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Abstract—For future Connected Automated Vehicles (CAVs)
networks, the joint optimization of communication, sensing and
computing resources is crucial to guarantee the performance
of cooperative automated driving’s safety, which is attracting
more and more attention. However, the existing works have not
considered the low latency requirement for the raw perception
data sharing with both wireless communication link capability
and computing efficiency constraints, causing a serious threat to
the cooperative automated driving’s safety in CAVs networks. In
this paper, a vehicle-road-base station cooperation architecture
is designed, and a federated reinforcement learning based task
offloading and resource allocation algorithm in the CAVs network
is proposed to reduce the task execution delay with different
communication and computing constraints. The problem of
execution delay minimization is theoretically formulated and
analyzed under three task practical offloading modes. To adapt
to the dynamic topology of the CAVs network, we design a
deep reinforcement learning algorithm to achieve the optimal
task offloading and resource allocation. To further reduce the
data transmission overhead of centralized reinforcement learning
algorithm, the federated reinforcement learning enabled algorith-
m is proposed to minimize the execution delay of the optimal
task offloading and resource allocation among multiple CAVs.
Both the simulation and hardware testbed results verify that the
proposed algorithms can not only reduce the execution delay
and the communication overhead, but also improve the system
throughput.

Index Terms—Connected Automated Vehicles, Deep Rein-
forcement Learning, Federated Reinforcement Learning, Intelli-
gent Transportation Systems, Mobile Edge Computing, Vehicular
Networks.

I. INTRODUCTION

Driven by the artificial intelligence (AI) technology, auto-
mated vehicles (AVs) have attracted extensive attention from
both industry and academia worldwide recently [1]. In order to
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improve the driving safety of AVs, multiple sensors have been
deployed extensively and accumulatively, including cameras,
radar and LiDAR [2]. However, when the sensor failure occurs
due to the bad weather and obstacle blockage issues, single
AV will face the severe safety challenge that is beyond the
capabilities of accumulating multiple sensors on-board.
With the fast development of beyond the fifth-generation

(5G) and sixth-generation (6G) wireless communication tech-
nologies, the concept of connected automated vehicles (CAVs)
has been proposed to improve the driving safety of AVs by
enhancing the environment awareness capability with B5G
and 6G wireless communication technologies [3]. Through
the cooperation between multiples AVs and infrastructures, the
sensing and computing capabilities of CAVs can be improved
substantially. The processing delay of environment sensing
tasks can be reduced, and the driving safety of CAVs can be
improved as well. As a popular topic in the ITU-R standards,
the use cases, spectrum requirements and radiocommunication
requirements of CAVs have been defined and discussed [4],
where both the Sub-6GHz and millimeter wave (mmWave)
bands were considered as the candidate spectrum bands for
CAVs [5]. Besides, the radiocommunication requirements of
CAV including sensor, radio interfaces and reliability were
defined and discussed. And the deployed connected vehicle
pilot zones in some areas of China basically covered scenarios
such as urban roads and rural roads, with intelligent networked
infrastructures [6]. In response to the large bandwidth and
low latency requirements of CAV sensing data sharing, China
expounded the advantages of the sensing and communication
integrated design system in the CAV system, which can reduce
the delay of information interaction between sensing and
communication systems, and improve communication perfor-
mance by assisting the communication process with sensing
information [6].In order to guarantee the driving safety and
environment sensing data sharing among CAVs, the integration
of communication, sensing and computing is important and
considered as a key enabling technology for the 6G end-to-end
information processing [7]-[8]. However, there are still many
problems unsolved yet for the joint design of communication,
sensing and computing functions for CAVs.
In the literature, there are many research works on the

fusion of communication and sensing functions. In terms
of the sensing assisted communication performance analysis,
an intelligent service-oriented edge management architecture
was proposed in [9]. By using a large number of sens-
ing data extracted from vehicular networks, the coordination
between edge resources and auxiliary information services
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was achieved. By using the joint communication and sensing
functions deployed on the roadside unit (RSU), a beamforming
method using the sensing information was proposed in [10]
based on the dual function radar communication (DFRC).
Furthermore, a beamforming algorithm based on factor graph
and message passing among vehicles was proposed in [11]
to realize the DFRC predictive beamforming in the vehicular
network. However, the existing works have not considered the
computing time delay problem in terms of the environment
sensing tasks, which will lead to an unacceptable task execu-
tion delay.
In terms of the computing task requirement, the local

computing ability of the vehicle is often insufficient to pro-
cess these real-time and computation-intensive tasks [12]-
[15], leading to a serious threat to the safety of CAVs [16].
Therefore, the time-sensitive computing tasks need to be
offloaded efficiently to other infrastructures to meet the low
latency requirements. The cloud computing is considered as
a candidate method to manage the task offloading in order
to reduce the execution delay of offloading tasks. Existing
research works in [17]-[19] considered the computing task
offloading to the cloud server. Both the single-task offloading
and the distributed task offloading schemes were considered
in [17] to reduce the power consumption of the centralized
cloud. The theoretical and empirical analysis of vehicle cloud
task scheduling problem was also studied in [18]. In [19],
a task offloading problem was formulated to offload tasks
to cloud for processing, which can ensure the minimum
end-to-end delay of task processing. However, in the delay-
sensitive and computation intensive CAVs scenario, the cloud
computing technology for sensing task offloading will cause
the impractical execution delay. As a promising technology,
the multiaccess edge computing (MEC) technology [20]-[21]
showed the capability of solving the time-sensitive computing
task offloading problem by deploying servers at the network
edge.
There are a considerable amount of research works that

focus on the task offloading problem by using the MEC
technology. In smart grid, the data distribution among various
devices by using vehicles as the MEC servers was studied
in [22]. Furthermore, the joint cloud and wireless resource
allocation algorithm in the MEC enabled cellular network was
proposed in [23] based on the evolutionary game theory. A
cloud-based MEC offloading framework was proposed in [24]
and the utility of MEC service providers can be maximized in
the vehicular networks by using a contract-based offloading
and computing resource allocation scheme. In addition, the
MEC-based task offloading and channel resource allocation
scheme was studied in [25] for the 5G ultra-dense network.
An overall strategy of task offloading and resource allocation
in a multi-cell MEC network was proposed in [26]. How-
ever, these studies only considered the channel resources or
computing resources separately, without the joint optimization
of communication and computing resources. For example, in
[22]-[23], all the computing resources of the MEC server were
allocated to users, lacking the flexible computing resources
allocation. Besides, the task offloading path selection and
channel allocation problems were not considered in [24]. The

joint optimization problem of computing and communication
resources allocation have not been considered in [25]-[26].
Besides, the existing research works usually divide the

