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While phase change material based heat sinks have been shown to act as highly efficient transient cooling de-
vices, the effective implementation of these components is prevented by a lack of design guidelines. Here, we
develop an analytical framework for optimizing the design of rectangular and cylindrical phase change material
composite heat sinks. This is accomplished through the definition of two design objectives: (1) maximize thermal
buffering capacity at a given time, and (2) maximize the time the system can achieve a minimum thermal
buffering capacity threshold. In this context, thermal buffering capacity can be quantified in terms of heat ab-
sorption rate or temperature, depending on the boundary condition applied. We demonstrate that, in finite
volumes, there exist two design regimes where the thermal buffering capacity is either limited by the rate at
which the system can absorb thermal energy or by the total thermal capacitance of the system. We present
analytical expressions describing the optimal volume fraction for each combination of design objectives, form
factors, and boundary conditions derived from appropriate analytical solutions for the melting problem.
Analytically predicted optimal volume fractions are validated with numerical and experimental results from
existing literature and original work. This collective toolbox enables thermal engineers to make rational de-
cisions on architecture to optimize components under specific thermal loads and specific system constraints.

15]. Phase change materials (PCMs) are notable for their high energy
density, which can be utilized through the phase transition, but are often
lacking in power density [12,16]. As a result, it is often desirable to
combine high thermal conductivity materials with PCMs to form high

1. Introduction

Thermal energy storage (TES) systems containing phase change

materials (PCMs) have been established as highly efficient components
for transient cooling [1,2] but are hindered by a lack of cohesive ge-
ometry and composition design guidelines, resulting in under-
performing PCM structures developed through arbitrary or empirical
methods. While the basic principles of heat transfer during melting and
solidification processes are well-understood [3-5], the translation of the
fundamental physics into rational module design principles for this type
of nonlinear thermal device are not well-defined. This is contrasted with
other common thermal management components such as heat sinks
[6,7], heat pipes [8-10], heat exchangers [6,11] which have had
extensive development of definite design principles. TES systems can be
primarily defined by their (1) power density, which describes the rate of
heat transfer through the material, and their (2) energy density, which
quantifies the amount of the thermal energy that can be absorbed [12-
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performance composites, within which the composition or structure
may be tuned to modify resultant system properties [13,15]. Currently,
it is not understood how composition and architecture can be used to
select for a chosen response profile or thermal buffering capacity under
realistic application constraints.

Thermal buffering capacity is a term which can be used as a
description of the performance of a TES cooling device, which describes
a TES system’s ability to dampen transient thermal loads and can be
considered in terms of heat absorption rate or temperature, depending
on the boundary condition applied. The characteristic response of a
standard PCM system is demonstrated schematically in Fig. 1a under an
applied heat flux thermal load, and in Fig. 1b for an applied constant
temperature thermal load. For constant boundary conditions with an
applied constant temperature thermal load, the heat flux into the
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material system is an appropriate performance metric for thermal
buffering capacity, whereas for an applied heat flux thermal load the
temperature of the heated boundary is the appropriate choice.
Composite materials can be defined as systems containing two or
more components, where the properties of those materials can be
combined to calculate a set of effective properties which accurately

model the composite’s macroscopic behavior. PCM composite systems
take many geometries which most often fall into the categories of:
composite dispersions [17-20], macro-/micro- porous media (eg. lattices
or foams) [13,21-25] , and finned heat sinks [26-28]. Additionally,
composites systems can also be formed using combinations of charac-
teristic elements from these categories such as the fins and foams [29-
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Fig. 1. Characteristic responses of PCM vol-
umes to an applied a) heat flux (q”) or b)
temperature (T) boundary condition with the
melting completion time indicated with a red
dashed line. Schematic of c,f) finned com-
posite system, approximated as a d,g)homo-
geneous composite and, eh) fundamental
configuration of the thermal problem with a
c,d,e) Cartesian and f,g,h) cylindrical coor-
dinate basis. Solid red lines indicate the
boundary where the thermal load is applied,
and the dashed purple lines indicate the

uniformly distributed melt front location.
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31] or fins and dispersions [32-34]. Each category metal/PCM assem-
blies can be described as an ideal composite in the limit of small con-
stituent spacing, where the length scales of heat transfer between the
conductive material and the PCM become sufficiently small such that the
temperature profile is effectively even and moves as a uniform front [35-
38]. One advantage of treating the system as a homogeneous material is
the resulting simplification of the melting problem from a 3D, or 2D,
configuration (Fig. 1c,f) to a 1D configuration (Fig. 1d,g). This saves
significant computational expense in numerical simulations, allowing
for rapid testing of varying configurations and presents the opportunity
for simplified analytical solutions to non-trivial configurations and
scenarios, as detailed in the following sections. This approximation will
break down in the presence of high convective driving forces, associated
with large Rayleigh (Ra > 10°, for systems with high effective thermal
conductivity) [39,40], and in cases of wide constituent spacing [35,37].
However, with this limitation being known, constituent spacing can be
selected such that the requirement of small spacing is met and when this
is true, even with relatively high driving forces, the role of convection
has been shown to play a very small role in comparison to conductive
forces [27,41].

When designing PCM composite systems, the proportion and
configuration of components within these structures directly dictates the
direction and magnitude of heat transfer within the system [13,14]. The
most common thermal management components are rectangular slabs,
corresponding to planar heat sources, or cylindrical annuluses, corre-
sponding to line or circular pipe heat sources, both of which are inves-
tigated in this work. These systems are commonly filled with rectangular
or radial fins (Fig. 1c,f), respectively, because they are easily manufac-
tured and can access a large range of volume fractions, which are
inaccessible by nanocomposites [20] or more complex structures
[13,42]. These structures also represent the upper limit of anisotropic
heat transfer parallel to the direction of heat flow [43].

The bulk of previous work on PCM composite design has focused on
experimental or numerical empirical testing of similar geometries and
selecting the highest performing system within a sample set of thermal
configurations [28,41,44-46]. Differing thermal configurations can be
defined as permutations of materials, boundary conditions, time scales,
coordinate bases, critical performances metrics, thermal loading, and
length scales, where each configuration will correspond to a specific
optimal design. These empirical studies only provide limited insight into
the characteristics of specific high-performance systems by optimizing a
particular subset of thermal configurations, but their results do not
provide widely applicable design guidelines for the broader design
space. Moreover, the data provided in these studies is sparse in com-
parison to the overall degrees of freedom in the design space. Therefore,
these studies are unlikely to identify underlying correlations and design
rules.

Analytical optimization efforts often focus on identifying useful fig-
ures of merit which identify the point of component mixing where the
thermally capacitive and conductive elements best balance each other to
maximize the rate of heat absorption from the heated boundary under
simple thermal loads [13,47,48]. These approaches are useful as a
starting place for PCM based designs, but these solutions assume a quasi-
infinite volume, therefore not accounting for geometric constraints or
efficient utilization of allotted space. This assumption is sufficient for
lower power applications, and very large available volumes, but for
most real-world design applications, it becomes necessary to account for
finite available volumes. The otherwise lack of sensitivity toward finite
volumes in the literature is partially addressed in work by Lu through
the development of a methodology to select for allowable heat pulses for
a given PCM body with specified geometry and an upper threshold
temperature limit [49]. While this methodology is useful for deter-
mining operating parameters, it is not trivial to translate to system
design and is limited to the selection of constant heat flux pulses in
Cartesian coordinates and only explores one optimization goal.

For finite volumes, the time corresponding to the completion of
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melting marks the point where subsequent times experience a rapid
decrease in performance for both thermal load types and corresponds to
the limit of the PCM’s thermal buffering capacity (Fig. 1a,b) [35]. Pre-
vious work by Bransier found that this point of melting completion could
be used as a design tool for dimension selection [50]. The author showed
that the width of a PCM slab, perpendicular to a planar thermal load,
should be chosen such that the time at which optimization is occurring
should correspond to the complete melting of the system. This empha-
sizes the impact the constraint of a finite volume places on the design
problem, which is very common in application.

In this work we seek to develop a methodology that will allow the
tailoring of a specific thermal response through composition selection of
the thermally conductive and capacitive elements in a dynamic PCM
thermal system. Furthermore, we seek to address the role of a volume
constraint on the resulting optimization, as this is a facet of the design
problem that is not often addressed by current literature, but is critical
for most applications. To this end, we establish a comprehensive
analytical framework describing this optimal composition for highest
thermal buffering capacity with the objective to either 1) maximize the
thermal buffering of the heated boundary at a given time, or 2) maxi-
mize the time the desired buffering effect occurs. To ensure the wide-
spread applicability of this work, the breadth of our frameworks
includes constant temperature and constant heat flux boundary condi-
tions, where we consequently analyze thermal buffering in terms of the
complementary boundary variable not being fixed. We also complete
our analysis for both Cartesian and cylindrical based systems, allowing
this work may be applied to a large variety of applications. For each
combination of coordinate systems, performance metrics, and boundary
conditions, an optimal volume fraction is analytically identified and
compared against analogous numerical and experimental results, both
from the existing body of literature and original results. The analytical
solutions contained herein are meant to provide a practical guideline for
the design of PCM composite systems for thermal management when the
application is known. This provides an unprecedented degree of design
insight currently lacking in the current literature, especially considering
the breadth of thermal configurations and design objectives contained in
this work.

