Metal 
OPT Optimal 
PCM Phase change material 
thresh Threshold  

Fig. 1. Characteristic responses of PCM vol
umes to an applied a) heat flux (q′′) or b) 
temperature (T) boundary condition with the 
melting completion time indicated with a red 
dashed line. Schematic of c,f) finned com
posite system, approximated as a d,g)homo
geneous composite and, e,h) fundamental 
configuration of the thermal problem with a 
c,d,e) Cartesian and f,g,h) cylindrical coor
dinate basis. Solid red lines indicate the 
boundary where the thermal load is applied, 
and the dashed purple lines indicate the 
uniformly distributed melt front location. 
(For interpretation of the references to colour 
in this figure legend, the reader is referred to 
the web version of this article.)   
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31] or fins and dispersions [32-34]. Each category metal/PCM assem
blies can be described as an ideal composite in the limit of small con
stituent spacing, where the length scales of heat transfer between the 
conductive material and the PCM become sufficiently small such that the 
temperature profile is effectively even and moves as a uniform front [35- 
38]. One advantage of treating the system as a homogeneous material is 
the resulting simplification of the melting problem from a 3D, or 2D, 
configuration (Fig. 1c,f) to a 1D configuration (Fig. 1d,g). This saves 
significant computational expense in numerical simulations, allowing 
for rapid testing of varying configurations and presents the opportunity 
for simplified analytical solutions to non-trivial configurations and 
scenarios, as detailed in the following sections. This approximation will 
break down in the presence of high convective driving forces, associated 
with large Rayleigh (Ra > 106, for systems with high effective thermal 
conductivity) [39,40], and in cases of wide constituent spacing [35,37]. 
However, with this limitation being known, constituent spacing can be 
selected such that the requirement of small spacing is met and when this 
is true, even with relatively high driving forces, the role of convection 
has been shown to play a very small role in comparison to conductive 
forces [27,41]. 

When designing PCM composite systems, the proportion and 
configuration of components within these structures directly dictates the 
direction and magnitude of heat transfer within the system [13,14]. The 
most common thermal management components are rectangular slabs, 
corresponding to planar heat sources, or cylindrical annuluses, corre
sponding to line or circular pipe heat sources, both of which are inves
tigated in this work. These systems are commonly filled with rectangular 
or radial fins (Fig. 1c,f), respectively, because they are easily manufac
tured and can access a large range of volume fractions, which are 
inaccessible by nanocomposites [20] or more complex structures 
[13,42]. These structures also represent the upper limit of anisotropic 
heat transfer parallel to the direction of heat flow [43]. 

The bulk of previous work on PCM composite design has focused on 
experimental or numerical empirical testing of similar geometries and 
selecting the highest performing system within a sample set of thermal 
configurations [28,41,44-46]. Differing thermal configurations can be 
defined as permutations of materials, boundary conditions, time scales, 
coordinate bases, critical performances metrics, thermal loading, and 
length scales, where each configuration will correspond to a specific 
optimal design. These empirical studies only provide limited insight into 
the characteristics of specific high-performance systems by optimizing a 
particular subset of thermal configurations, but their results do not 
provide widely applicable design guidelines for the broader design 
space. Moreover, the data provided in these studies is sparse in com
parison to the overall degrees of freedom in the design space. Therefore, 
these studies are unlikely to identify underlying correlations and design 
rules. 

Analytical optimization efforts often focus on identifying useful fig
ures of merit which identify the point of component mixing where the 
thermally capacitive and conductive elements best balance each other to 
maximize the rate of heat absorption from the heated boundary under 
simple thermal loads [13,47,48]. These approaches are useful as a 
starting place for PCM based designs, but these solutions assume a quasi- 
infinite volume, therefore not accounting for geometric constraints or 
efficient utilization of allotted space. This assumption is sufficient for 
lower power applications, and very large available volumes, but for 
most real-world design applications, it becomes necessary to account for 
finite available volumes. The otherwise lack of sensitivity toward finite 
volumes in the literature is partially addressed in work by Lu through 
the development of a methodology to select for allowable heat pulses for 
a given PCM body with specified geometry and an upper threshold 
temperature limit [49]. While this methodology is useful for deter
mining operating parameters, it is not trivial to translate to system 
design and is limited to the selection of constant heat flux pulses in 
Cartesian coordinates and only explores one optimization goal. 

For finite volumes, the time corresponding to the completion of 

melting marks the point where subsequent times experience a rapid 
decrease in performance for both thermal load types and corresponds to 
the limit of the PCM’s thermal buffering capacity (Fig. 1a,b) [35]. Pre
vious work by Bransier found that this point of melting completion could 
be used as a design tool for dimension selection [50]. The author showed 
that the width of a PCM slab, perpendicular to a planar thermal load, 
should be chosen such that the time at which optimization is occurring 
should correspond to the complete melting of the system. This empha
sizes the impact the constraint of a finite volume places on the design 
problem, which is very common in application. 

In this work we seek to develop a methodology that will allow the 
tailoring of a specific thermal response through composition selection of 
the thermally conductive and capacitive elements in a dynamic PCM 
thermal system. Furthermore, we seek to address the role of a volume 
constraint on the resulting optimization, as this is a facet of the design 
problem that is not often addressed by current literature, but is critical 
for most applications. To this end, we establish a comprehensive 
analytical framework describing this optimal composition for highest 
thermal buffering capacity with the objective to either 1) maximize the 
thermal buffering of the heated boundary at a given time, or 2) maxi
mize the time the desired buffering effect occurs. To ensure the wide
spread applicability of this work, the breadth of our frameworks 
includes constant temperature and constant heat flux boundary condi
tions, where we consequently analyze thermal buffering in terms of the 
complementary boundary variable not being fixed. We also complete 
our analysis for both Cartesian and cylindrical based systems, allowing 
this work may be applied to a large variety of applications. For each 
combination of coordinate systems, performance metrics, and boundary 
conditions, an optimal volume fraction is analytically identified and 
compared against analogous numerical and experimental results, both 
from the existing body of literature and original results. The analytical 
solutions contained herein are meant to provide a practical guideline for 
the design of PCM composite systems for thermal management when the 
application is known. This provides an unprecedented degree of design 
insight currently lacking in the current literature, especially considering 
the breadth of thermal configurations and design objectives contained in 
this work. 

2. Methods 

2.1. Problem statement 

In the pursuit of optimal composite design, we consider the com
posite to act as a singular effective medium through the homogeneous 
composite approximation (

∮
3.1.2) and utilize the quasi-steady state 

(QSS) approximation (
∮

3.1.3) to describe internal heat transfer and 
melt dynamics. 

The system of study is initially defined at the melting point, entirely 
in the solid state. The appropriate heating boundary condition of either a 
constant temperature or heat flux is applied to a single boundary and all 
other boundaries are adiabatic (Fig. 1e,h). It is assumed in our analytical 
and numerical approaches that the solid and liquid phases are distinct 
and their respective material properties are not dependent on temper
ature. Furthermore, convective heat and mass transfer are considered 
negligible in our model, confining heat transfer to conductive pathways, 
which is practical for the small length scales we are considering. At such 
length scales, where the composite approximation is most valid, the 
associated Rayleigh numbers become relatively small, indicating negli
gible levels of convective heat transfer, as previously discussed [39]. In 
this limit, the interaction between fluid viscosity and geometric 
confinement balances the buoyant forces and convective heat transfer is 
dwarfed by conductive heat transfer [27,40,41]. Furthermore, this is 
also the limit in which the time for heat penetration from the conductive 
fin into the PCM becomes increasingly small and the thermal front 
converges to a uniform distribution, consistent with a singular effective 
medium [35,36]. As volume fraction limits to 0, where there is no metal 
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in the system, a manufacturability limit will be reached, and our as
sumptions will break down. However, if a design problem yields a so
lution with the sole goal of increasing thermal capacitance, the 
singularly PCM system is expected to still be the highest performing 
solution. 

The material composites developed and analyzed herein are 
composed of octadecane and aluminum alloy, AlSi12 (Table 1). Octa
decane was chosen for its near room temperature melting point, high 
latent heat, and ease of incorporation. In our analytical and numerical 
models, the melting temperature is approximated as a single well- 
defined temperature which is an assumption that varies in accuracy 
depending on the PCM in question. Octadecane is known to melt over a 
range of temperatures which can vary depending on the sample purity. 
For the material used in this study, the full width at half maximum range 
of the melting peak was measured with DSC to be 3.3 ℃ for a moderate 
heating rate of 10 ℃/min, which is relatively small when compared to 
the total heating range under investigation here. This demonstrates that 
while approximating the melting temperature as discrete adds a level of 
approximation to our experimental comparisons, it is still a reasonable 
approximation to make and we have observed that using a low value 
within the melting range has shown strong comparisons to experimental 
results. AlSi12 was chosen for our related additive manufacturing ca
pabilities and for its high thermal conductivity. To manufacture opti
mally performing systems, the aluminum alloy structures are designed 
through the analytical optimization system described herein, these 
structures are then manufactured by powder bed laser fusion and infil
trated with octadecane, as further discussed in section 

∮
2.3. 

