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Abstract

Understanding how mutations affect survivability is a key component to knowing how organisms and complex traits evolve. However, most
mutations have a minor effect on fitness and these effects are difficult to resolve using traditional molecular techniques. Therefore, there is
a dire need for more accurate and precise fitness measurements methods. Here, we measured the fitness effects in Burkholderia cenocepa-
cia HI2424 mutation accumulation (MA) lines using droplet-digital polymerase chain reaction (ddPCR). Overall, the fitness measurements
from ddPCR-MA are correlated positively with fitness measurements derived from traditional phenotypic marker assays (r¼0.297,
P¼ 0.05), but showed some differences. First, ddPCR had significantly lower measurement variance in fitness (F¼ 3.78, P< 2.6 � 10�13) in
control experiments. Second, the mean fitness from ddPCR-MA measurements were significantly lower than phenotypic marker assays
(�0.0041 vs �0.0071, P¼0.006). Consistent with phenotypic marker assays, ddPCR-MA measurements observed multiple (27/43) lineages
that significantly deviated from mean fitness, suggesting that a majority of the mutations are neutral or slightly deleterious and intermixed
with a few mutations that have extremely large effects. Of these mutations, we found a significant excess of mutations within DNA excinu-
clease and Lys R transcriptional regulators that have extreme deleterious and beneficial effects, indicating that modifications to transcrip-
tion and replication may have a strong effect on organismal fitness. This study demonstrates the power of ddPCR as a ubiquitous method
for high-throughput fitness measurements in both DNA- and RNA-based organisms regardless of cell type or physiology.
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Introduction
Mutations are the fundamental source of genetic variation and
understanding the effects of mutations is of great practical im-
portance for comprehending the nature of quantitative genetic
variation and complex genetic diseases. Mutations provide the
source material for natural selection to operate on, allowing
organisms to evolve, adapt, and compete in changing environ-
ments. However, mutations can also be highly detrimental, dis-
rupt gene function, and in humans have been linked to
debilitating genetic diseases such as diabetes, cancer, and mental
illness (Caballero and Keightley 1994; Zhang and Hill 2005; Eyre-
Walker et al. 2006; Poledne and Zicha 2018).

Multiple evolutionary forces determine the fate of new muta-
tions. One of these forces, natural selection, is expected to purge
mutations that have strong deleterious effects, fix mutations
that have strong beneficial effects, and ignore mutations that
have weak effects relative to the power of random genetic drift
(Barrett et al. 2006). The underlying fitness effects can provide us
with a strong understanding of which mutations will be purged

from a population, and which mutations may rise in frequency
within a population, including those involved in antibiotic resis-
tance and pathogenicity. In microbes that reproduce quickly, the
effect of a mutation can be measured directly by comparing sur-
vivability traits (e.g., growth rate or death rates) of the wild-type
against the mutant in competition assays (Lenski et al. 2015) and
these experiments have been a valuable tool to generate rough
estimates of fitness (Eyre-Walker and Keightley 2007; Gordo et al.
2011). In the past, studies on fitness have shown that most spon-
taneous mutations have very small effects (Kibota and Lynch
1996a; Halligan and Keightley 2009; Trindade et al. 2010; Heilbron
et al. 2014; Kraemer et al. 2016) and that deleterious mutations far
outnumber beneficial mutations (Keightley and Lynch 2003;
Eyre-Walker and Keightley 2007). On the contrary, recent studies
suggest that the distribution of fitness effects of spontaneous
mutations is multimodal, containing strong signatures of both
deleterious and beneficial mutations (Zeyl and DeVisser 2001;
Eyre-Walker and Keightley 2007; Loewe and Hill 2010). However,
even though considerable progress has been made in this field,
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the methods used to assay fitness are still extremely laborious
and have inherent biases.

Spectrophotometry and colony counting, both of which mea-
sure cell density of the wild-type and mutant populations before
and after competition, were some of the first approaches used to
directly quantify fitness (Kibota and Lynch 1996b; Lynch et al.
2008). Known measurement biases in spectrophotometry include
high levels of protein aggregation, external light sources, temper-
ature and growth variation, and microbial biofilm formation, all
which can interfere with spectrophotometry readings and gener-
ate inaccurate measurements of cell growth. These sources of
variation in measurement can creates a large signal-to-noise im-
balance that makes it difficult to accurately assay mutations that
have a minor effect on fitness. Colony counting assays that rely
on phenotypic expression of a character trait (e.g., blue-white col-
onies) are subject to phenotypic lag (the delay in expression of a
phenotype), poor plating efficiency, and selection against
mutants, which may generate errors when used to measure cell
growth.

More recently, fluorescence-activated cell sorting (FACS), real-
time quantitative PCR (qPCR), and genomic barcoding methods
have been applied to measure fitness with mixed results. FACS
can quantify individual cells using fluorescent chemicals and has
been shown to be highly accurate and consistent for larger eu-
karyotic cells (Chlamydomonas reinhardtii) (Kraemer et al. 2017).
However, use of FACS is limited in bacteria as they are smaller
and more difficult to separate, particularly in organisms that
form biofilms (Gallet et al. 2012; Dillon et al. 2016). qPCR uses fluo-
rescent amplification of DNA to identify and quantify a target
and thus provides a cell-independent method of measuring fit-
ness. However, qPCR is dependent on amplification efficiency of
the target and requires the use of a standard curve, both of which
may cause biases depending on the target locus. Furthermore,
qPCR is plagued with large variation in signal, and because the
majority of mutations have a small fitness effect (s< 0.1), limiting
the use of qPCR to measure fitness (Eyre-Walker and Keightley
2007; Bataillon and Bailey 2014). Finally, genomic barcoding
which, tags and tracks organisms using inserted DNA fragments,
can have certain limitations, such as tagging effects dependent
on the tagged loci, barcode contamination, and requires that the
target can accept foreign DNA (Lea and Coulson 1949; Blundell
and Levy 2014; Fasanello et al. 2020).