2. Methods
2.1. Problem statement

In the pursuit of optimal composite design, we consider the com-
posite to act as a singular effective medium through the homogeneous
composite approximation (§ 3.1.2) and utilize the quasi-steady state
(QSS) approximation (f 3.1.3) to describe internal heat transfer and
melt dynamics.

The system of study is initially defined at the melting point, entirely
in the solid state. The appropriate heating boundary condition of either a
constant temperature or heat flux is applied to a single boundary and all
other boundaries are adiabatic (Fig. 1e,h). It is assumed in our analytical
and numerical approaches that the solid and liquid phases are distinct
and their respective material properties are not dependent on temper-
ature. Furthermore, convective heat and mass transfer are considered
negligible in our model, confining heat transfer to conductive pathways,
which is practical for the small length scales we are considering. At such
length scales, where the composite approximation is most valid, the
associated Rayleigh numbers become relatively small, indicating negli-
gible levels of convective heat transfer, as previously discussed [39]. In
this limit, the interaction between fluid viscosity and geometric
confinement balances the buoyant forces and convective heat transfer is
dwarfed by conductive heat transfer [27,40,41]. Furthermore, this is
also the limit in which the time for heat penetration from the conductive
fin into the PCM becomes increasingly small and the thermal front
converges to a uniform distribution, consistent with a singular effective
medium [35,36]. As volume fraction limits to 0, where there is no metal
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in the system, a manufacturability limit will be reached, and our as-
sumptions will break down. However, if a design problem yields a so-
lution with the sole goal of increasing thermal capacitance, the
singularly PCM system is expected to still be the highest performing
solution.

The material composites developed and analyzed herein are
composed of octadecane and aluminum alloy, AlSi12 (Table 1). Octa-
decane was chosen for its near room temperature melting point, high
latent heat, and ease of incorporation. In our analytical and numerical
models, the melting temperature is approximated as a single well-
defined temperature which is an assumption that varies in accuracy
depending on the PCM in question. Octadecane is known to melt over a
range of temperatures which can vary depending on the sample purity.
For the material used in this study, the full width at half maximum range
of the melting peak was measured with DSC to be 3.3 °C for a moderate
heating rate of 10 °C/min, which is relatively small when compared to
the total heating range under investigation here. This demonstrates that
while approximating the melting temperature as discrete adds a level of
approximation to our experimental comparisons, it is still a reasonable
approximation to make and we have observed that using a low value
within the melting range has shown strong comparisons to experimental
results. AlSi12 was chosen for our related additive manufacturing ca-
pabilities and for its high thermal conductivity. To manufacture opti-
mally performing systems, the aluminum alloy structures are designed
through the analytical optimization system described herein, these
structures are then manufactured by powder bed laser fusion and infil-
trated with octadecane, as further discussed in section § 2.3.

2.2. Finite difference analysis

In this work, numerical investigations are utilized to characterize
heat transfer and, specifically, the time-dependent temperature rise, and
quantity of heat absorbed by a composite PCM volume under externally
applied boundary conditions. We use 1D finite difference analysis (FDA)
models simulating conductive heat transfer through Cartesian and cy-
lindrical PCM composite geometries, which have been established and
tested in previous work (Fig. 2) [35,36,51]. The fundamental assump-
tions of the FDA models include 1) the material properties of the solid
and liquid phases are not dependent on temperature, 2) melting occurs
at a singular temperature, 3) the interface between phases is well-
defined, 3) the densities of the solid and liquid phases are equal lead-
ing to no mass transfer upon phase change and 4) no convection occurs
in the liquid phase. These assumptions also carry through to the
analytical models contained in this work.

Within the FDA, nodes are linearly spaced between boundaries and
node characteristics are given by the system geometry and effective
properties (Egs. (3), (4), Fig. 2). For all simulations executed in this
work, the initial state of the bulk is completely in the solid state and held
at the melting temperature. A singular boundary node is set to apply a
thermal load of either an applied constant heat flux or temperature and
the opposing boundary node is adiabatic. For every timestep, the heat
transfer between nodes is calculated using an implicit backward Euler
method, from which the temperature and melt fraction of each node is
determined. To this end, for a Cartesian coordinate basis the heat

Table 1
Material properties used in original numerical simulations and analytical
modelling.

Units AlSi12 alloy Octadecane
ki WmlK! - 0.15
ks Wm-1K-! 80 0.36
L, Jm3 - 1.74 x108
kgm™3 2700 712
Cp Jkg K1 900 2200
T ¢ - 28
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Fig. 2. Schematic visualization of the computational space under consideration
demonstrating the setup of the system and the means for using Fourier numbers
(Fo) to simulate heat transfer between evenly spaced (Ay) nodes (J; — J,) from
the heated boundary (J;) to the adiabatic boundary (J,).

equation is given by:

1 T or of
@(ka_y) =p ,,E+LVE 1)
where y,p,G,, T, t,k and L, represent distance, density, specific heat
capacity, temperature, time, thermal conductivity, and volumetric
latent heat, respectively [6]. The melt fraction of a given node volume is
represented by f, where the possible values are; 0 which represents not
at all melted, 1 which represents completely melted and intermediate
values represent partial melting. Within Eq. (1) the left-hand side of the
equation represents the rate of heat transfer through the given volume
and the right-hand side of the equation represents the heat absorbed by
the volume through sensible (term 1) and latent (term 2) heating. The
same concepts of energy conservation can also be applied to a cylindrical
coordinate basis, yielding the heat equation:
% % (kr %ﬁ) - pc,,‘;—f + L% @
where the r is radial distance [6]. Within the FDA, once the melting
temperature of a given node is reached, the node will absorb thermal
energy into the latent heat until the volume is completely melted before
beginning to sensibly heat leading to a singular well-defined front.
Fidelity of FDA model is directly dependent on timestep length and
node spacing. Timesteps are chosen to be most fine at earliest times
(1077 s) increasing by 1077 s each step. A total of 2000 nodes are
distributed between the two boundaries of the simulated volume. This
combination of values yields the highest relationship between fidelity
and computational expense. Timesteps and number of nodes were
chosen such that full convergence was observed between tests of
increasingly smaller timesteps and larger number of nodes. Accuracy of
the resulting finite difference model was tested against ANSYS simula-
tions, analytical models, and experimental data [35,51]. Simulated heat
transfer continues until an end condition is met, determined by the
thermal conditions and objective function being designed for, as a given
time or performance threshold.

2.3. Experimental verification

To supplement thorough numerical testing, a set of experimental
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tests are done to further validate the proposed analytical framework.
Cylindrical metal finned structures are fabricated from Aluminum alloy,
AlSi12 (3D Systems, PS2585-18), using laser powder bed fusion (ProX
200), which is selected for its ability to generate high resolution features
(beam spot diameter: 80 pm) with low porosity (<1 vol%). The metal
structures are longitudinally uniform with radially branching fins
designed to maintain a target uniform volume fraction throughout the
cylindrical volume, while maintaining a maximum spacing of 1 mm in
order to satisfy the composite effective properties assumption [35,52].
These cylindrical structures are designed with consistent parameters:
38.1 mm axial length, 3.6 mm inner radius, 1.5 mm metal base width
and outer radius of 19.1 mm, with a maximum uncertainty of & 0.2% on
all fabrication dimensions. Metal structures are filled with molten PCM
and refrigerated to solidify.

Insulating layers of silicone foam are used to enclose the experi-
mental test rig and prevent environmental heat transfer. Cylindrical
composites are initial initially held isothermally at 22 °C where all the
PCM is in the solid state. A cartridge heater is used to apply a constant
heat flux thermal load of 7.3 + 0.3 W-cm ™2 to the inner radius of the
cylindrical composite (CIR-10151/120 V, Omega), where the uncer-
tainty represents the combined uncertainty of the cartridge heater sur-
face area and the measured heater power. Thermistors, with a variability
of + 1 °C, are attached to inner wall of the composite and are used to
record temperature while the system undergoes heating (MP3022, TE
Tech) [52].