joint task offloading and resource allocation optimization
problems into several subproblems by using the Lyapunov op-
timization method or linear programming relaxation method.
In [27], the joint load balancing and task offloading problem
was transformed into a mixed integer nonlinear programming
problem, which was decoupled into two subproblems using a
low-complexity method. And another joint computing offload-
ing and radio resource allocation algorithm based on Lyapunov
optimization method was proposed in [28]. By minimizing the
upper bound of the Lyapunov drift plus penalty function, the
main problem was divided into several subproblems which
were solved accordingly. In [29], the resource management
problem was divided into three subproblems and solved by
using the linear programming relaxation and the first-order
Taylor approximation. However, the method of splitting the
optimization problem into several subproblems is complex
and inefficient, which can not meet the timeliness task of-
floading requirement in the CAVs scenario. In addition, in the
autonomous driving scenario, due to factors such as vehicle
driving conditions, weather conditions, etc., the resource status
presents obvious dynamic fluctuations. The dynamic fluctua-
tion of resources will lead to the instability of computing task
offloading, which will affect the adaptability of computing
tasks to the offloading environment. Therefore, to adapt to
the time-varying environment of CAVs, a deep reinforcement
learning (DRL) algorithm based on the adaptive exploration
approach has been applied in this paper according to [30]-[32].
The author in [33] provided a comprehensive literature review
on the application of DRL in communication and networking.
The authors in [34] have described the supervised learning,
unsupervised learning, deep learning, reinforcement learning
and their applications in wireless networks in detail, aiming
to outline the motivations and methods of various machine
learning algorithms and scenarios for future wireless networks.
A deep reinforcement learning method using a deep Q-network
to approximate the Q-value was proposed in [35] to obtain
the optimal interference alignment (IA) user selection strategy
in IA wireless networks. Simulation results showed that the
proposed method can significantly improve the network’s sum
rate and energy efficiency. The author in [36] formulated
resource allocation strategies as a joint optimization problem,
which is solved by using a novel big data deep reinforcement
learning approach. Simulation results with different system
parameters were given to demonstrate the effectiveness of the
proposed scheme. But the centralized reinforcement learning
will lead to a huge communication overhead problem, which
is a great burden on the CAVs network with limited channel
resources.
On this basis, a distributed learning method namely feder-

ated learning [37]-[38] has been used to perform the weights
update of the machine learning model. Because it is difficult to
achieve stable and real-time interaction between edge devices
and edge servers, the authors in [39] proposed an intelligent
ultra-dense edge computing framework. To achieve a real-
time and low-overhead computation offloading decision and
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the resource allocation strategies, a novel two-timescale deep
reinforcement learning (2Ts-DRL) method was proposed, and
federated learning was used to train the 2Ts-DRL model in
a distributed manner to protect the privacy of edge devices.
The authors in [40] studied the security incentive mechanism
of multi-agent federated reinforcement learning in intelligent
cyber-physical systems with heterogeneous devices. A multi-
agent federated reinforcement learning algorithm that reduced
the variance of policy evaluation was proposed. The experi-
mental results showed that the proposed method can effectively
reduce the training cost. To solve the complex dynamic control
problem in edge caching, a federated deep reinforcement
learning-based cooperative edge caching framework was pro-
posed in [41]. The proposed framework federated all local
users to jointly train the parameters and fed them back to
the BS to speed up overall convergence rate. The simulation
results showed that the proposed framework can reduce the
average delay and improve the caching hit rate. The authors
in [42] provided an extensive overview of existing research
works on federated learning, implementation challenges and
issues when applying federated learning to Internet of things
environment. However, these works have not considered the
joint task offloading and radio resource allocation problem
with the low latency and the low overhead constraints in the
CAVs scenario.

Therefore, a federated reinforcement learning (FRL) al-
gorithm for task offloading and resource allocation in CAVs
network is designed in this paper to reduce the task execu-
tion delay. First, we design a vehicle-road-base station (BS)
cooperative task offloading architecture with different wireless
access technologies. Three task offloading modes are analyzed,
namely the local offloading, the RSU offloading via the PC5
interface, and the BS offloading via the Uu interface [43]. We
theoretically formulate the minimization problem of average
execution delay with the specific channel and computing
resources constraints. To adapt to the time-varying topology of
the CAVs network and solve the problem of large transmission
overhead, we propose the FRL algorithm to solve the task
offloading and resource allocation problem and minimize the
execution delay in the CAVs network. The main contributions
of this paper are summarized as follows.

• A vehicle-road-BS cooperative task offloading architec-
ture with different wireless access technologies is pro-
posed, where the transmission methods of Sub-6GHz
and 28GHz frequency bands have been considered. The
execution delay minimization problem is theoretically
formulated with various communication and computing
resources constrains in the CAVs network.

• The task offloading problem is modeled as a Markov
decision process based on the definition of state and
action in the CAVs scenario, and the DRL enabled joint
task offloading and computing resource allocation scheme
is proposed to minimize the execution delay of CAVs.

• To solve the transmission overhead problem in the cen-
tralized reinforcement learning model training process,
the FRL algorithm is proposed to train the optimal task
offloading and resource allocation selection model by

sharing only the key model parameters among RSU and
CAVs. And the convergence trend of the proposed FRL
algorithm is analyzed.

• To verify the performance of the proposed vehicle-road-
BS cooperation architecture and algorithms, we design
and develop the hardware testbed by using the USRP
platform, the mmWave communication equipments, and
the MEC servers.
The rest of this paper is organized as follows. Section

II proposes the vehicle-road-BS cooperation architecture and
the execution delay minimization problem is formulated with
both communication and computing resources constraints. In
Section III, the joint task offloading and resource allocation
problem is modeled as a Markov decision process, and the
DRL algorithm is used to solve this problem. In Section
IV, the FRL enabled task offloading and resource allocation
algorithm is proposed to solve the transmission overhead
problem in the model training process. Numerical results from
both simulation and hardware testbed are discussed in Sections
V and VI to verify the performance of the proposed algorithm.
Finally, we summarized this paper in Section VII.

II. SYSTEM MODEL

In this section, the vehicle-road-BS cooperation architec-
ture is proposed, where both the Sub-6GHz and the mmWave
spectrum bands are considered. Then, we described the com-
munication model and the computation model in Section II-B,
respectively. The execution delay minimization problem is
formulated with the communication and computing resources
constraints in Section II-C. The key parameters and notations
are summarized in Table I.

A. Vehicle-Road-BS Cooperation Model

As shown in Fig. 1, a vehicular network consists of two B-
Ss, N RSUs, andM vehicle user equipments (VUEs). The set
of VUEs is defined byM = {1, 2, ...,M}. RSUs are deployed
on the roadside, which are denoted byN = {1, 2, ..., N}. Each
RSU or BS is connected to a MEC server. Server 1, Server
2, ..., Server N represent the servers connected to RSUs.
Both Sub-6GHz and mmWave spectrum bands are considered
to guarantee both the coverage and capacity demands in the
CAVs scenario. According to the ITS communication network
in the ITU handbook, we consider that RSU can access to
the cloud server through the dedicated data network, and
can receive instructions from the central cloud through the
dedicated data network [43].
Each task is expressed as ϕi = {ci, gi, tmax

i } by three
indicators, where ci is the size of the task, gi is the resource
required for task computing, and tmax

i is the maximum tolera-
ble delay of task ϕi. To formulate the following optimization
problem, the time domain is divided into different time slots,
and each time slot cannot exceed tmax

i . For each task ϕi, three
offloading decisions can be used, namely the local processing,
the offloading to the RSU, and the offloading to the BS. We
also define L = {li|li ∈ {lloci , lRSU

i , lBS
i }, l

j
i ∈ {0, 1}, i ∈

M, j ∈ {loc, RSU,BS}} as the offloading decision set. A =
{loc, RSU,BS} depicts the offloading path set, including the
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TABLE I
KEY PARAMETERS AND NOTATIONS.

Symbol Definition
M VUEs set
N RSUs set
ci Size of task ϕi

gi Computing resources required to process task ϕi

tmax

i Maximum tolerable delay of task ϕi

Pt Transmit power of VUE
γi,RSU SINR of VUE i at RSU
γi,BS SNR of VUE i at BS
θmi,n Spectrum allocated by RSU n to VUE i in time slot m
ηmi,n Computing resources allocated by RSU n to VUE i in time slot m
θm
i,BS

Spectrum allocated by the BS to VUE i in time slot m
ηmi,BS Computing resources allocated by the BS to VUE i in time slot m

floc, fR, fB Computing ability of VUE, RSU and BS
B Bandwidth between VUEs and RSU
B0 Bandwidth between VUEs and BS
τ Transmission delay required per unit result size between BS and VUE

pϕi,loc
, pϕi,RSU , pϕi,BS Offloading decisions of task ϕi for local, RSU, and BS processing

Fig. 1. Vehicle-road-BS cooperation architecture.

local processing, the offloading to the RSU, and the offloading
to the BS, respectively. In addition, lji = 1 means that the task
ϕi is offloaded according to the decision j, otherwise lji = 0.