To improve the accuracy, repeatability, and the speed of fit-
ness measurements, we employed Droplet Digital PCR (ddPCR)
(Vogelstein and Kinzler 1999). ddPCR builds on the workflow of
qPCR, whereby fluorescent amplification (or a fluorescent probe)
indicates the presence of a target within a sample, and fluores-
cent signal indicates the quantity of that target within the sample
(Figure 1). ddPCR improves upon this technology by partitioning a
single sample into 20,000 individual qPCR reactions within micro-
fluidic water-in-oil droplets (Vogelstein and Kinzler 1999;
Morrison et al. 2006; Ottesen et al. 2006; Pinheiro et al. 2012).
Amplification within each droplet will indicate the presence or
absence of the nucleic acid within the sample, providing an accu-
rate measurement of the absolute copies of the DNA or RNA tar-
get (Wloch et al. 2001; Pinheiro et al. 2012). With this technique,
the relative abundance of a specific mutant can be tracked at
high resolution (�1:20,000), and when applied to competition
experiments can be used to generate highly accurate measure-
ments of the relative fitness of competing populations over time.

Utilizing ddPCR for fitness measurements has many advan-
tages over other methods. First, ddPCR targets nucleic acids,
avoiding any biases or difficulties that may arise from colony

counting, qPCR, and FACS methods described above. Second, un-
like qPCR, which measures the number of cycles needed to reach
a threshold concentration of PCR product, ddPCR provides abso-
lute quantification of the individual droplets that contain the tar-
get product (Pinheiro et al. 2012) without the need for a standard
curve. Third, ddPCR possesses a high signal-to-noise ratio that
allows for detection of extremely rare targets and can be used to
resolve minor differences in relative fitness or mutations with
minor effects. Fourth, ddPCR can be performed using automated
robotics (Bio-Rad QX200), reducing the chance of pipetting error
or human biases. Finally, ddPCR can be expanded to a 96- or 384-
well plate, providing reproducible, high-throughput measure-
ments of fitness.

To measure the cumulative effects of spontaneous mutations
on fitness, we apply ddPCR to mutation accumulation lines
(ddPCR-MA). MA involves repeated bottlenecking of a population
to minimize the influence of natural selection on new mutations.
Under these conditions, the majority of mutations will accumu-
late in genomes through random genetic drift and the underlying
mutation rates reflect errors that arise during DNA replication
and repair. At the end of the MA experiment, whole-genome se-
quencing is applied to each MA line, providing the number, type,
and genomic location of each mutation. Each MA line can then
be competed against the ancestral genotype to determine the cu-
mulative impact of the mutations on fitness. MA experiments
have been conducted in many microbial species, including
Saccharomyces cerevisiae (Wloch et al. 2001; Zeyl and DeVisser 2001;
Dickinson 2008), Escherichia coli (Kibota and Lynch 1996b;
Trindade et al. 2010), Paramecium tetraurelia (Sung et al. 2012), and
other microbes (Kibota and Lynch 1996b; Halligan and Keightley
2009; Trindade et al. 2010; Heilbron et al. 2014; Kraemer et al.
2016), and ddPCR-MA provides a unique platform to perform reli-
able fitness measurements on spontaneous mutations across dif-
ferent species and taxa.

Here, we present a novel approach of measuring fitness using
ddPCR on MA lines from Burkholderia cenocepacia HI2424. Each MA
lineage of B. cenocepacia contains between 2 and 14 spontaneous
mutations (Dillon and Cooper 2016) and combining ddPCR with
MA (ddPCR-MA) allows us to measure the relative fitness effect of
those mutations per generation against the wild-type progenitor.
Importantly, the fitness effects of these B. cenocepacia MA lines
has been previously measured using a traditional colony count-
ing approach (Dillon and Cooper 2016), providing us with a point
of comparison to benchmark our methods.

Materials andmethods
Generation of bacterial strain and MA lines
Burkholderia cenocepacia HI2424 strain is a b-proteobacteria and
was recovered from agricultural soil in upstate New York
(LiPuma et al. 2002). It is a member of the B. cepacia complex (Bcc), a
group of 17 closely related and phenotypically similar species
(Vanlaere et al. 2009), most of which are soil saprophytes and
phyto-pathogens that occupy a wide range of environmental
niches. HI2424 is characterized as a representative of the B. ceno-
cepacia PHDC clonal lineage (Chen et al. 2001; Vanlaere et al. 2009).
This clone appears to be widely distributed as a human pathogen,
having been recovered from cystic variance patients in 24 US
states (Liu et al. 2003) and Europe (Coenye et al. 2004). Amongst B.
cepacia complex, B. cenocepacia, and B. multivorans appear to
form the most profuse and highly resistant biofilms
(Mahenthiralingam and Vandamme 2005; Traverse et al. 2013) on
both abiotic surfaces (e.g., glass and plastics) as well as biotic
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surfaces such as epithelial cells (Coenye 2010). Burkholderia bio-
film formation plays a key role in persistence can cause severe
lung infections in immunocompromised patients or patients with
cystic fibrosis (LiPuma 2005). The sticky and thick biofilms
formed by many Burkholderia species make it difficult to measure
cell growth and fitness using traditional methods (e.g., spectro-
photometer, FACS, colony counting).