2.2. Finite difference analysis 

In this work, numerical investigations are utilized to characterize 
heat transfer and, specifically, the time-dependent temperature rise, and 
quantity of heat absorbed by a composite PCM volume under externally 
applied boundary conditions. We use 1D finite difference analysis (FDA) 
models simulating conductive heat transfer through Cartesian and cy
lindrical PCM composite geometries, which have been established and 
tested in previous work (Fig. 2) [35,36,51]. The fundamental assump
tions of the FDA models include 1) the material properties of the solid 
and liquid phases are not dependent on temperature, 2) melting occurs 
at a singular temperature, 3) the interface between phases is well- 
defined, 3) the densities of the solid and liquid phases are equal lead
ing to no mass transfer upon phase change and 4) no convection occurs 
in the liquid phase. These assumptions also carry through to the 
analytical models contained in this work. 

Within the FDA, nodes are linearly spaced between boundaries and 
node characteristics are given by the system geometry and effective 
properties (Eqs. (3), (4), Fig. 2). For all simulations executed in this 
work, the initial state of the bulk is completely in the solid state and held 
at the melting temperature. A singular boundary node is set to apply a 
thermal load of either an applied constant heat flux or temperature and 
the opposing boundary node is adiabatic. For every timestep, the heat 
transfer between nodes is calculated using an implicit backward Euler 
method, from which the temperature and melt fraction of each node is 
determined. To this end, for a Cartesian coordinate basis the heat 

equation is given by: 

1
∂y

(k
∂T
∂y

) = ρCp
∂T
∂t

+ Lv
∂f
∂t

(1) 

where y, ρ, Cp, T, t, k and Lv represent distance, density, specific heat 
capacity, temperature, time, thermal conductivity, and volumetric 
latent heat, respectively [6]. The melt fraction of a given node volume is 
represented by f , where the possible values are; 0 which represents not 
at all melted, 1 which represents completely melted and intermediate 
values represent partial melting. Within Eq. (1) the left-hand side of the 
equation represents the rate of heat transfer through the given volume 
and the right-hand side of the equation represents the heat absorbed by 
the volume through sensible (term 1) and latent (term 2) heating. The 
same concepts of energy conservation can also be applied to a cylindrical 
coordinate basis, yielding the heat equation: 

1
r

1
∂r

(kr
∂T
∂r

) = ρCp
∂T
∂t

+ Lv
∂f
∂t

(2) 

where the r is radial distance [6]. Within the FDA, once the melting 
temperature of a given node is reached, the node will absorb thermal 
energy into the latent heat until the volume is completely melted before 
beginning to sensibly heat leading to a singular well-defined front. 

Fidelity of FDA model is directly dependent on timestep length and 
node spacing. Timesteps are chosen to be most fine at earliest times 
(10−7 s) increasing by 10−7 s each step. A total of 2000 nodes are 
distributed between the two boundaries of the simulated volume. This 
combination of values yields the highest relationship between fidelity 
and computational expense. Timesteps and number of nodes were 
chosen such that full convergence was observed between tests of 
increasingly smaller timesteps and larger number of nodes. Accuracy of 
the resulting finite difference model was tested against ANSYS simula
tions, analytical models, and experimental data [35,51]. Simulated heat 
transfer continues until an end condition is met, determined by the 
thermal conditions and objective function being designed for, as a given 
time or performance threshold. 

2.3. Experimental verification 

To supplement thorough numerical testing, a set of experimental 

Table 1 
Material properties used in original numerical simulations and analytical 
modelling.   

Units AlSi12 alloy Octadecane 

kl Wm−1K−1 – 0.15 
ks Wm−1K−1 80 0.36 
Lv J m−3 – 1.74 x108 

ρ kgm−3 2700 712 
Cp Jkg−1K−1 900 2200 
Tm C – 28  

Fig. 2. Schematic visualization of the computational space under consideration 
demonstrating the setup of the system and the means for using Fourier numbers 
(Fo) to simulate heat transfer between evenly spaced (Δy) nodes (J1 – Jn) from 
the heated boundary (J1) to the adiabatic boundary (Jn). 
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tests are done to further validate the proposed analytical framework. 
Cylindrical metal finned structures are fabricated from Aluminum alloy, 
AlSi12 (3D Systems, PS2585-18), using laser powder bed fusion (ProX 
200), which is selected for its ability to generate high resolution features 
(beam spot diameter: 80 μm) with low porosity (<1 vol%). The metal 
structures are longitudinally uniform with radially branching fins 
designed to maintain a target uniform volume fraction throughout the 
cylindrical volume, while maintaining a maximum spacing of 1 mm in 
order to satisfy the composite effective properties assumption [35,52]. 
These cylindrical structures are designed with consistent parameters: 
38.1 mm axial length, 3.6 mm inner radius, 1.5 mm metal base width 
and outer radius of 19.1 mm, with a maximum uncertainty of ± 0.2% on 
all fabrication dimensions. Metal structures are filled with molten PCM 
and refrigerated to solidify. 

Insulating layers of silicone foam are used to enclose the experi
mental test rig and prevent environmental heat transfer. Cylindrical 
composites are initial initially held isothermally at 22 ◦C where all the 
PCM is in the solid state. A cartridge heater is used to apply a constant 
heat flux thermal load of 7.3 ± 0.3 W⋅cm−2 to the inner radius of the 
cylindrical composite (CIR-10151/120 V, Omega), where the uncer
tainty represents the combined uncertainty of the cartridge heater sur
face area and the measured heater power. Thermistors, with a variability 
of ± 1 ℃, are attached to inner wall of the composite and are used to 
record temperature while the system undergoes heating (MP3022, TE 
Tech) [52]. 

3. Theoretical development 

3.1. Analytical foundation 

3.1.1. Limiting regimes 
Within this work, for every configuration of interest we define an 

individual solution for the rate limited and volume limited regimes. These 
solutions are presented as optimal volume fractions, ϕ, which refer 
specifically to the volume fraction of metal within the system. In the rate 
limited regime, the performance of the system is limited by the rate at 
which heat can be absorbed into the system. The rate limited regime case 
is effectively equivalent to an infinite medium because the melt front has 
no interaction with the edges of the system. Consequently, in this case it 
may be recommended that the system size be decreased to cut down on 
the total mass and volume of the thermal management system and cut 
down on unused volumes. Fig. 3 (c,d) demonstrates that the rate limited 
optimum is the absolute optimal performance the system may have to a 
thermal load. 

When a volume constraint is taken into account, the composition 
predicted by using a rate limited calculation may no longer be optimal 
(Fig. 3c,d), leading to the definition of a second regime designated as the 
volume limited regime. Since the rate limited optimum does correspond to 
the highest possible performance given no volume constraints, it follows 
that a system designer may wish to relax volume constraints to achieve 
the highest performance optimum if possible. However, in many cases 
volume constraints may be inflexible and using the rate limited optimum 
would lead to extremely poor performance, which emphasizes the 
importance of utilizing the volume limited regime when necessary. In this 
case the performance is now limited by the total thermal capacity of the 
system and the optimum is determined by the composition leading to 
full utilization of the volume (Fig. 3a-b). The primary objective of the 

Fig. 3. Compositional dependence of a) 
final heat flux, when a constant tem
perature boundary condition is applied 
(T(r = r0) = T0), and b)final tempera
ture, when a constant heat flux bound
ary condition is applied

ʀ
q′′(r = r0) =

q′′
0

)
, at time, t′, with respect to the vol

ume fraction of metal ϕ. d) For a series 
of varying radii, the compositional 
dependence of performance at a given 
time is explored for e) constant temper
ature and f) constant heat flux boundary 
conditions. In the volume limited regime 
(r1, r2, r3), the optimal composition is 
affected by the finite boundary and in 
the rate limited regime (r4), the optimal 
composition coincides with an infinite 
system.   
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volume limited regime is to add additional capacitance preventing the 
onset of detrimental effects of melting completion. This leads to a 
decrease in volume fraction with increasing times of interest or thermal 
loading magnitude. 

The optimal composition is dependent on problem specific factors 
such as, material properties, geometric constraints, performance metric 
and thermal loading. Once the thermal and geometric parameters of the 
optimization problem are defined, the rate limited optimum, and the 
volume limited optimum should both be calculated and the lesser of the 
two values should be selected as the true optimum (Fig. 3c-d). 