Next, we consider the signal to interference plus noise ratio
(SINR) of CAVs in three offloading modes. We assume that
all VUEs have the same transmit power Pt, and the number of
VUEs within the RSU coverage of VUE i is Ni. In the mode
of offloading to RSU, the SINR of VUE i at RSU is defined
by

γi,RSU =
Ptgi,RSU

Ni
∑

l=1,l 6=i

Ptgl,RSU + σ2

, (1)

gi,RSU =20log10(
40πdi,RSUfcomm

3
)

+ min(0.03h1.72
RSU , 10)log10(di,RSU )

−min(0.044h1.72
RSU , 14.77)

+ 0.002log10(hRSU )di,RSU

(2)

where gi,RSU is the received signal gain at the RSU according
to [44], di,RSU is the distance from the VUE i to the
RSU, hRSU is the height of the RSU, and fcomm is the
communication frequency between the VUE and the RSU, σ2

is the white Gaussian noise power, and the interference within
the coverage of RSU is considered based on [43].
In the mode of offloading to the BS, the spectrum allocated

to each VUE is orthogonal [43]. The signal to noise ratio
(SNR) of VUE i at the BS is defined by

γi,BS =
Ptgi,BS

σ2
, (3)

where gi,BS is the received signal gain at the BS.

B. Communication Model and Computation Model

Both the communication transmission delay and calcula-
tion delay are defined according to three offloading modes,
which are the local processing, the offloading to the RSU, and
the offloading to the BS. The perception information collected
by vehicle sensors can be offloaded to the BS through the
3.5GHz and 28GHz frequency bands for processing, or can
be offloaded to the RSU through the 5.9GHz V2R link for
processing.
1) Mode 1. Local Processing: When the VUE processes

the task ϕi locally, the execution delay mainly depends on the
calculation delay. Therefore, the execution delay ti,loc in the
local processing mode is defined by

ti,loc =
gi

floc
, (4)

where floc is the computation capability of VUEs.
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2) Mode 2. Offloading to RSU: When the VUE decides
to offload the task to the RSU, both the communication trans-
mission delay and the calculation delay need to be considered.
According to the SINR γi,RSU of VUE i at the RSU, the
communication transmission delay tcomm

i,RSU can be obtained by

tcomm
i,RSU =

ci

θmi,nBlog2(1 + γi,RSU )
, (5)

where B is the bandwidth of the communication link for VUEs
and RSU, and θmi,n is the percentage of the spectrum allocated
to VUE i by RSU n in time slot m .
The calculation delay t

comp
i,RSU can be expressed as

t
comp
i,RSU =

gi

ηmi,nfR
, (6)

where fR represents the computing ability of the RSU, and
ηmi,n is the percentage of computing resources allocated to VUE
i by RSU n in time slot m.
In mode 2, the size of environment sensing task’s com-

putation results is much small than the size of sensing task’s
input from the MEC server. Thus, the time of receiving the
computation results can be ignored based on [45]. Therefore,
the execution delay ti,RSU is

ti,RSU = tcomm
i,RSU + t

comp
i,RSU . (7)

3) Mode 3. Offloading to BS: When the VUE decides
to offload tasks to the BS, we need to consider both the
communication transmission delay and the calculation delay.
According to SNR γi,BS of the VUE i at the BS, we can
obtain the transmission delay tcomm

i,BS by

tcomm
i,BS =

ci

θmi,BSB0log2(1 + γi,BS)
, (8)

where B0 is the bandwidth of the communication link for
VUEs and the BS, and θmi,BS is the percentage of spectrum
allocated by the BS to VUE i in time slot m.
The calculation delay t

comp
i,BS can be expressed as

t
comp
i,BS =

gi

ηmi,BSfB
, (9)

where fB represents the computing ability of the BS, and
ηmi,BS is the percentage of computing resources allocated by
the BS to VUE i in time slot m.
In mode 3, due to the greater distance between the VUE

and BS, the time of receiving the environment sensing task’s
computation results needs to be considered. Therefore, the
execution delay ti,BS is

ti,BS = tcomm
i,BS + t

comp
i,BS + coτ, (10)

where co is the size of computation results and τ is the
transmission delay required per unit of computation result
between the BS and VUE.

C. Problem Formulation

We use pϕi,loc = 1 to denote that task ϕi is handled
locally. Similarly, we use pϕi,RSU = 1 and pϕi,BS = 1
to denote that task ϕi is processed by offloading to the
RSU and BS, respectively. Otherwise, they are all set to 0.
Different task offloading methods correspond to different task
execution delays. When the VUE offloads the task to the RSU
through the 5.9GHz link, the transmission delay needs to be
considered. When the VUE processing the task on their own,
only the local processing delay needs to be considered. The
task execution delay under different offloading modes is the
optimization problem proposed in this paper. We define the
time tmi required to process task ϕi in the mth time slot as

tmi = pϕi,loct
m
i.loc + pϕi,RSU t

m
i,RSU + pϕi,BSt

m
i,BS . (11)

To minimize the average execution delay with both the
constraints in computing and communication resources, the
optimization problem is defined by

P1 : min
pϕi,loc

,pϕi,RSU ,pϕi,BS ,

θm
i,n,θ

m
i,BS,η

m
i,n,η

m
i,BS

Ti =

∞
∑

m=1

tmi (12a)

s.t.C1 :pϕi,loc = {0, 1}, pϕi,RSU = {0, 1}, pϕi,BS = {0, 1},
(12b)

C2 :pϕi,loc + pϕi,RSU + pϕi,BS = 1, (12c)

C3 :
∑

i∈M

pϕi,RSUθ
m
i,n ≤ 1,

∑

i∈M

pϕi,BSθ
m
i,BS ≤ 1, (12d)

C4 :
∑

i∈M

pϕi,RSUη
m
i,n ≤ 1,

∑

i∈M

pϕi,BSη
m
i,BS ≤ 1, (12e)

C5 :tmi,j ≤ tmax
i , i ∈M, j= [pϕi,loc,pϕi,RSU ,pϕi,BS ],

(12f)

where Ti represents the task execution cumulative delay of
VUE i. Constraints C1 and C2 in (12b) and (12c) indicate that
the VUE can only choose one of the three offloading modes.
Constraint C3 in (12d) indicates that the sum of channel
resources allocated to VUEs by the RSU and BS shall not
exceed the maximum value that RSU and BS can provide.
Similarly, constraint C4 in (12e) indicates that the sum of the
computing resources allocated to VUEs by the RSU and BS
must not exceed the maximum value. Constraint C5 in (12f)
denotes that the task delay cannot exceed the maximum delay
that can be tolerated. Traditional convex optimization method
of splitting the mixed-integer nonlinear programming problem
P1 into several subproblems is complex and inefficient, which
can not meet the timeliness task offloading requirements in
the CAVs scenario.