P
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3. Theoretical development
3.1. Analytical foundation

3.1.1. Limiting regimes

Within this work, for every configuration of interest we define an
individual solution for the rate limited and volume limited regimes. These
solutions are presented as optimal volume fractions, ¢, which refer
specifically to the volume fraction of metal within the system. In the rate
limited regime, the performance of the system is limited by the rate at
which heat can be absorbed into the system. The rate limited regime case
is effectively equivalent to an infinite medium because the melt front has
no interaction with the edges of the system. Consequently, in this case it
may be recommended that the system size be decreased to cut down on
the total mass and volume of the thermal management system and cut
down on unused volumes. Fig. 3 (c,d) demonstrates that the rate limited
optimum is the absolute optimal performance the system may have to a
thermal load.

When a volume constraint is taken into account, the composition
predicted by using a rate limited calculation may no longer be optimal
(Fig. 3c,d), leading to the definition of a second regime designated as the
volume limited regime. Since the rate limited optimum does correspond to
the highest possible performance given no volume constraints, it follows
that a system designer may wish to relax volume constraints to achieve
the highest performance optimum if possible. However, in many cases
volume constraints may be inflexible and using the rate limited optimum
would lead to extremely poor performance, which emphasizes the
importance of utilizing the volume limited regime when necessary. In this
case the performance is now limited by the total thermal capacity of the
system and the optimum is determined by the composition leading to
full utilization of the volume (Fig. 3a-b). The primary objective of the

P
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volume limited regime is to add additional capacitance preventing the
onset of detrimental effects of melting completion. This leads to a
decrease in volume fraction with increasing times of interest or thermal
loading magnitude.

The optimal composition is dependent on problem specific factors
such as, material properties, geometric constraints, performance metric
and thermal loading. Once the thermal and geometric parameters of the
optimization problem are defined, the rate limited optimum, and the
volume limited optimum should both be calculated and the lesser of the
two values should be selected as the true optimum (Fig. 3c-d).

3.1.2. Homogeneous composite approximation

The homogenous composite approximation treats a multicomponent
material system as a single medium, where the effective properties are
calculated from: the constituent material properties, the relative volume
fraction of constituent components, and their distributions. Previous
literature has shown that in the effective medium limit, where decreased
the constituent components are well-mixed and separated by small
length scales, thermal transport in PCM systems can be calculated using
the homogeneous composite approximation [35-37,53]. As previously
discussed, for such composites, this limit corresponds to behavior where
the time for heat penetration from the conductive fin into the PCM be-
comes increasingly small and convective heat transfer is dwarfed by
conductive heat transfer [35,40]. The homogeneous composite
approximation represents the upper limit of heat transfer for these sys-
tems and defines the objective of optimizing composnent spacing within
a composite, i.e. optimal component spacing corresponds to the limit
where performance converges with the homogeneous composite model
[13,35,36]. The validity of this approximation has been demonstrated in
both Cartesian and cylindrical coordinate systems [35,37], and the
critical point of spacing for use of this approximation is analytically
described for Cartesian systems [35].

For intrinsic properties, the resulting effective properties are deter-
mined solely through constituent volume/proportions, whereas
extrinsic transport properties, such as thermal conductivity, also
consider the specific internal geometries. For intrinsic properties, the
effective property, X.¢r, can be calculated as:

Xy = Z¢iX! 3

where each constituent volumetric material property, X;, is scaled by
the constituent volume fraction, ¢; [54]. For the case of heat transport
parallel to the heat source the effective thermal conductivity, ke, fol-
lows the upper bound associated with conductive elements arranged in
parallel along the direction of heat transfer and can also be calculated as:

ke = Z(/»,-ki Q)

where the thermal conductivity of each constituent is denoted by k;
[43,54]. While this configuration corresponds to anisotropic heat
transfer perpendicular to the heat source, other methods of calculating
transport properties can be applied to other configurations. For example,
microencapsulated PCM structures [55] would represent systems with
highly isotropic heat transfer from which transport properties could be
determined using the calculation described by Hashin and Shtrikman
[56] and alternatively referred to as the Maxwell-Eucken bounds.
Additionally, specific heat transfer models have been developed for
alternating layers [54,57], and lattice structures [58,59], among others.

3.1.3. Quasi-steady state (QSS) approximation

In addition to the homogeneous composite approximation, the
melting problem in composite systems can further be simplified using
the quasi-steady state (QSS) approximation. This approximation as-
sumes the conduction time through the liquid is short relative to the melt
time. These assumed conditions lead to constant temperature gradients

T 0 T

within the liquid phase (V = 0,5z = 0), making the analytical melting
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problem more tractable [60-62]. This assumption is considered valid for
very low Stefan numbers (St <« 1), which implies the role of sensible heat
is very small compared to the role of latent heat at the melt front
interface [62-65]. Therefore, this approximation is most suitably applied
for materials with very high latent heat values under low to moderate
magnitude thermal loads, which is highly applicable for a large portion
of PCM applications.

3.2. Approximate equations

In subsequent sections we establish the fundamental heat transfer
equations which are used to develop an analytical optimization frame-
work. More complete derivations described in the following sections are
discussed in works by Hill [60] and Alexiades [61] among others.

3.2.1. Cartesian melting descriptions — Applied heat flux BC

We first consider the 1D cartesian melting problem with an applied
constant heat flux boundary condition. We set the boundary at location,
y = 0, which corresponds to the planar interface between the heat
source and the PCM composite layer. Heat flows in the positive y di-
rection away from this source. Using the QSS approximation, the in-
crease in temperature at the heated boundary, ATy = T(y = 0) —Ty,, is:

ATy(t) = %@ y=0 )

eff
where g, corresponds to the applied thermal heat flux at the
boundary, k. corresponds to the effective thermal conductivity and 6(t)
represents the location of the melt front as a function of time, which is
given by:

ot

o(t) =
( ) Lvﬁff

©

where L, . represents the effective volumetric latent heat of the
composite. Combining Egs. (5) and (6) yields the equation for the
temperature rise at the heated boundary over the initial temperature of
the material,AT,, as a function of time:
"2
9o t

ATy() = Iy =0 @

3.2.2. Cartesian melting descriptions — Applied constant temperature BC

For the complementary problem of an applied constant temperature
boundary condition, at y = 0 the heat flux into the system through the
heated boundary interface (qs) is given as:

. AT,
g (1) = "W; ®

where AT, is the difference between the applied temperature of the
heated boundary and the initial temperature set to T,, (AT, = T(y =
0) —T.). Additionally, the location of the melt front,5(t), can be
expressed as:

2kt AT
8(6) = \/%Ut ©)

Substituting Eq. (9) into Eq. (8) allows for the expression of heat flux
into the system in terms of boundary condition and material properties
as a function of time:

. Lok AT,
q,(1) = \/4‘%? 8y=0 (10)

3.2.3. Cylindrical melting descriptions — Applied heat flux BC

We assume approximately the same configuration to establish anal-
ogous equations for cylindrical systems with the boundary at location r,
which corresponds to the cylindrical interface between the heat source
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and the PCM composite heat sink. The heat flows through the composite
in the r direction away from this source until reaching the outer
boundary at r¢. For the boundary condition of an applied heat flux, the
QSS solution the temperature rise at the inner radius boundary (ATy =
T(r = ro) —Tw) can then be described as:

ATy (1) = 7(]]5;0 {ln (%) },r =7 (11

where the melt front location §(t) in the radial direction is given by:

2q, rot
8(r) = |2 (12)
Lv,eff

Combining Eqgs. (11) and (12) yields the equation for temperature
rise at the inner radius boundary as a function of time:

AT[,(I)_q5’°{zn< 20! +1> },r—ro (13)

kegy roLy o
3.2.4. Cylindrical melting descriptions — Applied constant temperature BC
Lastly the necessary equation for Cylindrical based melting systems
with an applied constant temperature boundary condition at the inner
radius completes our analytical basis. The key equation for heat flux into
the system through the inner radius heated boundary is expressed as:

AT,

4, (1) = —ke[fWJ =1y as

Furthermore, the location of the melt front travelling radially
through the system is given as:
ko ATyt
() (1 +In(ro/5(t) ) ) = ro ——L—= (15)
1oLy o
Due to the nature of the of the above location it is not possible to
analytically isolate §(t) but numerical methods can be used to further
advance design capabilities.

3.3. Deriving optimums

To create expressions for an optimal volume fraction of components,
it is first necessary to define the objective that we are designing for. For
an applied heat flux boundary condition, we will be considering the
design objectives of: minimizing T, at a given optimization time,t’, (§
3.3.1) and maximizing the duration the heated boundary can stay below
a given allowable temperature threshold, Tyyesy (§ 3.3.2). For an applied
constant temperature boundary condition, we will be considering the
design objectives of: maximizing q’’, at a given optimization time,t’, (§
3.3.3) and maximizing the duration the system can stay above a mini-
mum allowable heat flux,q’’ jresn, i-€., dissipating at least a given level of
power (§ 3.3.4). The collection of all these objectives and geometries
allows for this work to be broadly applied to many common
applications.