The genome of B. cenocepacia HI2424 has been fully sequenced
and is composed of three chromosomes (Dillon et al. 2015) (Chr1:
3.48 Mb, 3253 genes; Chr2: 3.00 Mb, 2709 genes; Chr3: 1.06 Mb, 929
genes) and a plasmid (0.164 Mb, 159 genes) (Agnoli et al. 2012).
The genome is characterized by the presence of peh, which enco-
des a polygalacturonase involved in maceration of onion tissue
(Gonzalez et al. 1997), and a type IV secretion system, similar in
arrangement and homology to those of Brucella suis and
Sinorhizobium meliloti (Engledow et al. 2004).

The mutation accumulation lines B. cenocepacia HI2424 used in
this study were generated previously (Dillon and Cooper 2016).
Seventy-five independent lineages were founded from a single
colony of B. cenocepacia HI2424 and independently propagated ev-
ery twenty-four hours onto fresh tryptic soy agar agar [30 g/l tryp-
tic soy broth powder, 15 g/l agar] and incubated at 37�C for
217 days. Transfers between plates were performed by randomly
choosing one colony and spreading it on a new plate, thus bottle-
necking each line to a single cell at each transfer (Sung et al.
2016). Estimates of generation time were conducted monthly by
serial dilution and plating of a single random colony from
each lineage. This protocol was repeated until each MA line
had undergone approximately 5554 generations of mutation

accumulation. At the end of the MA experiment, one randomly
chosen colony per MA line was stored at –80�C in 8% DMSO and
sequenced using an Illumina Hi-Seq 2000 at the Hubbard Center
for Genomic Studies at the University of New Hampshire. All
reads were aligned to the B. cenocepacia HI2424 reference genome
(LiPuma et al. 2002) with both the Burrows–Wheeler aligner (Li
and Durbin 2009) and Novoalign (http://www.novocraft.com)
(Dillon et al. 2015; Dillon and Cooper 2016) and the resulting align-
ments were used to identify mutations that had accumulated
within each line. In sum, a total of between 2 and 14 mutations
were identified in individual MA lines.

Measurement of the cumulative effect of
spontaneous mutations on fitness
For fitness competition assays, we revived each of the 43 MA line-
ages of B. cenocepacia HI2424 and a wild-type B. cenocepacia HI2424
by growing them in tryptic soy broth (30 g/l) and agar (30 g/l, 1.5%
agar). To quantify the cumulative effect of mutations on fitness
(scum) of each of the 43 derived MA lineages, we conducted com-
petitions between each MA lineage and B. cenocepacia HI2424 lacZ
strain. Forty-four competition assays were performed (43 MA lin-
eages, wild-type control) in which five colonies were randomly
selected from each of the MA line and the control and thoroughly
mixed in 3 ml of fresh tryptic soy broth in an 18� 150 mm glass
capped tube. DNA extraction was performed on 1 ml of this mix-
ture and used to quantify the initial frequency of each competitor
(Nia; Nib). The remaining 2 ml was then incubated in a 37�C and
shaken at 30 rpm for 17 h, until early exponential phase. Four bio-
logical replicates were conducted for each MA assay for a total of

Figure 1 Droplet digital PCR (ddPCR) general workflow. (A) Traditional colony counting fitness measurements. Mutant and wild-type individuals
undergo a competition assay within a test tube. Relative fitness is determined by the ratio of colonies exhibiting a detectable phenotype. (B) Fitness
measurements using ddPCR (Biorad QX200). Mutant and wild-type individuals undergo the same competition assay within a test tube and DNA is
extracted from the pool. Nucleic acids and PCR reagents are then subdivided into �20,000 oil-emulsion droplets. Primers that target the wild-type,
mutant, or both types can be used to amplify droplets that contain the DNA from the desired target(s). Droplets that do contain the target DNA are
shown in blue, and those that do not amplify are shown in gray/black. Multiple loci can be targeted in a single reaction, bottom right panel shows
example of a multiplex ddPCR assay with two targets. Optimization and amplification protocols can be found in Supplementary Materials.
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172 competitions. Genomic DNA was extracted before and after
the competition assay for the absolute quantification of initial
(Nia; Nib) and final (Nfa, Nfb) wild type and mutant populations to
calculate relative fitness after competition. To measure the rela-
tive fitness of MA lines using ddPCR, we did the absolute quantifi-
cation of the MA progenitor that had an inserted lacZ allele (a:
Ancestor) and compared them to the absolute copies of genomic
DNA that lack the lacZ allele (b: MA lines). ddPCR measurements
were taken at the start and end of competition via appropriate
dilutions where Nia and Nib were the initial DNA frequencies of
the wild-type and mutant bacteria, respectively, and Nfa and Nfb

were the final DNA frequencies of the wild-type and mutant bac-
teria, respectively (Chevin and Lande 2011; Perfeito et al. 2014).
The difference in growth (Drab) between the two strains was cal-
culated as:

