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Measurement of the 87Rb D-line vector tune-out wavelength
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We report a precision measurement of a tune-out wavelength for 87Rb using circularly polarized light. A
tune-out wavelength characterizes a zero in the electric polarizability of the atom. For circularly polarized light,
the total polarizability depends on both the scalar and vector polarizability components. This shifts the location
of the tune-out wavelength and makes it sensitive to different combinations of atomic dipole matrix elements
than the scalar polarizability alone. Using σ− polarized light with a purity of 0.9931(1), we observe a tune-out
wavelength of 785.1522(3) nm, which agrees with theoretical expectations when small contributions from the
core electrons and off-resonant valence states are taken into account.
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A tune-out wavelength describes a light frequency at which
an atom or molecule in a given state experiences a zero-energy
shift from an optical field, due to cancellation of the posi-
tive and negative shifts from nearby blue- and red-detuned
electronic transitions [1,2]. Tune-out wavelengths find ap-
plications in experiments involving multiple species, where
it can be useful to apply an energy shift to one species
without affecting another [3,4]. Tune-out wavelength mea-
surements are also useful in their own right because they
provide information about the dipole matrix elements of the
target particle that may not otherwise be easily accessible.
Knowledge of dipole matrix elements is important for many
reasons, including the interpretation of parity violation ex-
periments, accurate estimation of blackbody radiation shifts
in atomic clocks [5,6], and as benchmarks for atomic theory
calculations. These benefits have prompted a series of pre-
cise tune-out-wavelength measurements in alkali-metal and
other atoms [3,7–17]. These experiments have mainly fo-
cused on zeros of the scalar electric polarizability of the
atoms. However, additional information can be obtained from
the vector character of the polarizability, which is exhib-
ited through a dependence on the optical polarization of the
applied light [12,13,17]. We here explore this polarization de-
pendence through a precise measurement of a vector tune-out
wavelength.

Vector tune-out measurements are useful both for trapping
applications and for fundamental atomic physics. For appli-
cations, they add flexibility by allowing the tune-out value
to be adjusted [4]. For instance, the D-line scalar tune-out
wavelength for Rb is fixed at 790.032 nm, but by adjusting
the light polarization, the tune-out wavelength can be set
anywhere between 785.112 nm and theD1 line at 794.978 nm.
This flexibility can make it easier to satisfy other experimental
requirements. It can also be useful that vector fields cause the
tune-out wavelength to depend on the magnetic sublevel of the
particle [12,13,18].
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In regards to fundamental physics, precise measurements
of the polarization allows resolution of contributions to
the atomic polarizability from different angular momentum
states. For instance, interpreting alkali-metal atom parity vi-
olation amplitudes in terms of nuclear physics parameters
requires knowledge of the nS1/2 ↔ nP1/2 dipole matrix ele-
ments [19,20]. Vector tune-out measurements can allow the
P1/2 matrix elements to be constrained separately from the
P3/2 matrix elements, whereas a purely scalar measurement
depends jointly on both P1/2 and P3/2 elements [21]. Although
parity violation experiments do not generally focus on Rb, we
expect that precise measurements in Rb could help improve
theoretical calculation methods which would be applicable to
similar atoms such as Cs or Fr.

The theoretical framework for vector tune-out wavelengths
is well understood [22–25]. However, making a precise com-
parison between theory and measurement requires careful
control of both the light polarization and the alignment of the
laser beam axis to the quantizing magnetic field. The mea-
surement reported here has a wavelength precision of order
1 pm, and agrees to this level with theoretical expectations. At
this precision, the measurement is sensitive to small effects
including the polarizability of the ionic core and contributions
from far off-resonant valence states. With realistic improve-
ments in precision and by combining tune-out measurements
for different states, the technique could provide constraints on
important dipole matrix elements and yield accuracies better
than the best current theoretical uncertainties.