In the following sections we derive analytical expressions for optimal
volume fraction. An expression is derived for every combination of co-
ordinate basis (Cartesian/cylindrical), boundary condition (applied
ATo/q;), and design objective. Furthermore, independent expressions
are developed for the rate limited and volume limited regimes. In the rate
limited regime, the volume fraction is selected based on the rate the
material can absorb heat. In the volume limited regime, the volume
fraction is selected based on the thermal capacitance limits. From the
resulting volume fraction values for each regime, the lower volume
fraction of the two will be the optimal design choice, as discussed in §
3.1.1.

For the design objective of optimizing a specific performance metric
at a given time (§ 3.3.1, § 3.3.3), in the rate limited regime the perfor-
mance metric, determined by the given boundary condition, is
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maximized analytically with respect to volume fraction to identify the
optimum. The optimum in the volume limited regime is identified such
that PCM melting completes at the time under investigation to select for
a more thermally capacitive competition, delaying the drop in perfor-
mance associated with melting completion.

For the design objective of maximizing the time for achieving a given
minimum level performance (§ 3.3.2, § 3.3.4), in the rate limited regime
the allowable time is maximized analytically with respect to volume
fraction to identify the optimum. The volume limited optimal volume
fraction is obtained by an analytical balancing of rate of thermal ab-
sorption and thermal capacitance. This is achieved by selecting a volume
fraction such that the time to complete PCM melting corresponds with
the time the threshold of performance is met.

3.3.1. Boundary condition: Applied heat flux
¢’y =0=r)=gq,

Objective function: Minimize the temperature at a given time
min(T(y =0|r =r,,t)) fort =¢

Consider first the case of a constant defined heat flux, ¢’ (y = Or =
r,) = q,, that will operate for a specific amount of time, with the goal of
minimizing the temperature of the heated surface at a particular opti-
mization time, min(T(y = O|r =r,,t)) fort =t".

To optimize the system when in the rate limited regime for Cartesian
based systems Eq. (7) is rewritten as a function of volume fraction:

qp t
ATy = 16
10 = G @) + ke (1 — ) L1 — §) (16

where the minimum temperature rise corresponds to:

(ke — 2kpcu)

(/JOPT,('art - z(kmem[ _ kPCM). (17)

Under the rate limited regime for this configuration, the optimal
volume fraction is exclusively a function of the thermal conductivity of
the constituent materials.

When pursuing the objective of minimizing the temperature at a
given time for cylindrical based systems, the temperature rise at the
inner radius, Eq. (13), can be minimized similarly.

. 24 rot’
(hmera () + kees (1 — 8))gs rot” — Lupese (1 — ) (—20 4 102) (o
L, peu(1 — @)
2q, 1
_ k,,CM)ln< Liv,.vcmro(l =9 +1 )
=0
as)

This equation can then be solved numerically to determine the vol-
ume fraction that will minimize the temperature of a given system with
no edge effects at a given time. Unlike the Cartesian case, optimal vol-
ume fraction for cylindrical systems in the rate limited regime is depen-
dent on time and geometry.

For a Cartesian system in the volume limited regime, the optimal
volume fraction can be solved using Eq. (6) and setting the melt front
location to the edge of the system (5(t) = ys). Substituting in the effec-
tive property calculation for latent heat, and solving for volume fraction
yields:

_ 9! 19)

Dorrcan =1—
ortcar YrLy pem

In this case the optimal volume fraction is determined by the height
of the system, the latent heat, the heat flux load and the time at which
the system is being optimized.

The same approach may be taken for volume limited cylindrical
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systems, using Eq. (12) and setting the melt front location equal to the
outer radius (6(t) =ry). Substituting in the effective property calculation
for latent heat, and solving for volume fraction yields:
2qy rot

L, peu (1 — 1r9?)

Dorreq =1— (20)
This expression follows the same form as the cartesian result (eq
(19).) while accounting for radially varying thermal mass.

3.3.2. Boundary condition: Applied heat flux
g (y=0r=r)=gq,

Objective function: Maximize the time to stay below a given threshold
temperature

max (t) for T(y = Olr = 7,) (T thresh

For the next objective we can consider a power source that can be run
up until a defined upper temperature limit is reached, T.s- It is crucial
in this scenario to have a design method to prevent the overheating and
damage to the power source component or surrounding system. This
upper limit can also be defined as a temperature threshold:

ATresh = Tinresh — Ton, 21

which cannot be exceeded.

For this objective, when the system is rate limited, the solution can be
obtained simply through isolating the time component. Rearranging Eq.
(7) for time and substituting in effective property calculations yields:

(Kmerar (@) + kpew (1 — @)Ly pen (1 — ¢) AT,
2
9

t= (22)

Maximizing this equation when ATy = ATy, yields the same vol-
ume fraction as the previous Cartesian rate limited response described by
Eq. (17). This is expected because the optimal volume fraction in the
Cartesian coordinate system does not vary with time or melt front
location.

The cylindrical rate limited case will differ between design objectives
due to the time and geometric dependance of the melt front circumfer-
ence and associated volume. For this regime, Eq. (13) can be taken and
rearranged for time. Substituting the effective material properties for the
latent heat and thermal conductivity, we attain the expression for heat a
specific time as a function of volume fraction.

(1 _ ¢)(62AT0(/‘PCM(1*‘/’)Jrkmml(‘/‘))/q;fo _ 1)

roLy pcy
= =
24,

(23)

Maximizing Eq. (23) then yields the following optimal composition:

2ATlhrexh (kmeml - kPCM) - q() ro
ZATthre.\‘h (kmeml - kPCM)

For Cartesian based systems, the limiting factor of thermal capaci-
tance can be described using the time to complete melting, Eq. (6), with
an effective latent heat calculation to get:

_ Lupen(1 = 9)0y)
4o

(24)

¢OPT.<’)’I =

t (25)
This can then be substituted into Eq. (16), setting,ATy = ATyyes; and
simplified to get the optimal volume fraction of the volume limited regime
as:
Vrqy — kpcm (AT resn)
ean = (26)
¢0P77 ! ATfhresh (kmeml - kPCM)

The same approach from the Cartesian development can then be
applied to Cylindrical based systems for the volume limited regime.
Taking the equation for melt front location (Eq. (12)) and rearranging to
get the time to complete melting yields:
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(7> = ro*)Lupeu(1 — @)

= 27)
2roq

t=

Substituting the time of melting completion from Eq. (27) into Eq.
(13), setting, ATop = ATyrsnand solving for volume fraction then results
in the equation:

_ dqoro In(ro/ry) + ATuvesrkpcu

= (28)
¢0PT7 o ATthre.&h( kPCM - kmeml)

3.3.3. Boundary condition: Applied constant temperature

Ty=0r=r,)=T,

Objective function: Maximize the heat flux at a given time
max(q”’(y =0|r =r,,t)) fort =¢

In addition to considering system with an applied heat flux, it is also
useful to develop optimization of systems with an applied constant
temperature boundary condition. An applied constant temperature
boundary is most closely analogous to the cooling of a heat pipe with a
roughly isothermal liquid circulating through the system. If it is known
that there will be a thermal load for a given amount of time, it may be
desirable to maximize the heat absorption up to a given time based on
the thermal loads of the system.

Within this configuration, first we develop an optimization for Car-
tesian geometries in the rate limited regime. Using an effective properties
substitution in Eq. (10) the heat flux into a Cartesian system is given by:

o Kmerar (@) + kpcu (1 = ) (Lo peu (1 — ) ATy
B = \/ 2t

(29

The maximization of this equation then yields the optimum
described by Eq. (17), and is consistent across all rate limited solutions in
Cartesian based systems.

The cylindrical system under an applied constant temperature
boundary condition presents a much more challenging problem due to
the transcendental nature of the solution for the melt front location. To
optimize for this case a numerical method is used to test across all vol-
ume fractions for the composition that will yield the largest flux at the
time of optimization using Egs. (14) and (15).

In the applied constant temperature boundary condition case, the
volume limited optimal volume fraction is calculated using the equation
for melt front location (eq. (9)) and substituting in the effective latent
heat and thermal conductivity:

- \/2( newa($) + kpcw (1 — ) ) ATot 30)

Lypcu(1 — )

This equation can then be solved to identify the optimal volume
fraction as:

Lypcuy; — 2 kpeut ATy

; (3D
Lypeuy; +2 1 ATo(Kmewas — kpcur)

d)()PT,cart =

Applying the same approach to the cylindrical case, Eq. (15) for the
location of the melt front can be used with effective material properties
substituted as follows:

( Kmerat (@) + kpen (1 — ) )ATot
1o Lypen(1 — @)

This expression can then be solved, replacing §(t) with the outer
radius of the system r; and solving for the volume fraction as:

() (1 +in(re/5(1))) = ro — (32)

77 1o Lypcu (1 +In (ro/r/) ) — L\,‘_,pCMré +kpeut ATy

; (33)
17 1o Lype (L+1n(ro/17) ) — Lupenrd +1 ATo(kpey — kerat)

¢0PT,L‘y[ =
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3.3.4. Boundary condition: Applied constant temperature

Ty=0r=r,)=T,

Objective function: Maximize the time to stay above a threshold heat flux

max (t) for ¢’ (y = Olr = r,){(q" tresn

The last objective we consider is to maximize the time (t) to stay
above a threshold heat flux, qj,,.,, when an applied constant tempera-
ture boundary condition is applied. This can also be explained as
ensuring the absorption of at least a certain level of heat for the longest
amount of time. If an application seeks to operate components for as
long as possible and the cooling components remain relatively
isothermal the development below will be the most useful.