3.1.2. Homogeneous composite approximation 
The homogenous composite approximation treats a multicomponent 

material system as a single medium, where the effective properties are 
calculated from: the constituent material properties, the relative volume 
fraction of constituent components, and their distributions. Previous 
literature has shown that in the effective medium limit, where decreased 
the constituent components are well-mixed and separated by small 
length scales, thermal transport in PCM systems can be calculated using 
the homogeneous composite approximation [35-37,53]. As previously 
discussed, for such composites, this limit corresponds to behavior where 
the time for heat penetration from the conductive fin into the PCM be
comes increasingly small and convective heat transfer is dwarfed by 
conductive heat transfer [35,40]. The homogeneous composite 
approximation represents the upper limit of heat transfer for these sys
tems and defines the objective of optimizing composnent spacing within 
a composite, i.e. optimal component spacing corresponds to the limit 
where performance converges with the homogeneous composite model 
[13,35,36]. The validity of this approximation has been demonstrated in 
both Cartesian and cylindrical coordinate systems [35,37], and the 
critical point of spacing for use of this approximation is analytically 
described for Cartesian systems [35]. 

For intrinsic properties, the resulting effective properties are deter
mined solely through constituent volume/proportions, whereas 
extrinsic transport properties, such as thermal conductivity, also 
consider the specific internal geometries. For intrinsic properties, the 
effective property, Xeff , can be calculated as: 

Xeff =
∑

i
ϕiXi (3) 

where each constituent volumetric material property, Xi, is scaled by 
the constituent volume fraction, ϕi [54]. For the case of heat transport 
parallel to the heat source the effective thermal conductivity, keff , fol
lows the upper bound associated with conductive elements arranged in 
parallel along the direction of heat transfer and can also be calculated as: 

keff =
∑

i
ϕiki (4) 

where the thermal conductivity of each constituent is denoted by ki 

[43,54]. While this configuration corresponds to anisotropic heat 
transfer perpendicular to the heat source, other methods of calculating 
transport properties can be applied to other configurations. For example, 
microencapsulated PCM structures [55] would represent systems with 
highly isotropic heat transfer from which transport properties could be 
determined using the calculation described by Hashin and Shtrikman 
[56] and alternatively referred to as the Maxwell–Eucken bounds. 
Additionally, specific heat transfer models have been developed for 
alternating layers [54,57], and lattice structures [58,59], among others. 

3.1.3. Quasi-steady state (QSS) approximation 
In addition to the homogeneous composite approximation, the 

melting problem in composite systems can further be simplified using 
the quasi-steady state (QSS) approximation. This approximation as
sumes the conduction time through the liquid is short relative to the melt 
time. These assumed conditions lead to constant temperature gradients 
within the liquid phase (∂2Tl

∂y2 = 0,∂2Tl
∂r2 = 0), making the analytical melting 

problem more tractable [60-62]. This assumption is considered valid for 
very low Stefan numbers (St ≪ 1), which implies the role of sensible heat 
is very small compared to the role of latent heat at the melt front 
interface [62-65]. Therefore, this approximation is most suitably applied 
for materials with very high latent heat values under low to moderate 
magnitude thermal loads, which is highly applicable for a large portion 
of PCM applications. 

3.2. Approximate equations 

In subsequent sections we establish the fundamental heat transfer 
equations which are used to develop an analytical optimization frame
work. More complete derivations described in the following sections are 
discussed in works by Hill [60] and Alexiades [61] among others. 

3.2.1. Cartesian melting descriptions – Applied heat flux BC 
We first consider the 1D cartesian melting problem with an applied 

constant heat flux boundary condition. We set the boundary at location, 
y = 0, which corresponds to the planar interface between the heat 
source and the PCM composite layer. Heat flows in the positive y di
rection away from this source. Using the QSS approximation, the in
crease in temperature at the heated boundary, ΔT0 = T(y = 0) −Tm, is: 

ΔT0(t) =
q’’

0 δ(t)
keff

, y = 0 (5) 

where q’’
0 corresponds to the applied thermal heat flux at the 

boundary, keff corresponds to the effective thermal conductivity and δ(t)
represents the location of the melt front as a function of time, which is 
given by: 

δ(t) =
q’’

0 t
Lv,eff

(6) 

where Lv,eff represents the effective volumetric latent heat of the 
composite. Combining Eqs. (5) and (6) yields the equation for the 
temperature rise at the heated boundary over the initial temperature of 
the material,ΔT0, as a function of time: 

ΔT0(t) =
q’’

0
2t

keffLv,eff
, y = 0 (7)  

3.2.2. Cartesian melting descriptions – Applied constant temperature BC 
For the complementary problem of an applied constant temperature 

boundary condition, at y = 0 the heat flux into the system through the 
heated boundary interface (q’’

0 ) is given as: 

q’’
0 (t) = kl

ΔT0

δ(t)
, (8) 

where ΔT0 is the difference between the applied temperature of the 
heated boundary and the initial temperature set to Tm (ΔT0 = T(y =

0) −Tm). Additionally, the location of the melt front,δ(t), can be 
expressed as: 

δ(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2keffΔT0t
Lv

√

(9) 

Substituting Eq. (9) into Eq. (8) allows for the expression of heat flux 
into the system in terms of boundary condition and material properties 
as a function of time: 

q’’
0 (t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Lv,eff keff ΔT0

2t

√

, y = 0 (10)  

3.2.3. Cylindrical melting descriptions – Applied heat flux BC 
We assume approximately the same configuration to establish anal

ogous equations for cylindrical systems with the boundary at location r0, 
which corresponds to the cylindrical interface between the heat source 
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and the PCM composite heat sink. The heat flows through the composite 
in the r direction away from this source until reaching the outer 
boundary at rf . For the boundary condition of an applied heat flux, the 
QSS solution the temperature rise at the inner radius boundary (ΔT0 =

T(r = r0) −Tm) can then be described as: 

ΔT0(t) = −
q’’

0 r0

keff

{

ln
(

r0

δ(t)

) }

, r = r0 (11) 

where the melt front location δ(t) in the radial direction is given by: 

δ(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2q’’

0 r0t
Lv,eff

+ r0
2

√

(12) 

Combining Eqs. (11) and (12) yields the equation for temperature 
rise at the inner radius boundary as a function of time: 

ΔT0(t) =
q’’

0 r0

keff

{

ln

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2q’’

0 t
r0Lv,eff

+ 1

√ ) }

, r = r0 (13)  

3.2.4. Cylindrical melting descriptions – Applied constant temperature BC 
Lastly the necessary equation for Cylindrical based melting systems 

with an applied constant temperature boundary condition at the inner 
radius completes our analytical basis. The key equation for heat flux into 
the system through the inner radius heated boundary is expressed as: 

q’’
0 (t) = − keff

ΔT0

r0ln(r0/δ(t) )
, r = r0 (14) 

Furthermore, the location of the melt front travelling radially 
through the system is given as: 

δ(t)(1 + ln(r0/δ(t) ) ) = r0 −
keff ΔT0t
r0Lv,eff

(15) 

Due to the nature of the of the above location it is not possible to 
analytically isolate δ(t) but numerical methods can be used to further 
advance design capabilities. 

3.3. Deriving optimums 

To create expressions for an optimal volume fraction of components, 
it is first necessary to define the objective that we are designing for. For 
an applied heat flux boundary condition, we will be considering the 
design objectives of: minimizing T0 at a given optimization time,t’, (

∮

3.3.1) and maximizing the duration the heated boundary can stay below 
a given allowable temperature threshold, Tthresh (

∮
3.3.2). For an applied 

constant temperature boundary condition, we will be considering the 
design objectives of: maximizing q’’0 at a given optimization time,t’, (

∮

3.3.3) and maximizing the duration the system can stay above a mini
mum allowable heat flux,q’’thresh, i.e., dissipating at least a given level of 
power (

∮
3.3.4). The collection of all these objectives and geometries 

allows for this work to be broadly applied to many common 
applications. 

In the following sections we derive analytical expressions for optimal 
volume fraction. An expression is derived for every combination of co
ordinate basis (Cartesian/cylindrical), boundary condition (applied 
ΔT0/q’’

o ), and design objective. Furthermore, independent expressions 
are developed for the rate limited and volume limited regimes. In the rate 
limited regime, the volume fraction is selected based on the rate the 
material can absorb heat. In the volume limited regime, the volume 
fraction is selected based on the thermal capacitance limits. From the 
resulting volume fraction values for each regime, the lower volume 
fraction of the two will be the optimal design choice, as discussed in 

∮

3.1.1. 
For the design objective of optimizing a specific performance metric 

at a given time (
∮

3.3.1, 
∮

3.3.3), in the rate limited regime the perfor
mance metric, determined by the given boundary condition, is 

maximized analytically with respect to volume fraction to identify the 
optimum. The optimum in the volume limited regime is identified such 
that PCM melting completes at the time under investigation to select for 
a more thermally capacitive competition, delaying the drop in perfor
mance associated with melting completion. 