III. DRL BASED TASK OFFLOADING AND RESOURCE
ALLOCATION

To solve the mixed-integer nonlinear programming prob-
lem P1 in the time-varying CAVs scenario, a deep rein-
forcement learning (DRL) based task offloading and resource
allocation algorithm is proposed in this section, where the
state, action, and reward function are defined.
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A. Definition of State, Action and Reward Function

1) Space State: The state si(m) provided by RSU n ∈
{1, 2, ..., N} and the BS to VUE i in the time slot m is defined
as

si(m) =[R1
i,BS(m), R2

i,BS(m), R1
i,RSU (m), ..., RN

i,RSU (m),

f1
i,BS(m), f2

i,BS(m), f1
i,RSU (m), ..., fN

i,RSU (m)].
(13)

In the time slot m, we define

Rl
i,BS(m) = θm−1

i,BSl
B0log2(1 + γi,BS), l ∈ {1, 2}, (14a)

Rn
i,RSU (m) = θm−1

i,n Blog2(1 + γi,RSU ), n ∈ {1, 2, ..., N},
(14b)

f l
i,BS(m) = ηm−1

i,BSl
fB, l ∈ {1, 2}, (14c)

fn
i,RSU (m) = ηm−1

i,n fR, n ∈ {1, 2, ..., N}, (14d)

where Rl
i,BS(m) represents the transmission rate from VUE i

to the BS l, Rn
i,RSU (m) denotes the transmission rate from

VUE i to RSU n, f l
i,BS(m) is the computing resources

allocated by the BS l to VUE i, and fn
i,RSU (m) depicts the

computing resources allocated by RSU n to VUE i.
2) Action Space: In the proposed vehicle-road-BS coop-

eration task offloading architecture, by deploying a global
model of task offloading and resource allocation based on
DRL algorithm on the RSU, the optimal task offloading and
resource allocation decision can be achieved by using a global
task offloading model. Therefore, the action space ai(m) in
the time slot m can be defined by

ai(m) ={pϕi,loc(m), pϕi,RSU (m), pϕi,BS(m),

θmi,BS1
, θmi,BS2

, θmi,1, ..., θ
m
i,N ,

ηmi,BS1
, ηmi,BS2

, ηmi,1, ..., η
m
i,N}.

(15)

3) Reward Function: To minimize the average execution
delay of the entire offloading system while satisfying the
offloading decision and resource constraints, we define the
reward function ri(m) of VUE i in the time slot m as the
reciprocal of the proposed problem P1

ri(m) =
1

tmi
. (16)

where ri(m) represents the reward obtained when the VUE
i takes an action ai(m) in the state si(m). To maximize the
long-term utility of the VUE, we define the cumulative reward
function of VUE i by Ri(m)

Ri(m) = E

[

T
∑

u=1

ri(m+ u)

]

. (17)

B. Markov Decision Process

The proposed task offloading and resource allocation prob-
lem can be modeled as the Markov decision process. In the
Markov decision process, the state at a certain moment is s,
the behavior taken by the VUE in state s is a, and the reward
for taking this behavior is ras . We also define the state of the
next stage as s′, and the state transition probability from s to

s′ is Pss′ . The state value function vπ(s) of taking the strategy
π in state s is depicted by

vπ(s) =
∑

a∈A

π(a|s)qπ(s, a), (18)

where π(a|s) represents the probability of taking action a in
state s, and A is the action set.
The action value function qπ(s, a) can be expressed as

qπ(s, a) =
∑

s′∈S

Pss′ [r
a
s + γvπ(s

′)], (19)

where γ is the attenuation factor.
And the Bellman equation of the action value function in

(19) is

qπ(s, a) =
∑

s′∈S

Pss′ [r
a
s + γ

∑

a′∈A

π(a′|s′)qπ(s
′, a′)]. (20)

Given the current strategy π, the value function vπ, and
the action value function qπ, the new strategy is constructed
as

π∗(s) = argmax
a

qπ(s, a). (21)

To prove the convergence of (18), we substitute the action
value function qπ(s, a) in (19) into the state value function
vπ(s) in (18) to obtain the Bellman operator which represents
the change of the state value function. Therefore, we define
the Bellman operator Bπ for policy π as

Bπv(s) :=
∑

a∈A

π(a|s)
∑

s′∈S

Pss′ [r
a
s + γv(s′)]. (22)

The Bellman operator in the above formula is an operation
on v(s). The Bellman operator Bπ is a contracting map as
proved below. According to the definition of Bellman operator,
we have

|Bπv1(s)− Bπv2(s)|

=

∣

∣

∣

∣

∣

∑

a∈A

π(a|s)
∑

s′∈S

Pss′ [γ(v1(s
′)− v2(s

′))]

∣

∣

∣

∣

∣

≤ γ
∑

a∈A

π(a|s)
∑

s′∈S

Pss′ |(v1(s
′)− v2(s

′))|

≤ γ
∑

a∈A

π(a|s)
∑

s′∈S

Pss′

(

max
s′′∈S

|v1(s
′′)− v2(s

′′)|

)

= γ max
s′′∈S

|v1(s
′′)− v2(s

′′)|

= γ||v1 − v2||∞.

(23)

The above formula holds for any s, so (23) can be written
as

||Bπv1 − Bπv2||∞ ≤ γ||v1 − v2||∞. (24)

The Bellman operator is a strictly contracted map when
γ < 1, and the sequence {v,Bπv,B2

πv, ...} is shown to be
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convergent as follows

||Bm+1
π v − Bm

π v||∞ ≤ γ||Bm
π v − Bm−1

π v||∞

≤ γ2||Bm−1
π v − Bm−2

π v||∞

...

≤ γm||Bπv − v||∞.

(25)

According to (25), when m approaches infinity, the dif-
ference between vm+1 and vm will approach 0. The sequence
{v,Bπv,B2

πv, ...} will converge to a fixed point. Next, we will
prove the uniqueness of this fixed point.
Suppose Bπ has two fixed points U and V , and U 6= V .

Then there must be ||U −V ||∞ > 0. Since both U and V are
fixed points, so ||BπU − BπV ||∞ = ||U − V ||∞. However,
since Bπ is a shrinking map, there is ||BπU − BπV ||∞ ≤
γ||U − V ||∞ < ||U − V ||∞. The two contradict each other.
Therefore, the fixed point must be unique, and the value
function obtained according to the value iteration must be
optimal, so the optimal strategy can be obtained.

C. Deep Reinforcement Learning Algorithm

When the dimension of state and action is relatively low,
the Q learning algorithm can solve the proposed P1 problem.
However, in terms of a high-dimensional state and action
space, the effectiveness of Q learning algorithm will decrease.
Therefore, the DRL algorithm is used to increase the efficiency
of the Q value estimation by the deep neural network (DNN)
instead of using each state action pair to estimate the Q value.
Specifically, there are two neural networks in the DRL

algorithm. One is the main network to estimate the Q value,
which is defined by Q(s, a;ω), where ω represents the pa-
rameters in the main network. The other is the target network,
which is used to generate the target value of Q by

Qtar = ri + γmax
a

Q(s′, a′;ω), (26)

where s′ and a′ denote the state and reward of the next
stage, respectively. The square error function of the difference
between these two values is defined by Lloss as

Lloss = E[
1

2
(Q(s, a;ω)−Qtar)

2]. (27)

And the gradient descent algorithm is used to update ω

ω ← ω − ς
∂Lloss

∂ω
, (28)

where ∂Lloss

∂ω
= E[∂Q(s,a;ω)

∂ω
(Q(s, a;ω)−Qtar)], and ς repre-

sents the learning rate. In the proposed DRL algorithm, each
RSU is deployed with a central server. We use an experience
replay memory D to store the data tuple (sm, am, rm, sm+1).
sm = [Rm

i,BS , R
m
i,RSU , f

m
i,BS, f

m
i,RSU ] represents the channel

resource and computing resource allocation status of the
current environment. am = [p, ηmi,RSU , θ

m
i,RSU , η

m
i,BS , θ

m
i,BS ] is

the task offloading and resource allocation decision according
to the current environment status. And the reward obtained by
taking the action am in the current state sm is rm, which is
the reciprocal of the proposed optimization problem. sm+1

denotes the state of the environment at the next moment.