For the Cartesian case this can be calculated using Eq. (10) and
rearranging to get:

(kmetat (@) + kpem (1 = @) (Ly.per (1 — ¢))ATo
245

t= (34)

Maximizing this equation with respect to volume fraction, when
q5 = Qpresn» yields Eq. (17) consistent once again across all rate limited
Cartesian optimizations.

As previously discussed, analytical solutions for cylindrical systems
under constant temperature loads are not apparent. Therefore, for the
objective of maximizing the time of obtaining at least a given level of
heat flux in the rate limited regime, we take a numerical approach.
Testing across a sample space of volume fractions with corresponding
effective properties, Eq. (14) can be used to determine the melt front
location where the system would reach the heat flux threshold. This
radius can then be substituted into Eq. (15) to calculate the corre-
sponding time where the heated boundary would intersect with the
chosen heat flux. From this the maximum time value can be taken and
the corresponding volume fraction identified.

For the Cartesian case in the volume limited regime for the objective of
staying above a minimum threshold heat flux into the system for the
longest time, Eq. (9) can be used, rearranging for time:

Y%L\'.PCM (1-¢)

t= 35
2( kyerat () + kpeu(1 — ) )T, ©5
Equation (10) can also be rearranged for time as follows:

_ (Kerat (§) + kpew (1 = @) (Ly e (1 — ¢)) AT, (36)

qv 7(2)
Equation (35) and (36) can then be set equal and simplified to get the
optimal volume fraction of:
DowesnYr — kpcu ATy

can = 37)
Port.car ATy (kimetar — kpcw)

which is a direct translation of Eq. (26), yielding the same form while
utilizing different variables as boundary conditions.

To identify the equivalent result for the cylindrical system Eq. (14)
can be used, substituting the thermal conductivity for an expression of
effective properties:

AT,
roln(ro/5(t) )

The g, value can then be assigned the minimum heat flux value

Qg = - (kmeml((ﬁ) + kPCM(l - ¢)) (38)

given,qy,.,,, and the melt front location can be assigned to the outer
radius (6(t) = ry). The volume fraction can then be solved for as:

_ q;;v'mhroln (r()/rf) + ATokpem

- (39)
PDorrey ATo(kpem — kerar)
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3.4. Analytical summary

Table 2 summarizes the analytical framework derived in section 3.3,
providing a guideline for optimal volume fraction selection across the
different design objectives, limiting regimes, boundary conditions and
coordinate systems.

4. Results and discussion

Throughout the following sections we assess the functionality and
applicability of the above developed analytical models through com-
parison to numerical and experimental results from original work and
examples from the existing literature. Temperature and heat flux values
are chosen to generally reflect the thermal loads of low to moderate
power thermal management systems.

4.1. Original experimental results

To create a practical comparison for the analytical model developed
herein we experimentally compare systems with different volume frac-
tions and observe how the optimal system changes over time. Using 3D
printed aluminum three systems were printed with metal volume frac-
tions of 0.3, 0.5, and 0.7 (Fig. 4b). Temperature is measured at the base
of the structures. While higher volume fractions can achieve lower
temperatures at shorter times, their lower composition of PCM causes
them to melt faster, leaving the lower volume fractions to become the
highest performing systems at longer times (Fig. 4c). This is consistent
with the models and analysis contained in previous sections.

The analytical framework developed above is applied to an experi-
mental dataset to assess the practical applicability of the models. In
Fig. 4 we demonstrate the changes in predicted optimal volume fraction
using the objective of minimizing temperature at a given time (Fig. 4a)
or maximizing the time below a given temperature (Fig. 4d) for a set
internal boundary condition of 7.3Wcm 2. These can be directly
compared to the experimental data showing the temperature of the
different volume fraction systems over time (Fig. 4c). In all cases, the
analytical model was able to predict the highest performing system out
of the three tested.

For the optimization metric of minimizing the temperature at a given
time, we select times of 76.4 s, 54.6 s, and 32.7 s after the onset of
melting, which correspond with the volume fractions of 0.3, 0.5, and 0.7
(Fig. 4a). Because it is not possible to initialize the experiment isother-
mally exactly at the melting temperature, Eq. (20) is compensated with
time (t) renormalized by the melting time (t —t,,) (Fig. 4a). This adds a
new level of approximation to our analysis because the system does not
isothermally heat from its starting temperature of 22 °C but is shown to
minimally affect the accuracy of our models for this case. For each
optimization time we accurately select the optimal performing com-
posite composition out of the sample set which corresponds closely to
the onset of edge effects, as expected, and predicted times corresponding
with the completion of melting are correct to within approximately 10%.

For the optimization metric of maximizing the time below a given
temperature, we select temperature thresholds of 46.3 °C, 39.0 °C, and
35.9 °C, which correspond with the volume fractions of 0.3, 0.5, and 0.7
(Fig. 4d). These optimums are predicted by Eq. (28) and reveal that the
experimentally measured temperature values seen here are lower than
analytically predicted values, which is also confirmed by equivalent
numerical testing using our finite element model. This discrepancy is
primarily attributed to 1) temperature heterogeneities near the free
surface where the temperature is measured due to heat loss to the sur-
rounding environment, 2) the contribution of the thermal mass of the
cartridge heater itself, as well as interfacial resistances between the
heater and the base of the composite PCM, 3) shortcomings of the QSS-
based solutions, which neglect the role of sensible heat, and 4) poten-
tially minor convective effects which increase at lower volume fractions,
longer times and higher temperatures. Regardless, the predicted
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Table 2
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Compilation of equations describing optimal volume fraction with various thermal configurations and objectives for PCM composites.

Cartesian

Heated Boundary Condition: Applied Heat Flux, ¢"'(y = 0) = q,
Objective Functions:

Minimize the temperature at a given time

Maximize the time to stay below a given threshold temperature

y

adiabatic, q'(y=y)=0
v=y; q (y=yp

k=K. Heat Sink
Lv:Lv,etf

3(t=0)=0

T(y,=0) =T,y

Heated Boundary Condition

O T Tt stare] 11

Objective Function Rate Limited

Volume Limited

2( kmetal - kPCM)
T(y = 0) < Tihresh

equation 17, §$3.3.2

min (T(y = 0,t)) bear = (Kmetal — 2Kpem) o = 1— qot’
for ) A 2(Ketal — Kpeum) cart YeLypem
t=t
equation 17, § 3.3.1 equation 19, §3.3.1
max (t) _ (Kmeta1 — 2kpem) _ Ye90 — ATthresnKpem
for ¢Cart - ¢cart -

ATthresh (kmetal - kP‘CM)

equation 26, §3.3.2

Heated Boundary Condition: Applied Temperature, T(y = 0) =T,
Objective Functions:

Maximize the heat flux at a given time

Maximize the time to stay above a threshold heat flux

Objective Function Rate Limited

Volume Limited

max (q”(y =0, t)) (Kmetal — 2Kpcm)

Lopem¥e® — 2 kpemt'AT,

T(r =1,) < Thresh

equation 24, $ 3.3.2

Geart = =
for ' 7 2(kmetar — kpew) Peart Lypemye® + 2 t'ATo(Kmetal — Kpem)
t=t
equation 17, §3.3.3 equation 31, §3.3.3
max (t) bears = (Kmetal = 2Kpem) _ Gthresn¥r — KpemATo
H( 0§0r< " et 2( Kimetal — kPCM) cart ATy (Kmetar — Kpem)
q\y= q thresh
equation 17, ¢ 3.3.4] equation 37, $3.3.4
Cylindrical q,,gﬂil?;’fgca Heat Sink
—r)= B
Q‘%:“di?izz%ﬁ.
k=K
Heated Boundary Condition: Applied Heat Flux, q¢"'(r =1,) = q; L,~L, .
Objective Functions: 3(t=0)=0
Minimize the temperature at a given time T(y=0) =Ty,
Maximize the time to stay below a given threshold temperature
Objective Function Rate Limited Volume Limited
min (T(r =1, t)) Solve Equation 18 numerically boy =1 2qgrot’
for N LR — D)
t=t equation 18, § 3.3.1 ! ’ equation 20, ¢ 3.3.1
max (t) _ 2AThresh (Kmetal = Kpem) — 4o'To Q1o ln(ro/rf) + ATresnkpem
for N 2ATinresn (kmetal = krcw) o =