For the design objective of maximizing the time for achieving a given 
minimum level performance (

∮
3.3.2, 

∮
3.3.4), in the rate limited regime 

the allowable time is maximized analytically with respect to volume 
fraction to identify the optimum. The volume limited optimal volume 
fraction is obtained by an analytical balancing of rate of thermal ab
sorption and thermal capacitance. This is achieved by selecting a volume 
fraction such that the time to complete PCM melting corresponds with 
the time the threshold of performance is met. 

3.3.1. Boundary condition: Applied heat flux 

q’’(y = 0|r = ro) = q’’
o  

Objective function: Minimize the temperature at a given time 

min(T(y = 0|r = ro, t) ) for t = t’ 

Consider first the case of a constant defined heat flux, q’’(y = 0|r =

ro) = q’’
o , that will operate for a specific amount of time, with the goal of 

minimizing the temperature of the heated surface at a particular opti
mization time, min(T(y = 0|r = ro, t) ) for t = t’. 

To optimize the system when in the rate limited regime for Cartesian 
based systems Eq. (7) is rewritten as a function of volume fraction: 

ΔT0 =
q’’

0
2t

(kmetal(ϕ) + kPCM(1 − ϕ))Lv,PCM(1 − ϕ)
(16) 

where the minimum temperature rise corresponds to: 

ϕOPT,cart =
(kmetal − 2kPCM)

2(kmetal − kPCM)
. (17) 

Under the rate limited regime for this configuration, the optimal 
volume fraction is exclusively a function of the thermal conductivity of 
the constituent materials. 

When pursuing the objective of minimizing the temperature at a 
given time for cylindrical based systems, the temperature rise at the 
inner radius, Eq. (13), can be minimized similarly. 

(kmetal(ϕ) + kPCM(1 − ϕ))q’’
0 r0t’ − Lv,PCM(1 − ϕ)

2
(

2q’’
0 r0t’

Lv,PCM(1 − ϕ)
+ r0

2)(kmetal

− kPCM)ln

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2q’’

0 t’
Lv,PCMr0(1 − ϕ)

+ 1

√ )

= 0
(18) 

This equation can then be solved numerically to determine the vol
ume fraction that will minimize the temperature of a given system with 
no edge effects at a given time. Unlike the Cartesian case, optimal vol
ume fraction for cylindrical systems in the rate limited regime is depen
dent on time and geometry. 

For a Cartesian system in the volume limited regime, the optimal 
volume fraction can be solved using Eq. (6) and setting the melt front 
location to the edge of the system (δ(t) = yf ). Substituting in the effec
tive property calculation for latent heat, and solving for volume fraction 
yields: 

ϕOPT,cart = 1 −
q’’

0 t’

yf Lv,PCM
(19) 

In this case the optimal volume fraction is determined by the height 
of the system, the latent heat, the heat flux load and the time at which 
the system is being optimized. 

The same approach may be taken for volume limited cylindrical 
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systems, using Eq. (12) and setting the melt front location equal to the 
outer radius (δ(t) = rf ). Substituting in the effective property calculation 
for latent heat, and solving for volume fraction yields: 

ϕOPT,cyl = 1 −
2q’’

0 r0t’

Lv,PCM(rf
2 − r0

2)
(20) 

This expression follows the same form as the cartesian result (eq 
(19).) while accounting for radially varying thermal mass. 

3.3.2. Boundary condition: Applied heat flux 

q’’(y = 0|r = ro) = q’’
o  

Objective function: Maximize the time to stay below a given threshold 
temperature 

max (t) for T(y = 0|r = ro)〈Tthresh 

For the next objective we can consider a power source that can be run 
up until a defined upper temperature limit is reached,Tthresh. It is crucial 
in this scenario to have a design method to prevent the overheating and 
damage to the power source component or surrounding system. This 
upper limit can also be defined as a temperature threshold: 

ΔTthresh = Tthresh − Tm, (21) 

which cannot be exceeded. 
For this objective, when the system is rate limited, the solution can be 

obtained simply through isolating the time component. Rearranging Eq. 
(7) for time and substituting in effective property calculations yields: 

t =
(kmetal(ϕ) + kPCM(1 − ϕ))Lv,PCM(1 − ϕ)ΔT0

q’’
0

2 (22) 

Maximizing this equation when ΔT0 = ΔTthresh, yields the same vol
ume fraction as the previous Cartesian rate limited response described by 
Eq. (17). This is expected because the optimal volume fraction in the 
Cartesian coordinate system does not vary with time or melt front 
location. 

The cylindrical rate limited case will differ between design objectives 
due to the time and geometric dependance of the melt front circumfer
ence and associated volume. For this regime, Eq. (13) can be taken and 
rearranged for time. Substituting the effective material properties for the 
latent heat and thermal conductivity, we attain the expression for heat a 
specific time as a function of volume fraction. 

t =
r0Lv,PCM(1 − ϕ)(e2ΔT0(kPCM (1−ϕ)+kmetal(ϕ) )/q’’

0 r0 − 1)

2q’’
0

(23) 

Maximizing Eq. (23) then yields the following optimal composition: 

ϕOPT,cyl =
2ΔTthresh(kmetal − kPCM) − q’’

0 r0

2ΔTthresh(kmetal − kPCM)
(24) 

For Cartesian based systems, the limiting factor of thermal capaci
tance can be described using the time to complete melting, Eq. (6), with 
an effective latent heat calculation to get: 

t =
Lv,PCM(1 − ϕ)(yf )

q’’
0

(25) 

This can then be substituted into Eq. (16), setting,ΔT0 = ΔTthresh and 
simplified to get the optimal volume fraction of the volume limited regime 
as: 

ϕOPT,cart =
yf q′′

0 − kPCM(ΔTthresh)

ΔTthresh(kmetal − kPCM)
(26) 

The same approach from the Cartesian development can then be 
applied to Cylindrical based systems for the volume limited regime. 
Taking the equation for melt front location (Eq. (12)) and rearranging to 
get the time to complete melting yields: 

t =
(rf

2 − r0
2)Lv,PCM(1 − ϕ)

2r0q’’
0

(27) 

Substituting the time of melting completion from Eq. (27) into Eq. 
(13), setting, ΔT0 = ΔTthreshand solving for volume fraction then results 
in the equation: 

ϕOPT,cyl =
q′′

0r0 ln
ʀ
r0/rf

)
+ ΔTthreshkPCM

ΔTthresh( kPCM − kmetal)
(28)  

3.3.3. Boundary condition: Applied constant temperature 

T (y = 0|r = ro) = To  

Objective function: Maximize the heat flux at a given time 

max(q’’(y = 0|r = ro, t) ) for t = t’ 

In addition to considering system with an applied heat flux, it is also 
useful to develop optimization of systems with an applied constant 
temperature boundary condition. An applied constant temperature 
boundary is most closely analogous to the cooling of a heat pipe with a 
roughly isothermal liquid circulating through the system. If it is known 
that there will be a thermal load for a given amount of time, it may be 
desirable to maximize the heat absorption up to a given time based on 
the thermal loads of the system. 

Within this configuration, first we develop an optimization for Car
tesian geometries in the rate limited regime. Using an effective properties 
substitution in Eq. (10) the heat flux into a Cartesian system is given by: 

q’’
0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(kmetal(ϕ) + kPCM(1 − ϕ))(Lv,PCM(1 − ϕ))ΔT0

2t

√

(29) 

The maximization of this equation then yields the optimum 
described by Eq. (17), and is consistent across all rate limited solutions in 
Cartesian based systems. 

The cylindrical system under an applied constant temperature 
boundary condition presents a much more challenging problem due to 
the transcendental nature of the solution for the melt front location. To 
optimize for this case a numerical method is used to test across all vol
ume fractions for the composition that will yield the largest flux at the 
time of optimization using Eqs. (14) and (15). 

