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ABSTRACT | In future cellular systems, wireless localization
and sensing functions will be built-in for specific applications,
e.g., navigation, transportation, and healthcare, and to support
flexible and seamless connectivity. Driven by this trend, the
need for fine-resolution sensing solutions and centimeter-level
localization accuracy arises, while the accuracy of current
wireless systems is limited by the quality of the propaga-
tion environment. Recently, with the development of new
materials, reconfigurable intelligent surfaces (RISs) provide an
opportunity to reshape and control the electromagnetic char-
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acteristics of the environment, which can be utilized to improve
the performance of wireless sensing and localization. In this
tutorial, we will first review the background and motivation
for utilizing wireless signals for sensing and localization. Next,
we will introduce how to incorporate RIS into applications of
sensing and localization, including key challenges and enabling
techniques, and then, some case studies will be presented.
Finally, future research directions will also be discussed.

KEYWORDS | Implementation; localization;
intelligent surfaces (RISs); wireless sensing.

reconfigurable

I. INTRODUCTION

A. Sensing and Localization in Future Cellular
Systems: Basic Requirements

Driven by a wide range of emerging applications such as
automated vehicles and robots, future wireless networks
will be required to enable high-resolution environmental
awareness in order to fulfill interactions between the dig-
ital and physical worlds. This can be achieved by sensing
and localization functions in wireless networks. In other
words, a device in the wireless network should have the
ability to know its location as well as detect the presence
of objects (including their shapes, locations, and speeds of
movement) in the operating environment using transmit-
ted or received radio signals [1].

In this regard, the fifth-generation (5G) networks
already provide possibilities for accurate localization and
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sensing services with their larger bandwidth and massive
antenna arrays, and the sixth generation (6G) should
continue this trend [2]. As defined by the 3GPB 5G needs
to satisfy a level of accuracy of less than 1 m for more
than 95% of the network area [3], and 6G is envisioned to
achieve subcentimeter accuracy [4]. These tolerances will
require the evolution of radio frequency (RF) sensing and
localization techniques to support such high accuracy.

B. Motivation: Why Reconfigurable
Intelligent Surfaces?

Current wireless systems highly depend on the quality
of the propagation environment, which is conventionally
modeled as an exogenous entity that can only be adapted
to but not controlled. This is challenged by future wire-
less systems that integrate communication, sensing, and
localization functions into one single platform. It is thus
desirable that the wireless environment should be treated
as part of the network design [5].

With the development of metamaterials, this new design
of wireless networks can be facilitated by an emerging
technology, which is referred to as reconfigurable intel-
ligent surfaces (RISs) [6]. RISs are comprised of thin
layers of metamaterials capable of shaping wireless sig-
nals that impinge upon the surface such that propagation
environments can be customized to fulfill specific system
requirements [7]. This can be achieved by controlling the
phases and amplitudes of impinging radio signals through
nearly passive and low-cost elements embedded in an RIS
[8]. As a result, the RIS can provide favorable propagation
conditions to improve sensing and localization accuracy.
In particular, the RIS can manipulate the signals from
different targets or locations to be more distinguishable,
which makes it easier for the receiver to detect targets or
estimate their locations.

C. Use Cases

Wireless sensing and localization have a variety of appli-
cations in our daily lives, such as indoor navigation, trans-
portation, healthcare, and security [9]. In the following,
we will elaborate on these application scenarios to show
the importance of accurate and ubiquitous sensing and
localization.

1) Indoor navigation: Indoor navigation is a common
use case in shopping malls, factories, and airports,
and it necessitates accurate localization for the user.
Different from outdoor scenarios, indoor localization
suffers from severe line-of-sight (LoS) blockage that
will significantly degrade the accuracy [10]. This can
be alleviated by deploying an RIS on a wall to provide
virtual LoS links, which is particularly important in
industrial Internet-of-Things applications [11], e.g.,
factory robots.

2) Intelligent transportation: Autonomous driving [12]
and vehicle-to-everything (V2X) communications
[13] are envisioned as two potential ways to realize
intelligent transportation. For autonomous driving, it
is critical for a vehicle to be able to build a real-time
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map and detect its environment, which requires accu-
rate distances among vehicles or between the vehicle
and surrounding obstacles for safe operation. For V2X
communications, the measurement of the velocity can
help predict the location of a vehicle, which will fur-
ther improve the communication performance. With
the RIS attached to buildings and billboards, localiza-
tion and sensing accuracy can be further enhanced,
thus improving the safety and efficiency of transporta-
tion systems.

3) Healthcare: Physical activity recognition for health-
care, such as fall detection, is an important applica-
tion of wireless sensing due to its contact-free nature,
i.e., users do not need to carry devices or modify their
daily routines [14]. For these applications, reliability
and accuracy are the most important concerns, which
are highly dependent on the quality of channel condi-
tions [15]. By deploying RISs, the wireless propaga-
tion environment can be customized to alleviate these
issues.

4) Security: RF sensing can also be used for security
applications, e.g., theft monitoring [16]. These appli-
cations require extremely high sensing accuracy, as
missed detections might cause serious consequences.
However, the accuracy of traditional sensing methods
is limited by channel conditions. The accuracy can be
further improved by deploying an RIS for favorable
channel conditions.

D. Contribution and Organization

In this article, we aim to provide a tutorial overview
on enabling RF sensing and localization using RISs, by
reviewing the state-of-the-art results in the literature, pre-
senting new ideas to solve the main challenges for sensing
and localization accuracy improvement, and introducing a
hardware prototype implementation. Moreover, we iden-
tify promising research directions related to RIS-aided
RF sensing and localization with the hope of motivating
future work. It is worth noting that, to the authors’ best
knowledge, this article is the first tutorial paper to address
the issues in RF sensing and localization applications with
RISs.

The rest of this article is organized as follows. We
present the fundamentals in Section II, including the prin-
ciple of RF sensing and localization, as well as the basics
of RISs and corresponding signal models. Sections 1 and 2
elaborate on the enabling technologies for RIS-aided sens-
ing and localization applications, respectively. In Section V,
we introduce how to implement such a system and show
some important experimental results. In Section VI, we
outline possible future directions. Finally, we conclude this
article in Section VIL.

II. FUNDAMENTALS OF RF SENSING
AND LOCALIZATION WITH RISs

In this section, we provide some preliminary background
on RF sensing and localization as well as RIS technology.
In Section II-A, we first introduce how to use RF signals to
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Fig. 1. Illustration of sensing using wireless signals.

realize sensing and localization. In Section II-C, we then
present some basics of RISs, and finally, in Section II-D,
we present the RF signal models in an RIS-aided wireless
network.

A. Working Principle

The basic idea of utilizing RF signals for sensing and
localization applications is to extract information from
wireless signals. However, there are still some differences
between sensing and localization applications, which will
be elaborated in the following.

1) RF Sensing: The working principle underlying RF
sensing is that the presence of objects will cause changes
in wireless signals, which results in a variation of cer-
tain properties of received signals [17]. As a result, we
can detect the existence of objects from the variation of
received signals. A typical RF sensing system is shown in
Fig. 1. There is a transmitter (Tx) and a receiver (Rx), and
the Rx will analyze the received signals to recognize the
movement of users or the existence of objects.

2) RF Localization: Localization is based on the extrac-
tion of location-related information, such as distance or
arrival angle, from received signals [18]. An example of
an RF localization system is shown in Fig. 2. There are
several anchor nodes (ANs) whose locations are known
to transmit/receive wireless signals to help locate the
user’s position. In such a system, the user will acquire the
distances to these ANs from received signals and derive its
position accordingly. In order to obtain a unique position, it
requires at least three ANs. In the sensing systems, objects
are located between the Tx and the Rx so that the Rx can
detect the changes caused by the objects. Alternatively, the
Rx in a localization system can be held by the user when it
is the user who wants to know its own position.

B. Measurement Metrics

To measure the changes or extract location-related infor-
mation, there are various metrics corresponding to dif-
ferent signal properties. The commonly used metrics are
reviewed in the following.

1) Received Signal Strength: Received signal strength
(RSS) indicates how the wireless channel influences the
amplitude of wireless signals on average, which is an easily
acquired metric. In general, the RSS at the Rx with the

distance to the Tx being d can be derived through the log-
normal distance path loss model [19], i.e.,

P(d) = Pr — 10alog d + egss, (1)

where P(d) is the received RSS measured in decibels
(dB), Pr is the transmitted energy, « is the path loss
exponent, and egrss is the noise in the RSS measurement.
For sensing applications, the existence of objects within the
sensing area will cause significant signal attenuation, i.e.,
o will be different, which leads to the variation of RSS
measurements. For localization applications, the distance
between the user and the AN can be obtained from the
RSS.

2) Channel State Information: Channel state information
(CSI) captures the frequency response of the wireless
channel. CSI can be obtained by comparing the known
transmitted signals in the packet preamble or pilot car-
riers to the received signals. Different from RSS which
only provides the amplitude information, CSI consists of
a set of complex values, including both amplitude and
phase information, which correspond to multiple orthog-
onal frequency-division multiplexing (OFDM) subcarriers.
Therefore, CSI allows fine-grained channel estimation and
can be mathematically expressed as

h=1[hi,...,hn]", )

where N is the number of subcarriers and h; = a;e’¥, with
a; being the amplitude of the CSI obtained at the ith sub-
carrier and 1); being the corresponding phase. In general,
CSI is more commonly used in sensing applications since

Fig. 2. Illustration of localization using wireless signals.
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it can provide more information to capture the movements
of objects [20].

3) Time of Flight: Time of flight (ToF) is the time
span between instants when a signal is transmitted and
received. With the ToF measurement, we can obtain the
distance d between the Rx and the Tx as [21]

¢ TroF = d + eroF, (3)

where c is the speed of light, 7. is the derived ToF for
the transmitted signals, and e is the noise for the ToF
measurement. In general, the measurement of ToF can be
categorized into the following two types.

1) Direct measurements using OFDM signals: Since OFDM
is the most commonly used radio waveform, it is
important to introduce how to obtain the ToF using
OFDM symbols. A received discrete-time OFDM sym-
bol after removing the cyclic prefix (CP) can be
expressed as [22]

j2mpn L
Yn=¢€ N E hixir, —7 + wn, 4
=1

where n denotes the subcarrier index, z,, is the time-
domain OFDM waveform sampled at the rate of 1/7,
in which 75 equals the symbol duration divided by the
number of subcarriers N, h; is the channel coefficient
of the /th path with delay 7;, and L is the total number
of paths. p is the residual carrier frequency offset
after frequency synchronization and &, is additive
white Gaussian noise. Assume that 73 < ---
and 7; is the ToF that we defined before. Existing
methods to estimate the ToF are mainly the MUSIC
algorithm [23], the SAGE algorithm [24], and the
MPLR algorithm [22]. We take the MPLR algorithm
as an example here. The basic idea of the MPLR
algorithm is to maximize the peak-to-leaking ratio of
the estimated channel impulse response (CIR), which
is a function of the delay. As a result, we can obtain
the ToF using optimization tools.

2) Frequency-modulated Continuous-wave (FMCW)
radars: FMCW radars [25] provide another method
to obtain the ToE These radars transmit continuous
waves, which allows transmitted signals to stay
within a constant power envelop, thus reducing the
power and the cost for signal processing. The working
principle of FMCW is shown in Fig. 3. The Tx sends
a chirp with linearly increasing frequency, and the
Rx compares the received and transmitted signals at
any time instant to calculate the frequency difference
fa. Given the slope of the linear chirp 7, the ToF can
be directly obtained as 7ror = (f4/n). Compared to
the direct measurement method, FWCW radars do
not require wide bandwidth or a high sampling rate,

< 7L,
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Fig. 3. Working principle of FMCW.

which is more suitable for systems having relatively
narrow bandwidths.