ATthresh( kPCM - kmetal)

equation 28, ¢ 3.3.2

Heated Boundary Condition: Applied Temperature, T(r =1,) =T,
Objective Functions:

Maximize the heat flux at a given time

Maximize the time to stay above a threshold heat flux

Objective Function Rate Limited

Volume Limited

max (q"(r =1,,t)) Maximize equation 14 for ¢" using

T ’
i1 Lypem(1 + 1"( O/Tf)) = LypcumTo? + kpemt' AT,

q”(r =1,)< q”thresh CI”(T =1)= q”thresh

equations 14/15, § 3.3.4

for equation 15 to calculate §(t") byl = 7 -
f=¢ 7170 Lypem (1 +In("%/1)) = Lypemro? + t'ATo(Kpem — Kmetal)
equations 14/15, $3.3.3 equation 33, $3.3.3
max (t) Maximize equation 15 for t using QihreshToln rO/r + ATyKpem
for equation 14 to calculate §(¢t) when by = e ( f)

ATD( kPCM - kmetal)

equation 39, $3.3.4

optimums still provide approximate guide for the true optimums here
and the validity of optimization through this performance metric is
further explored numerically and through experimental work in the
existing literature in the sections below.
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4.2. Numerical comparison

In addition to experimental results, the analytical trends described in
this work can be validated through direct comparison to numerical
simulations. Numerical methods are useful in their ability to control
every aspect of the system, as well as gather large quantities of data
when compared with experimental methods. We use a previously
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b)
11 cm
d) Objective 2: Remain below Ty, for the greatest time
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Fig. 4. Analytical results a) for the goal of minimizing the temperature at a given time the optimal volume fraction can be described over time. b) Photographs of the
3D printed physical aluminum systems for each of the volume fractions used in experimental results (0.3, 0.5, 0.7). Analytical results can be compared against c)

experimental results for a Cylindrical finned heat sink under a heat flux load of 7.3 Wem

-2 q'"(r=r,)= 73 Wem ™2, with volume fractions 0.3, 0.5, and 0.7.

Analytical results d) for the goal of maximizing the time to stay below a given temperature the optimal volume fraction can be described for varying temperature
increases. Dashed arrows indicate the relationship between the analytical results and behavior of the 3 tested structures.

established 1D finite difference model to test systems which employs the
same homogenous composite approximation as our numerical devel-
opment above [35,36,51].

4.2.1. Applied heat flux

Fig. 5 compares numerical and analytical optimization approaches
for the given problem of optimizing a cylindrical system under a con-
stant heat flux boundary condition. In our numerical methodology, the
system is defined with a given composition and thermal load and
continuously simulated until a given end condition is reached, defined
as either reaching a given threshold temperature (Fig. 5a) or reaching a
given time (Fig. 5b), depending on the design objective. The simulation
basis is iterated to test a wide range of volume fractions in a short
amount of time, for a cylindrical system thermal load of 6 Wem ™2, There
exists a clear pivot point in the volume fraction space which corresponds
to the maximum value of the selected performance metric (Fig. 5a,b).
Through a comparison to full simulation runs (Fig. 5¢) it is evident that
these optimums correspond to the point at which the PCM melting
completes.

The predictions of the analytical model can be directly compared to
the results given by the numerical model (Fig. 5a,b). For the cases shown
here the analytical solution predicts results in the volume limited regime
which is expected since the full simulation results show the optimum is
related to the completion of melting. Asterisks are used in Fig. 5a-b to

11

denote predicted analytical optimums calculated by Eq. (28) (Fig. 5a)
and Eq. (20) (Fig. 5b). We observe that for either design objective the
model is in strong alignment with the exhaustive results, demonstrating
the accuracy of the model while highlighting the benefit of significantly
reduced computational expense. It was also discovered that the models
predicting optimal volume fraction for the goal of keeping the boundary
temperature below a given threshold were more accurate than models
created for the goal of minimizing temperature at a given time. This
effect originates from the difference in time between the melt front
reaching the outer boundary of the systems and completely melting the
system, causing the true optimum to occur at the latter instance.

4.2.2. Applied constant temperature

Fig. 6 compares numerical and analytical optimization methodolo-
gies for the analogous problem of optimizing a cylindrical system under
a constant temperature thermal load. For this boundary condition, the
numerical simulation is run until the end condition of either falling
below a threshold level of heat removal performance (Fig. 6a) or
reaching a given time (Fig. 6b), depending on the design objective. For a
cylindrical system thermal load of 29 °C, it can again be observed that
there exists a clear pivot point in the volume fraction space which cor-
responds to the optimum of the performance being selected for (Fig. 6a,
b). In the same fashion as the constant power boundary condition a
comparison to full simulation runs (Fig. 6¢) shows that these optimums
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Fig. 5. For a cylindrical system thermal load of 6 Wem ™ we present numerical
results detailing the relationship between material compositions to a) the time
at which PCM composites will reach the threshold temperature and b) the final
boundary temperature at a given time. a,b) Volume fractions 0.3, 0.4, and 0.5
are denoted and asterisks indicate the optimual volume fractions predicted by
analytical models above for each given end condition. ¢) Full simulation nu-
merical results for a system under a thermal load of ¢"(r=r,) = 6 Wem ™2,
with 75's, 90 s, 105 s denoting the times at which we are optimizing to mini-
mize temperature and 37 °C, 39 °C and 43 °C denoting defined threshold
temperatures which we wish to stay below for the longest amount of time.

correspond to the point at which the PCM melting completes, indicating
that the application parameters fall within the volume limited regime.
Asterisks are used in Fig. 5a-b to denote predicted analytical optimums
calculated by Eq. (39) (Fig. 6a) and Eq. (33) (Fig. 6b), where we observe
strong agreement between predicted and numerically determined
optimums.

Comparison between analytical and numerical results contained in
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Fig. 6. For a cylindrical system thermal load of 29 °C we present numerical
results detailing the relationship between material compositions to a) the time
at which composites will reach the set threshold heat flux and b) the final
boundary heat flux at a given time. a,b) Volume fractions 0.4, 0.5, and 0.6 are
denoted and asterisks indicate the optimal volume fractions predicted by
analytical models above for each given end condition. ¢) Full simulation nu-
merical results for a system under a thermal load of T(r =r,) = 29°'C, with 80
s, 120 s, 180 s denoting the times at which we are optimizing to maximize heat
flux and 0.4 Wem ™2, 0.5 Wem ™2 and 0.6 Wem ™2 denoting defined threshold
heat fluxes which we wish to stay above for the longest amount of time.
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Fig. 6 represents a very low magnitude boundary condition (29 °C)
compared to the melting temperature (28 °C). This decision was made to
demonstrate a more accurate portion of the parameter space. As was the
case for the constant heat flux boundary condition, higher magnitude
boundary conditions and longer times will decrease the accuracy of the
model. Similarly, to the constant power case, the goal of maximizing the
heat absorbed at a given time does not perfectly predict the numerical
optimum (Fig. 6b). In contrast, the goal of maximizing the time the
system is achieving at least a given minimum threshold heat flux leads to
higher accuracy predictions, which is attributed to the time needed to
melt the entirety of the outer radius simulated node.

4.2.3. Applicability range

As discussed in previous sections the accuracy of the models devel-
oped in this paper is highly dependent on the desired parameters of the
application and originates largely a result of selecting the QSS solution
for melting as an analytical basis. Therefore, it is necessary to explore
the limits of the applicability of these models to understand how they
may be applied to real systems. When comparing numerically observed
and analytically predicted results we calculate high R? values indicating
high predictive performance. Dividing our analysis between regimes
using analytical predictions leads to coefficients of determination with
consistent values of R%~1 within the rate limited regime and an average
of R?~0.93 within the volume limited regime.

For the objective of minimizing temperature at a given time, the rate
limited regime yields very high-fidelity predictions while the volume
limited regime is the least accurate of the prediction regions studied here.
Calculations of coefficients of determination show that the cylindrical
results within this regime are the least accurate with R%~0.76, compared
to the Cartesian results with R2~0.97, although the narrower range of
inquiry within the Cartesian testing can contribute to this observation.
Within the volume limited regime, our predictions align very strongly
with numerical predictions at lower magnitudes of thermal loading but
deviate with increased boundary condition magnitude (Fig. 7a). This is
to be expected as the QSS solution is most valid when the role of sensible
heat is small compared to the role of latent heat and will become less
valid at longer times and higher thermal load. The deviation effects of
the boundary magnitude are shown for a singular optimization time and
will deviate more at longer times and have higher agreement at shorter
times. It can be inferred from these results that, at high heat fluxes, if the
model predicts a very low volume fraction in the volume limited regime,
an offset towards higher volume fractions should be considered.