In the applied constant temperature boundary condition case, the 
volume limited optimal volume fraction is calculated using the equation 
for melt front location (eq. (9)) and substituting in the effective latent 
heat and thermal conductivity: 

yf =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2( kmetal(ϕ) + kPCM(1 − ϕ) )ΔT0t

Lv,PCM(1 − ϕ)

√

(30) 

This equation can then be solved to identify the optimal volume 
fraction as: 

ϕOPT,cart =
Lv,PCMy2

f − 2 kPCMt′ ΔT0

Lv,PCMy2
f + 2 t′ ΔT0(kmetal − kPCM)

(31) 

Applying the same approach to the cylindrical case, Eq. (15) for the 
location of the melt front can be used with effective material properties 
substituted as follows: 

δ(t)(1 + ln(r0/δ(t) ) ) = r0 −
( kmetal(ϕ) + kPCM(1 − ϕ) )ΔT0t

r0 Lv,PCM(1 − ϕ)
(32) 

This expression can then be solved, replacing δ(t) with the outer 
radius of the system rf and solving for the volume fraction as: 

ϕOPT,cyl =
rf r0 Lv,PCM

ʀ
1 + ln

ʀ
r0/rf

))
− Lv,PCMr2

0 + kPCMt′ ΔT0

rf r0 Lv,PCM
ʀ
1 + ln

ʀ
r0/rf

))
− Lv,PCMr2

0 + t′ ΔT0(kPCM − kmetal)
(33)  
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3.3.4. Boundary condition: Applied constant temperature 

T (y = 0|r = ro) = To  

Objective function: Maximize the time to stay above a threshold heat flux 

max (t) for q’’(y = 0|r = ro)〈q’’thresh 

The last objective we consider is to maximize the time (t) to stay 
above a threshold heat flux, q’’

thresh, when an applied constant tempera
ture boundary condition is applied. This can also be explained as 
ensuring the absorption of at least a certain level of heat for the longest 
amount of time. If an application seeks to operate components for as 
long as possible and the cooling components remain relatively 
isothermal the development below will be the most useful. 

For the Cartesian case this can be calculated using Eq. (10) and 
rearranging to get: 

t =
(kmetal(ϕ) + kPCM(1 − ϕ))(Lv,PCM(1 − ϕ))ΔT0

2q’’2
0

(34) 

Maximizing this equation with respect to volume fraction, when 
q′′

0 = q′′
thresh, yields Eq. (17) consistent once again across all rate limited 

Cartesian optimizations. 
As previously discussed, analytical solutions for cylindrical systems 

under constant temperature loads are not apparent. Therefore, for the 
objective of maximizing the time of obtaining at least a given level of 
heat flux in the rate limited regime, we take a numerical approach. 
Testing across a sample space of volume fractions with corresponding 
effective properties, Eq. (14) can be used to determine the melt front 
location where the system would reach the heat flux threshold. This 
radius can then be substituted into Eq. (15) to calculate the corre
sponding time where the heated boundary would intersect with the 
chosen heat flux. From this the maximum time value can be taken and 
the corresponding volume fraction identified. 

For the Cartesian case in the volume limited regime for the objective of 
staying above a minimum threshold heat flux into the system for the 
longest time, Eq. (9) can be used, rearranging for time: 

t =
y2

f Lv,PCM(1 − ϕ)

2( kmetal(ϕ) + kPCM(1 − ϕ) )T0
(35) 

Equation (10) can also be rearranged for time as follows: 

t =
(kmetal(ϕ) + kPCM(1 − ϕ))(Lv,PCM(1 − ϕ))ΔT0

q’’2
0

(36) 

Equation (35) and (36) can then be set equal and simplified to get the 
optimal volume fraction of: 

ϕOPT,cart =
q′′

threshyf − kPCMΔT0

ΔT0(kmetal − kPCM)
(37) 

which is a direct translation of Eq. (26), yielding the same form while 
utilizing different variables as boundary conditions. 

To identify the equivalent result for the cylindrical system Eq. (14) 
can be used, substituting the thermal conductivity for an expression of 
effective properties: 

q′′
0 = − (kmetal(ϕ) + kPCM(1 − ϕ) )

ΔT0

r0ln(r0/δ(t) )
(38) 

The q’’
0 value can then be assigned the minimum heat flux value 

given,q’’
thresh, and the melt front location can be assigned to the outer 

radius (δ(t) = rf ). The volume fraction can then be solved for as: 

ϕOPT,cyl =
q′′

threshr0ln
ʀ
r0/rf

)
+ ΔT0kPCM

ΔT0(kPCM − kmetal)
(39)  

3.4. Analytical summary 

Table 2 summarizes the analytical framework derived in section 3.3, 
providing a guideline for optimal volume fraction selection across the 
different design objectives, limiting regimes, boundary conditions and 
coordinate systems. 

4. Results and discussion 

Throughout the following sections we assess the functionality and 
applicability of the above developed analytical models through com
parison to numerical and experimental results from original work and 
examples from the existing literature. Temperature and heat flux values 
are chosen to generally reflect the thermal loads of low to moderate 
power thermal management systems. 

4.1. Original experimental results 

To create a practical comparison for the analytical model developed 
herein we experimentally compare systems with different volume frac
tions and observe how the optimal system changes over time. Using 3D 
printed aluminum three systems were printed with metal volume frac
tions of 0.3, 0.5, and 0.7 (Fig. 4b). Temperature is measured at the base 
of the structures. While higher volume fractions can achieve lower 
temperatures at shorter times, their lower composition of PCM causes 
them to melt faster, leaving the lower volume fractions to become the 
highest performing systems at longer times (Fig. 4c). This is consistent 
with the models and analysis contained in previous sections. 

The analytical framework developed above is applied to an experi
mental dataset to assess the practical applicability of the models. In 
Fig. 4 we demonstrate the changes in predicted optimal volume fraction 
using the objective of minimizing temperature at a given time (Fig. 4a) 
or maximizing the time below a given temperature (Fig. 4d) for a set 
internal boundary condition of 7.3Wcm−2. These can be directly 
compared to the experimental data showing the temperature of the 
different volume fraction systems over time (Fig. 4c). In all cases, the 
analytical model was able to predict the highest performing system out 
of the three tested. 

For the optimization metric of minimizing the temperature at a given 
time, we select times of 76.4 s, 54.6 s, and 32.7 s after the onset of 
melting, which correspond with the volume fractions of 0.3, 0.5, and 0.7 
(Fig. 4a). Because it is not possible to initialize the experiment isother
mally exactly at the melting temperature, Eq. (20) is compensated with 
time (t) renormalized by the melting time (t −tm) (Fig. 4a). This adds a 
new level of approximation to our analysis because the system does not 
isothermally heat from its starting temperature of 22 ℃ but is shown to 
minimally affect the accuracy of our models for this case. For each 
optimization time we accurately select the optimal performing com
posite composition out of the sample set which corresponds closely to 
the onset of edge effects, as expected, and predicted times corresponding 
with the completion of melting are correct to within approximately 10%. 

For the optimization metric of maximizing the time below a given 
temperature, we select temperature thresholds of 46.3 ℃, 39.0 ℃, and 
35.9 ℃, which correspond with the volume fractions of 0.3, 0.5, and 0.7 
(Fig. 4d). These optimums are predicted by Eq. (28) and reveal that the 
experimentally measured temperature values seen here are lower than 
analytically predicted values, which is also confirmed by equivalent 
numerical testing using our finite element model. This discrepancy is 
primarily attributed to 1) temperature heterogeneities near the free 
surface where the temperature is measured due to heat loss to the sur
rounding environment, 2) the contribution of the thermal mass of the 
cartridge heater itself, as well as interfacial resistances between the 
heater and the base of the composite PCM, 3) shortcomings of the QSS- 
based solutions, which neglect the role of sensible heat, and 4) poten
tially minor convective effects which increase at lower volume fractions, 
longer times and higher temperatures. Regardless, the predicted 
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optimums still provide approximate guide for the true optimums here 
and the validity of optimization through this performance metric is 
further explored numerically and through experimental work in the 
existing literature in the sections below. 

4.2. Numerical comparison 

In addition to experimental results, the analytical trends described in 
this work can be validated through direct comparison to numerical 
simulations. Numerical methods are useful in their ability to control 
every aspect of the system, as well as gather large quantities of data 
when compared with experimental methods. We use a previously 

Table 2 
Compilation of equations describing optimal volume fraction with various thermal configurations and objectives for PCM composites.  
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established 1D finite difference model to test systems which employs the 
same homogenous composite approximation as our numerical devel
opment above [35,36,51]. 

4.2.1. Applied heat flux 
Fig. 5 compares numerical and analytical optimization approaches 

for the given problem of optimizing a cylindrical system under a con
stant heat flux boundary condition. In our numerical methodology, the 
system is defined with a given composition and thermal load and 
continuously simulated until a given end condition is reached, defined 
as either reaching a given threshold temperature (Fig. 5a) or reaching a 
given time (Fig. 5b), depending on the design objective. The simulation 
basis is iterated to test a wide range of volume fractions in a short 
amount of time, for a cylindrical system thermal load of 6 Wcm−2. There 
exists a clear pivot point in the volume fraction space which corresponds 
to the maximum value of the selected performance metric (Fig. 5a,b). 
Through a comparison to full simulation runs (Fig. 5c) it is evident that 
these optimums correspond to the point at which the PCM melting 
completes. 