4) Doppler Shift: Doppler shift is a property of wireless
signals caused by relative movements that can be utilized
to capture the movements of sensing targets or locate users
over the observed frequency [26]. For example, in sens-
ing applications, a positive Doppler shift implies that the
sensing target is moving toward the Rx, while a negative
value indicates that the target is moving away from the Rx.
Assuming that the sensing target moves at speed v in the
direction of ¢ toward the Rx, the resulting Doppler shift is

expressed as

ap= 2@y )

where f is the center frequency of the transmitted signal.

5) Angle of Arrival: Sensing and localization can also
be facilitated by the detection of angle of arrival (AoA),
which is also referred to as the direction of arrival (DoA).
In sensing applications, by tracking the AoA, the Rx can tell
whether the signals are reflected from the sensing area.
In localization applications, the AoA-based localization
method as shown in Fig. 4 only requires two ANs, while
the distance-based localization method as shown in Fig. 2
requires three ANs.

User
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&

Fig. 4. AoA-based localization method.

Authorized licensed use limited to: Princeton University. Downloaded on July 29,2022 at 13:07:28 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Zhang et al.: Toward Ubiquitous Sensing and Localization With Reconfigurable Intelligent Surfaces

—_—
Incidence ray

Transmission ray

BS User1 User2

(@)

H.Vbr/‘d Ris

User 2
0
Us@er 1 User 2

Fig. 5. Different types of RISs: (a) reflective type, (b) refractive type, and (c) hybrid type.

Assume that the user’s and the ith AN’s locations are
u = [uq,uy]” and a; = [a},al]”, respectively. Then, the
measured AoA can be written as [18]

u —ai :
@i = arctan (yiaf) + €hoa, (6)
x — Ug

where ¢e},, is the measurement error. Therefore, we can
infer the location of the user through the measured AoAs
using (6). To measure the AOAs, the Rx should be equipped
with antenna arrays or directional antennas with spatial
resolution capabilities.

C. RIS Basics

RISs are thin layers of electromagnetic (EM) metama-
terials capable of shaping radio waves that impinge upon
them in such a way that the wireless environment can
be customized to fulfill specific system requirements [27].
According to the implementation, RISs can be categorized
into three types [30].

1) Reflective Type: In this type, an RIS only reflects inci-
dent signals toward the users on the same side of
the base station (BS), as shown in Fig. 5(a). In the
literature, this type of RIS is also referred to as an
intelligent reflecting surface (IRS) [31].

2) Refractive Type: In this type, incident signals will
penetrate the RIS and be refracted toward users on
the opposite side of the BS, as shown in Fig. 5(b).

3) Hybrid Type: This type of RIS enables a dual function
of reflection and refraction [32]. In other words, the
incident signals are split into two parts: one part
is refracted and the other is reflected, as shown in
Fig. 5(c). This type of RIS is also referred to as an
intelligent omni-surface (I0S) [33].

Although an RIS is composed of multiple layers, each
layer might vary for different types. As shown in Fig. 6, we
will take the reflective RIS as an example to show how the
RIS is built. A reflective RIS consists of the following three
layers.

1) The outer layer is a 2-D array of RIS elements, which
can directly interact with incident signals.

2) The middle layer is a copper plate that can prevent
signal energy leakage.

3) The inner layer is a printed circuit connecting to the
RIS controller, which can control the phase shifts of
the RIS elements.

Each RIS element is a low-cost subwavelength program-
mable metamaterial particle, whose working frequency
can vary from sub-6 GHz to terahertz (THz) [28]. When
an EM wave impinges on the RIS element, a current will
be induced by the EM wave, and this induced current
will cause EM radiation based on the permittivity ¢ and
permeability p of the RIS. This is how the RIS element
controls the wireless signals. An example of a metamaterial
particle is given in Fig. 7. As illustrated in this figure,
positive intrinsic negative (p-i-n) diodes are embedded in
each element. By controlling the biasing voltage through
the via hole, the p-i-n diode can be switched between “ON”
and “OFrF” states. The “ON” and “OFF” states of the p-i-n
diodes lead to different values of € and . As a result, this
element will have a different response to incident signals
by imposing different phase shifts and amplitudes [29].

To illustrate this behavior, we first consider the response
of one RIS element. We define the additional phase
shift introduced by the RIS as 6. The value of 6 can
be continuous if the RIS is implemented with varactors,
while 0 has finite values if it is implemented with p-i-n
diodes. Assuming that B p-i-n diodes are used in the

Copper backplane

Control circuit
board 4

RIS controller

Fig. 6. Components of a reflective RIS.
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Fig. 7. Example of a programmable metamaterial particle.

RIS, we have K possible phase shifts with K < 25,
which can be expressed as K = {0, ...,2n7/K,...,2(K —
1)7/K},1 <n < K-—1[34]. In the following, since the RIS
can be divided into three types, we will show how these
three types of RISs respond to the incident signals.

1) Reflective Type: According to [35], the response of an
RIS element can be written as

vy =Te Q)

where j is the imaginary unit, i.e., ;> = —1. Here, I" € [0, 1]
is the amplitude of the RIS response, where I' = 1 indicates
that the incident signals are fully reflected, while I' = 0
implies that the incident signals are fully absorbed. The
response is determined by the tuning impedance of the
equivalent circuit for each element and mutual impedances
(if mutual coupling cannot be ignored) at the ports of
the RIS, and it is generally influenced by azimuth and
elevation angles for incident and reflected signals, i.e.,
o4, v, ¢P, and P, as shown in Fig. 8(a). Moreover,
T" and 6 are usually sensitive to the working frequency. The
reflection coefficients will vary when the same RIS receives
signals at different frequencies. However, the RIS will be
designed to operate over a predefined band where the
phase shift and amplitude can be regarded as unchanged
over the considered bandwidth.

2) Refractive Type: As shown in Fig. 8(b), similar to the
reflective type, the response of a refractive RIS element can
also be expressed in the form of (7). The only difference is
that the incident signals fully penetrate the RIS element
when T = 1.

3) Hybrid Type: The hybrid RIS element has the func-
tions of both reflection and refraction. Therefore, the RIS
will first split the energy of incident signals into two
parts: one for refractive signals and the other for reflective
signals. To quantify the energy separation, we introduce a
metric 3 € [0,400), which is the power ratio of reflected
signals to refracted signals [36]. Therefore, we assume
that there is no energy leakage and that the response of
a hybrid RIS element to reflected and refracted signals
can also be expressed in the form of (7), where the phase
shifts to reflected and refracted signals might be different.

6 PROCEEDINGS OF THE IEEE

Therefore, the reflective and refractive responses can be
expressed as

Vrefl = %Freﬂeijema (8)
1 .
Vrefr = mrrefre ]0@,7 (9)

where T'en and I' are the reflection and refraction,
respectively, and 0.5 and 6. are the phase shifts for
reflection and refraction, respectively. It is worth noting
that the hybrid type will be reduced to the reflective type
with 3 = 400 and the refractive type with 8 = 0.

For the rest of this article, we take the reflective-type
RISs as examples, and the term “RIS” typically refers to the
reflective RIS for brevity. The same idea can also be applied
to refractive or hybrid RISs.

D. RF Signal Modeling With RISs

With an RIS, a single-user communication system is
shown in Fig. 9. In the following, we will introduce how to
model the signals in an RIS-aided communication system.
We will start with a single subcarrier and then extend the
modeling to an OFDM system.

1) Single Subcarrier: Over the nth subcarrier, the
received signals are composed of three components: the
LoS component, the reflection component, and the multi-
path component, as elaborated in the following.

a) LoS component: This indicates the direct signal path
from the Tx to the Rx. Denote hy,s as the channel gain for
the LoS component. Based on [26], ks can be expressed as

N A \/M . e*j%dlm/)\n
hlos = 4_ ' )
Us dlos

(10)

where )\, is the wavelength of the signals transmitted on
the nth subcarrier, gr and gr denote antenna gains of the
Tx and the Rx, respectively, and d,; is the distance between
the Tx and the Rx.

b)Reflection component: This is the LoS paths from the
Tx to the Rx via the reflections of the RIS, where each RIS
element corresponds to one reflection path. Assume that
the RIS consists of M elements and define h,, as the gain
of the reflection path via the mth RIS element. Based on
[37] and [38], h,. can be written as

WA GG me 32 (dn+dn )/ An
fim = 8m3/2dT, dR '

an

where ~,, is the mth RIS element’s response as defined
in (7) and d- and df are the distances from the
mth RIS element to the Tx and Rx, respectively. Note
that the multipath component will also be reflected
by the RIS. However, the channel gain of the reflec-
tion of the multipath component is much less than
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Fig. 8. Response for an RIS element of three types: (a) reflective type, (b) refractive type, and (c) hybrid type.

that of the LoS reflection component, and thus, the
reflection of the multipath component is neglected
here.

¢) Multipath component: The environmental scatter-
ing paths account for the signal paths between the
Tx and the Rx, which involve complex scattering from
the surrounding environment. We denote hy € C as
the equivalent gain of all the environmental scattering
paths.

Based on the above notation, the received signals over
the nth subcarrier can be expressed as

M
Yn = (hfés + > hm+ h;z) Tn + W, (12)

m=1

where z,, denotes the transmitted symbol over the nth
subcarrier and w,, is the noise, in which w, ~ CN(0,c?)
with o2 being the noise power.

2) OFDM Systems: Let ¢ = [z1,...,zx]" be an OFDM
symbol. The OFDM symbol is first transformed into the
time domain via an N-point inverse discrete Fourier trans-
form (IDFT) and then is appended by a CP At the Rx,
after removing the CP and performing an N-point discrete
Fourier transform (DFT), the equivalent baseband signals

LoS

component RIS element

Multi-path

Rx components

Fig. 9. Single-user communication system with an RIS.

in the frequency domain at the Rx can be expressed as

Y= X(hlos + Prefiect + hsc) + w, (13)

where y = [y1,...,y~n]" is the received OFDM symbol,
X = diag(x) is the diagonal matrix of OFDM symbol
x, hios = [hi, ..., hix]T is the channel response of the
LoS component, huefiecct = [Yomr_y By ooy ot W7 is
the channel response of the reflection component, hy =
[h,...,h¥]" is the channel response of the multipath
component, and w = [w1,...,wn]” is the noise. According
to (13), we can adjust the phase shifts of the RIS to
customize the received signals for a certain system require-
ment.

III. RIS-AIDED SENSING

In this section, we will introduce RIS-aided RF sensing
applications. In traditional RF sensing problems, one needs
to optimize the decision function to map the received
signals to sensing results. However, the use of the RIS
introduces two unique challenges in system design. First,
RIS configurations need to be carefully designed to provide
a favorable wireless propagation environment for sensing
applications. Different from the design for communica-
tions, which aims to maximize the received signal-to-
noise ratio (SNR), the RIS configuration design for sensing
applications is to enhance the differences of signals in
the presence of different sensing targets, which makes it
easier for the Rx to distinguish them. Second, as the RIS
can manipulate the received signals, the decision function
design is highly coupled with the RIS configurations, which
makes the design of the decision function challenging.