Drab ¼ ln ðNfa=NiaÞ – ln ðNfb=NibÞ

scum was then calculated, where G normalizes the measurement
of sab to the number of generations that were elapsed:

scum ¼ sab ¼ Drab=G

G is equal to:

G ¼ log 2ðNfb=NibÞ

In ddPCR measurements, plating on X-Gal is not required as
scum was instead measured by quantifying the absolute copies of
genomic DNA. Nevertheless, in control experiments, both plate
assays using X-gal (Dillon and Cooper 2016) and ddPCR assays
(four biological replicates without X-gal) showed that the lacZ in-
sertion had no significant effect on relative fitness in the tryptic
soy media environment used in this study (Figure 2, A and B).
Wild-type B. cenocepacia HI2424 strain contain a lacZ gene inserted
at the attTn7 site. The insertion causes colonies to turn blue after
exposure to X-gal (Choi et al. 2005). In traditional colony counting
methods, overexpression of this phenotype is used to track the
growth differences between the wild-type and each MA lineage
but could consume cellular resources that might be deleterious
and bias fitness measurements under certain conditions. The

detailed molecular method for the insertion of lacZ into ancestral
wild type B. cenocepacia HI2424 strain has been described in the
Supplementary section.

Genomic DNA extraction and quantification
For ddPCR, genomic DNA was extracted from the reserved initial
and final 1 ml of tryptic soy broth using the Wizard genomic DNA
purification kit (Promega, Madison, WI, USA). The concentration
of genomic DNA was quantified using a Nanodrop (ND-1000
Spectrophotometer, Thermo Fisher Scientific, Wilmington, DE,
USA) and stored in DNA rehydration buffer at �20�C. For quality
assessment of isolated nucleic acids, all samples had 260/280 ra-
tios between 2.00 and 2.05 and 260/230 ratios between 1.05 and
2.01, with DNA concentrations estimated to be in the range of
100–500 ng/ll.

Sample preparation and optimization for ddPCR
To optimize multiplex ddPCR for this experiment, we diluted pu-
rified genomic DNA from the cultures at the end of the competi-
tion assay in 10 mM, nuclease-free Tris buffer (pH 7.5) and
quantified each sample using the Qubit high sensitivity DNA
broad range fluorometer assay (Thermo Fisher Scientific,
Waltham, MA, US). DNA was digested using fast digest EcoR1 re-
striction digestion enzyme (Fisher Scientific MA, USA) for 5 min at
37�C to allow for higher resolution of ddPCR without disrupting
the target amplicon of interest. DNA concentrations from
0.020 ng/ll to 300 ng/ll were tested on ddPCR to determine the
optimal DNA concentration for separation of wild-type and mu-
tant populations (Supplementary Figure S1, S2 and Table S2), and
was found to be optimized at 0.028 ng/ll. DNA for all samples
were then diluted to 0.028 ng/ll for ddPCR. Calculations for final
frequencies considered the dilutions that occurred at this step.

Primer sets were specifically designed to target the region of
the lacZ insert in the wild-type B. cenocepacia HI2424 genome
(Supplementary Table S7), to test the efficiency of the primers,
we ran each primer individually for wild type and mutant line-
ages at 59�C (DNA template: 0.028 ng/ml, primers: 100–300 nM per
reaction). For an optimal reaction, we expect two clearly sepa-
rated bands of positive and negative droplets in 1D and 2D plots
(Supplementary Figure S2). However, low binding affinity, inade-
quate annealing temperature, inaccurate primer or DNA

Figure 2 ddPCR quantification and colony counts of B. cenocepacia HI2424 with increasing ampicillin concentration. (A) ddPCR and colony counts of lacZ�

B. cenocepacia HI2424. Fitted regression equations for ddPCR [y¼365.96 � e^(�x/20.18) þ 13.18 � e^(�x/598.04) � 3.50, R2 ¼ 0.94] and Colony Counts
[y¼ 20883.47 � e^(�x/7.17) þ 68.47 � e^(�x/157.82) þ 0.11, R2 ¼ 0.98]. (B) Percentage of lacZ� from ddPCR and colony counting at increasing
concentrations. Fitted regression equations given as ddPCR: [y¼ 103.78 � e^(�x/82.84) þ 8.79, R2 ¼ 0.96]; Colony Counts: [y¼ 236.19 � e^(�x/15.52) þ
2.01, R2 ¼ 0.99]. All regression equations are significant at a P< 0.001 level.
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template concentrations or buffer interference can result in in-
distinct positive and negative droplets (Supplementary Figure
S2), generating “rain,” or droplets that lie in between threshold
points that cannot be resolved. To resolve ddPCR rain, we opti-
mized PCR conditions for multiplex assays. Further details on
DNA optimization and primer optimization can be found in
Supplementary Materials (see Supplementary Information).