The energy shift of a particle in an optical field E can be
expressed as

U = −1

2
α〈E2〉 = − 1

2ε0c
αI, (1)

where α is the electric polarizability, I is the light intensity,
c is the speed of light, and ε0 is the electric constant. (The
next-order term in the expansion is an estimated 107 times
smaller for the maximum intensity used here.) The polariz-
ability depends on both the frequency ω and the polarization
state ε̂ of the light. For an atom in the ground hyperfine state
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|n, J,F,m〉, a spherical tensor decomposition gives [23,24]

α = α(0) − α(1)S3k̂ · b̂ m

2F

+ α(2)

(
3|ε̂ · b̂|2 − 1

2

)
3m2 − F (F + 1)

F (2F − 1)
, (2)

where the α(i) parameters are the scalar, vector, and tensor
polarizability components, for i = 0, 1, and 2, respectively.
Here, the light field is taken as a plane wave propagating in
direction k̂, with complex polarization vector ε̂. The atomic
states are defined relative to a magnetic field pointing in
direction b̂. The parameter S3 = i(ε̂∗ × ε̂) · k̂ is the fourth
Stokes parameter for the light, with S3 = ±1 for σ∓ circularly
polarized light. Our measurements use the 5S1/2 ground state
of 87Rb, with F = m = 2.

In the case of an alkali-metal atom, the polarizability com-
ponents can be separated into a contribution from the valence
electron, a contribution from the core electrons, and a term
reflecting interactions between the valence electron and the
core. The valence contribution can be calculated using pertur-
bation theory as a sum over excited P states |n′, J ′,F ′,m′〉.
We measure the tune-out wavelength near the 5P1/2 and 5P3/2
states, so it is necessary to account for the hyperfine splittings
of these states in order to achieve sufficient precision. For
higher-lying states, the hyperfine shifts can be neglected since
the polarizability contributions are much smaller. We there-
fore express the polarizability as

α(i) = α(i)
c + α(i)

cv + α
(i)
5P + α

(i)
v′ , (3)

where αc denotes the core contribution, αcv the core-valence
interaction, α5P the contribution from the 5P states, and αv′

the contribution from other valence states. Furthermore, the
core contribution has only a scalar component i = 0, since
the core is spherically symmetric. We also neglect the tensor
components α(2)

cv and α
(2)
v′ since they are of order 10−5 a.u. or

smaller. The remaining valence contributions are then [24]

α
(0)
5P = 2

h̄

1√
3(F + 1)

∑
J ′,F ′

|d ′|2ω′

ω′2 − ω2

{
1 0 1
F F ′ F

}
C′, (4)

α
(1)
5P = 2

h̄

√
2F

(F + 1)(2F + 1)

×
∑
J ′,F ′

|d ′|2ω
ω′2 − ω2

{
1 1 1
F F ′ F

}
C′, (5)

α
(2)
5P = 2

h̄

√
2F (2F − 1)

3(F + 1)(2F + 1)(2F + 3)

×
∑
J ′,F ′

|d ′|2ω′

ω′2 − ω2

{
1 2 1
F F ′ F

}
C′, (6)

α
(0)
v′ = 1

3h̄

∑
n′,J ′

|d ′|2ω′

ω′2 − ω2
, (7)

α
(1)
v′ = 1

3h̄

∑
n′,J ′

|d ′|2ω
ω′2 − ω2

(
3J ′ − 7

2

)
. (8)
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FIG. 1. Electric polarizability of 87Rb in the F = 2, m = 2
ground state, as a function of optical wavelength. The red curve
shows the case of linearly polarized light, and exhibits a tune-out
wavelength near 790 nm. The blue curve shows the case of σ−
polarized light, with a tune-out wavelength near 785 nm.