In general, RF sensing techniques can be divided into
two types according to the used RF signals. One is to utilize
commodity signals, such as Wi-Fi and cellular signals,
which we refer to as MetaSensing. The other one is to
use customized signals, i.e., radar, which is referred to as
MetaRadar. In contrast to the first type, radar sensing can
adjust the transmitted waveform and thus can have better
sensing accuracy. However, it requires an extra pair of
transceivers for signal transmission and reception, which

PROCEEDINGS OF THE IEEE 7

Authorized licensed use limited to: Princeton University. Downloaded on July 29,2022 at 13:07:28 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Zhang et al.: Toward Ubiquitous Sensing and Localization With Reconfigurable Intelligent Surfaces

is more likely to be used in accuracy-sensitive applications,
such as autonomous driving. In Section III-A and III-B,
we will present the details of MetaSensing and MetaRadar
systems, respectively, to address the above challenges.

A. MetaSensing: Sensing With Commodity Signals

A general MetaSensing system with commodity signals
is shown in Fig. 10. In such a system, there exists a pair of
a Tx and Rx, an RIS, and a target space where the objects
(or human bodies) are located. Here, the Tx and Rx are
commercial devices, for example, Wi-Fi access points (APs)
and smartphones. The target space is a cubical region that
is discretized into @ uniform space blocks. The transmitted
signals are customized by the RIS before entering into the
target space. The customized signals are further reflected
by the objects in the target space and received by the Rx
unit. As a result, the Rx can map the received signals,
including LoS and reflected links, to the sensing results.

To synchronize the RIS, the Tx, and the Rx, a sensing
protocol is proposed [39]. In the protocol, the timeline is
divided into cycles, where the Tx, the Rx, and the RIS are
operated in a synchronized and periodic manner. As shown
in Fig. 11, each cycle consists of four phases.

1) Synchronization phase: The Tx transmits a synchro-
nization signal to the RIS and to the Rx, which
identifies the start time of a cycle.

2) Calibration phase: As the received LoS path contains
no information about the target space, we generate a
reference signal in this phase, which will be used to
subtract the LoS path. To be specific, the RIS is set to a
default configuration, and the Rx records the received
reference signal yo.

3) Data collection phase: The timeline in this phase is
equally divided into frames. During this phase, the Tx
continuously transmits the RF signal, while the RIS
changes its configuration at the end of each frame,
as shown in Fig. 11. The received signals are denoted
by y. To remove the LoS path, the received signals in
these frames are subtracted by the reference signal.
In particular, the differences between the received
signals and the reference signals constitute a mea-

Target Space

Fig. 10. Illustration for MetaSensing systems.

8 PROCEEDINGS OF THE IEEE

Synchronization  Calibration
Phase

Data Collection Data Processing

x Phase Phase Phase
ol

RF Signal (f, Sine Wave Signal)

Configurations

Mapping of Rx
B |

Fig. 11. Cycle of the sensing protocol.

surement vector ¢, where

j=y—yo=Ive+o. (14)
Here, yo is a reference vector where all the elements
are the reference signal y, obtained in the previ-
ous phase, and z is the transmitted signal. v is the
reflection coefficients of these space blocks, which
can be used to determine the existence of the target
on each block. @ is the noise difference between the
received signals and the reference signal, which is still
Gaussian. T is the difference between the channel
gains under the RIS configurations selected in this
phase and that under the default configuration.

4) Data processing phase: The Rx maps the measurement
vectors obtained in the data collection phase to the
sensing results using a decision function.

To improve the sensing performance, the configuration
of the RIS and the decision function at the Rx needs to
be optimized. In the following, we will introduce two use
cases. The first one is a known object set, where at least
partial information about the targets is known. The second
one is an unknown object set, where no prior information
about the targets is given.

1) Case I: A Known Object Set: For a known object set,
we take posture recognition as an example, where the set
of possible postures 7 is known [40], and we want to figure
out what the posture is from the received signals. To quan-
tify the sensing performance, we define the weighted cost
caused by false recognition under the decision function L
as the average false recognition cost, where

V= Y pow [Pr@dvoLe@dg. a9

i,/ €T, i#£i!

Here, p; is the prior probability of the ith human posture,
v; is the reflection coefficient vector of the ith posture,
Xi,i is the cost of recognizing the ith posture as the i'th
one, Pr(g;|v;) is the probability of the measurement vector
being ¢; given v;, and L,/ (§;) is the probability that the Rx
will map the measurement vector 4, to the i'th posture.

a) RIS configuration optimization: This problem is to
minimize the average false recognition cost by optimizing
the configuration matrix, which is involved in I". Moreover,
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Average false recognition cost versus the number of

the optimized configuration matrix for specific coefficient
vectors may be sensitive to subtle changes in the postures.
Therefore, we will reformulate the objective for a general
posture recognition scenario.

Based on the observations that most of the space blocks
are empty and thus have zero reflection coefficients, and
for the blocks where the human body is situated, only
those that contain the surfaces of the human body with
specific angles can reflect the incident signals toward
the Rx and thus have nonzero reflection coefficients, the
reflection vector for the target space v is sparse and can
be reconstructed using compressive sensing. According to
the theory in [41], to reduce the loss of reconstruction for
sparse target signals, we can minimize the average mutual
coherence of T, which is defined as

; 1 |70 |
u(l) = = T 16)
Q-1 , 2 T2,
where 4, is the gth column of T' and | -||2 denotes the

l>-norm.

b) Decision function optimization: The objective of this
problem is to minimize the cost by optimizing the decision
function L. To solve this problem efficiently, we employ a
neural network to approximate the decision function. The
input is the measurement vector § and the output is the
probability distribution over all postures in Z. This neural
network can be trained by the backpropagation algorithm.

Fig. 12 shows the average false recognition cost versus
the number of training iterations for the neural network in
the decision function optimization for a dataset collected
from our prototype (see [40] for details). Here, the costs
of true and false recognition are set to 0 and 1, respectively,
ie, xiv = 0if ¢ = ¢, and otherwise, x; = 1. It
can be observed that the converged value of the average
false recognition cost with the proposed RIS configuration
optimization method is less than 10% of that obtained
with a random RIS configuration. Moreover, compared to
the nonreconfigurable environment case, i.e., without the

assistance of the RIS, we can observe that the capability of
the RIS to customize the environment helps the RF sensing
system to significantly reduce the average false recognition
cost.

2) Case II: An Unknown Object Set: For an unknown
object set, we have no information about the number and
shape of possible objects, and we aim to obtain a 3-D
sketch of the objects in a given space from the received
signals. As a result, we cannot use the false recognition
cost to quantify the sensing accuracy. Instead, we use the
cross-entropy loss W to measure the sensing accuracy [42].
To be specific, the cross-entropy loss is generally used to
calculate the difference between the measured probability
distribution and the ground-truth distribution over the
target space, where

Q
U =-EK, qu(”) In(pq) + (1 — pe(v)) In(1 —ﬁq):|

a7
Here, p,(v) is a binary variable indicating the object’s
existence in the ¢th space block. In other words, p,(v) =0
if |v| = 0; otherwise, pq(v) = 1. pg, is the estimated result
obtained from measurement vector § using a decision
function f(g).

This problem aims to minimize the cross-entropy loss by
optimizing the configuration matrix that is involved in T.
As we do not have any information about the objects, the
sparsity assumption may not hold in this case. Therefore,
the compressive sensing method cannot be applied any-
more. As each RIS element has a finite number of phase
shifts, the optimization problem can be reformulated as a
Markov decision process (MDP).

1) State: The state of the environment includes the index
of the current frame, the index of the RIS element
to adjust its phase shift, and the RIS configuration
matrix, including the configurations of the RIS over
all the frames in the data collection phase. The state
is called a terminal state when the phase shifts of all
the RIS elements over all the frames are determined.

2) Action: In each state, the RIS element indicated by
the index adjusts its phase shift under the current
configuration of the RIS.

3) Transition: A nonterminal state will transit to the state
where the index of the RIS element increases by 1.
Moreover, if the last RIS element selects its phase shift
in the current state, then, in the next state, the index
of the frame will increase by 1 and the index of the
RIS element will be reset to 1. During the transition,
the RIS configuration matrix is updated according to
the phase shift adjusted by the RIS element in the
current state.

4) Reward: The reward is defined as the negative cross-
entropy loss of the mapping of the received signals
given the configuration determined in the terminal
state. If the terminal state has not been reached, the
reward for the state transition is set to be zero.
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Fig. 13. Sensing result comparisons for different shapes of objects.

Under such an MDP framework, we propose a deep
reinforcement learning algorithm to jointly optimize the
RIS configuration and decision function. To be specific, the
reinforcement learning algorithm consists of two phases as
follows, and these two phases proceed iteratively until it
converges. Please refer to [39] for more details. Based on
the results obtained after the convergence, we can further
perform semantic recognition and segmentation to obtain
meaningful representations of the objects [43].

a) RIS configuration optimization phase: The RIS starts
from an initial state and adopts a policy function to select
actions in each state until it reaches the terminal state.
As the set of feasible actions is large, we use a neural
network, called the policy network, to approximate the
policy function, where the inputs are the states, while the
output is the probability distribution of the actions. The
policy network is trained to maximize the accumulated
rewards.

b) Decision function optimization phase: Similarly, the
decision function is also approximated by a neural net-
work, called the sensing network. The inputs are the
received signals ¢ under the configurations obtained by the
policy network, and the output is the sensing result. The
sensing network is trained to minimize the cross entropy
defined in (17).

In Fig. 13, we show the ground truths and the sensing
results for different shapes of objects in a typical example
(details can be found in [39]). The schemes for these
results are: 1) ground truths for comparison; 2) the pro-
posed scheme where both sensing and policy networks are
used; 3) the sensing network is used while a random RIS
configuration is adopted; 4) the policy network is utilized,
while a model-aided decoder contained in the sensing

10 PROCEEDINGS OF THE IEEE

network is removed; and 5) only the model-aided decoder
is used. From the comparison, we can observe that the pro-
posed algorithm outperforms other benchmark algorithms
to a large extent and that both sensing and policy networks
contribute to improving the sensing accuracy. Moreover,
we can observe that the proposed algorithm obtains accu-
rate sensing results despite the different shapes of the
objects.

It is worth pointing out that Case I is a special case
of Case II. In other words, the methods in Case II can
also be used for Case I. However, the complexity of the
method proposed for Case I is typically lower than that for
Case II since we can use the prior information to reduce
the feasible set.

B. MetaRadar: Sensing With Radar Signals

A multitarget detection scenario using a MetaRadar is
shown in Fig. 14. The MetaRadar is composed of a Tx,
an Rx, a multiple-input multiple-output (MIMO) antenna
array connected with the Tx and Rx, and an RIS [44].
By deploying an RIS in the radar system, we can improve
the overall channel conditions between the antenna array
and sensing targets. The MetaRadar has two modes, i.e.,
transmission and reception modes. In the transmission
mode, the Tx first generates signals according to designed
waveforms and then radiates the signals through the
MIMO antenna array toward the targets via both direct
and reflection paths, as shown in Fig. 14(a). Then, the
MetaRadar system switches to the reception mode, where
the antenna array receives the echo signals reflected by the
targets. The received signals will be delivered to the Rx in
order to detect and locate targets.

Authorized licensed use limited to: Princeton University. Downloaded on July 29,2022 at 13:07:28 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Zhang et al.: Toward Ubiquitous Sensing and Localization With Reconfigurable Intelligent Surfaces

Transmitted signal
via reflection path

RIS

RIS AEE
/ g~
controller y
% ) Target 1
/
/ Transmitted signal .
/ via direct path .
LU mivo
antenna
sem ™ 5
Tx Rx Target K

(@)

RIS Echo signal via
reflection path
RIS |[=---4-- 7~ >
-
controller
§ | Target 1
/
" 7 Echo signal .
via direct path .
LU vivo
™ antenna
array \g‘g‘
Bes ‘
Tx Rx Target K

(b)

Fig. 14. MetaRadar system: (a) transmission mode and (b) reception mode.