Fig. 2. The update process of the proposed DRL algorithm.

We use rectified linear unit (ReLU) function as the activation
function between layers in the proposed DRL algorithm. The
DRL agent randomly selects data from the experience replay
memory each time to train the parameters of the DNN. In
addition, to avoid the local optima while ensuring a balance
between exploration and utilization, we adopt a greedy policy.
The agent randomly selects an action a from the action space
with a probability of ξ each time, otherwise it selects an
action with the largest Q value with a probability of 1−ξ.
The update process of the proposed DRL algorithm is shown
in Fig. 2 . The task offloading and resource allocation based
DRL algorithm is also proposed in Algorithm 1.
In Algorithm 1, we need to initialize the DNN parameters

and the experience replay memory. In the DNN parameters
training stage, we employ DRL to calculate the Q value.
First, we obtain the initial state s0 of the system by observing
the stable traffic topology. To achieve a balance between
exploration and utilization, we use a greedy policy. For each
time slot, we will randomly choose an action with a probability
of ξ, otherwise choose an action with the largest Q value.
Then, the obtained data tuples are stored in the experience
replay memory. For each time, C samples are taken from
the experience replay memory to train the DNN network.
And the square error function between the target network
and the main network is constructed, where the network
parameters are updated using a gradient descent method. The
parameters of the main network are updated in each step, and
the parameters of the target network are updated by every κ

steps. Since all data comes from the previous environment,
and the VUEs does not update the global model online based
on local data, it is called an offline DRL training process. And
then the RSU sends the offloading decision information and
resource allocation results to the VUE and the corresponding
infrastructure, respectively. The VUE can perform the task
offloading processing of the image or video stream according
to the corresponding offloading decision.

IV. FRL BASED TASK OFFLOADING AND RESOURCE
ALLOCATION

To further improve the efficiency of the centralized DRL
algorithm, the FRL based task offloading and resource allo-
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Algorithm 1 DRL Based Task Offloading and Resource
Allocation Algorithm.
1: Initialization: Initialize the parameters of DNN with ω

and initialize the experience replay memory.
2: Input: Channel resource and computing resource infor-
mation for each time slot m, including Rm

i,BS , R
m
i,RSU ,

fm
i,BS and fm

i,RSU .
3: Output: Task offloading decision and resource allocation
results, including p, ηmi,RSU , θ

m
i,RSU , η

m
i,BS and θmi,BS .

4: for each stable traffic topology do
5: Observe and get the status s0 of the system.
6: for each time slot m = 1, 2, . . . , tmax do
7: Choose action am = [p, ηmi,RSU , θ

m
i,RSU , η

m
i,BS , θ

m
i,BS ]

according to sm = [Rm
i,BS , R

m
i,RSU , f

m
i,BS, f

m
i,RSU ]

with probability ξ.
8: Otherwise choose action

am = argmaxAQ(sm, am;ωm).
9: Store the obtained data in the experience replay

memory in the form of tuple (sm, am, rm, sm+1).
10: Calculate the value Qtar of the target network:

Qtar = ri + γ max
am+1

Q(sm, am;ω).

11: Construct the error function according to (27).
12: Use data tuple(sm, am, rm, sm+1) in the experience

replay memory to train the Q network.
13: Update the parameters of the main network according

to (28) based on the gradient descent algorithm.
14: end for
15: Update the parameters of the target network every κ

steps.
16: Obtain task offloading decision and resource allocation

results.
17: end for

cation algorithm is designed by using the federated reinforce-
ment learning between multiple VUEs and RSU. First, we
design the framework of the proposed FRL algorithm. Then,
the convergence of the proposed FRL algorithm is analyzed.

A. Framework Design

The centralized DRL algorithm requires users to upload all
the data to the RSU for training, which causes the overhead,
and privacy problems. First, offloading a large amount of data
to the RSU for training will take a lot of time and it will
lead to an excessive overhead, which will pose a challenge to
the scarce spectrum resources of the existing communication
system. In addition, offloading a large amount of data will
threaten the privacy of users. However, the training of DRL
agents in a distributed manner consumes a lot of time and
battery energy resources. Therefore, we propose to train the
DRL model via FRL algorithm among multiple vehicle users.
By aggregating the updated parameters of multiple vehicle
users at the RSU, the data upload overhead can be reduced and
the training efficiency can be improved. The framework of the
proposed FRL based task offloading and resource allocation
algorithm is shown in Fig. 3 .
The initial parameters are obtained by training the DRL

Fig. 3. The framework of the proposed FRL based task offloading and
resource allocation algorithm.

model on the RSU, which will deliver these parameters to
the VUEs for model training. The VUEs update the model
parameters based on the local data, and then the updated model
parameters of multiple VUEs are aggregated at the RSU to
obtain the global parameters. The RSU continues to deliver
the global parameters to the VUEs, thus starting a new round
of an iterative process. The iterative process will be repeated
continuously until convergence.
After receiving the issued global parameters, VUEs will

update the model parameters locally. VUE j will construct the
square error function f

(i)
j (ω) between the theoretical output

ωT s(i) and the real output a(i) based on local data

f
(i)
j (ω) =

1

2

(

wT s(i) − a(i)
)2

, (29)

where i represents the ith sample data.
Therefore, the error function fj(ω) of VUE j can be

expressed as

fj(ω)=
1

Nj

Nj
∑

i=1

f
(i)
j (ω), (30)

where Nj is the total number of samples of VUE j.
The local optimization problem can be expressed as

ωt
j = argmin

ωj

fj(ω). (31)

The optimization goal can be expressed as

ωt = argmin
ω

f(ω), (32)

where f(ω) =
M
∑

j=1

fj(ω).

However, it is difficult to solve (32) due to the high
complexity. Therefore, we design a distributed method to solve
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Fig. 4. The flowchart of the combination of Algorithm 1 and Algorithm 2.

this problem. In each time slot, we use the gradient descent
method to update the network parameters ωj

t+1

ωj
t+1 ← ωj

t − ς∇fj(ω
t), (33)

where ς is the gradient descent rate.
After completing multiple partial updates on each VUE

side, the parameter ωj
t+1 is obtained. Each VUE uploads

the updated parameters to the RSU and the RSU obtains the
new global parameters ωt+1 by aggregating these updated
parameters globally

ωt+1 =

M
∑

j=1

Njω
t+1
j

N
, (34)

where N =
M
∑

j=1

Nj .

Then, the RSU will send the global parameters ωt+1 to
the VUEs for a new round of global update. The FRL based
task offloading and resource allocation algorithm is shown in
Algorithm 2.
In each time slot, there is a global iterative process and

a task offloading process. During the task offloading process,
the VUE can perform task offloading processing according to
the global aggregated result. And the task can be computed
locally or offloaded to RSU and BS for processing. The two
processes have a time sequence relationship, and there is no
conflict between the RSU handling the offloading task and
the federated learning process. Fig. 4 shows the flowchart of
the combination of Algorithm 1 and Algorithm 2. Steps
3 to 6 are the operation flow of Algorithm 1, and steps 7
to 12 are the operation flow of Algorithm 2. The training
result of Algorithm 1 is used as the initial training model of
Algorithm 2.

Algorithm 2 FRL Based Task Offloading and Resource Allo-
cation Algorithm.
1: Input:
The initial parameters ω0 of the model is obtained accord-
ing to Algorithm 1.
The number of iterations T .
Gradient descent rate ς .