For the objective of maximizing the time below a given temperature,
the accuracy of the model is shown to be much less dependent on
operating parameters (Fig. 7b). In the volume limited regime both coor-
dinate basis system classifications show extremely high agreement. In

a) Minimize Temperature at a Given Time b)

—

1

Maximize Time Below a Maximum Temperature

Applied Thermal Engineering 209 (2022) 118235

the rate limited regime, for both the Cartesian and cylindrical based
systems, the analytical models slightly underpredicts the numerically
predicted optimum but this is held relatively constant with varying
optimization parameters. For this objective, coefficients of determina-
tion are found to have consistent values of R%~1.

4.3. Application to previously reported experiments

4.3.1. Critical evaluation of numerical simulations

In addition to testing our analytical optimization against the original
experimental and numerical data presented above, we are also able to
draw on the existing literature to verify that our predictions are widely
applicable. A 2015 study by Pakrouh et al. represents a quintessential
study within the current PCM composite design space wherein different
design configurations are used to empirically assess trends in perfor-
mance [41]. This study employed a 3D computational fluid dynamics
(CFD) model to simulate heat transfer through PCM based pin fin
composite heatsinks under a thermal load of 1.02 W/cm?, where the
distribution of fins is uniform and rectilinear.

One of the most significant advantages to comparing our optimiza-
tion methodology to existing datasets is to further justify the assump-
tions and approximations used throughout the development of this
work. The CFD employed in the Pakrouh study diverges in the funda-
mental assumptions from the analytical and numerical models in this
work in several ways, such as, 1) We approximate a macroscopic finned
system as a 1D uniform composite which contrasts with the full 3D
simulations executed in the Pakrouh study, 2) which also includes a
metal base that we exclude. 3) The 3D simulation is initialized at a
uniform temperature of 27 °C, while our models assume a uniform
temperature distribution at the melting temperature starting from the
solid state, which is compensated by the time to start melting in our
following analysis. 4) Furthermore, in our work we assume a finite, well-
defined, melting temperature while the PCM used in the Pakrouh study
melts over a 5 °C range, from which we select the lowest value for our
direct comparisons. 5) Finally, the CFD directly investigates the role of
convection which is not included in our models. Consistent with previ-
ous literature and our claims, smaller spacing of fins led to minimal
levels of convection even in the late stages of melting. Considering the
sum of all these differences, our ability to predict optimal performances
within the context of this work can greatly increase the confidence in our
optimization methodology

For this paper we test the performance metric of optimizing perfor-
mance, corresponding to minimizing temperature, at a given time. For
the given materials, aluminum, and the commercial paraffin RT44 HC
(T, = 41-45 °C), the rate limited optimum would be ¢ = 0.5 (Eq. (17)),
which is not sampled at within the dataset. Consequently, we can
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analyze the lower volume fractions as optimal systems for different
times and, while the highest of these volume fractions (¢ = 0.73) will
never be optimal, applying the solution for the volume limited regime
still allows us to assess the applicability of the equations and assump-
tions we are working with. For the shorter fin height, 15 mm, we propose
the optimization times of 80 s, 190 s, and 240 s after the beginning of
melting, which corresponds to the optimal volume fractions of 0.73,
0.35 and 0.18 (Eq. (19), Fig. 8a). For the 23 mm extended fin systems,
we propose the optimization times of 140 s, 300 s, and 400 s after the
beginning of melting which correspond to optimal metal volume frac-
tions of 0.71, 0.38 and 0.18 (Eq. (19), Fig. 8b). For each of the optimi-
zation times selected, it is evident that the selected volume fraction
yields the lowest temperature out of the three related volume fraction
systems (Fig. 8). Furthermore, we confirm the optimality of the pivot
point corresponding to the completion of melting as well as our ability to
predict when it will occur. Our prediction is especially strong at the high
volume fractions, which is explainable by the relationship between the
increasing distance between fins, ranging from 1 mm to 8 mm, and the
role of convection. Even at the lowest volume fractions where convec-
tion is certainly playing a role, we are still able to accurately select an
optimal volume fraction and predict the approximate time of melting
completion.

4.3.2. Critical evaluation of experimental observations

Another selection from the existing literature that can be used to
directly asses the applicability of our optimization methodology is work
by Tamraparni et al. from 2021 which sought optimal designs of
lamellar PCM composites primarily using numerical and experimental
methods [36]. The experimental aspects of this work serve as a useful
validation of the real-world validation of the methodology we have
developed. This work is especially useful because it represents one of the
more complete experimental datasets within the literature and a thor-
ough examination of different volume fraction systems under various
heat flux conditions can be found in the supplemental information of this
work (Fig. 9).

Using Eq. (17), a rate limited optimal volume fraction can be
calculated as 0.5, which can clearly be observed as the highest per-
forming composition across thermal loads and performance metrics
throughout the study. Therefore, any volume fractions higher than this
value can be rejected as possible optimums, which is confirmed within a
reasonable level of randomness. For further analysis we consider the
performance metric of maximizing the time the heated boundary can
stay below a given maximum value in the volume limited regime. For
the lowest power dataset, 1.45 W cm™2, we propose temperature
thresholds of 35 °C, 37 °C, and 40 °C which correspond to a predicted
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optimal composition of 0.43, 0.3 and 0.21 vol fraction of metal
respectively (Eq. (26), Fig. 9a). As the heat flux is increased, the lowest
volume fractions fall out of our analysis frame. Therefore, we propose
two temperature thresholds for the 4.8 W ecm ™2 dataset of 48 °C, and
54 °C which correspond to a predicted optimal composition of 0.4 and
0.3 vol fraction of metal respectively (Eq. (26), Fig. 9b). Lastly, for the
7.25 W cm ™2 dataset we select a temperature threshold of 57 °C which
corresponds to a predicted optimal composition of 0.42 vol fraction of
metal (Eq. (26), Fig. 9¢). In all cases tested, our optimization method-
ology is able to select the volume fraction within the given sample range
that maintains sub-threshold temperatures for the longest amount of
time. Notably, we do not observe a decrease in accuracy with increasing
levels of thermal loading, which increases our confidence in the quasi-
steady state assumption used in our optimization methodology within
a reasonable range of power levels.

4.4. Trends in optimums

To help understand how optimal volume fraction is dependent on
application needs we can compare analytically optimized volume frac-
tion selections across varying thermal loads. In Fig. 10 we map out an
optimal composition space with varying parameters of the design
problem. The geometric basis of the cylindrical design problem was
chosen to mirror our experimental analysis with a 3.6 mm inner radius
and outer radius of 19.1 mm, while the dimension associated with the
Cartesian problem was chosen as 15.5 mm to match the width of the
cylindrical composite layer. Simulated material properties are set as the
known properties of octadecane and AlSil12 (Table 1).

Analysis of trends within the design space is particularly useful if the
application parameters are not ideally set and may vary somewhat in
thermal loading or run time. For such cases, an optimal composition can
be identified, and knowledge of trends can be used to inform adjust-
ments from said optimum. Fig. 10 demonstrates that the rate limited and
volume limited regimes have very distinct trends over the analyzed space.

Notably, the optimum for systems with a Cartesian basis the optimal
volume fraction in the rate limited regime is the same across all appli-
cations and design objectives because the solution is solely determined
by material properties. Aside from this case, the optimal volume fraction
will always decrease farther from the intersection of the two regimes.
For cylindrical systems, the optimal volume fraction in the rate limited
regime increases leading up to the regime intersection. This difference
between cylindrical and Cartesian based systems can be attributed to an
increase in circumferential thermal capacitance with increasing melt
front propagation radius for cylindrical based systems compared to
Cartesian based systems. This varying optimal volume fraction within
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Fig. 8. Base temperature evolution with time for metal volume fractions of 0.18, 0.36 and 0.73 with a fin height of (a) 15 mm and (b) 25 mm. Dashed lines labeled
with tm indicate the datapoint corresponding to the start of melting when the lowest temperature of the melting range is reached, and dashed arrows indicate
optimization times that correspond to the given compositions (within 3 %) when pre-selecting a volume limited solution. Modified from Pakrouh et al, 2015 [35].
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the rate limited regime for cylindrical systems suggests that while a
completely uniform material is the optimal configuration for Cartesian
systems, compositionally variant systems present an opportunity for
future work in cylindrical systems.

For all cases in the volume limited regime, the optimal volume fraction
will always decrease with distance from the regime boundary intersec-
tion. This can be rationalized as a necessity to increase the time before
the completion of melting. This is expected by recalling the completion
of melting corresponds to a sharp decrease in performance and the
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addition of thermal capacitance will delay the onset of this point.