Here, ω is the light frequency, and ω′ is the transition fre-
quency from |5S1/2,F 〉 to |n′PJ ′ ,F ′〉. We neglect Zeeman
shifts since they are small (about 30 MHz) compared to our
measurement precision (about 150MHz). The arrays in braces
are Wigner 6- j symbols. The reduced matrix elements are
d ′ ≡ 〈5S1/2||d||n′PJ ′ 〉, and in the α5P terms we use

C′ = (−1)F+F ′+1(2F + 1)(2F ′ + 1)

{
F 1 F ′
J ′ I J

}2

, (9)

with nuclear angular momentum I = 3/2.
We take α(0)

c = 9.116(9) from Ref. [26], and α(0)
cv =

−0.37(4) and α(1)
cv = −0.04(4) from Ref. [21]. For the 5P

states we use d5P1/2 = 4.234(2) and the ratio d5P3/2/d5P1/2 =
1.992 17(3) from Ref. [11]. For higher-lying valence states we
use the matrix elements tabulated in Ref. [11]. With these val-
ues, we can calculate the net polarizability α for given values
of the experimental parameters S3, k̂ · b̂, and ε̂ · b̂. Figure 1
shows how α varies with wavelength for the cases of linear
and σ− polarized light. The tune-out wavelength is located
where α = 0. Table I lists the various contributions to α at
the tune-out wavelength for σ− polarized light.

TABLE I. Contributions to the total polarizability α at the tune-
out wavelength λ = 785.112 nm for ideal σ− polarized light with
S3 = k̂ · b̂ = 1, ε̂ · b̂ = 0. Values in parentheses show the estimated
errors. In the case of the α5P contributions, the first parentheses
show the uncertainty arising from the uncertainty in the ratio of the
d5P1/2 to d5P3/2 matrix elements. The second parentheses show the
uncertainty from the d5P1/2 element itself, which is large but corre-
lated among the different components, and therefore has negligible
impact on the value of the tune-out wavelength. Uncertainty in the
α
(2)
5P contribution is negligible since the term itself is very small.

Term Value (a.u.) Term Value (a.u.)

α
(0)
5P 12347.7(4)(11.6) α

(1)
v′ 0.2(1)

α
(1)
5P 24716.8(4)(23.3) α(0)

c 9.12(1)

α
(2)
5P −0.044 α(0)

cv −0.37(4)

α
(0)
v′ 2.0(1) α(1)

cv −0.04(4)
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The experimental apparatus consists of a Bose-Einstein
condensate interferometer similar to that of Ref. [11]. We
use small condensates of about 104 atoms, which provide
good phase coherence and well-localized wave packets. The
atoms are confined in a weak magnetic trap, with harmonic
oscillation frequencies of 5.1, 1.1, and 3.2 Hz along the x, y,
and z directions, respectively. The z direction is vertical. The
trap uses the time-orbiting potential (TOP) technique, with
a bias field of 21.4 G rotating in the xz plane at frequency
� = 2π × 12.8 kHz. The TOP trap is completed using a
linear quadrupole field oscillating in phase with the bias, and
also a weaker spherical quadrupole oscillating at 1 kHz.

The interferometer operation is described in Ref. [27].
An off-resonant standing-wave laser along the y axis of the
trap applies velocity kicks in units of vB = 2h̄k/m = 11.8
mm/s via Bragg scattering. The interferometer uses a total
of four Bragg pulses. At time t = 0, an initial pulse splits
the condensate into wave packets moving at ±vB. At time
t = 10 ms, the laser is applied again so as to reverse the
atoms’ motion. The packets then pass through each other with
minimal interactions, and at t = 30 ms a third laser pulse
reverses the motion again. Finally at t = 40 ms, the packets
are overlapped, the initial splitting pulse is reapplied, and the
wave packets are recombined. A fraction N0/N of the atoms
are brought back to rest in the center of the trap, with signal

S = N0

N
= 1

2
[1 +V cos(φ + φr )]. (10)

Here, the wave packets have developed a phase difference
φ, the phase of the recombination pulse relative to the initial
splitting pulse is φr , and the visibility isV = 0.7. The fraction
of atoms at rest is detected by absorption imaging after a short
time of flight. We set φr = π/2 by shifting the frequency of
the Bragg laser prior to the final pulse.