In this section, the number of targets R is assumed to be
unknown, but it falls within a known range. The space of
interest (SOI) is discretized into multiple angular blocks,
and each target is assumed to be located in one block.
Given R and the direction of each target, the range of
each target can be estimated based on the received signals.
Therefore, a hypothesis U; only needs to contain the num-
ber of targets and the directions of these targets, indicating
the indices of the angular blocks. The multitarget detection
is performed using multiple hypothesis testing techniques.
Similar to the protocol introduced in Section III-A, the
MetaRadar system is also operated in a synchronized man-
ner, and the timeline is slotted into cycles. In each cycle,
the following three steps are performed.

Optimization: The aim of the optimization step is to
improve the detection performance by optimizing the
radar waveforms and the RIS configuration. The detection
performance can be quantified by the “distance” between
the probability distributions of two different hypotheses.
With the RIS, the received signal y is manipulated to
maximize the distance between two hypotheses, and thus,
any two hypotheses are more likely to be distinguished,
leading to a higher detection accuracy. To be specific, the
distance between hypotheses j and ;' in the cth cycle can
be defined as the relative entropy [45], i.e.,

d5 ;+(P°) = KL(p® (y |U;, P°) ,p° (y |Ujr, P%))

+KL(p° (y |U;, P°),p° (y Uy, 7)), (18)
where KL(-) is the Kullback-Leibler divergence, P° is the
set of optimization variables in the cth cycle, i.e., radar
waveforms and RIS configuration, and P¢(y°|U;, P¢) is the
likelihood of receiving signal y° given hypothesis U; in the
cth cycle, which can be expressed as

7 —1 A~ R 27 c 2
|y -y (Ujv{TTJ'}T:177]77D)H

o2

p°(Uj, P)=A] [ exp ‘
=1

19

Here, A is a scaling factor, o is the noise power, and

g (U;, {#7} 1,47, P°) denotes the expectation of signals
received by the antenna array under hypothesis U; in the
ith cycle, delays from each target 77, and their responses
47, where 77 and 47 can be estimated jointly using the
maximum likelihood estimation method.

To solve this problem efficiently, we first decouple
the problem into two subproblems: the radar waveform
optimization subproblem and the RIS configuration opti-
mization subproblem. For the radar waveform optimiza-
tion subproblem, this problem can be transformed into
a quadratically constrained quadratic program (QCQP),
which can be solved by the semidefinite relaxation (SDR)
technique. For the RIS configuration optimization subprob-
lem, the problem can also be transformed into a QCQP
after relaxing the discrete phase shifts into continuous
ones. After solving the QCQR all the phase shifts will be
recovered to the nearest available phase shift. More details
can be found in [44].

Transmission and Reception: The optimized radar wave-
forms are transmitted. The RIS phase shifts are set as
optimized in the previous step and could be different
for transmission and reception modes. Then, the antenna
array listens for the echo signals from the targets. Since
the distances between the targets and the radar can be
different, the echo signals from different targets may have
different delays. The Rx will record these signals, including
the delay information, for further processing.

Detection: In this step, the probability of each hypothesis
will be updated. The prior probability distribution of these
hypotheses is initialized to be uniform, where p'(U;) is
the initial probability for hypothesis U;. Based on Bayes’
formula, the probability update in the next cycle can be
written as

e+1r P (U)P(y°|U;))
) = S U P

(20)

where P¢(y°|Uj;) is the probability given in (19). At the end
of the iteration, the hypothesis with the highest probability
will be selected as the final result.
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In Fig. 15, we show the detection probability and the
misdetection probability versus the number of cycles for
a typical example (details can be found in [44]). In
comparison, we also present the results obtained by the
standard MIMO radar and the RIS radar with a random RIS
configuration. It can be observed that the detection proba-
bility obtained by the proposed scheme is higher, while the
misdetection probability is smaller than those obtained by
the other two schemes, which verifies the effectiveness of
the proposed scheme. Moreover, we can also observe that
the random and proposed schemes outperform the MIMO
scheme. In particular, the growth rate of the detection
probability obtained by the MIMO scheme is much lower
than that of the others, and the detection probability
obtained with the RIS can approach 1 after a sufficient
number of cycles. Similarly, the misdetection probabilities
obtained by the random and proposed schemes drop sig-
nificantly faster than that obtained by the MIMO one. This
has verified that incorporating the RIS can improve the
performance of radar systems, even if the phase shifts of
the RIS are not optimized by providing extra paths.

IV. RIS-AIDED LOCALIZATION

In this section, we will introduce RIS-aided RF local-
ization applications. Similar to the sensing applications,
the main challenge is to optimize the configurations of
the RIS, especially when the size of the RIS is large.
Based on the availability of prior information about
the environment, the techniques can be broadly catego-
rized into two types: MetaLocalization and MetaSLAM,
which will be elaborated in Sections IV-A and IV-B,
respectively.

A. Metalocalization: Indoor Localization
and Tracking

In this section, we will introduce how to localize/track
users if prior knowledge of the environment can be known.
For simplicity, we use RSS as the measurement metric.
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Simulation results: (a) detection probability versus the number of cycles and (b) misdetection probability versus the number of

In general, an RSS-based fingerprinting system consists
of two phases: offline and online phases. In the offline
phase, the system will collect the RSS value for each
sampling location and generate a radio map. Then, in the
online phase, the system will estimate the user’s local-
ization by comparing its measured RSS value with the
radio map [46]. In an uncontrollable radio environment,
as the radio map is passively measured, the RSS values for
two neighboring locations might be similar to each other,
leading to performance degradation. To address this issue,
an RIS is used in an RF localization system to actively
alter the radio maps and reduce the similarity of the RSS
values corresponding to two adjacent locations. This type
of system is referred to as MetaLocalization [47].

The MetaLocalization system is shown in Fig. 16. The
system is composed of an AB an RIS, and multiple users
requiring indoor location services. The AP connects to the
RIS controller to facilitate the synchronization. During the
localization process, the AP sends a single-tone signal,
and the RIS reflects the signal to users. Then, each user
measures the RSS for localization. All the mobile users are
assumed to move slowly or stay static in the SOI, which

RIS controller

" Mobile users
S

“Ablock

Reflection component

Fig. 16. lllustration for MetaLocalization systems.
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is divided into several cubic blocks of the same size. The
location of each user can be represented by the index
of the block. The localization process has several cycles,
each consisting of two phases: the radio map generation
phase and the localization estimation phase, as introduced
next.

1) Radio Map Generation Phase: To improve the local-
ization accuracy, the Metalocalization system needs to
adjust the configurations of the RIS to reconfigure the
radio environment and provide a favorable radio map. To
be specific, for a certain configuration, the RSS for each
block in the SOI can be calculated according to (12), and
we can obtain the radio map by repeating this step for all
the configurations. However, as the number of available
configurations could be very large due to the size of the
RIS, it is costly to measure the RSS values in the SOI for all
the configurations.

To address this issue, we need to select a configuration
that leads to the minimum localization loss in each cycle.
More specifically, the localization loss can be defined as the
sum of expected localization errors for all the users [48],
which can be expressed as

e D)= 3 pctaw [ plsile)Lldles)ds @D
i€S q,q'€Q
q#q

where S is the set of users, Q is the set of blocks in
the SOI, and c is the configuration of the RIS. Here,
pi,q is the prior distribution of the users over the SOI,
which can be obtained from the previous iteration. -,
is the weight for the mislocalization, which is defined as
the Euclidean distance between the ground-truth block
g and the estimated block ¢'. This will force the esti-
mated location to get closer to the ground-truth one as
much as possible. p(s;|e,q) denotes the probability of the
received RSS for user ¢ being s; with configuration ¢
when user i is located at the gth block, and £(¢'|c, s:)
is an estimation function to indicate whether user i is
located at the ¢'th block with the received RSS s;, which
is assumed to be known in this phase and will be dis-
cussed in the following phase. Therefore, the integration
is the probability that the system estimates user i to be
located at the ¢’th block, while it is actually located at the
gth block.

The loss function is nonconvex with respect to the RIS
configuration c¢. Moreover, the configuration of the RIS
is typically discrete in practice. To address this problem
efficiently, we can first find some initial solutions and then
use the global descent methods to update the solution,
leading to a lower localization cost. The details of the
algorithm can be found in [47].

2) Location Estimation Phase: Given configuration ¢ and
the RSS for each user s;, the optimal estimation function,
which yields to the minimum localization loss, can be

AOS [ :.\\ o .v — (
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Fig. 17. Localization performance for a single user.
expressed as [47]
« 1, Si € ,R»L ’
L7(q|e,si) = “ (22)
07 Si ¢ Ri,q’

where the decision region R, . is defined as

Roy = { S pia(rag —vaarplsile,a) <0
qeQ

Ve’ e Q/{q'}}. 23)

The received RSS falling within the decision region implies
that the localization loss will be less if we estimate that
user i is located at the n'th block instead of the n”th
block. Therefore, in this phase, each user can estimate its
location using (22) according to the configuration ¢ and
the received RSS.

Fig. 17 shows the localization performance for a single
user in a typical example (details can be found in [47]). To
evaluate the performance of the MetaLocalization scheme,
we also give the performance obtained by other three
schemes: the fixed configuration scheme, the random
configuration scheme, and the simulated annealing (SA)
scheme. In the fixed configuration scheme,! the states of
all the RIS elements are fixed. In the random configuration
scheme, random configurations are generated in different
iterations. In the SA scheme, the SA method is utilized to
optimize the RIS configurations, which can be regarded
as a lower bound. We can observe that the localization
error obtained by the fixed algorithm fluctuates between
0.30 and 0.32 m, while those obtained by the other three
schemes decrease when the number of iterations increases.
Moreover, we can observe that the localization error of
the MetaLocalization scheme is close to that obtained

It is worth pointing out that the fixed configuration scheme can
represent the case without the RIS. When the phase shifts of the RIS
are fixed, the RIS can act as a normal wall that scatters the signals.
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by the SA scheme, which can achieve centimeter-level
localization accuracy. This indicates that the capability of
the RIS to customize the propagation environment can
improve the localization performance.

B. MetaSLAM: Simultaneous Localization
and Mapping

In Section IV-A, we have introduced how to determine
the users’ locations if we have prior information about
the environment. However, in some applications this may
not be true; for example, a mobile robot is placed in
an unknown environment to execute a certain task. How
can this robot incrementally build a consistent map of
this environment and locate itself within this map? To
address this issue, the simultaneous localization and map-
ping (SLAM) technique was developed [49]. In the radio-
based SLAM technique, the multipath propagation caused
by scattering in the environment is exploited, and thus,
the locations of objects in the environment (scatter points)
are simultaneously determined with an agent of interest’s
location [50]. Even if the multipath channel is used as
a constructive source of information in the localization
problem, the related EM interactions with the environment
still remain uncontrolled and, as such, largely suboptimal
from the localization perspective [51]. This motivates us
to leverage the RIS to improve the accuracy of the SLAM
technique.