Eva green-based ddPCR WorkFlow
Eva Green-based ddPCR reaction mixtures contained 1� ddPCR
Eva Green Super mix (Bio-Rad), 100 nM mutant, 300 nM wild type
specific primers (Sigma Aldrich USA), and bacterial genomic DNA
in a final volume of 22.5 ll. No template negative control wells
were created by replacing input DNA solutions with TE buffer (pH
8.0). A 20 ll aliquot was taken from each of the assembled ddPCR
mixtures and pipetted into each sample well of an eight-channel
disposable droplet generator cartridge (Bio-Rad, Hercules, CA,
USA). A 70 ll volume of Droplet Generation Oil for Eva Green (Bio-
Rad) was then loaded into each of the eight oil wells. The car-
tridge was placed into the droplet generator (Bio-Rad) where a
vacuum was applied to the outlet wells to simultaneously parti-
tion each 20 ll sample into nano-liter sized droplets. After
�1.5 minutes, the cartridge was removed from the generator, and
the droplets that had collected in each of the independent outlet
wells were transferred with a multichannel pipet to a 96-well
polypropylene plate (Eppendorf, Hamburg, Germany). The plate
was heat-sealed with foil using a PX1 PCR Plate Sealer (Bio-Rad)
and placed in a conventional thermal cycler (C1000 Touch, Bio-
Rad). Unless otherwise stated, thermal cycling conditions for all
Eva Green assays consisted of an activation period (5 minutes at
95�C) followed by 40 cycles of a two-step thermal profile compris-
ing of a denaturation step (30 seconds at 95�C) and a combined
annealing extension step (60 seconds at 60�C). A dye-stabilization
step was also included at the end of each Eva Green thermal cy-
cling protocol (4�C for 5 minutes, 95�C for 5 min, and finally a 4�C
indefinite hold). After PCR, the 96-well plate was loaded into the
QX200 Droplet Reader (Bio-Rad), and the appropriate assay infor-
mation was entered into the analysis software package (Quanta
Soft, Bio-Rad). Droplets were automatically aspirated from each
well and streamed in single-file past a two-color fluorescence de-
tector and finally to waste. The quality of all droplets was ana-
lyzed and rare outliers (e.g., doublets, triplets) were gated based
on detector peak width. Analysis of the ddPCR data was per-
formed with Quantasoft analysis software (Bio-Rad) that accom-
panied the QX200 Droplet Reader.

Data processing
Droplet digital PCR relies on the ability to distinguish between
partitions that contain amplicons and those that do not.
Partitions that contain amplicons can be identified by the pres-
ence of increased fluorescence using a variety of detection chem-
istries common to qPCR such as intercalating DNA dyes or
fluorophore-labeled oligonucleotides. The target concentration is
then calculated by taking the ratio of positive to negative drop-
lets. The high-throughput and robotic digital PCR system is easier
to use and more precise than other quantification methods
(Hindson et al. 2011; Hayden et al. 2013).

The wild-type and the mutant strains from this study are
nearly isogenic except for the small set of mutations that accu-
mulated over the course of the MA experiment, so primers spe-
cific B. cenocepacia will amplify both strains. LacZ primers will only
amplify the wild-type population. To ensure accurate quantifica-
tion of multiplex targets, it is necessary to separate single

(B. cenocepacia only) and double positive amplicons (B. cenocepacia
and lacZ) (Whale et al. 2016). From our results, we will observe
three visible clusters (i) negative partitions that contain no tar-
gets for either primer set, (ii) single-positive partitions (wild-type
only partitions), and (iii) positive partitions that contain a signal
from both wild type and mutant (combined cluster). The final
single-positive cluster (mutant only partitions) is subsumed into
the combined cluster since it always produces a signal in the
presence of any amplicon. Following Whale et al. (2016), the num-
ber of mutants can be calculated using equations 1 and 2, with c0

defined as the number of partitions in the double-negative clus-
ter, cwt as the wild type (wt) only cluster, and ccombined as the
combined cluster:

Mutant type ¼ ln ðc0 þ cwt þ ccombinedÞ � ln ðc0 þ cwtÞ (1)
wild type ¼ ln ðc0 þ cwtÞ � ln ðc0Þ (2)

These equations were used to separate and measure the mu-
tant (equation 1) and wild-type frequencies (equation 2). These
equations require that there are no interactions between the
wild-type and mutant targets, which is the case, as each primer
is unable to amplify the other target.

After PCR cycling, the fluorescence end-point signal associated
with each partition is measured by the reader instrument. This
signal was plotted on a one-dimensional (1D) scatter graph, with
the event (partition) number along the x-axis and the fluorescent
amplitude along the y-axis (Supplementary Figure S1 and S2). In
a well-optimized assay, two visually distinct populations are ob-
served; positive partitions that have high fluorescence, and nega-
tive partitions that have low (or background) fluorescence. An
automatic threshold is set by the software to separate these two
populations, and these measurements were taken at face value.
Manual thresholds were used to separate cwt and ccombined, and
all measurements had clear separation between these two parti-
tions (Supplementary Figure S1, S2, and Table S8).

In the duplex reactions, we discriminated between targets of
different sizes based on their fluorescence intensity (McDermott
et al. 2013), and each cluster was used to measure the wild type
and mutant populations. This reduces technical errors, such as
accumulated pipetting inaccuracy, thereby making it possible to
measure smaller differences than the same comparison using
parallel uniplex reactions (Whale et al. 2013), while also reducing
reagent costs and runtime. We note that multiplexing or duplex-
ing ddPCR comes at a slight cost to resolution of the overall preci-
sion of ddPCR measurements, which is dependent on the number
of partitions used (Pinheiro et al. 2012). For studies that require
higher resolution, probes can be designed that are specific to a
mutation or uniplex ddPCR can be used (Dillon and Cooper 2016).