A Stark phase shift φ is applied by directing a second laser
beam, traveling along z, onto one arm of the interferometer.
The beam is focused to a waist of about 50 μm, which is
smaller than the maximumwave-packet separation of 240 μm
and comparable to the wave-packet size of 40 μm. The Stark
beam is derived from an MBR-110 Ti:sapphire laser from Co-
herent, Inc. This is an improvement over the tapered amplifier
used in our previous work [11], since the Ti:sapphire laser
is not expected to contain a significant amount of amplified
spontaneous emission light at other frequencies. The Stark
beam is applied for 20 ms at the start of the interferometer, so
that one packet passes through it twice. This leads to a phase
φ = ∫

αI dt/(2ε0 h̄c) which the interferometer detects.
To control the vector portion of the polarizability, we use

a pair of acousto-optic modulators to pulse the Stark beam
synchronously with the rotating bias field, such that the light
is on only when the field points along z. Two modulators
are used to provide an extinction ratio better than 60 dB.
The Stark beam is aligned to the field by tuning to the D1

resonance at 795 nm and setting the polarization state to σ+.
When the laser is optimally aligned to the magnetic field, the
m = 2 atoms scatter no light since there is no m = 3 state in
the D1 hyperfine manifold. Details of this measurement are
provided in Ref. [28]. From the residual scattering rate, the
alignment error δθ between k̂ and ẑ is constrained to be less
than 16 mrad. In the interferometry experiments, the duration
of the pulses is τ = 5 μs, and the angle between k̂ and b̂ varied
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FIG. 2. Tune-out measurement data. For each of the points in
the main graph, an interferometric measurement is performed to
determine κ = φ/P, where φ is the interferometer phase and P is
the peak power of the Stark beam pulses. The inset graphs show
example plots of the interferometer signal vs power, from which κ

is determined via a fit to the form of Eq. (10). The scatter of the
points illustrates our typical measurement noise, and the error bars
for κ are estimated as the offset needed to double the goodness of fit
parameter χ 2. The κ data in the main graph are fit to a line, and the x
intercept of 785.1525 nm is taken as the tune-out wavelength value.

during the pulse as the field rotated at frequency �. This
gives an average value for k̂ · b̂ of (2/�τ ) sin(�τ/2) cos δθ =
0.993 21(6), where the uncertainty reflects the angular mis-
alignment. It is important that the shape and duration of
the light pulse are well characterized, since they impact
the time average of k̂ · b̂. We monitor the pulse during the
experiment using a fast photodiode, and errors from the
nonuniformity and from variations in τ are about an order
of magnitude smaller than that from the alignment. The in-
tegrated value of ε̂ · b̂ in the tensor term can also be calculated
as �2τ 2/48 = 3.3 × 10−3, but this is insignificant because
the tensor component α(2) is much smaller than the vector
component α(1).

It is also critical to control the light polarization accurately.
We set the polarization close to circular using a calcite polar-
izer, two wave plates, and a Fresnel rhomb, as described in
Ref. [28]. The wave plates provide a small correction to the
Fresnel rhomb to account for polarization distortions in the
vacuum window and other optics. The polarization can be set
accurately using again the photon scattering measurements at
795 nm, but the mirrors that direct the beam onto the atoms
are slightly chromatic and the polarization is not sufficiently
preserved when the Stark laser is scanned to the tune-out
wavelength at 785 nm. Instead, we optimize the polarization
by setting the laser slightly blue of the tune-out wavelength,
and adjusting the wave plates to minimize the interferometer
phase φ. Since the tune-out wavelength is as blue as possible
for σ− polarized light, this optimizes the polarization at the
atoms. The wave-plate angles could be set to an accuracy of
about 0.5◦, from which we determine S3 = 0.999 88(12).