1) Indoor SLAM Scenario: A general indoor RIS-assisted
SLAM scenario is shown in Fig. 18. An RIS is installed on
the ceiling of a room and is linked to a controller that can
change the phase shifts applied by the RIS to customize
the propagation environment. A mobile agent is equipped
with a single-antenna Tx and a multiple-antenna Rx. While
moving in the room, the agent transmits signals and ana-
lyzes the received signals in order to locate itself and map
the surrounding environment simultaneously. In particular,
the agent first communicates with the RIS controller to
adjust the phase shifts of the RIS. Next, the agent simul-
taneously emits signals to the environment and records
the received signals, which contain multipath components
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produced by the scattering and reflection of environmental
obstacles and the RIS. The location of the mobile agent and
environmental information can be extracted from these
multipath components [53].

2) Multipath Component Modeling: Assume that the
transmitted OFDM symbol z"(¢) over the nth subcarrier
travels via L paths to the vth Rx antenna. Therefore, the
baseband OFDM symbol after removing the CP received by
the vth Rx antenna at time ¢ can be written as

L SR
yr(t)=> / hity(T)z(t — T)dr +wi(t)  (24)
I=1Y 7~

where fzﬁ,u (t) denotes the CIR of the ith multipath channel
to the vth Rx antenna over the nth subcarrier and wy (t)
denotes Gaussian white noise.

In the following, we model the impulse response of
channels via the obstacles and the RIS. Reflectors and
scatterers are two types of obstacles that are considered.
The reflectors are smooth surfaces like walls that receive a
section of the incident wavefront and redirect it following
the reflection law, while the scatterers only receive a point
on the incident wavefront and diffusely scatter it in all
directions. An example for the multipath channel is shown
in Fig. 19.

a) Path through a reflector: As shown in Fig. 19, path 1
is the signal path from the Tx to the Rx via a reflector on
the ceiling. The CIR of path 1 in general can be expressed
as

hY o (t) = AT ,8(t — du/c) (25)

where A7, is the channel gain as introduced in (10), d; is
the propagation length of this path, and §(-) is the delta
function. As shown in Fig. 19, this CIR for this path is
equivalent to that from a virtual Tx (VT), which is the

O VT
VS
o

Reflector
-
Scatte{er N Path 1
¢ Path 3
a
pd
/
B, A
Tx Rx

Fig. 19. Example for the multipath channel.
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mirror image of the Tx. This presentation will be used in
the following algorithm design.

b) Path through a scatterer: As shown in Fig. 19, path 2
is the signal path from the Tx to the Rx via a scatterer. Its
CIR can be expressed as that in (25), where the channel
gain will be changed as defined in (11). It is worthwhile to
point out that each RIS element can also be regarded as a
scatterer with a controllable delay. If the scatterer is not an
RIS element, v, should be set as 1 when calculating the
channel gain according to (11).

¢) Path through a scatterer and a reflector: Path 3 is the
propagation path from the Tx to the Rx via a scatterer
and a reflector. Similarly, path 3 can be treated as being
transmitted by a virtual scatterer (VS) with an additional
delay introduced by the transmission between the Tx and
the scatterer. The VS is also the mirror image of the
scatterer, which will be used in the following algorithm
design as well.

3) Position and Mapping Procedure: In the positioning
and mapping procedure, we similarly divide the timeline
into cycles. In each cycle, the following three steps are
conducted sequentially.

a) Step 1 (phase shift optimization): In this step, the
agent needs to select the phase shifts of the RIS for the
current cycle. The objective of this optimization problem
is to minimize the localization error in the current cycle,
i.e., the distance between the ground-truth and estimated
locations. However, since the ground-truth location of the
agent is unknown, it is difficult to optimize the phase
shifts of the RIS with the positioning error as the objective.
Alternatively, we use the Cramér—-Rao lower bound (CRLB)
to approximate the positioning error, which is widely used
in the performance measurement of a SLAM system. In
particular, the CRLB is reciprocal to the Fisher information
matrix of the estimated location [52]. As the CRLB is
nonconvex with respect to the phase shifts of the RIS, a
genetic algorithm can be used to solve this problem [53].

b) Step 2 (communication and measurement): After
Step 1, the agent transmits a signal over a control channel
carrying the phase shifts of the RIS to the RIS controller.
The RIS controller will adjust the phase shifts accordingly.
Once the phase shifts of the RIS are updated, the agent will
transmit another signal for SLAM, and the Rx records the
received signals at the same time.

¢) Step 3 (localization and mapping): The location of the
agent and the map are updated based on the signals mea-
sured in Step 2. The localization and mapping procedure
consists of two phases, i.e., the path grouping phase and
the positioning and mapping phase.

1) Path grouping phase: In this phase, we first need
to recognize whether the received path is from a
scatterer or a VS since scatterers and VSs are static.
The Tx or VTs are moving during the SLAM process
and thus cannot be used to locate the agent. The
recognition can be achieved by a neural network [54].
Next, these paths are divided into several groups

7.6 T T T
—*— Proposed
- ©- -BP-SLAM
74T —4—-Non-RIS -
Random - e--"""

RMSE (m)

%107

Standard deviation of noise

Fig. 20. Agent position RMSE versus standard deviation of noise.

based on their AoAs, each corresponding to a scatterer
(including the RIS), which is also referred to as a
landmark. The VS can be mapped with a scatterer
according to the geometry. Finally, we need to decide
which landmark is the RIS, which is necessary for the
phase shift optimization. Let p§ ;s be the probability
that the ith landmark is the RIS in the cth cycle, and
we consider the probability obtained in the previous
cycle to be the prior distribution for the current cycle.
Based on Bayes’ formula, we have

P risp(a’|ith landmark is the RIS)

TRIS = ; (26)
Piris Efil pfillsp(acﬁth landmark is the RIS)
where a° denotes the amplitudes of paths
extracted from the received signal y° and

p(a’|ith landmark is the RIS) denotes the probability
of receiving a° if the ith landmark is the RIS. The
landmark with the largest p; r;s will be regarded as
the RIS in the cth cycle.

Positioning and Mapping Phase: The positioning and
mapping algorithm is based on the particle filter
method [49]. The basic idea is to use a set of weighted
particles to represent the probability distribution of
the locations of the agent and landmarks, and the
weights of these particles are updated based on the
received signals. Since the estimation errors of ToFs
and AoAs vary among different paths, we will opti-
mize the weights of these paths in the particle filter to
reduce the positioning errors. It is worth pointing out
that the computational complexity increases exponen-
tially with the number of landmarks held in the map.
We can use partitioned updates and relative submaps
to address this issue [55].

2

—

Fig. 20 shows the root-mean-square error (RMSE) of the
estimated agent position versus the standard deviation of
noise in a typical example (details can be found in [53]).
In comparison, simulation results for the following three
schemes are also provided.
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Fig. 21. Example prototype for RIS-aided wireless sensing and
localization systems.

Tx antenna
(LB-800)

1) Random scheme: The phase shifts for the RIS are set
randomly in each cycle.

2) Non-RIS SLAM: There is no RIS in the room, and the
agent performs SLAM using the proposed localization
and mapping algorithm.

3) BP-SLAM: This algorithm is proposed in [56], which
only utilizes the TX and VTs for localization and
mapping.

From this figure, we can observe that the RMSE of the
agent’s position obtained by the proposed scheme is at
least 31% lower than those obtained by other benchmark
schemes, which shows the superiority of the proposed
SLAM scheme. Moreover, compared to those without the
RIS, the RMSEs obtained by the RIS-aided SLAM systems
are lower, implying the effectiveness of the RIS in improv-
ing the performance of SLAM systems.

V.SYSTEM IMPLEMENTATION AND
EXPERIMENTAL EVALUATION

In Section V-A, we will introduce how to build an
RIS-aided wireless sensing and localization hardware sys-
tem, and in Section V-B, we will show some results
obtained in the hardware systems.

A. System Components

An example prototype of an RIS-aided wireless sensing
and localization system is shown in Fig. 21. In general,
the system consists of two parts: the RIS and transceiver
modules, which are elaborated as follows.

1) RIS Implementation: We use the electrically modu-
lated RIS proposed in [57], which is shown in Fig. 22. The
RIS is a 2-D array with a size of 69 x 69 x 0.52 cm®, where
each row/column of the array contains 48 RIS elements.
Each RIS element has a size of 1.5 x 1.5 x 0.52 cm® and
is composed of four rectangular copper patches printed
on a dielectric substrate (Rogers 3010) with a dielectric
constant of 10.2. Two adjacent copper patches are con-
nected by a p-i-n diode (BAR 65-02L), and each p-i-n diode
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Fig. 22. RIS controller and RIS.

has two states, i.e., ON and OFF, which are controlled by
applied bias voltages on the via holes. Besides, to isolate
the DC feeding port and microwave signal, four choke
inductors of 30 nH are used in each RIS element.

As shown in Fig. 22, three p-i-n diodes are included in
an RIS element, and thus, an RIS element could have at
most eight states. However, four states are used for the
ease of control. Table 1 provides the amplitude and phase
responses of an RIS element for these four states with the
incident signals of 3.198 GHz [40]. Table 1 is obtained
with the Microwave Studio and the Transient Simulation
Package in the CST Studio Suite software package, by
assuming normal illumination. In practice, to relieve the
complexity of the control circuit, the RIS elements are
divided into several groups, for example, 16 groups in this
prototype, each containing 12 x 12 RIS elements arranged
squarely. The RIS elements within the same group are in
the same state.

As shown in Fig. 22, the states of these RIS elements are
configured by an RIS controller, which is implemented by
a field-programmable gate array (FPGA) (ALTERA AX301).
In particular, the expansion ports on the FPGA are used for
the configuration of the RIS. Every three expansion ports
control the state of one group by applying bias voltages to
the p-i-n diodes. The algorithms introduced in Sections III
and IV are loaded onto the FPGA to automatically adjust
the configurations of the RIS.

2) Transceiver Modules: As shown in Fig. 21, the trans-
ceiver module consists of the following components.

1) Tx: The Tx is implemented by using a universal
software radio peripheral (USRP) device (LW N210).
The USRP realizes the functions of RF modula-
tion/demodulation and baseband signal processing
by using the GNU Radio software development kit.
The output port of the USRP is connected to a ZX60-
43-S+ low-noise amplifier (LNA), which amplifies
the transmitted signal. A directional double-ridged

Table 1 Amplitude and Phase Responses of an RIS Element

State | PIN#1 | PIN#2 | PIN #3 Phase Amplitude
1 OFF OFF OFF /4 0.97
2 ON OFF ON 3n/4 0.97
3 ON OFF ON 57 /4 0.92
4 ON ON OFF /4 0.88
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Fig. 23. Experimental layout for the MetaSensing system.

horn antenna (LB-880) is employed, which is linearly
polarized.

2) Rx: Similar to the Tx, the Rx is a USRBE whose input
port is connected to an LNA, and an omnidirectional
vertical antenna (HT3500LC) is utilized. An external
clock (10-MHz OCXO) is used to provide a precise
clock signal to the Tx and Rx.

3) Signal synchronizer: To obtain the relative phases
and amplitudes of the received signals with respect
to the transmitted signals, we employ a signal
source (RIGOL DG4202) to synchronize the Tx and
Rx USRPs. The signal source provides the reference
clock signal and the pulse-per-second (PPS) signal to
the USRPs, which are used for the modulation and
demodulation. For the phase synchronization, the Tx
and Rx USRPs are connected by a wired link with
a fixed gain, which is used to compensate for the
instrumental error of the USRPs.

4) Ethernet switch: This connects the USRPs and a host
computer to a common Ethernet where they exchange
the transmitted and received signals.

5) Data processor: This is a host computer that controls
the Tx and Rx using Python programs. The host
computer also extracts and processes the received
signals.