The predictions of the analytical model can be directly compared to 
the results given by the numerical model (Fig. 5a,b). For the cases shown 
here the analytical solution predicts results in the volume limited regime 
which is expected since the full simulation results show the optimum is 
related to the completion of melting. Asterisks are used in Fig. 5a-b to 

denote predicted analytical optimums calculated by Eq. (28) (Fig. 5a) 
and Eq. (20) (Fig. 5b). We observe that for either design objective the 
model is in strong alignment with the exhaustive results, demonstrating 
the accuracy of the model while highlighting the benefit of significantly 
reduced computational expense. It was also discovered that the models 
predicting optimal volume fraction for the goal of keeping the boundary 
temperature below a given threshold were more accurate than models 
created for the goal of minimizing temperature at a given time. This 
effect originates from the difference in time between the melt front 
reaching the outer boundary of the systems and completely melting the 
system, causing the true optimum to occur at the latter instance. 

4.2.2. Applied constant temperature 
Fig. 6 compares numerical and analytical optimization methodolo

gies for the analogous problem of optimizing a cylindrical system under 
a constant temperature thermal load. For this boundary condition, the 
numerical simulation is run until the end condition of either falling 
below a threshold level of heat removal performance (Fig. 6a) or 
reaching a given time (Fig. 6b), depending on the design objective. For a 
cylindrical system thermal load of 29 ◦C, it can again be observed that 
there exists a clear pivot point in the volume fraction space which cor
responds to the optimum of the performance being selected for (Fig. 6a, 
b). In the same fashion as the constant power boundary condition a 
comparison to full simulation runs (Fig. 6c) shows that these optimums 

Fig. 4. Analytical results a) for the goal of minimizing the temperature at a given time the optimal volume fraction can be described over time. b) Photographs of the 
3D printed physical aluminum systems for each of the volume fractions used in experimental results (0.3, 0.5, 0.7). Analytical results can be compared against c) 
experimental results for a Cylindrical finned heat sink under a heat flux load of 7.3 Wcm−2 q′′( r = ro) = 7.3 Wcm−2, with volume fractions 0.3, 0.5, and 0.7. 
Analytical results d) for the goal of maximizing the time to stay below a given temperature the optimal volume fraction can be described for varying temperature 
increases. Dashed arrows indicate the relationship between the analytical results and behavior of the 3 tested structures. 
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correspond to the point at which the PCM melting completes, indicating 
that the application parameters fall within the volume limited regime. 
Asterisks are used in Fig. 5a-b to denote predicted analytical optimums 
calculated by Eq. (39) (Fig. 6a) and Eq. (33) (Fig. 6b), where we observe 
strong agreement between predicted and numerically determined 
optimums. 

Comparison between analytical and numerical results contained in 

Fig. 5. For a cylindrical system thermal load of 6 Wcm−2 we present numerical 
results detailing the relationship between material compositions to a) the time 
at which PCM composites will reach the threshold temperature and b) the final 
boundary temperature at a given time. a,b) Volume fractions 0.3, 0.4, and 0.5 
are denoted and asterisks indicate the optimual volume fractions predicted by 
analytical models above for each given end condition. c) Full simulation nu
merical results for a system under a thermal load of q′′( r = ro) = 6 Wcm−2, 
with 75 s, 90 s, 105 s denoting the times at which we are optimizing to mini
mize temperature and 37 ◦C, 39 ◦C and 43 ◦C denoting defined threshold 
temperatures which we wish to stay below for the longest amount of time. Fig. 6. For a cylindrical system thermal load of 29 ◦C we present numerical 

results detailing the relationship between material compositions to a) the time 
at which composites will reach the set threshold heat flux and b) the final 
boundary heat flux at a given time. a,b) Volume fractions 0.4, 0.5, and 0.6 are 
denoted and asterisks indicate the optimal volume fractions predicted by 
analytical models above for each given end condition. c) Full simulation nu
merical results for a system under a thermal load of T(r = ro) = 29◦ C , with 80 
s, 120 s, 180 s denoting the times at which we are optimizing to maximize heat 
flux and 0.4 Wcm−2, 0.5 Wcm−2 and 0.6 Wcm−2 denoting defined threshold 
heat fluxes which we wish to stay above for the longest amount of time. 
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Fig. 6 represents a very low magnitude boundary condition (29 ◦C) 
compared to the melting temperature (28 ◦C). This decision was made to 
demonstrate a more accurate portion of the parameter space. As was the 
case for the constant heat flux boundary condition, higher magnitude 
boundary conditions and longer times will decrease the accuracy of the 
model. Similarly, to the constant power case, the goal of maximizing the 
heat absorbed at a given time does not perfectly predict the numerical 
optimum (Fig. 6b). In contrast, the goal of maximizing the time the 
system is achieving at least a given minimum threshold heat flux leads to 
higher accuracy predictions, which is attributed to the time needed to 
melt the entirety of the outer radius simulated node. 

4.2.3. Applicability range 
As discussed in previous sections the accuracy of the models devel

oped in this paper is highly dependent on the desired parameters of the 
application and originates largely a result of selecting the QSS solution 
for melting as an analytical basis. Therefore, it is necessary to explore 
the limits of the applicability of these models to understand how they 
may be applied to real systems. When comparing numerically observed 
and analytically predicted results we calculate high R2 values indicating 
high predictive performance. Dividing our analysis between regimes 
using analytical predictions leads to coefficients of determination with 
consistent values of R2≈1 within the rate limited regime and an average 
of R2≈0.93 within the volume limited regime. 

For the objective of minimizing temperature at a given time, the rate 
limited regime yields very high-fidelity predictions while the volume 
limited regime is the least accurate of the prediction regions studied here. 
Calculations of coefficients of determination show that the cylindrical 
results within this regime are the least accurate with R2≈0.76, compared 
to the Cartesian results with R2≈0.97, although the narrower range of 
inquiry within the Cartesian testing can contribute to this observation. 
Within the volume limited regime, our predictions align very strongly 
with numerical predictions at lower magnitudes of thermal loading but 
deviate with increased boundary condition magnitude (Fig. 7a). This is 
to be expected as the QSS solution is most valid when the role of sensible 
heat is small compared to the role of latent heat and will become less 
valid at longer times and higher thermal load. The deviation effects of 
the boundary magnitude are shown for a singular optimization time and 
will deviate more at longer times and have higher agreement at shorter 
times. It can be inferred from these results that, at high heat fluxes, if the 
model predicts a very low volume fraction in the volume limited regime, 
an offset towards higher volume fractions should be considered. 

For the objective of maximizing the time below a given temperature, 
the accuracy of the model is shown to be much less dependent on 
operating parameters (Fig. 7b). In the volume limited regime both coor
dinate basis system classifications show extremely high agreement. In 

the rate limited regime, for both the Cartesian and cylindrical based 
systems, the analytical models slightly underpredicts the numerically 
predicted optimum but this is held relatively constant with varying 
optimization parameters. For this objective, coefficients of determina
tion are found to have consistent values of R2≈1. 

4.3. Application to previously reported experiments 

4.3.1. Critical evaluation of numerical simulations 
In addition to testing our analytical optimization against the original 

experimental and numerical data presented above, we are also able to 
draw on the existing literature to verify that our predictions are widely 
applicable. A 2015 study by Pakrouh et al. represents a quintessential 
study within the current PCM composite design space wherein different 
design configurations are used to empirically assess trends in perfor
mance [41]. This study employed a 3D computational fluid dynamics 
(CFD) model to simulate heat transfer through PCM based pin fin 
composite heatsinks under a thermal load of 1.02 W/cm2, where the 
distribution of fins is uniform and rectilinear. 