To perform the measurement, we set the Stark laser to a
series of wavelengths near 785 nm, and at each wavelength we
vary the pulse power P to scan φ and trace out an interference
curve. Example data are shown as insets in Fig. 2. We assume
φ = κP and fit the trace data to obtain a value for κ . The main
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TABLE II. Sources of error in the tune-out wavelength mea-
surement and calculation. For each contribution, the impact is given
both as the uncertainty δλ0 in the tune-out wavelength and as the
uncertainty in the value δα of the polarizability at the measured
tune-out wavelength. These are related using the calculated deriva-
tive |dα/dλ| = 2.527 a.u./pm. The uncertainty contribution labeled
as “atomic parameters” refers to the values in Table I. The divi-
sion between “Measurement” and “Calculation” is based on the
uncertainties affecting the actual tune-out value measured in the
experiment, and those affecting what we expect to observe given our
experimental setup.

Source δλ0 (pm) δα (a.u.)

Measurement total: 0.46 1.2
Statistical 0.43 1.1
Wave meter 0.15 0.4

Calculation total: 0.88 2.2
Atomic parameters 0.35 0.9
Polarization 0.70 1.8
Alignment 0.35 0.9
Pulse length 0.06 0.2
Pulse symmetry 0.06 0.2

graph of Fig. 2 shows that near 785 nm, κ is a linear function
of wavelength which crosses zero at 785.1525(5) nm. Here,
the uncertainty is primarily from noise in the linear fit, but also
includes the 0.15 nm uncertainty in our wave-meter calibra-
tion. A second independent measurement yielded a consistent
value of 785.1519(4) nm, so we report the average of these
results as λ0 = 785.1522(3) nm.

In comparison, using the the experimental estimates for
k̂ · b̂ and S3 in conjunction with the theoretical values from Ta-
ble I, we calculate an expected tune-out value of 785.1538(9)
nm, which is about 2σ different from our measurement. The
optical polarization is the largest source of uncertainty in the
calculated value, with the alignment error and atomic parame-
ters contributing about half as much. Table II summarizes the
main contributions to the uncertainties of the measurement
and calculation. Our result is consistent with that obtained
by Wen et al. [17], who found λ0 = 785.146(12) nm for σ−
polarized light.

Although the discrepancy between our measurement and
calculation is not large enough to be significant, the sign is
interesting, since larger-than-estimated errors in the polariza-
tion or alignment would result in a measurement redder than
expected, whereas our result is bluer. If we assume that the
Stark beam parameters are perfect and account only for the
rotation of the bias field during the Stark pulses, we would
expect a tune-out wavelength of 785.1530(4) nm, still about
2σ redder than observed. This could suggest an inaccuracy
in the atomic parameters of Table I, and motivates further
investigations.

For atom-trapping applications, the level of precision
demonstrated here shows how accurately a vector tune-out ap-
plication can be implemented. For instance, in the conditions
of our experiment, a rubidium atom in the F = 2,m = 1 state
would experience a total polarizability α of 6222 a.u. This
can be compared to a residual polarizability δα of 2 a.u. for
an F = 2,m = 2 atom. The ratio α/δα = 3 × 103 indicates

how strongly the m = 1 atom can be manipulated before the
m = 2 atom is affected.

In terms of atomic physics, we see that the precision
demonstrated here is already sufficient to distinguish the
larger non-5P contributions to the net polarizability. If, for
instance, the core contribution α(0)

c + α(0)
cv were excluded from

the calculation, the expected tune-out wavelength would shift
by about 4σ . Our measurement thus tests the theory in a
nontrivial way, but with reasonable increases in precision, it
could provide a more meaningful comparison. For instance,
with a factor of 5 improvement the experiment would be
sensitive to the α(0)

cv core-valence interaction, which has not
previously been experimentally observed. With a factor of
50 improvement, the experimental precision would exceed
the theoretical precision in most cases. This would be par-
ticularly interesting for the αv′ terms, where the theoretical
uncertainty is dominated by the contribution from the high
n′ Rydberg tail. This same contribution is the largest source
of uncertainty in the relationship between measured atomic
parity violation amplitudes and the weak mixing angle of the
standard model [20], so providing a precise benchmark via
the polarizability can be expected to help improve the parity
violation interpretation.