We also identify regimes indicated by the gray regions in Fig. 10,
where the analytical model yields solutions less than zero (Fig. 10a,d). In
this regime having a completely PCM system is the optimal composition,
assuming a PCM based solution, but using a PCM is likely not the ideal
thermal management approach if all other design problem parameters
are fixed. This is because, in these cases, the dynamics of the melting
process begin to be dwarfed by the thermal loading making the tem-
perature damping from the phase change process insignificant. There
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are two explanations for these bounds which are unique to the corre-
sponding framing of the optimization problem. When considering the
problem of minimizing the temperature at a given time, the optimization
is bounded in the volume limited regime in the limits of longer time and
applied heat flux (Fig. 10a, grey region). This can be understood as the
conditions under which the system volume is insufficient for the appli-
cation and even a complete PCM composition cannot prevent the
completion of melting, after which performance rapidly drops off. When
considering the problem of maximizing the time the system can remain
below a given temperature, a different bound emerges (Fig. 10d, grey
region). This bound can be understood as the region where the problem
is ill defined, i.e. in this region the time to reach the threshold temper-
ature is very small (~1 s) and the difference between differing compo-
sitions becomes negligible.

4.5. Example optimization processes

In this section we provide practical examples of the application of
this work. We constrain the problem to only consider optimization with
aluminum and octadecane with properties defined in Table 1. In each
example we assume the initial state of the material system is entirely
solid and held at a negligible distance from the melting temperature. All
edges of the system, aside from the heated boundary, are considered
adiabatic. Solutions to thermal problems below are assumed to be in the
form of finned heatsinks, representing the upper limit of anisotropic heat
transfer away from the heat source [43]. Furthermore, fin spacings are
assumed to be sufficiently small to achieve homogeneous composite
behavior [35-37].

Example Problem 1:

Consider a cylindrical battery producing heat at a rate of qj =
10 Wem™2 nested in a concentric cylindrical thermal storage package
with an allowable inner radius of r, = 0.5cm and outer radius of r; =
2cm. The goal of this thermal storage package is to keep the temperature
of the battery below 48 °C (i.e. 20 °C over the melting temper-
ature, ATyresn = 20°C ) for the longest possible amount of time.

The rate limited solution to this problem is solved using Eq. (24)
yielding a volume fraction of ¢ = 0.84. The volume limited solution to
this problem is solved using Eq. (28) yielding a volume fraction of ¢p =
0.43. Per our methodology the lower of the two values is the true op-
timum, which is ¢ = 0.43, indicating we are in the volume limited regime
of the design problem.

To support this optimization result and demonstrate the disadvan-
tages of deviating from the optimal composition, we employ our nu-
merical model to simulate various compositions within the design space
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and asses the timescales associated with each composition for the given
temperature threshold (Fig. 11). At the optimal volume fraction, the
battery surface can remain below the threshold temperature for ~ 43 s
(Fig. 11a). For this particular design problem, if the system is PCM
deficient, i.e. the volume fraction is higher than the optimum, the per-
formance as measured by the time below the threshold temperature
decreases linearly by ~ 12% of the optimum for every increment of 10%
of the sample space range (¢ = 0.1) (Fig. 11b). If the system is PCM rich,
i.e. the volume fraction is lower than the optimum, the performance
decreases more rapidly than the PCM deficient side of the problem.
Within the first volume fraction increment of 10% (¢ = ¢opr—0.1) the
performance drops by ~ 40% and further steps drop quadratically with
the fourth step corresponding to a performance drop of ~ 97%
(Fig. 11b).

Example Problem 2:

As another example, consider an electronics chip producing heat at a
level of qfj = 1 Wem™2 attached to a rectangular thermal storage pack-
age with a maximum height given as yy = 1.5cm. The design objective of
the thermal storage package is to minimize the temperature of the chip
over the time the chip is active, given as.t' = 120 s

The rate limited solution to this problem is solved using Eq. (17)
yielding a volume fraction of¢) = 0.50. The volume limited solution to this
problem is solved using Eq. (19) yielding a volume fraction of ¢ = 0.54.
Per our methodology the lower of the two values is the true optimum,
which is ¢ = 0.50, indicating we are in the rate limited regime of the
design problem.

To support this optimization result and demonstrate the disadvan-
tages of deviating from the optimal composition, we employ our nu-
merical model to simulate various compositions within the design space
and assess temperature associated with each composition at the opti-
mization time (Fig. 12). At the optimal volume fraction, the chip surface
at the optimization time reaches a temperature of 31 °C (Fig. 12a). For
this particular design problem, if the system is PCM deficient, i.e. the
volume fraction is higher than the optimum, the chip’s surface tem-
perature increases linearly by ~ 20% of the optimum for every incre-
ment of 10% of the sample space range (¢ = 0.1) (Fig. 12b). If the
system is PCM rich, i.e. the volume fraction is lower than the optimum,
the chip temperature is lower than the PCM deficient side of the prob-
lem. Within the first volume fraction increment of 5% (¢ = ¢opr—0.05)
the temperature deviates from the optimum by ~ 2% and further steps of
the same increment approximately double with the furthest deviation
from the optimum corresponding to a ~ 39% increase in temperature
(Fig. 12b).
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Fig. 11. a) Numerical results for the temperature of the battery surface boundary for the optimized thermal storage package ¢ = 0.43and with a deviation from this
optimum by 10% of the sample space range (¢ = 0.33/ ¢ = 0.53). Temperature threshold given by the design problem indicated with dotted line, ATy, = 20 °C.
b) Comparison of the performance, measured in time to reach the temperature threshold and as a percentage of the maximum time.
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Fig. 12. a) Numerical results for the temperature of the battery surface boundary for the optimized thermal storage package ¢ = 0.5 and with a deviation from this
optimum by 10% of the sample space range (¢ = 0.4/ ¢ = 0.6). Optimization time given by the design problem indicated with dotted line, t = 120 s. b) Com-
parison of the performance, measured in the temperature at the optimization time and as a percentage increase over the minimum temperature rise.

Lessons from examples

Working through specific examples allows us to identify common
characteristics that are true of most practical cases, even if it is not a rule
over the whole sample space. It has been observed over many test
problems that when rate limited solutions are identified as the appro-
priate choice, especially when the volume limited optimum deviates from
the rate limited optimum significantly, there is usually a large range of
volume fractions with similar performances and deviating from the
optimum often causes minimal decrease in thermal buffering capacity.
This can be partially seen in Fig. 11 b where deviating from the optimum
by ¢ = 0.05 yields negligible changes in performance, though deviating
farther causes melting to complete on the PCM deficient side. This is
expected because the calculated volume limited solution is very close to
the rate limited solution.

Within the volume limited regime, for the objective of maximizing
thermal buffering at a given time, it is most commonly observed that, for
equivalent deviations in volume fraction from the optimum, the PCM
rich side of the design space decreases in performance at a lower rate
than the PCM deficient side. In this regime, the complementary objective
of maximizing the time to achieve a given minimum thermal buffering
capacity usually exhibits a sharper peak in performance in the volume
fraction space and any deviation from this optimum will cause signifi-
cant decreases in performance without a strong preference for PCM
deficiency or excess.

5. Conclusions

Phase change material based heat sink design is an area of intense
interest in thermal management applications, wherein the composition
of constituent elements remains the most critical design inquiry. In this
manuscript, we establish a comprehensive analytical optimization
framework for determining the compositions of constituent thermally
conductive and capacitive components in composite phase change ma-
terial layers for Cartesian and Cylindrical based systems. Within the
design space, we describe two regimes where performance is limited by
rate of heat absorption (rate limited) or total thermal capacitance (volume
limited), for which corresponding expressions are derived using the
quasi-steady state approximation for melting problems. This design
framework spans all permutations of 1) two coordinate bases 2) two
boundary condition types and 3) two design objectives to allow for this
work to be broadly applicable and practical to apply.

Through a comparison to exhaustive simulation-based optimization,
we confirm the accuracy and usefulness of the developed analytical
models, demonstrating consistent coefficients of determination of R*~1
within the rate limited regime and an average of R?~0.93 within the
volume limited regime. When optimizing thermal buffering capacity in
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terms heat transfer through the system boundary, it is observed that
analytical optimization models are most valid at lower power and
shorter time scales as expected from the approximate models we use. We
also demonstrate the practical applicability of this work through direct
comparison to original experimental results as well as experimental and
numerical results from the existing literature. The convergence between
these high-fidelity simulations and experiments, and the approximate
analytical framework outlined in this manuscript is remarkable and
demonstrates the utility of this approach in generating high performing
provisional designs of composite PCM structures. Example problems are
used to demonstrate the application of this work, where we show an
average of 14.6 % decrease in performance when deviating by only 10%
of the composition range. In summary, his work provides an unprece-
dented degree of design control by providing practical and objective
oriented guidelines for PCM composite design.
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