One of the most significant advantages to comparing our optimiza
tion methodology to existing datasets is to further justify the assump
tions and approximations used throughout the development of this 
work. The CFD employed in the Pakrouh study diverges in the funda
mental assumptions from the analytical and numerical models in this 
work in several ways, such as, 1) We approximate a macroscopic finned 
system as a 1D uniform composite which contrasts with the full 3D 
simulations executed in the Pakrouh study, 2) which also includes a 
metal base that we exclude. 3) The 3D simulation is initialized at a 
uniform temperature of 27 ◦C, while our models assume a uniform 
temperature distribution at the melting temperature starting from the 
solid state, which is compensated by the time to start melting in our 
following analysis. 4) Furthermore, in our work we assume a finite, well- 
defined, melting temperature while the PCM used in the Pakrouh study 
melts over a 5 ◦C range, from which we select the lowest value for our 
direct comparisons. 5) Finally, the CFD directly investigates the role of 
convection which is not included in our models. Consistent with previ
ous literature and our claims, smaller spacing of fins led to minimal 
levels of convection even in the late stages of melting. Considering the 
sum of all these differences, our ability to predict optimal performances 
within the context of this work can greatly increase the confidence in our 
optimization methodology 

For this paper we test the performance metric of optimizing perfor
mance, corresponding to minimizing temperature, at a given time. For 
the given materials, aluminum, and the commercial paraffin RT44 HC 
(Tm = 41–45 ◦C), the rate limited optimum would be ϕ = 0.5 (Eq. (17)), 
which is not sampled at within the dataset. Consequently, we can 

Fig. 7. Optimal volume fraction given 
by numerical results (dotted points) and 
analytical predictions (solid lines) in 
cylindrical (red) and Cartesian (blue) 
based systems a) for the objective of 
minimizing temperature at 60 s (t’ =

60s) after thermal load onset and b) 
maximizing the time below a maximum 
threshold temperature of 38 ℃ (Tthresh =

38 ◦C ) for a system under varying 
thermal loads in. (For interpretation of 
the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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analyze the lower volume fractions as optimal systems for different 
times and, while the highest of these volume fractions (ϕ = 0.73) will 
never be optimal, applying the solution for the volume limited regime 
still allows us to assess the applicability of the equations and assump
tions we are working with. For the shorter fin height, 15 mm, we propose 
the optimization times of 80 s, 190 s, and 240 s after the beginning of 
melting, which corresponds to the optimal volume fractions of 0.73, 
0.35 and 0.18 (Eq. (19), Fig. 8a). For the 23 mm extended fin systems, 
we propose the optimization times of 140 s, 300 s, and 400 s after the 
beginning of melting which correspond to optimal metal volume frac
tions of 0.71, 0.38 and 0.18 (Eq. (19), Fig. 8b). For each of the optimi
zation times selected, it is evident that the selected volume fraction 
yields the lowest temperature out of the three related volume fraction 
systems (Fig. 8). Furthermore, we confirm the optimality of the pivot 
point corresponding to the completion of melting as well as our ability to 
predict when it will occur. Our prediction is especially strong at the high 
volume fractions, which is explainable by the relationship between the 
increasing distance between fins, ranging from 1 mm to 8 mm, and the 
role of convection. Even at the lowest volume fractions where convec
tion is certainly playing a role, we are still able to accurately select an 
optimal volume fraction and predict the approximate time of melting 
completion. 

4.3.2. Critical evaluation of experimental observations 
Another selection from the existing literature that can be used to 

directly asses the applicability of our optimization methodology is work 
by Tamraparni et al. from 2021 which sought optimal designs of 
lamellar PCM composites primarily using numerical and experimental 
methods [36]. The experimental aspects of this work serve as a useful 
validation of the real-world validation of the methodology we have 
developed. This work is especially useful because it represents one of the 
more complete experimental datasets within the literature and a thor
ough examination of different volume fraction systems under various 
heat flux conditions can be found in the supplemental information of this 
work (Fig. 9). 

Using Eq. (17), a rate limited optimal volume fraction can be 
calculated as 0.5, which can clearly be observed as the highest per
forming composition across thermal loads and performance metrics 
throughout the study. Therefore, any volume fractions higher than this 
value can be rejected as possible optimums, which is confirmed within a 
reasonable level of randomness. For further analysis we consider the 
performance metric of maximizing the time the heated boundary can 
stay below a given maximum value in the volume limited regime. For 
the lowest power dataset, 1.45 W cm−2, we propose temperature 
thresholds of 35 ◦C, 37 ◦C, and 40 ◦C which correspond to a predicted 

optimal composition of 0.43, 0.3 and 0.21 vol fraction of metal 
respectively (Eq. (26), Fig. 9a). As the heat flux is increased, the lowest 
volume fractions fall out of our analysis frame. Therefore, we propose 
two temperature thresholds for the 4.8 W cm−2 dataset of 48 ◦C, and 
54 ◦C which correspond to a predicted optimal composition of 0.4 and 
0.3 vol fraction of metal respectively (Eq. (26), Fig. 9b). Lastly, for the 
7.25 W cm−2 dataset we select a temperature threshold of 57 ◦C which 
corresponds to a predicted optimal composition of 0.42 vol fraction of 
metal (Eq. (26), Fig. 9c). In all cases tested, our optimization method
ology is able to select the volume fraction within the given sample range 
that maintains sub-threshold temperatures for the longest amount of 
time. Notably, we do not observe a decrease in accuracy with increasing 
levels of thermal loading, which increases our confidence in the quasi- 
steady state assumption used in our optimization methodology within 
a reasonable range of power levels. 

4.4. Trends in optimums 

To help understand how optimal volume fraction is dependent on 
application needs we can compare analytically optimized volume frac
tion selections across varying thermal loads. In Fig. 10 we map out an 
optimal composition space with varying parameters of the design 
problem. The geometric basis of the cylindrical design problem was 
chosen to mirror our experimental analysis with a 3.6 mm inner radius 
and outer radius of 19.1 mm, while the dimension associated with the 
Cartesian problem was chosen as 15.5 mm to match the width of the 
cylindrical composite layer. Simulated material properties are set as the 
known properties of octadecane and AlSi12 (Table 1). 

Analysis of trends within the design space is particularly useful if the 
application parameters are not ideally set and may vary somewhat in 
thermal loading or run time. For such cases, an optimal composition can 
be identified, and knowledge of trends can be used to inform adjust
ments from said optimum. Fig. 10 demonstrates that the rate limited and 
volume limited regimes have very distinct trends over the analyzed space. 

Notably, the optimum for systems with a Cartesian basis the optimal 
volume fraction in the rate limited regime is the same across all appli
cations and design objectives because the solution is solely determined 
by material properties. Aside from this case, the optimal volume fraction 
will always decrease farther from the intersection of the two regimes. 
For cylindrical systems, the optimal volume fraction in the rate limited 
regime increases leading up to the regime intersection. This difference 
between cylindrical and Cartesian based systems can be attributed to an 
increase in circumferential thermal capacitance with increasing melt 
front propagation radius for cylindrical based systems compared to 
Cartesian based systems. This varying optimal volume fraction within 

Fig. 8. Base temperature evolution with time for metal volume fractions of 0.18, 0.36 and 0.73 with a fin height of (a) 15 mm and (b) 25 mm. Dashed lines labeled 
with tm indicate the datapoint corresponding to the start of melting when the lowest temperature of the melting range is reached, and dashed arrows indicate 
optimization times that correspond to the given compositions (within 3 %) when pre-selecting a volume limited solution. Modified from Pakrouh et al, 2015 [35]. 
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the rate limited regime for cylindrical systems suggests that while a 
completely uniform material is the optimal configuration for Cartesian 
systems, compositionally variant systems present an opportunity for 
future work in cylindrical systems. 

For all cases in the volume limited regime, the optimal volume fraction 
will always decrease with distance from the regime boundary intersec
tion. This can be rationalized as a necessity to increase the time before 
the completion of melting. This is expected by recalling the completion 
of melting corresponds to a sharp decrease in performance and the 

addition of thermal capacitance will delay the onset of this point. 
We also identify regimes indicated by the gray regions in Fig. 10, 

where the analytical model yields solutions less than zero (Fig. 10a,d). In 
this regime having a completely PCM system is the optimal composition, 
assuming a PCM based solution, but using a PCM is likely not the ideal 
thermal management approach if all other design problem parameters 
are fixed. This is because, in these cases, the dynamics of the melting 
process begin to be dwarfed by the thermal loading making the tem
perature damping from the phase change process insignificant. There 

Fig. 9. Temperature vs time plots systems for Cartesian based octadecane and aluminum alloy composites with varying volume fraction of metal for heat flux 
boundary conditions of (a) 1.45 W cm−2, (b) 4.8 W cm−2 and (c) 7.25 W cm−2. Dashed horizontal lines indicate a temperature threshold and are labeled with the 
volume fraction predicted to satisfy the optimization of maximizing the time to stay below the threshold. Modified with permission from Tamraparni et al, 2021 [36]. 