Improvement by a factor of 50 is experimentally feasible.
We have previously demonstrated a scalar tune-out measure-
ment with an uncertainty of 0.035 pm, which was limited
primarily by statistics [11]. Improvement to 0.01 pm should
involve no new challenges. The vector measurement is more
difficult due to the requirement for polarization control, but
many of the limitations encountered here could be resolved
for atoms confined in an optical trap rather than a TOP trap,
since it would then be possible to use a static bias field
and a continuous-wave Stark beam. This would allow sig-
nificantly higher average power to be applied to the atoms,
so that the polarization and alignment optimizations could
be made more precise. Recent experiments at Los Alamos
National Laboratory have demonstrated an optically trapped
atom interferometer with performance comparable to that
used here [29]. An optical trap may also benefit from being
able to use different Zeeman levels. We therefore argue that
reaching experimental precision comparable to the theoretical
precision is likely achievable.

Looking forward to such experiments, it will be neces-
sary to distinguish the various contributions to α so that, for
instance, the Rydberg tail contribution can be isolated from
the core-valence interaction. This can be achieved by com-
paring tune-out measurements near different states, such as
the 6P states near λ = 420 nm for Rb. The core and Rydberg
contributions have different frequency dependencies, allowing
their impact to be resolved [21]. Further, since the J = 1/2
and J = 3/2 states contribute differently to the scalar and
vector components of αv′ in Eqs. (7) and (8), these two con-
tributions can be distinguished as well. The parity violation
interpretation depends only on the J = 1/2 matrix elements.
We therefore expect vector measurements to be an important
component of this approach.

In summary, we have carried out a precise measurement
of a vector tune-out wavelength, for near-circularly-polarized
light. We show that the polarization and alignment factors
can be controlled with 10 ppm precision, even in the rotating
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magnetic field of a TOP trap. The 1 ppm precision that we
obtain in the wavelength is similar to that of many scalar
tune-out measurements, but the vector character provides both
more utility and more information. We believe that this work
illustrates the feasibility and utility of precise vector tune-out
measurements, and we hope that our results stimulate further
improvements to the point that the method becomes useful for

interpreting parity violation and other experiments that rely on
atomic dipole matrix elements.

This work was supported by the National Science Founda-
tion (Grants No. PHY-1607571 and No. PHY-2110471) and
NASA (Contract No. RSA1640951). We thank Seth Berl for
contributions to the experimental apparatus.

[1] L. J. LeBlanc and J. H. Thywissen, Phys. Rev. A 75, 053612
(2007).

[2] B. Arora, M. S. Safronova, and C. W. Clark, Phys. Rev. A 84,
043401 (2011).

[3] G. Lamporesi, J. Catani, G. Barontini, Y. Nishida, M.
Inguscio, and F. Minardi, Phys. Rev. Lett. 104, 153202
(2010).

[4] L. W. Clark, L.-C. Ha, C.-Y. Xu, and C. Chin, Phys. Rev. Lett.
115, 155301 (2015).

[5] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B: At.
Mol. Opt. Phys. 43, 202001 (2010).

[6] M. S. Safronova, M. G. Kozlov, and C. W. Clark, IEEE Trans.
Ultrason. Ferroelect. Freq. Control 59, 439 (2012).

[7] C. D. Herold, V. D. Vaidya, X. Li, S. L. Rolston, J. V.
Porto, and M. S. Safronova, Phys. Rev. Lett. 109, 243003
(2012).

[8] W. F. Holmgren, R. Trubko, I. Hromada, and A. D. Cronin,
Phys. Rev. Lett. 109, 243004 (2012).

[9] J. Jiang, L.-Y. Tang, and J. Mitroy, Phys. Rev. A 87, 032518
(2013).

[10] B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin,
L.-Y. Tang, and A. G. Truscott, Phys. Rev. Lett. 115, 043004
(2015).

[11] R. H. Leonard, A. J. Fallon, C. A. Sackett, and M. S. Safronova,
Phys. Rev. A 92, 052501 (2015).

[12] R. Trubko, J. Greenberg, M. T. S. Germaine, M. D. Gregoire,
W. F. Holmgren, I. Hromada, and A. D. Cronin, Phys. Rev. Lett.
114, 140404 (2015).