2: Output:
Optimal parameters ω∗ of task offloading and resource
allocation models.
Task offloading decision and resource allocation results,
including p, ηti,RSU , θ

t
i,RSU , η

t
i,BS and θti,BS .

3: for each iteration t = 1, 2, . . . , T do
4: for each VUE i do
5: Receive the initial model parameters from the RSU.
6: Update its model parameters ωj

t+1 based on (31) and
(33).

7: Upload the updated parameters to the RSU for
weighted aggregation.

8: end for
9: for each RSU n do
10: The local updates of each VUE are weighted and ag-

gregated to obtain the global update ωt+1 according
to (34).

11: Deliver the updated global parameters to VUEs.
12: end for
13: Obtain task offloading decision and resource allocation

results based on the FRL model.
14: end for

B. Convergence Analysis

We define ω∗ as the optimal solution with the following
assumptions.
Assumption 1: For all i,

• fi(ω) is convex,
• fi(ω) is β-smooth, that is, fi(ω′) ≤ fi(ω) + ∇fi(ω) ·

(ω′ − ω) + β
2 ||ω

′ − ω||2, for ∀ ω′ and ω.

The feasibility of linear regression and FRL update rules
are guaranteed. Therefore, we have the following Lemma 1.

Lemma 1. f(ω) is convex and β-smooth.
Proof: Please see Appendix A.

Theorem 1. Considering that f(ω) is β-smooth and a convex
function, ω∗ = argminωf(ω), so we have

||ωt+1 − ω∗||2 ≤ ||ωt − ω∗||2 − ς(
1

β
− ς)||∇f(ωt)||2. (35)

If the learning rate ς < 1
β
, the result ||ωt+1 − ω∗||2 ≤

||ωt − ω∗||2 is obtained.
Proof: Please see Appendix B.

Theorem 2. The cost sequence f(ωt) is convergent, and the
convergence rate is O(1

t
).

Proof: Please see Appendix C.
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C. Computational Complexity Analysis

In this paper, we design a task offloading and resource
allocation algorithm based on deep reinforcement learning and
a federated reinforcement learning algorithm for vehicle-road
coordination. Next, we analyze the computational complexity
of these two algorithms. According to [46], the computational
complexity of each step in the deep neural network training

process can be expressed as O(SinNl +
H−1
∑

l=1

NlNl+1), where

Sin, Nl andH represent the size of the input layer, the number
of neurons in the l-th layer and the number of training layers,
respectively. Therefore, for a neural network that requires tmax

steps to converge, the computational complexity of the training

process is defined as O(tmax(SinNl +
H−1
∑

l=1

NlNl+1)). In ad-

dition, with a replay memory buffer size E, the computational
complexity can be expressed as O(2|S|2× |A|+ log2E) [47],
where S and A represent the state space and action space,
respectively. Therefore, the total computational complexity of

Algorithm 1 is O(tmax(SinNl +
H−1
∑

l=1

NlNl+1) + 2|S|2 ×

|A| + log2E). For each iteration round in Algorithm 2, the
computational complexity on the user side is O(|Di|(SinNl+
H−1
∑

l=1

NlNl+1)+2|Di|2+log2E), whereDi represents the local

data of user i. Therefore, the total computational complexity

of Algorithm 2 is O(T (M |ωi|(|Di|(SinNl+
H−1
∑

l=1

NlNl+1)+

2|Di|2 + log2E) + |ω|)), where M , ωi and ω represent
the number of VUEs, local parameters of user i and global
parameters, respectively.
The authors in [48] proposed a method for network com-

pression that can reduce the CPU and storage requirements of
neural networks by a factor of 10. The simulation results show
that the deep learning algorithm can be efficiently deployed
on the standard platforms of Intel and Qualcomm, which also
provides the potential feasibility for the deployment of our
proposed algorithms.

V. SIMULATION RESULTS

In this section, the performance of the proposed FRL based
task offloading and resource allocation algorithm is analyzed
by comparing with the existing task offloading algorithms.
Simulation results of the task execution delay, the transmission
overhead, the convergence trend, and the reward are analyzed
in detail.

A. Simulation Setup

We simulate and analyze the proposed algorithm based
on Python [49]. We import the MXNET module in Python
for DRL algorithm. In the simulation, we set the bandwidth
of RSU and BS to 20MHz and 40MHz [50], respectively.
The transmit power of user is 200mW [50]. And the transmit
power of RSUs and medium range BS is 200mW and 1W
[51]. The distance between BSs is 500m [44] and the distance
between RSUs is 100m [52]. We consider the pathloss model
as the model in 3GPP TR 38.901 RMa scenario [44]. In the
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Fig. 5. Convergence of the proposed FRL algorithm.

proposed DRL algorithm, the attenuation factor is set to 0.99.
In addition, we consider the reward under different discrete
degrees of action. The CPU rates of the BS and RSU are set
to 2 × 1010cycle/s and 1010cycle/s [12]. And the period of
replacing the target network is set to 250 according to [41].
Table II denotes the key simulation parameters in detail.

TABLE II
KEY SIMULATION PARAMETERS.

Parameter Value
Distance between BSs 500 m
Distance between RSUs 100 m
Bandwidth of RSU 20 MHz
Bandwidth of BS 40 MHz
Transmit power of medium range BS 1 W
Transmit power of RSU 200 mW
Transmit power of UE 200 mW
Pathloss Model RMa scenario pathloss model
Attenuation factor of DRL algorithm 0.99
Thermal noise power spectral density -174 dBm/Hz
CPU rate of BS 2× 10

10cycle/s
CPU rate of RSU 10

10cycle/s
Maximum tolerant transmission delay 100 ms
The period of replacing the target network 250

B. Model Training

Fig. 5 shows the loss function convergence trend of the
proposed FRL algorithm. The learning rates of the gradient
descent method are set to 0.4, 0.6, and 0.8, respectively. As
proved in Appendix B, as long as the learning rate is less
than a certain threshold, the convergence rate will accelerate
with the increase of learning rate. When the learning rate is
set to 0.8, the number of convergence rounds can be reduced
by 57.6% and 42.7%, respectively, compared with the learning
rates of 0.4 and 0.6.
The relationship between the reward and the episode

under different action dispersion conditions is show in Fig. 6.
The computing power of MEC is set to 21GHz [53]. By
using different resource allocation degrees, we consider 21-
dimensional, 11-dimensional, and 6-dimensional action s-
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Fig. 6. Reward under different action dispersion conditions.

paces, respectively. Simulation results show that with the
increase of the degree of action dispersion, the reward value
increases and the number of iteration episode needed to
achieve a stable reward state becomes larger. The reward
function is defined as the inverse of the task execution delay,
which is related to the allocation of computing resources.
When the size of the computing task is unknown, it is difficult
for the rough computing resource selection space to adapt
to the size of the computing task, resulting in a high task
execution delay and a low reward in the DRL model. The
exhaustive selection space of computing resources can better
adapt to the size of computing tasks, which not only avoids
the problem of high latency caused by too small computing
resources, but also avoids the problem of insufficient resources
for other users. Therefore, a higher dimension selection space
of action space leads to a higher reward. Compared with the 6-
dimensional action space, the rewards of 11-dimensional and
21-dimensional action spaces can be improved by 33% and
100%, respectively. However, due to the high dimensions of
action space, the number of iterations required to achieve a
stable reward state will also increase in contrast to the low
dimension of action space.

C. Results and Analysis

Based on the FRL training results in Section V-B, we set
the learning rate and the action dispersion conditions of pro-
posed FRL algorithm to 0.8 and 21-dimensional action spaces,
respectively. Figs. 7 and 8 evaluate the delay performance of
the proposed FRL algorithm in comparison with the following
benchmark algorithms.