B. Performance Evaluation

In this section, we will show some experimental results
obtained from the shown prototype to validate the effec-
tiveness of the proposed RIS-assisted wireless sensing and
localization schemes.

1) RIS-Aided Sensing: For sensing applications, we use
posture recognition as an example. In this experiment, we
consider four postures for recognition: standing, sitting,
bending, and lying down. For each posture, we collect 150
labeled measurements with a random configuration and an
optimized configuration of the RIS and form the datasets.

The layout of the experiment is shown in Fig. 23. The
origin of the 3-D coordinate system is located at the center
of the RIS, and the RIS is in the y> plane. The z-axis
is vertical to the ground and pointing upward, and the

z- and y-axes are parallel to the ground. The Tx antenna
is located 1 m away from the corner of the RIS and the Rx
antenna is placed below the RIS. The human body is in the
SOI, which is a cuboid region located 1 m from the RIS.
The side lengths of the SOI are I, = 0.4 m, [, = 1.0 m,
and [, = 1.6 m. Moreover, the SOI is further divided
into M = 80 cubes with a side length of 0.2 m. For more
detailed experimental settings, please refer to [40].

Fig. 24 shows the accuracy of the posture recognition
with the optimized configuration, random configuration,
and no-RIS. In each subfigure, the diagonal elements
are the recognition accuracy for each posture. It can be
observed that the system with optimized configuration can
achieve 14.6% higher recognition accuracy compared to
that with random configuration. This verifies the necessity
of the phase shift optimization. Moreover, compared to
the no-RIS case, we can observe that the RIS can signifi-
cantly increase the posture recognition accuracy even with
a random recognition. This justifies the effectiveness of
RIS-aided RF sensing.

2) RIS-Aided Localization: For localization applications,
we show the Metalocalization system as an example. We
perform the experiments in a classroom with a size of
25 m?, and the walls of the classroom are made of bricks
and concrete. As shown in Fig. 25, the SOl is a cubic region
with dimensions 0.5 x 0.5 x 0.5 m®. The center of the SOI
is 1 m away from the center of the RIS. When building
the radio map for each SOI, we discretize the SOI into
blocks and record the signals for each block. No objects
exist between the users and the RIS. Please refer to [59]
for further experimental details.

Fig. 26 shows the process of multiuser localization with-
out obstruction. For display simplicity, in this figure, we
choose a planar SOI that is on the plane z = 0 with
dimensions 0.5 x 0.5 m? and the distance to the RIS is 1 m.
The users’ ground-truth locations are labeled in the figures
by the red triangle (the first user), yellow circle (the second
user), and the black star (the third user). We can observe
that the RSS varies for different iterations. The proba-
bilities are approximately uniformly distributed in each
location in the first cycle (first row of subfigures), while
after several cycles, the probabilities of locations near the
ground truth are obviously higher than those in the other
locations, which confirms the effectiveness of the MetaLo-
calization scheme. We can also observe that the locations
in the z-direction near the ground truth have higher prob-
abilities than the locations in the y-direction, indicating
that it is more likely to misjudge the z-coordinate than
the y-coordinate of the user’s location. Because the z-axis
is perpendicular to the RIS, the correlation of signals on
the z-axis is higher than those on the y- and z-axes, thus
leading to higher localization error.

VI. FUTURE DIRECTIONS
In the previous sections, we have presented some case
studies to illustrate how to integrate RISs with wireless
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networks to achieve ubiquitous sensing and localization,
and we have introduced how to build prototypes. In the
following, we will further discuss some other relevant
topics that are worthy of further investigation.

A. Mobility

In the previous case studies, we have focused on static
or slow-moving targets, where the targets/users stay in the
same block within a cycle. However, in practical scenarios,
the targets/users might move at relatively high speeds,
e.g., vehicles, which implies that they will be in different
blocks within a cycle. Therefore, it is also necessary to
develop new techniques for such use cases by exploiting
the relations among these blocks.

Different from the traditional methods for moving tar-
gets/users [60], where the motion is captured by the
signal processing techniques at the Rx, the RIS-aided
localization and sensing systems can leverage the capa-
bility to configure the RIS based on the motion of the
targets to achieve higher sensing or localization accu-
racy. However, if we only configure the RIS based on
predicted locations, estimation errors in previous slots
might accumulate, leading to a low RSS from the objects.
As a result, how to develop an effective RIS configura-
tion scheme according to the movement of objects still
remains an open problem. On the other hand, the signal
processing techniques at the Rx will also be different. The
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Fig. 25. Experimental layout for the MetaLocalization system.
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RIS configuration also influences the RSS and should be
jointly designed with the estimation procedure. Therefore,
how to estimate the locations of moving targets is a
challenge.

B. Millimeter-Wave and Terahertz Bands

The higher frequency bands, including millimeter-wave
(mmWave) and THz bands, are promising candidates for
sensing and localization applications as they can provide
fine resolution in range and angle. However, the higher
frequency bands suffer from high propagation losses and
power limitations, which results in a short sensing and
localization range [61]. Benefiting from the capability
to customize the propagation environment, the RIS has
shown its potential to improve the range, but the combi-
nation of RISs and mmWave and THz bands also brings
some unique challenges for RF sensing and localization use
cases.

1) Hardware complexity: The RIS is typically designed to
operate over a predefined frequency band, and the
implementation complexity is positively proportional
to the working frequency, as the size of the RIS ele-
ment should be on the order of the wavelength. More-
over, using higher frequencies also requires faster
response time for changing phase shifts.

2) Signal processing: Higher frequency bands have some
unique characteristics that require the development
of some signal processing techniques specific to these
bands. For example, the path loss of a THz signal in
the presence of water vapor is dominated by spikes
that represent molecular absorption losses due to
molecular vibrations [62]. As a result, the spectrum
is divided into small subbands, and these subbands
are distance-dependent. Therefore, it is important
to consider these physical features when designing
the decision function for sensing and localization
purposes.

C. Security and Privacy

The rapid development of wireless and localization
technologies has led to the flourishing of location-based
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Hlustrations of the MetalLocalization scheme without obstruction for three users: (a) one user, (b) two users, and (c) three users.

h

the corr

ding probability

P

distribution for different locations. Here, the probability is the sum of the probabilities of all the users. These three users’ ground-truth
locations are denoted by the red triangle, the yellow circle, and the black star.

services (LBSs), where delivered information is customized
according to users’ physical locations. Although LBSs can
provide enhanced functionalities, they also open up new
vulnerabilities that can be used to cause security and pri-
vacy issues [63]. For example, location information privacy
is becoming critical in various applications, such as health
monitoring, social media, and surveillance systems, as we
can infer some sensitive information from users’ locations.
Therefore, it is important to preserve users’ privacy and
security.

As listed in the following, the adoption of RISs in
localization systems brings some unique challenges and
research directions for the preservation of users’ privacy
and security.

1) Privacy preserving mechanisms: In traditional
location-based systems, there are some existing
privacy-preserving mechanisms, such as mix zones,
dummy-based mechanisms, and perturbation-based
mechanisms [64]. However, these mechanisms
cannot be applied in RIS-aided localization systems
since we might also infer users’ locations from the
configurations of the RIS. Therefore, it is necessary to

consider the tradeoff between accuracy and privacy
when optimizing the configuration of the RIS.

Secure localization methods: Although the RIS pro-
vides the opportunity to customize the propagation
environment, it will also become an attack target,
leading to new security issues. For example, if the
RIS is attacked and its configuration is not consis-
tent with that computed at the BS, the estimated
location will be quite different from the ground-truth
one, which might cause severe consequences in many
critical applications. Therefore, it is also important
for the RIS-assisted localization systems to detect any
misbehavior of the RIS.

2)

D. Integrated Sensing and Communication Design

In general, sensing and communication systems are
deployed separately and use different frequency bands.
However, with the increasing number of connected devices
and services in the wireless communication industry, the
frequency is becoming congested. This motivates us to
consider the integration of sensing and communication
to further improve the spectral efficiency [65]. As a result,
the integrated sensing and communication (ISAC) system
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needs to be well designed to achieve a desirable perfor-
mance tradeoff between sensing and communication.

In RIS-aided sensing systems, it is not easy to integrate
both sensing and communication functions. Some possible
challenges and research directions are listed as follows.

R
[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

iy

2)

3)

Channel modeling: The algorithms for sensing func-
tions highly depend on the location of targets and the
surrounding environment. This cannot be captured by
the stochastic channel models that are widely used
for wireless communications. To this end, ray tracing
could be a strong candidate for channel modeling
[66]. However, the existence of the RIS makes ray
tracing more complicated as the RIS might intro-
duce multihop scattering. Therefore, it is essential to
develop a new channel modeling method to accom-
modate RIS-assisted ISAC systems.

Waveform design: In the ISAC system, a single RF sig-
nal should convey both communication and sensing
data. Therefore, the waveform design is important
but challenging due to the contradicting metrics for
communication and sensing. In particular, the main
target for communication systems is to maximize the
spectral efficiency [67], while optimal waveforms for
sensing are designed for higher sensing resolution
and accuracy. Therefore, attention needs to be paid
to waveform design to strike a balance between com-
munication and sensing performance.

RIS configuration: The deployment of an RIS in an
ISAC system can shape the radio environment by
adjusting the phase responses of each RIS element

in order to improve both sensing and communication
performance. This requires an appropriate design for
the configuration of the RIS. However, the optimiza-
tion of the RIS configuration is not trivial. First, in
practical systems, the number of possible phase shifts
applied to each RIS element is finite [68]. As a result,
the feasibility set for the optimization problem is dis-
crete, leading to an NP-hard integer program. Second,
the RIS configuration is, in general, coupled with the
waveform design, which makes it more complicated.
Machine learning methods might be a useful tool to
address this issue. Moreover, how to place the RIS
to obtain a better performance is another interesting
topic [69].

VII. CONCLUSION

In this article, we have provided a comprehensive tuto-
rial on the application of the innovative RIS technique
to wireless sensing and localization use cases. Benefiting
from its capability to customize the wireless propagation
environment, RISs have shown the potential to enhance
the difference of the received signals from neighboring
targets/locations, thus improving the accuracy of sensing
and localization. This article has reviewed the prelimi-
naries, state-of-the-art results on the main challenges for
wireless sensing and localization applications, and future
research directions. We hope that this article can be a
useful resource for future research on RIS-aided wireless
sensing and localization, unlocking its full potential in
future wireless systems. |

EFERENCES

T. Wild, V. Braun, and H. Viswanathan, ‘Joint design
of communication and sensing for beyond 5G and
6G systems,” IEEE Access, vol. 9, pp. 30845-30857,
2021.

A. Bourdoux et al., “6G white paper on localization
and sensing,” 2020, arXiv:2006.01779.

Study NR Positioning Support, document 3GPP TR
38.855, TR16, 2018.

X. You et al., “Towards 6G wireless communication
networks: Vision, enabling technologies, and new
paradigm shifts,” Sci. China Inf. Sci., vol. 64, no. 1,
Jan. 2021, Art. no. 110301.

H. Zhang, B. Dj, L. Song, and Z. Han,
Reconfigurable Intelligent Surface-Empowered 6G.
Cham, Switzerland: Springer, 2021.

M. Di Renzo et al., “Smart radio environments
empowered by reconfigurable intelligent surfaces:
How it works, state of research, and the road
ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11,
Pp. 2450-2525, Nov. 2020.

Z. Yang et al., “Energy-efficient wireless
communications with distributed reconfigurable
intelligent surfaces,” IEEE Trans. Wireless Commun.,
vol. 21, no. 1, pp. 665-679, Jan. 2022.