[13] F. Schmidt, D. Mayer, M. Hohmann, T. Lausch, F. Kindermann,
and A. Widera, Phys. Rev. A 93, 022507 (2016).

[14] E. Copenhaver, K. Cassella, R. Berghaus, and H. Müller,
Phys. Rev. A 100, 063603 (2019).

[15] B. Décamps, J. Vigué, A. Gauguet, and M. Büchner, Phys. Rev.
A 101, 033614 (2020).

[16] A. Ratkata, P. D. Gregory, A. D. Innes, J. A. Matthies, L. A.
McArd, J. M. Mortlock, M. S. Safronova, S. L. Bromley, and
S. L. Cornish, Phys. Rev. A 104, 052813 (2021).

[17] K. Wen, Z. Meng, L. Wang, L. Chen, L. Huang, P. Wang, and
J. Zhang, J. Opt. Soc. Am. B 38, 3269 (2021).

[18] P. Schneeweiss, F. L. Kien, and A. Rauschenbeutel, New J.
Phys. 16, 013014 (2014).

[19] S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev. D 82,
036008 (2010).

[20] V. A. Dzuba, J. C. Berengut, V. V. Flambaum, and B. Roberts,
Phys. Rev. Lett. 109, 203003 (2012).

[21] A. Fallon and C. Sackett, Atoms 4, 12 (2016).
[22] N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport,

Phys. Rep. 141, 320 (1986).
[23] B. K. Sahoo and B. Arora, Phys. Rev. A 87, 023402 (2013).
[24] F. L. Kien, P. Schneeweiss, and A. Rauschenbeutel, Eur. Phys.

J. D 67, 92 (2013).
[25] X. Wang, J. Jiang, Z. Wu, and C. Dong, J. Quant. Spectrosc.

Radiat. Transfer 242, 106783 (2020).
[26] S. J. Berl, C. A. Sackett, T. F. Gallagher, and J. Nunkaew,

Phys. Rev. A 102, 062818 (2020).
[27] O. Garcia, B. Deissler, K. J. Hughes, J. M. Reeves, and C. A.

Sackett, Phys. Rev. A 74, 031601(R) (2006).
[28] A. J. Fallon, S. J. Berl, E. R. Moan, and C. A. Sackett,

Phys. Rev. A 102, 023108 (2020).
[29] M. Boshier (private communication).

L030802-5

https://doi.org/10.1103/PhysRevA.75.053612
https://doi.org/10.1103/PhysRevA.84.043401
https://doi.org/10.1103/PhysRevLett.104.153202
https://doi.org/10.1103/PhysRevLett.115.155301
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1109/TUFFC.2012.2213
https://doi.org/10.1103/PhysRevLett.109.243003
https://doi.org/10.1103/PhysRevLett.109.243004
https://doi.org/10.1103/PhysRevA.87.032518
https://doi.org/10.1103/PhysRevLett.115.043004
https://doi.org/10.1103/PhysRevA.92.052501
https://doi.org/10.1103/PhysRevLett.114.140404
https://doi.org/10.1103/PhysRevA.93.022507
https://doi.org/10.1103/PhysRevA.100.063603
https://doi.org/10.1103/PhysRevA.101.033614
https://doi.org/10.1103/PhysRevA.104.052813
https://doi.org/10.1364/JOSAB.432448
https://doi.org/10.1088/1367-2630/16/1/013014
https://doi.org/10.1103/PhysRevD.82.036008
https://doi.org/10.1103/PhysRevLett.109.203003
https://doi.org/10.3390/atoms4020012
https://doi.org/10.1016/S0370-1573(86)80001-1
https://doi.org/10.1103/PhysRevA.87.023402
https://doi.org/10.1140/epjd/e2013-30729-x
https://doi.org/10.1016/j.jqsrt.2019.106783
https://doi.org/10.1103/PhysRevA.102.062818
https://doi.org/10.1103/PhysRevA.74.031601
https://doi.org/10.1103/PhysRevA.102.023108