• The entire RSU processing (ERP) algorithm denotes that
all the vehicles offload their computation tasks to the
RSU.

• The fixed edge server processing (FESP) algorithm de-
notes that all the vehicles offload their computation tasks
to the MEC server deployed on the BS.

• The entire local processing (ELP) algorithm denotes
that all the vehicles execute the computation tasks on
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themselves.
• The computing offloading and resource allocation opti-
mization (CORAO) algorithm denotes that the computing
tasks are completed by computing locally or offloading
to RSU.

Fig. 7 illustrates the relation between the task execution
delay and the number of vehicles. It can be seen that with the
increase of the number of vehicles, the task execution delay
of ERP, FESP, CORAO and the proposed FRL algorithms are
increasing. Because the RSU does not have enough computing
resources as the BS, the interference caused by the shared
spectrum is greater in the ERP algorithm, leading to the
larger execution delay of the ERP algorithm. The CORAO
algorithm can dynamically choose between local offloading
and offloading to RSU, which not only reduces the need for
offloading to RSU when the task is too small, but also can
offload the task to more abundant computing resources when
the task is too large. When the interference increases due to
the increase of vehicles, the delay performance of CORAO
is gradually better than that of ERP. The proposed FRL
algorithm can allocate the spectrum and computing resources
dynamically according to the environment of vehicle users,
which has the lowest task execution delay of less than 100
ms. And there is no significant growth trend for the proposed
FRL algorithm with the increase of users. In addition, the ELP
algorithm only uses its own computing resources, resulting in
the task execution delay of the local offload mode independent
of the number of users.
Fig. 8 shows the relationship between the task execution

delay and the number of CPU cycles required for a compu-
tation task. Results indicate that with the increase of CPU
cycles requirement, the task execution delay of all algorithms
are increasing. Due to the distance from users to the RSU
and the interference caused by the shared spectrum in the
ERP algorithm, the task execution delay is larger than that
of the ELP algorithm. The BS has more sufficient computing
resources, and so the task execution delay of FESP algorithm
is lower than the ELP algorithm. Compared with the RSU
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Fig. 8. Task execution delay under different task’s CPU requirements.
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Fig. 9. Transmission overhead under different SINR.

offloading method with a relatively long offload distance and
the local offloading method with limited computing resources,
the CORAO algorithm can dynamically choose between the
local offloading and the offloading to the RSU. Therefore, the
latency performance of CORAO is better than that of ELP and
ERP. Through the incentive feedback mechanism deployed in
the DRL, the delay of the proposed FRL algorithm can be
minimized. Compared with the other four algorithms, the task
execution delay of the proposed FRL algorithm can be reduced
by 84.6%, 70%, 60.6% and 30.9%, respectively. The proposed
FRL scheme also performs local model weighted update on
the basis of offline reinforcement learning. Although the task
execution delay of the proposed FRL algorithm has increased
compared with the centralized DRL algorithm, it is still close
to the delay of the centralized scheme.
Fig. 9 depicts the relationship between the transmission

overhead and the SINR of the centralized DRL algorithm and
the proposed algorithm. It can be seen that with the increase
of the number of users, the transmission overhead of both
algorithms are increasing. The transmission overhead of the
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Fig. 10. Throughput comparison for three BS deployment scenarios.

centralized DRL algorithm is significantly higher than that of
the proposed algorithm. At the same time, with the increase
of SINR, the transmission environment of uses is more stable,
and the success rate of parameter upload is also improved
with the reduced the communication overhead. By transmitting
only the model parameters during the model training, the
proposed FRL algorithm can reduce the transmission overhead
significantly. When the SINR is set to 5dB, 10dB, and 20dB,
the transmission overhead of the proposed FRL algorithm
is reduced by 90.2%, 90%, and 91% compared with the
centralized DRL algorithm.
Fig. 10 describes the relationship between the throughput

and the number of users under different BS deployment
scenarios. It can be seen that with the increase of the number
of users, the throughput increases for all three deployment
scenarios. Taking the advantages of both the Sub-6GHz BS
with a large coverage and the mmWave BS with a large
bandwidth, the proposed hybrid BS deployment architecture as
shown in Fig. 1 can achieve the largest throughput of 8.2Gbps.
Compared with the deployment scenarios of only using either
mmWave BS or Sub-6GHz BS, the throughput of the proposed
vehicle-road-BS cooperation architecture can be improved by
60.8% and 22.4%, respectively.
Fig. 11 shows the relationship between the throughput and

the time slot of three deployment BS deployment scenarios
with 30 VUEs. In each time slot, we generate the location
distribution map of VUEs following a Poisson distribution.
Due to the large coverage of 3.5GHz BS and the large
bandwidth of mmWave BS, the proposed vehicle-road-BS
cooperation architecture can achieve the highest throughput of
6.2Gbps, which is increased by 40.9% and 19.2% in contrast
to the deployment scenarios of only using either mmWave BS
or Sub-6GHz BS.

VI. HARDWARE TESTBED RESULTS

To verify the performance of the proposed vehicle-road-BS
cooperation architecture, we design and develop the hardware
testbed by using the USRP platform, the mmWave communi-
cation equipments, and the MEC servers. Fig. 12 shows the
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Fig. 12. Relationship between scenario and the hardware testbed.

hardware testbed layout according to the proposed vehicle-
road-BS cooperation architecture in Fig. 1, including Sub-
6GHz and 28GHz mmWave spectrum bands for a typical CAV
scenario based on the ITU-R standard report in [57]. The
mmWave communication equipments include two chasses as
the CAV transmitter and the BS receiver, respectively. The
BS consists of the 28GHz mmWave receiver chassis, MEC
server, and the USRP transmitter in the hardware testbed.
The RSU consists of the Sub-6GHz USRP equipment and the
MEC server. Besides, the USRP equipment is deployed on the
CAV side. The environment sensing information is transmitted
between the CAV and BS by using both the 3.5GHz and
28GHz mmWave spectrum bands. And the RSU and CAV
can utilize the 5.9GHz spectrum band for environment sensing
information transmission based on [43]. The equipments of the
hardware testbed are shown in Table III.

(a)

(b) (c)

Fig. 13. Hardware testbed. (a) Testbed layout. (b) Video at the 28GHz
mmWave transmitter. (c) Video at the Sub-6GHz USRP receiver.

TABLE III
HARDWARE TESTBED EQUIPMENTS.

Equipment Model and Parameters Number
MmWave Chassis NI PXIe-3610,3620 2
MmWave RF Head NI mmRH3602 RF Head, 24-33 GHz 2
MmWave Antenna HDTX270280-64CH Antenna 2
MEC Server Dell PowerEdge R730 1
USRP NI USRP-2943R, 1.2-6GHz 4
USRP Chassis NI PXIe-1085 3
Tower Server Dell PowerEdge T630 1
SDN Router Pica8 P-3922 1

The layout of the developed hardware testbed is shown in
Fig. 13 (a). The real-time video of the environment sensing
information is collected by a mmWave chassis as the CAV in
Fig. 13 (b), which is transmitted to another mmWave chassis as
the BS via the 28GHz mmWave mobile communication link
using two phased array antennas. And the beam alignment
and beam tracking algorithms are used based on our previous
work in [58]. Then, the real-time video at the mmWave
receiver is transmitted to the MEC server via the router. At
the MEC server, the yolox algorithm [59] is used to classify
and recognize the objects, and the detection results are shown
by bounding boxes with different colors. Then, the processed
video can be transmitted to the CAV receiver by using the
USRP equipment in the Sub-6GHz spectrum band in Fig. 13
(c). Therefore, the environment sensing ability at the CAV
receiver can be improved by using the processed video from
the 28GHz mmWave transmitter CAV.
In addition, based on the hardware testbed, the perfor-

mances of throughput and delay of the proposed algorithm
are evaluated. Fig. 14 depicts the execution delay by using
different radio access technologies (RATs) under various spec-
trum bands. It can be seen that with the increase of video
size, the task execution delay of three RATs is increasing,
where the task execution delay of only using the 5.9GHz
RSU deployment is the largest. Taking the advantage of
large bandwidth in the mmWave spectrum band, the task
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Fig. 15. Throughput comparison under different RATs scenario.