Statistical analysis
All statistical analyses were performed in Origin Pro 8.0 using the
Stats analysis package. Shapiro–Wilk tests were performed to
test whether the data violate the assumption of a normal distri-
bution. Unless otherwise noted, the data did not violate a normal
distribution and the mean and SEM were presented. If the data
were not normally distributed, the results of the Shapiro–Wilk
test were reported, and the mean and SD were presented. For in-
dependent two-tailed t-tests, all P-values were corrected for mul-
tiple comparisons using a Benjamini–Hochberg correction
(Supplementary Table S2), ensuring that our false positive rate
remains below 5% across all 43 lineages (Benjamini and
Hochberg 1995). Corrected P-values that were below a threshold
of 0.05 were considered significant. Nonparametric Pearson
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product moment correlations were used to evaluate the correla-
tion between the number of mutations in a lineage and its selec-
tion coefficient, as well as the correlation between the selection
coefficients of lineages. Lastly, to test for effects of selection coef-
ficients on the total number of mutations harbored in each line-
age, we performed a regression analysis and ANOVA on the
cumulative data set.

Data availability
GSA Figshare portal used to upload supplemental files containing
Supporting Information, Figure S1–S5, and Table S1–S9: https://
doi.org/10.25386/genetics.14920347. DNA sequences of
Burkholderia cenocepacia HI2424 (Accession: NC_008542.1 GI:
116688024) and lacZ vector (Accession: M77789, M11662, Version:
M77789.2 alleles) are available in GenBank. All data are available
in the supplemental section and all strains and primers are avail-
able upon request.

Results
Droplet-digital PCR to measure microbial fitness
The application of ddPCR to measure fitness is a new use of the
ddPCR platform (Boynton et al. 2017). Therefore, it was important
that we first establish that ddPCR can accurately quantify micro-
bial populations and that ddPCR measurements have low mea-
surement variance. To this extent, we applied ddPCR to B.
cenocepacia strains with and without a lacZ AmpR reporter con-
struct (see Supplemental Materials) that was previously shown to
have no effect on fitness in laboratory tryptic-soy liquid media
culture (Dillon and Cooper 2016). The lacZþ and lacZ� strain of B.
cenocepacia exhibited resistance and susceptibility to ampicillin
respectively (Supplementary Table S1), so we grew both strains
with increasing dosage of ampicillin and measured each bacterial
population in triplicate following 17 h. of growth using both col-
ony counting methods and ddPCR (see Materials and methods).
We find that variance on the ddPCR measurement of the lacZþ

population is significantly lower than that from colony counting
methods (F¼ 3.78, P< 2 � 10�13, Figure 2, Supplementary Table
S1), indicating that variation in fitness measurements can be
minimized using ddPCR. The coefficient of variation (CV) is
widely used to express the precision of an assay, providing a ratio
of the standard deviation to the mean. We calculated the CV for
ddPCR as 4.67% (less than 5% of the mean) and 20.44% for colony
counting (Supplementary Table S1). This lower CV indicates
higher precision in ddPCR as compared to colony counting in this
control experiment.

Furthermore, we find that the fitted curve follows a more con-
sistent decline as ampicillin concentration increases (Figure 2B),
which suggests ddPCR can detect minor changes in the level of
fitness that may not be detectable using traditional colony count-
ing methods. We also find that ddPCR performed better at quan-
tifying at high concentrations of ampicillin (�50 ng/ml), while
repeated plating was required to generate enough viable colonies
to measure fitness using colony-counting methods (0–1 colonies).
Taken together, we find that ddPCR can provide high-resolution
fitness measurements with low measurement error.

To determine the optimal DNA concentration for this locus
with ddPCR, we quantified lacZþ and lacZ� B. cenocepacia at known
concentrations of DNA (280 ng/ml, 28 ng/ml, 2.8 ng/ml, 0.28 ng/ml,
0.028 ng/ml, 0.0028 ng/ml). We find that ddPCR has optimal separa-
tion at 0.028 ng/ml, with low variance in measurement and high
precision (lowest measurement standard deviation at 0.028 ng/ml,
�5% CV, Supplementary Table S2), and the sample partitioning

and removal of PCR amplification bias allows for accurate sepa-
ration of lacZþ and lacZ� targets when using this locus
(Supplementary Figure S1 and S2). The high accuracy observed is
consistent with many different studies which have used ddPCR
for nucleic acid quantification (Hindson et al. 2011; McDermott
et al. 2013; Boynton et al. 2017).

Measuring the cumulative effect of mutations on
fitness in B. cenocepacia HI2424 MA lines using
ddPCR
Once we established the accuracy and resolution of ddPCR on the
lacZ locus, we performed competition experiments with MA line-
ages of B. cenocepacia HI2424 transformed with lacZþ against the
ancestral B. cenocepacia HI2424 strain (lacZ�) in tryptic soy liquid
media. DNA was extracted from the initial and final populations,
quantified using ddPCR, and converted into selection coefficients
as a measurement of relative fitness (see Data Processing, Figure
3A). The cumulative effect of mutations on fitness (scum) to the
ancestor across all ddPCR-MA lineages in tryptic soy liquid media
were �0.0416 0.038 (SD) per generation over the experiment
and the data was normally distributed (Shapiro–Wilk’s Test;
P¼ 0.092) (Supplementary Tables S3 and S4). scum in these MA
lines were also previously measured using colony-counting
methods and remains one of the few studies of fitness effects in
genotyped MA lines (Dillon and Cooper 2016). We compared these
fitness effects derived from ddPCR-MA with those from colony
counting methods, and found that ddPCR-MA has a broader dis-
tribution of fitness measurements and exhibited a significantly
greater decline (1.68�) in mean fitness (t-test, P¼ 0.005, Figure
3A). The distribution from both methods exhibited signs of bimo-
dality [Dip-test (Hartigan and Hartigan 1985), ddPCR P¼ 0.048,
colony counting P¼ 0.033]. Both the colony counting, and ddPCR-
MA experiments observed a small deleterious change in the cu-
mulative effect of mutations on fitness in most lines (0 to �0.07
in 72.1% of MA lines from ddPCR and 76.7% of MA lines from col-
ony counting).