Fig. 10. Example maps of optimal volume 
fraction with varying thermal inputs for a,b) 
Cartesian systems and c,d) cylindrical sys
tems with a,c) the goal of minimizing the 
temperature at different times 
(min(T(y = 0|r = ro, t) ) for t = t’) and b,d) 
the goal of maximizing the time the system’s 
heated boundary can remain below a range 
of threshold temperatures (max(t) for 
T(y = 0|r = ro, t)〈Tthresh), for varying thermal 
loads. Black solid lines indicate the divide 
between the rate limited regime and the 
volume limited regime. Dashed white lines 
indicate the border of the region where 
optimization is bounded, where (1) the PCM 
volume is insufficient to manage the thermal 
load and (2) the problem is ill defined due to 
extremely short time scales.   
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are two explanations for these bounds which are unique to the corre
sponding framing of the optimization problem. When considering the 
problem of minimizing the temperature at a given time, the optimization 
is bounded in the volume limited regime in the limits of longer time and 
applied heat flux (Fig. 10a, grey region). This can be understood as the 
conditions under which the system volume is insufficient for the appli
cation and even a complete PCM composition cannot prevent the 
completion of melting, after which performance rapidly drops off. When 
considering the problem of maximizing the time the system can remain 
below a given temperature, a different bound emerges (Fig. 10d, grey 
region). This bound can be understood as the region where the problem 
is ill defined, i.e. in this region the time to reach the threshold temper
ature is very small (~1 s) and the difference between differing compo
sitions becomes negligible. 

4.5. Example optimization processes 

In this section we provide practical examples of the application of 
this work. We constrain the problem to only consider optimization with 
aluminum and octadecane with properties defined in Table 1. In each 
example we assume the initial state of the material system is entirely 
solid and held at a negligible distance from the melting temperature. All 
edges of the system, aside from the heated boundary, are considered 
adiabatic. Solutions to thermal problems below are assumed to be in the 
form of finned heatsinks, representing the upper limit of anisotropic heat 
transfer away from the heat source [43]. Furthermore, fin spacings are 
assumed to be sufficiently small to achieve homogeneous composite 
behavior [35-37]. 

Example Problem 1: 

Consider a cylindrical battery producing heat at a rate of q′′
0 =

10 Wcm−2 nested in a concentric cylindrical thermal storage package 
with an allowable inner radius of ro = 0.5cm and outer radius of rf =

2cm. The goal of this thermal storage package is to keep the temperature 
of the battery below 48 ℃ (i.e. 20 ℃ over the melting temper
ature, ΔTthresh = 20◦C ) for the longest possible amount of time. 

The rate limited solution to this problem is solved using Eq. (24) 
yielding a volume fraction of ϕ = 0.84. The volume limited solution to 
this problem is solved using Eq. (28) yielding a volume fraction of ϕ =

0.43. Per our methodology the lower of the two values is the true op
timum, which is ϕ = 0.43, indicating we are in the volume limited regime 
of the design problem. 

To support this optimization result and demonstrate the disadvan
tages of deviating from the optimal composition, we employ our nu
merical model to simulate various compositions within the design space 

and asses the timescales associated with each composition for the given 
temperature threshold (Fig. 11). At the optimal volume fraction, the 
battery surface can remain below the threshold temperature for ~ 43 s 
(Fig. 11a). For this particular design problem, if the system is PCM 
deficient, i.e. the volume fraction is higher than the optimum, the per
formance as measured by the time below the threshold temperature 
decreases linearly by ~ 12% of the optimum for every increment of 10% 
of the sample space range (ϕ = 0.1) (Fig. 11b). If the system is PCM rich, 
i.e. the volume fraction is lower than the optimum, the performance 
decreases more rapidly than the PCM deficient side of the problem. 
Within the first volume fraction increment of 10% (ϕ = ϕOPT−0.1) the 
performance drops by ~ 40% and further steps drop quadratically with 
the fourth step corresponding to a performance drop of ~ 97% 
(Fig. 11b). 

Example Problem 2: 

As another example, consider an electronics chip producing heat at a 
level of q′′

0 = 1 Wcm−2 attached to a rectangular thermal storage pack
age with a maximum height given as yf = 1.5cm. The design objective of 
the thermal storage package is to minimize the temperature of the chip 
over the time the chip is active, given as.t′

= 120 s 
The rate limited solution to this problem is solved using Eq. (17) 

yielding a volume fraction ofϕ = 0.50. The volume limited solution to this 
problem is solved using Eq. (19) yielding a volume fraction of ϕ = 0.54. 
Per our methodology the lower of the two values is the true optimum, 
which is ϕ = 0.50, indicating we are in the rate limited regime of the 
design problem. 

To support this optimization result and demonstrate the disadvan
tages of deviating from the optimal composition, we employ our nu
merical model to simulate various compositions within the design space 
and assess temperature associated with each composition at the opti
mization time (Fig. 12). At the optimal volume fraction, the chip surface 
at the optimization time reaches a temperature of 31 ◦C (Fig. 12a). For 
this particular design problem, if the system is PCM deficient, i.e. the 
volume fraction is higher than the optimum, the chip’s surface tem
perature increases linearly by ~ 20% of the optimum for every incre
ment of 10% of the sample space range (ϕ = 0.1) (Fig. 12b). If the 
system is PCM rich, i.e. the volume fraction is lower than the optimum, 
the chip temperature is lower than the PCM deficient side of the prob
lem. Within the first volume fraction increment of 5% (ϕ = ϕOPT−0.05)

the temperature deviates from the optimum by ~ 2% and further steps of 
the same increment approximately double with the furthest deviation 
from the optimum corresponding to a ~ 39% increase in temperature 
(Fig. 12b). 

Fig. 11. a) Numerical results for the temperature of the battery surface boundary for the optimized thermal storage package ϕ = 0.43and with a deviation from this 
optimum by 10% of the sample space range (ϕ = 0.33/ ϕ = 0.53). Temperature threshold given by the design problem indicated with dotted line, ΔTthresh = 20 ◦C. 
b) Comparison of the performance, measured in time to reach the temperature threshold and as a percentage of the maximum time. 
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Lessons from examples 

Working through specific examples allows us to identify common 
characteristics that are true of most practical cases, even if it is not a rule 
over the whole sample space. It has been observed over many test 
problems that when rate limited solutions are identified as the appro
priate choice, especially when the volume limited optimum deviates from 
the rate limited optimum significantly, there is usually a large range of 
volume fractions with similar performances and deviating from the 
optimum often causes minimal decrease in thermal buffering capacity. 
This can be partially seen in Fig. 11 b where deviating from the optimum 
by ϕ = 0.05 yields negligible changes in performance, though deviating 
farther causes melting to complete on the PCM deficient side. This is 
expected because the calculated volume limited solution is very close to 
the rate limited solution. 

Within the volume limited regime, for the objective of maximizing 
thermal buffering at a given time, it is most commonly observed that, for 
equivalent deviations in volume fraction from the optimum, the PCM 
rich side of the design space decreases in performance at a lower rate 
than the PCM deficient side. In this regime, the complementary objective 
of maximizing the time to achieve a given minimum thermal buffering 
capacity usually exhibits a sharper peak in performance in the volume 
fraction space and any deviation from this optimum will cause signifi
cant decreases in performance without a strong preference for PCM 
deficiency or excess. 

5. Conclusions 

Phase change material based heat sink design is an area of intense 
interest in thermal management applications, wherein the composition 
of constituent elements remains the most critical design inquiry. In this 
manuscript, we establish a comprehensive analytical optimization 
framework for determining the compositions of constituent thermally 
conductive and capacitive components in composite phase change ma
terial layers for Cartesian and Cylindrical based systems. Within the 
design space, we describe two regimes where performance is limited by 
rate of heat absorption (rate limited) or total thermal capacitance (volume 
limited), for which corresponding expressions are derived using the 
quasi-steady state approximation for melting problems. This design 
framework spans all permutations of 1) two coordinate bases 2) two 
boundary condition types and 3) two design objectives to allow for this 
work to be broadly applicable and practical to apply. 

Through a comparison to exhaustive simulation-based optimization, 
we confirm the accuracy and usefulness of the developed analytical 
models, demonstrating consistent coefficients of determination of R2≈1 
within the rate limited regime and an average of R2≈0.93 within the 
volume limited regime. When optimizing thermal buffering capacity in 

terms heat transfer through the system boundary, it is observed that 
analytical optimization models are most valid at lower power and 
shorter time scales as expected from the approximate models we use. We 
also demonstrate the practical applicability of this work through direct 
comparison to original experimental results as well as experimental and 
numerical results from the existing literature. The convergence between 
these high-fidelity simulations and experiments, and the approximate 
analytical framework outlined in this manuscript is remarkable and 
demonstrates the utility of this approach in generating high performing 
provisional designs of composite PCM structures. Example problems are 
used to demonstrate the application of this work, where we show an 
average of 14.6 % decrease in performance when deviating by only 10% 
of the composition range. In summary, his work provides an unprece
dented degree of design control by providing practical and objective 
oriented guidelines for PCM composite design. 
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