M. A. El Mossallamy, H. Zhang, L. Song,

K. G. Seddik, Z. Han, and G. Y. Li, “Reconfigurable
intelligent surfaces for wireless communications:
Principles, challenges, and opportunities,” IEEE
Trans. Cogn. Commun. Netw., vol. 6, no. 3,

pp. 990-1002, Sep. 2020.

E Tariq, M. R. A. Khandaker, K.-K. Wong,

M. A. Imran, M. Bennis, and M. Debbah,

“A speculative study on 6G,” IEEE Wireless
Commun., vol. 27, no. 4, pp. 118-125, Aug. 2020.
K. Witrisal et al., “High-accuracy localization for
assisted living: 5G systems will turn multipath
channels from foe to friend,” IEEE Signal Process.

20 PROCEEDINGS OF THE IEEE

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Mag., vol. 33, no. 2, pp. 59-70, Mar. 2016.

E. S. Lohan et al., “Benefits of positioning-aided
communication technology in high-frequency
industrial IoT,” IEEE Commun. Mag., vol. 56, no. 12,
pp. 142-148, Dec. 2018.

B. Paden, M. éép, S. Z. Yong, D. Yershov, and

E. Frazzoli, ‘A survey of motion planning and
control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33-55,
Mar. 2016.

P Wang, B. Di, H. Zhang, K. Bian, and L. Song,
“Cellular V2X communications in unlicensed
spectrum: Harmonious coexistence with VANET in
5G systems,” IEEE Trans. Wireless Commun., vol. 17,
no. 8, pp. 5212-5224, Aug. 2018.

H. Wang, D. Zhang, Y. Wang, J. Ma, Y. Wang, and S.
Li, “RT-Fall: A real-time and contactless fall
detection system with commodity WiFi devices,”
IEEE Trans. Mobile Comput., vol. 16, no. 2,

pp. 511-526, Feb. 2017.

S. A. Shah and F Fioranelli, “RF sensing
technologies for assisted daily living in healthcare:
A comprehensive review,” IEEE Aerosp. Electron.
Syst. Mag., vol. 34, no. 11, pp. 26-44, Nov. 2019.
J. Wei, Q. Gao, M. Pan, and Y. Fang, “Device-free
wireless sensing: Challenges, opportunities, and
applications,” IEEE Netw., vol. 32, no. 2,

pp. 132-137, Mar. 2018.

J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang,
“Wireless sensing for human activity: A survey,”
IEEE Commun. Surveys Tuts., vol. 22, no. 3,

pp- 1629-1645, 3rd Quart., 2020.

R. Zekavat and R. M. Buehrer, Handbook of Position
Location: Theory, Practice and Advances. Hoboken,
NJ, USA: Wiley, 2011.

S.Y. Seidel and T. S. Rappaport, “914 MHz path
loss prediction models for indoor wireless

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

communications in multifloored buildings,” IEEE
Trans. Antennas Propag., vol. 40, no. 2,

pp. 207-217, Feb. 1992.

Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and
H. Liu, “E-eyes: Device-free location-oriented
activity identification using fine-grained WiFi
signatures,” in Proc. ACM Annu. Int. Conf. Mobile
Comput. Netw. (MobiCom), Maui, HI, USA,

Sep. 2014, pp. 617-628.

1. Guvenc and C.-C. Chong, ‘A survey on TOA based
wireless localization and NLOS mitigation
techniques,” IEEE Commun. Surveys Tuts., vol. 11,
no. 3, pp. 107-124, Aug. 2009.

Z. He, Y. Ma, and R. Tafazolli, “Improved high
resolution TOA estimation for OFDM-WLAN based
indoor ranging,” IEEE Wireless Commun. Lett.,

vol. 2, no. 2, pp. 163-166, Apr. 2013.

X. Li and K. Pahlavan, “Super-resolution TOA
estimation with diversity for indoor geolocation,”
IEEE Trans. Wireless Commun., vol. 3, no. 1,

Pp. 224-234, Jan. 2004.

B. H. Fleury, M. Tschudin, R. Heddergou,

D. Dahlhaus, and K. I. Pedersen, “Channel
parameter estimation in mobile radio environments
using the SAGE algorithm,” IEEE J. Sel. Areas
Commun., vol. 17, no. 3, pp. 434-449, Mar. 1999.
C. Iovescu and S. Rao, “The fundamentals of
millimeter wave sensors,” Texas Instrum., Dallas,
TX, USA, Tech. Rep., 2017.

A. Goldsmith, Wireless Communications.
Cambridge, U.K.: Cambridge Univ. Press, 2005.
M. Di Renzo et al., “Smart radio environments
empowered by reconfigurable Al meta-surfaces: An
idea whose time has come,” EURASIP J. Wireless
Commun. Netw., vol. 2019, no. 1, pp. 1-20,

May 2019.

H.-T. Chen, W. J. Padilla, J. M. O. Zide,

Authorized licensed use limited to: Princeton University. Downloaded on July 29,2022 at 13:07:28 UTC from IEEE Xplore. Restrictions apply.



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Zhang et al.: Toward Ubiquitous Sensing and Localization With Reconfigurable Intelligent Surfaces

A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active
terahertz metamaterial devices,” Nature, vol. 444,
pp. 597-600, Nov. 2006.

B. Di, H. Zhang, L. Li, L. Song, Y. Li, and Z. Han,
“Practical hybrid beamforming with
finite-resolution phase shifters for reconfigurable
intelligent surface based multi-user
communications,” IEEE Trans. Veh. Technol., vol. 69,
no. 4, pp. 4565-4570, Apr. 2020.

S. Zeng et al., “Reconfigurable intelligent surfaces
in 6G: Reflective, transmissive, or both?” IEEE
Commun. Lett., vol. 25, no. 6, pp. 2063-2067,
Jun. 2021.

X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober,
“Robust and secure wireless communications via
intelligent reflecting surfaces,” IEEE J. Sel. Areas
Commun., vol. 38, no. 11, pp. 2637-2652,

Nov. 2020.

H. Zhang et al., “Intelligent omni-surfaces for
full-dimensional wireless communications:
Principles, technology, and implementation,” IEEE
Commun. Mag., vol. 60, no. 2, pp. 39-45,

Feb. 2022.

S. Zhang, H. Zhang, B. Di, Y. Tan, Z. Han, and

L. Song, “Reflective-transmissive metasurface
aided communications for full-dimensional
coverage extension,” IEEE Trans. Veh.

Technol., vol. 69, no. 11, pp. 13905-13909,

Nov. 2020.

B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and

H. V. Poor, “Hybrid beamforming for reconfigurable
intelligent surface based multi-user
communications: Achievable rates with limited
discrete phase shifts,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 8, pp. 1809-1822, Aug. 2020.

Y. Liu et al., “Reconfigurable intelligent surfaces:
Principles and opportunities,” IEEE Commun.
Surveys Tuts., vol. 23, no. 3, pp. 1546-1577,

3rd Quart., 2021.

S. Zhang et al., “Intelligent omni-surfaces:
Ubiquitous wireless transmission by
reflective-refractive metasurfaces,” IEEE Trans.
Wireless Commun., vol. 21, no. 1, pp. 219-233,
Jan. 2022.

H. Zhang, B. Di, Z. Han, H. V. Poor, and L. Song,
“Reconfigurable intelligent surface assisted
multi-user communications: How many

reflective elements do we need?” IEEE Wireless
Commun. Lett., vol. 10, no. 5, pp. 1098-1102,
May 2021.

W. Tang et al., “Wireless communications with
reconfigurable intelligent surface: Path loss
modeling and experimental measurement,” IEEE
Trans. Wireless Commun., vol. 20, no. 1,

pp. 421-439, Jan. 2021.

J. Hu, H. Zhang, K. Bian, M. D. Renzo, Z. Han, and
L. Song, “MetaSensing: Intelligent metasurface
assisted RF 3D sensing by deep reinforcement
learning,” IEEE J. Sel. Areas Commun., vol. 39,
no. 7, pp. 2181-2197, Jul. 2021.

J. Hu et al., “Reconfigurable intelligent surfaces
based radio-frequency sensing: Design,
optimization, and implementation,” IEEE J. Sel.
Areas Commun., vol. 38, no. 11, pp. 2700-2716,
Nov. 2020.

ABOUT THE AUTHORS

Hongliang Zhang (Member, IEEE) received
the B.S. and Ph.D. degrees from the School
Engineering and Computer
Science, Peking University, Beijing, China,

of Electrical

in 2014 and 2019, respectively.

He was a

Postdoctoral

Fellow with
the Department of Electrical and Com-
puter Engineering, University of Houston,
Houston, TX, USA. He is currently a Postdoc-
toral Associate with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ, USA. His current
research interest includes reconfigurable intelligent surfaces, aerial

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

M. Elad, “Optimized projections for compressed
sensing,” IEEE Trans. Signal Process., vol. 55,

no. 12, pp. 5695-5702, Dec. 2007.

1. Goodfellow, Y. Bengio, A. Courvile, and Y. Bengio,
Deep Learning. Cambridge, MA, USA: MIT Press,
2016.

J. Hu, H. Zhang, K. Bian, Z. Han, H. V. Poor, and

L. Song, “MetaSketch: Wireless semantic
segmentation by reconfigurable intelligent
surfaces,” IEEE Trans. Wireless Commun., early
access, Jan. 26, 2022, doi:
10.1109/TWC.2022.3144340.

H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and

L. Song, “MetaRadar: Multi-target detection for
reconfigurable intelligent surface aided radar
systems,” IEEE Trans. Wireless Commun., early
access, Mar. 2, 2022, doi:
10.1109/TWC.2022.3153792.

L. Wang, W. Zhu, Y. Zhang, Q. Liao, and J. Tang,
“Multi-target detection and adaptive waveform
design for cognitive MIMO radar,” IEEE Sensors J.,
vol. 18, no. 24, pp. 9962-9970, Dec. 2018.

Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint
space: Wireless indoor localization with little
human intervention,” in Proc. 18th Annu. Int. Conf.
Mobile Comput. Netw. (Mobicom), Istanbul, Turkey,
Aug. 2012, pp. 269-280.

H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and

L. Song, “MetaLocalization: Reconfigurable
intelligent surface aided multi-user wireless indoor
localization,” IEEE Trans. Wireless Commun.,

vol. 20, no. 12, pp. 7743-7757, Dec. 2021.

H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and

L. Song, “Towards ubiquitous positioning by
leveraging reconfigurable intelligent surface,” IEEE
Commun. Lett., vol. 25, no. 1, pp. 284-288,

Jan. 2021.

H. Durrant-Whyte and T. Bailey, “Simultaneous
localization and mapping: Part I,” IEEE Robot.
Autom. Mag., vol. 13, no. 2, pp. 99-110, Jun. 2006.
C. Gentner, T. Jost, W. Wang, S. Zhang,

A. Dammann, and U.-C. Fiebig, “Multipath assisted
positioning with simultaneous localization and
mapping,” IEEE Trans. Wireless Commun., vol. 15,
no. 9, pp. 6104-6117, Sep. 2016.

H. Wymeersch, J. He, B. Denis, A. Clemente, and
M. Juntti, “Radio localization and mapping with
reconfigurable intelligent surfaces: Challenges,
opportunities, and research directions,” IEEE Veh.
Technol. Mag., vol. 15, no. 4, pp. 52-61, Dec. 2020.
K. Witrisal and P Meissner, “Performance bounds
for multipath-assisted indoor navigation and
tracking (MINT),” in Proc. IEEE Int. Conf. Commun.
(ICC), Ottawa, ON, Canada, Jun. 2012,

pp. 4321-4325.