When we compare the raw data from ddPCR-MA and colony
counting methods, we find a weak but positive correlation be-
tween the cumulative effect of mutations on fitness r¼ 0.297,
P¼ 0.05, Figure 4. To examine why the two methods deviated, we
repeated colony counting methods in-house on a random subset
of MA lineages (10) using the same procedures as described in
Dillon and Cooper (2016). Our in-house measurements exhibited
higher variance in these lines than previously reported (average
colony counting variance in-house ¼ 0.002; average colony count
Dillon et al., ¼ 0.0009, Supplementary Table S6). Furthermore, the
ten repeated in-house colony counting measurements showed a
positive but non-significant correlation with ddPCR measure-
ments (q ¼ 0.47, r2 ¼ 0.17, Supplementary Figure S3 and Table
S6). Taken together, this suggests that there are differences in the
measurement variance and mutational effects for fitness meas-
urements based on colony counting on solid media and those
based on liquid growth in ddPCR.

Average effect of spontaneous mutations
To estimate the average fitness effect of individual mutations, we
divided the cumulative effect of all mutations per line by the total
number of mutations identified in the MA study (including base
substitutions and indels). We contrasted the average selective ef-
fect (s) per mutation across all lines from ddPCR-MA
[�0.00706 0.0013 (SEM)], with those from colony counting meth-
ods with repeated measurements [�0.00406 0.0007 (SEM)]
(Dillon and Cooper 2016) and find a significant difference in the
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average effect of spontaneous mutations (t-test, P¼ 0.006,
Supplementary Table S3). This order of magnitude difference is
on par with fitness studies performed in different labs in E. coli
K12 MG1655, which vary by one order of magnitude in colony
counting (Kibota and Lynch 1996b) and microfluidic studies
(Robert et al. 2018). Across different organisms, the average selec-
tion coefficient per mutation is on the order of 10�3–10�4 for a
majority of bacteria (Table 1). Eukaryotes show more variation
in average selective coefficient per mutation ranging from 10�1

to 10�4.
The deleterious effect (sd) and the beneficial effect (sb) of a sin-

gle mutation were estimated, with sd ¼ �0.04436 0.006 (SEM)
and sb ¼ 0.047916 0.0214 (SD) when measured by ddPCR and av-
erage sb ¼ 0.013 6.0.005 (SD); average sd ¼ �0.0486 0.007(SD)
when measured by cell counts (calculations described in
Supplementary Text) (Dillon and Cooper 2016).

The average fitness effect of mutations in the MA lines were
found to be lower than that of the ancestral wild type, consistent
with the idea that most mutations are deleterious. However,
the relationship between the total number of mutations and
the decline in fitness was not significant (r ¼ �0.04, P ¼ 0.77,
Supplementary Figure S4) supporting the idea that beneficial
mutations were masking the effect of deleterious ones, that only
a few mutations are driving large changes in relative fitness, or
that antagonistic epistasis between deleterious mutations are
muting the effect (Dillon and Cooper 2016; Böndel et al. 2019).
Despite acquiring multiple mutations, we found that six MA lines
did not differ significantly in fitness from the ancestral strain
(Supplementary Table S4).

Mutations that lie in different regions can have different
effects, and we expect that mutations that generate nonfunc-
tional proteins like nonsense base-substitution mutations or cod-
ing insertion-deletion mutations (indels) to have the most
deleterious effects, followed by missense base substitutions that
generate modified proteins, then synonymous and non-coding
base substitutions that do not alter protein sequences. Using col-
ony counting methods, Dillon and Cooper (2016) had previously
observed that there is a slight, but non-significant increase in
nonsense and missense base substitutions, as well as coding
indels in lineages with reduced fitness. ddPCR-MA showed a simi-
lar non-significant relationship (Supplementary Figure S5) be-
tween the same mutation classes and relative fitness. This
suggests that either more mutations from these classes are re-
quired to detect a large fitness decline, that only a small number
of mutations with protein sequences generate strong fitness
effects, or that epistatic effects are obscuring these relationships.

Plasmids can sometimes contain important genes, and loss of
plasmids can affect replication, transcription, and enzymatic activ-
ity, which in turn can affect survivability. The loss of 0.164 Mb plas-
mid in B. cenocepacia results in a significant loss in fitness in ddPCR
and is consistent with what has been previously observed using
colony counting methods (sd ¼ �0.03 by ddPCR-MA and sd ¼ �0.05
by colony counts, t-test, P¼ 0.18) (Dillon and Cooper 2016). While
a majority of mutations appear to contribute a neutral or slightly
deleterious effect, we did not find a significant relationship be-
tween the total number of mutations harbored within an MA line

Figure 3 Cumulative effect of mutations on fitness in B. cenocepacia MA lineages. (A) Measurements for ddPCR and colony counting method for the
cumulative effect of mutations on fitness overlaid with each other (scum) (Dillon and Cooper 2016). (B) Graph for scum relative to the ancestral strain
shown for each MA line measured by ddPCR (gray) with the error bars indicating SEM. Nonlinear fitting equation for ddPCR, y ¼ �0.022 þ (�0.12/
0.50sqrt(pi/2)) e(�2((x � 16.68)/w) ^2) and nonlinear fitting equation for colony count y ¼ �0.044 þ (2.06/5.44sqrt(pi/2)) e(�2((x � 95.55)/w)^2).