execution delay of using both 5.9GHz RSU and mmWave BS
deployment is reduced. By using both the 3.5GHz BS and
28GHz mmWave BS deployment, the task execution delay is
the smallest. Compared with the scenario without mmWave
deployment, the task execution delay of the proposed vehicle-
road-BS cooperation architecture can be reduced by 11.8% in
Fig. 14 .
Fig. 15 describes the performance of throughput under dif-

ferent RATs scenario. Due to the large bandwidth of mmWave,
the throughput in the scenario of using both 5.9GHz RSU and
28GHz mmWave BS is higher and more stable than that in
the scenario of only using the 5.9GHz RSU deployment. The
throughput of using both the 3.5GHz BS and 28GHz mmWave
BS deployment is the largest, which is 88.3% and 122.9%
higher than the other two deployment schemes, respectively.
In summary, the hardware testbed results show that the

proposed vehicle-road-BS cooperation architecture can not
only decrease the task execution delay, but also enhance the
system throughput.

VII. CONCLUSION

In this paper, we design the vehicle-road-BS cooperation
architecture and propose the FRL based task offloading and

resource allocation algorithm in the CAVs network, in order to
reduce the task execution delay with different communication
and computing constraints. The execution delay problem is
theoretically formulated and analyzed under three task of-
floading modes. To adapt to the dynamic topology of CAVs
network, we design a DRL algorithm to achieve the optimal
task offloading and resource allocation result. To further re-
duce the data transmission overhead in the centralized rein-
forcement learning model training process, the FRL algorithm
is proposed to minimize the execution delay of the optimal
task offloading and resource allocation decisions among CAVs.
Simulation results show that compared with the existing
benchmark schemes, the proposed algorithm can reduce the
task execution delay over 30% and the transmission overhead
over 90%. The hardware testbed based results verify that the
proposed architecture can improve the system throughput over
88%.

APPENDIX

A. Proof of Lemma 1

Proof : According to the Assumption 1, from the definition
of convexity and the finite sum structure of fi(ω) is f(ω), we
can get that f(ω) is convex and β-smooth.

B. Proof of Theorem 1

Proof :

||ωt+1 − ω∗||2 =||ωt − ς∇f(ωt)− ω∗||2

=||ωt − ω∗||2 − 2ς∇f(ωt)(ωt − ω∗)

+ ς2||∇f(ωt)||2.

(36)

We consider a new auxiliary point as

ωM = ω∗ −
1

β
(∇f(ω∗)−∇f(ωt)). (37)

Furthermore, we divide (37) as follows

f(ωt)− f(ω∗) = f(ωt)− f(ωM ) + f(ωM )− f(ω∗). (38)

According to the convexity of function f , we have

f(ωt)− f(ωM ) ≤∇f(ωt)(ωt − ωM )

=∇f(ωt)(ωt − ω∗)

+∇f(ωt)(ω∗ − ωM ).

(39)

Using the properties of β-smooth, we have

f(ωM )− f(ω∗) ≤∇f(ω∗)(ωM − ω∗) +
β

2
||ωM − ω∗||2

=−∇f(ω∗)(ω∗ − ωM )

+
β

2
||ωM − ω∗||2.

(40)
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By adding (39) and (40), we have

f(ωt)− f(ω∗) ≤∇f(ωt)(ωt − ω∗)

+ (∇f(ωt)−∇f(ω∗))(ω∗ − ωM )

+
β

2
||ωM − ω∗||2.

(41)

Substitute (37) into (41)

f(ωt)− f(ω∗) ≤∇f(ωt)(ωt − ω∗)

+
1

β
(∇f(ωt)−∇f(ω∗))(∇f(ω∗)−∇f(ωt))

+
β

2

1

β2
||∇f(ωt)−∇f(ω∗)||2

=∇f(ωt)(ωt − ω∗)

−
1

2β
||∇f(ωt)−∇f(ω∗)||2.

(42)

Since ω∗ is the final solution, ∇f(ω∗) = 0, f(ωt) >

f(ω∗), we have

∇f(ωt)(ωt − ω∗)−
1

2β
||∇f(ωt)||2 ≥ 0. (43)

Substitute (43) into (36)

||ωt+1 − ω∗||2 ≤||ωt − ω∗||2 −
ς

β
||∇f(ωt)||2

+ ς2||∇f(ωt)||2

=||ωt − ω∗||2 − ς(
1

β
− ς)||∇f(ωt)||2.

(44)

As long as the learning rate ς < 1
β
, the distance between

the current solution and the optimal solution will gradually
decrease until the optimal solution is obtained

||ωt+1 − ω∗||2 ≤ ||ωt − ω∗||2. (45)

C. Proof of Theorem 2

Proof :

f(ωt+1)− f(ωt) ≤ ∇f(ωt)(ωt+1 − ωt) +
β

2
||ωt+1 − ωt||2

= −ς ||∇f(ωt)||2 +
β

2
ς2||∇f(ωt)||2

= −ς(1−
βς

2
)||∇f(ωt)||2.

(46)

Then, we insert the optimal solution and compare the
distance between two iterations from the limit

[f(ωt+1)−f(ω∗)] ≤ [f(ωt)−f(ω∗)]−ς(1−
βς

2
)||∇f(ωt)||2.

(47)

According to the properties of the convex function and the
Cauchy-Schwarz inequality, we get

f(ωt)−f(ω∗) ≤ ∇f(ωt)(ωt−ω∗) ≤ ||∇f(ωt)|| · ||ωt−ω∗||.
(48)

Substitute (48) into (47)

f(ωt+1)− f(ω∗) ≤[f(ωt)− f(ω∗)]

− ς(1−
βς

2
)
[f(ωt)− f(ω∗)]

2

||ωt − ω∗||2

≤[f(ωt)− f(ω∗)]

− ς(1−
βς

2
)
[f(ωt)− f(ω∗)]

2

||ω0 − ω∗||2

(49)

Divide both sides by [f(ωt+1)− f(ω∗)][f(ωt)− f(ω∗)]

1

f(ωt)− f(ω∗)
≤

1

f(ωt+1)− f(ω∗)

−
ς(1− βς

2 )

||ω0 − ω∗||2
f(ωt)− f(ω∗)

f(ωt+1)− f(ω∗)

≤
1

f(ωt+1)− f(ω∗)
−

ς(1− βς
2 )

||ω0 − ω∗||2
.

(50)

Accumulate the above formula from 0 to t− 1

1

f(ωt+1)− f(ω∗)
−

1

f(ω0)− f(ω∗)
≥

1

||ω0 − ω∗||2
tς(1−

βς

2
).

(51)
By enlarging the left side of (51), we have

1

f(ωt+1)− f(ω∗)
≥

1

||ω0 − ω∗||2
tς(1−

βς

2
), (52)

f(ωt)− f(ω∗) ≤ ||ω0 − ω∗||2 ·
1

ς(1− βς
2 )
·
1

t
. (53)

The difference between the cost sequence f(ωt) and the
optimal cost is less than a constant multiple of the sequence 1

t
.

Therefore, the convergence rate of the cost sequence is O(1
t
).
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