Z. Yang, H. Zhang, B. Di, H. Zhang, K. Bian, and

L. Song, “Wireless indoor simultaneous localization
and mapping using reconfigurable intelligent
surface,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Madrid, Spain, Dec. 2021, pp. 1-6.
S. Thrun, W. Burgard, and D. Fox, Probabilistic
Robotics (Intelligent Robotics and Autonomous
Agents). Cambridge, MA, USA: MIT Press,

2005.

T. Bailey and H. Durrant-Whyte, “Simultaneous

Networks.

access networks, optimization theory, and game theory.

[56]

[571

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

localization and mapping (SLAM): Part II,” IEEE
Robot. Autom. Mag., vol. 13, no. 3, pp. 108-117,
Sep. 2006.

E. Leitinger, E Meyer, E Hlawatsch, K. Witrisal,

E Tufvesson, and M. Z. Win, ‘A belief propagation
algorithm for multipath-based SLAM,” IEEE Trans.
Wireless Commun., vol. 18, no. 12, pp. 5613-5629,
Dec. 2019.

L. Li et al., “Machine-learning reprogrammable
metasurface imager,” Nature Commun., vol. 10,
no. 1, p. 1082, Jun. 2019.

E. Blossom, “GNU radio: Tools for exploring the
radio frequency spectrum,” J. Linux, vol. 2004,

no. 122, p. 4, Jun. 2004.

H. Zhang et al., “MetaRadar: Indoor localization by
reconfigurable metamaterials,” IEEE Trans. Mobile
Comput., early access, Dec. 14, 2020, doi:
10.1109/TMC.2020.3044603.

C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao,
“Non-invasive detection of moving and stationary
human with WiFi,” IEEE J. Sel. Areas Commun.,
vol. 33, no. 11, pp. 2329-2342, Nov. 2015.

H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri, and
M.-S. Alouini, “Next generation terahertz
communications: A rendezvous of sensing,
imaging, and localization,” IEEE Commun. Mag.,
vol. 58, no. 5, pp. 69-75, May 2020.

H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri,
“An overview of signal processing techniques for
terahertz communications,” Proc. IEEE, vol. 109,
no. 10, pp. 1628-1665, Oct. 2021.

M. Min et al., “3D geo-indistinguishability for
indoor location-based services,” IEEE Trans.
Wireless Commun., early access, Dec. 10, 2021, doi:
10.1109/TWC.2021.3132464.

V. Primault, A. Boutet, S. B. Mokhtar, and L. Brunie,
“The long road to computational location privacy:
A survey,” IEEE Commun. Surveys Tuts., vol. 21,

no. 3, pp. 2772-2793, 3rd Quart., 2019.

E Liu, C. Masouros, A. P Petropulu, H. Griffiths, and
L. Hanzo, ‘Joint radar and communication design:
Applications, state-of-the-art, and the road ahead,”
IEEE Trans. Commun., vol. 68, no. 6,

pp. 3834-3862, Jun. 2020.

D. K. P Tan et al., “Integrated sensing and
communication in 6G: Motivations, use cases,
requirements, challenges and future directions,” in
Proc. 1st IEEE Int. Symp. Commun. Sens. (JC S),
Dresden, Germany, Feb. 2021, pp. 1-6.

X. Cao, B. Yang, H. Zhang, C. Huang, C. Yuen, and
Z. Han, “Reconfigurable-intelligent-surface-assisted
MAC for wireless networks: Protocol design,
analysis, and optimization,” IEEE Internet Things J.,
vol. 8, no. 18, pp. 14171-14186, Sep. 2021.

H. Zhang, B. Di, L. Song, and Z. Han,
“Reconfigurable intelligent surfaces assisted
communications with limited phase shifts:

How many phase shifts are enough?” IEEE Trans.
Veh. Technol., vol. 69, no. 4, pp. 4498-4502,

Apr. 2020.

S. Zeng, H. Zhang, B. Di, Z. Han, and L. Song,
“Reconfigurable intelligent surface (RIS) assisted
wireless coverage extension: RIS orientation and
location optimization,” IEEE Commun. Lett., vol. 25,
no. 1, pp. 269-273, Jan. 2021.

Dr. Zhang received the Best Doctoral Thesis Award from the
Chinese Institute of Electronics in 2019. He is an Exemplary
Reviewer for IEEE TRANSACTIONS ON COMMUNICATIONS in 2020. He
was a recipient of the 2021 IEEE Comsoc Heinrich Hertz Award
for Best Communications Letters and the 2021
Asia-Pacific Outstanding Paper Award. He has served as a TPC
Member for many IEEE conferences, such as Globecom, ICC, and
WCNC. He is also an Editor of IEEE COMMUNICATIONS LETTERS,
IET Communications, and Frontiers in Signal Processing. He has
served as a Guest Editor for several journals, such as IEEE
INTERNET OF THINGS JOURNAL and Journal of Communications and

IEEE ComSoc

PROCEEDINGS OF THE IEEE 21

Authorized licensed use limited to: Princeton University. Downloaded on July 29,2022 at 13:07:28 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TWC.2022.3144340
http://dx.doi.org/10.1109/TWC.2022.3153792
http://dx.doi.org/10.1109/TMC.2020.3044603
http://dx.doi.org/10.1109/TWC.2021.3132464

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Zhang et al.:

Boya Di (Member, IEEE) received the
B.S. degree in electronic engineering from
Peking University, Beijing, China, in 2014,
and the Ph.D. degree from the Department
of Electronics, Peking University, in 2019.

She was a Postdoctoral Researcher at
Imperial College London, London, U.K. She is
currently an Assistant Professor with Peking
University. Her current research interests
include reconfigurable intelligent surfaces, multiagent systems,
edge computing, vehicular networks, and aerial access networks.

Dr. Di received the Best Doctoral Thesis Award from the China
Education Society of Electronics in 2019. She was a recipient of
the 2021 IEEE ComSoc Asia-Pacific Outstanding Paper Award. She
serves as an Associate Editor for IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY since June 2020. She has served as the Workshop
Co-Chair for IEEE WCNC 2020&2021.

Kaigui Bian (Senior Member, IEEE)
received the B.S. degree in computer
science from Peking University, Beijing,

China, in 2005, and the Ph.D. degree in
computer engineering from Virginia Tech,
Blacksburg, VA, USA, in 2011.

He was a Visiting Young Faculty Member
with Microsoft Research Asia, Beijing in
2013. His research interests include wireless
networking and mobile computing.

Dr. Bian received the IEEE Heinrich Hertz Award (the Best Paper
Award in IEEE COMMUNICATIONS LETTERS) in 2021, the Best Paper
Awards of international conferences (IEEE ICC 2015, ICCSE 2017,
and BIGCOM 2018), and the Best Student Paper Award of IEEE
DSC 2018. He was a recipient of the IEEE Communication Society
Asia-Pacific Board (APB) Outstanding Young Researcher Award in
2018. He serves as an Editor for IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY and IEEE ACCESS and an organizing committee
member as well as a technical program committee member for
many international conferences.

Zhu Han (Fellow, |EEE) received the
B.S. degree in electronic engineering from
Tsinghua University, Beijing, China, in 1997,
and the M.S. and Ph.D. degrees in electrical
and computer engineering from the Univer-
sity of Maryland, College Park, MD, USA, in
1999 and 2003, respectively.

From 2000 to 2002, he was a Research
and Development Engineer with JDSU, Ger-
mantown, MD, USA. From 2003 to 2006, he was a Research Asso-
ciate with the University of Maryland. From 2006 to 2008, he
was an Assistant Professor with Boise State University, Boise, ID,
USA. He is currently a John and Rebecca Moores Professor with
the Department of Electrical and Computer Engineering and the
Department of Computer Science, University of Houston, Houston,
TX, USA. His research interests include wireless resource allocation
and management, wireless communications and networking, game
theory, big data analysis, security, and smart grid.

Dr. Han has been a Fellow of AAAS since 2019 and a Distin-
guished Member of ACM since 2019. He received the NSF Career
Award in 2010, the Fred W. Ellersick Prize of the IEEE Com-
munication Society in 2011, the EURASIP Best Paper Award for
the EURASIP Journal on Advances in Signal Processing in 2015, IEEE

22 PROCEEDINGS OF THE IEEE

Toward Ubiquitous Sensing and Localization With Reconfigurable Intelligent Surfaces

Leonard G. Abraham Prize in the field of communications systems
(the Best Paper Award in IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS) in 2016, and several best paper awards in IEEE
conferences. He is also the winner of the 2021 IEEE Kiyo Tomiyasu
Award, for outstanding early to mid-career contributions to tech-
nologies holding the promise of innovative applications, with the
following citation: “for contributions to game theory and distributed
management of autonomous communication networks.” He was a
Distinguished Lecturer of IEEE Communications Society from 2015
to 2018. He has been a 1% highly cited researcher since 2017
according to Web of Science.

H. Vincent Poor (Life Fellow, IEEE) received
the Ph.D. degree in electrical engineering
and computer science from Princeton Uni-
versity, Princeton, NJ, USA, in 1977.

From 1977 until 1990, he was on the fac-
ulty of the University of lllinois at Urbana-
Champaign, Urbana, IL, USA. Since 1990, he
has been on the faculty at Princeton, where
he is currently the Michael Henry Strater
University Professor. From 2006 to 2016, he served as the Dean of
Princeton’s School of Engineering and Applied Science. He has also
held visiting appointments at several other universities, including
most recently at Berkeley and Cambridge. His research interests
are in the areas of information theory, machine learning and net-
work science, and their applications in wireless networks, energy
systems, and related fields. Among his publications in these areas
is the forthcoming book Machine Learning and Wireless Communi-
cations (Cambridge University Press).

Dr. Poor is a member of the National Academy of Engineering
and the National Academy of Sciences and is a foreign member
of the Chinese Academy of Sciences, the Royal Society, and other
national and international academies. He received the IEEE Alexan-
der Graham Bell Medal in 2017.

Lingyang Song (Fellow, IEEE) received the
Ph.D. degree from the University of York,

York, U.K., in 2007.

He worked as a Postdoctoral Research
Fellow with the University of Oslo,
Oslo, Norway, and Harvard University,

Cambridge, MA, USA, until rejoining Philips
Research, Cambridge, U.K., in March 2008.
In May 2009, he joined the School of 3
Electronics Engineering and Computer Science, Peking University,
Beijing, China, as a Full Professor. His main research interests
include cooperative and cognitive communications, physical layer
security, and wireless ad hoc/sensor networks. He has published
extensively, wrote six text books, and is the co-inventor of a
number of patents (standard contributions).

Dr. Song received nine paper awards in IEEE journals and
conferences, including IEEE JSAC 2016, IEEE WCNC 2012, ICC
2014, Globecom 2014, and ICC 2015. He is currently on the
Editorial Board of IEEE TRANSACTIONS ON COMMUNICATIONS and
Journal of Network and Computer Applications. He served as the
TPC Co-Chair for ICUFN from 2011 to 2012 and the symposium
Co-Chair for IWCMC from 2009 to 2010, IEEE ICCT in 2011, and
IEEE ICC from 2014 to 2015. He received the K. M. Stott Prize for
excellent research from the University of York. He was a recipient
of the 2012 IEEE Asia Pacific (AP) Young Researcher Award. He has
been a Distinguished Lecturer of IEEE Communications Society
since 2015.

Authorized licensed use limited to: Princeton University. Downloaded on July 29,2022 at 13:07:28 UTC from IEEE Xplore. Restrictions apply.