Figure 4 Correlation between the cumulative effect of mutations on
fitness (scum) of B. cenocepacia MA lines measured using ddPCR and colony
counting by Dillon and Cooper (2016) (r¼ 0.297, P¼ 0.05). Error bars
indicate standard error of the mean. Linear regression equation
y¼ 0.552x � 0.007, Chi^2¼ 105.03 and R^2¼ 0.794.
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and a change in fitness (Supplementary Figure S4). MA lineages
containing numerous mutations did not show any deviation in rel-
ative fitness from the ancestral wild type (t-test, P> 0.05, MA4,
MA24, MA29, MA31, MA43, and MA68, Supplementary Table S4).
One possible explanation for this is that epistatic interactions be-
tween beneficial and deleterious mutations negate each other
(Davies et al. 1999; Heilbron et al. 2014). Another possible explana-
tion is that many mutations do not cause significant deviations in
fitness.

Mutations of large effects
Twenty-seven out of 43 MA lines exhibited scum that significantly
deviated from mean fitness (99% confidence interval, �0.057 to
�0.027), suggesting that these 27 lines harbored mutations of
large effect, or multiple mutations that combined to have a large
effect. The lack of a correlation between the number of muta-
tions and a decline in fitness suggests that these large effects are
not simply additive and are likely to be caused by mutations of
large effects or epistatic interactions between mutations of
smaller effect. The mutations in these lines are known from
high-throughput Illumina sequencing of B. cenocepacia MA (Dillon
and Cooper 2016) and revealed multiple mutations within the re-
peat region of the excinuclease ABC subunit C (Locus Tag:
BCEN2424_RS12080) and in LysR/M transcriptional regulators
(Table 2, Supplementary Table S5).

Interestingly, MA62 and MA74 which had extreme increases in
fitness and MA63 which had an extreme decline in fitness har-
bored mutations within the same excinuclease locus.
Excinuclease is a uvrC homolog, and uvrC is known to be respon-
sible for repairing UV damage (Crowley et al. 2006). Non-identical
mutations, or mutations at different loci, were also found in
LysR-like transcriptional regulators in MA lines with both signifi-
cant increases and declines in fitness (Table 2). While these
mutations may not necessarily be responsible for the changes in
fitness, we do find that these types of mutations are overrepre-
sented in the 27 MA lines that exhibited selection coefficients
that significantly deviated from the mean (Table 2,
Supplementary Table S9, v2-test, P¼ 0.01, df ¼ 1). Repeats and
paralogous loci are known to have higher mutation rates so these
mutation types may simply arise more often than others.
Nevertheless, transcriptional and replication loci are known to
have significant effects that can contribute to these large changes
in fitness (Whale et al. 2013; Sprouffske et al. 2018). These changes
in LysR were not previously reported by Dillon and Cooper (2016)
in their colony counting study, as they did not closely examine
the types of mutations that were driving the large changes in ob-
served fitness. Furthermore, higher precision estimates can make

clear the contributions that different loci have to changes in fit-
ness.

It should be noted that that the cumulative fitness effect of
mutations can be measured by many different methods (ddPCR-
MA, colony counting, etc., Table 1). The finding that overall
mutations are slightly deleterious with some mutations of large
effects is consistent with that found in previous studies (Dillon
and Cooper 2016). Both ddPCR and colony counting methods also
showed that a majority of the lineages significantly deviated
from mean fitness, with both methods being positively correlated
and showing a bimodal distribution.

Discussion
The effect that a mutation has on an organism can determine
the fate of that mutation, and understanding the fitness effects
of mutations is a critical part in determining the mutations that
will rise to high frequency in different environments
(Charlesworth et al. 1993; Charlesworth and Charlesworth 1998;
Charlesworth et al. 2004; 2009), how complex traits that require
multiple mutations evolve (Muller 1964; Kondrashov 1988), and
the expected levels of genetic diversity and divergence that are
generated over time. Studying fitness effects is extremely critical
in understanding how mutations interact with each other (epista-
sis), the magnitude of interactive effects (multiplicative, additive,
subtractive, or exponential effects), and how epistasis can drive
the evolution of complex traits. Measuring fitness effects can
also help us understand the evolution of mutator and anti-
mutator alleles (Sniegowski et al. 1997; Tenaillon et al. 1999;
Sniegowski et al. 2000), which determines not only the pace of cel-
lular evolution, but also the development of genetic diseases and
disorders.

Recent development of high-throughput genotyping using
fluorescent based microfluidics has opened the door to highly ac-
curate measurements of fitness. In this study, we leverage the ex-
ceptional properties of digital-droplet PCR (ddPCR) to quantify
the relative fitness of mutant organisms after competition.
Overall, we find that ddPCR-MA has high-resolution and preci-
sion, and that fitness measurements between ddPCR-MA and tra-
ditional colony counting methods are positively correlated
(Figure 4). In comparison with traditional colony-counting meth-
ods, both methods observe a bimodal distribution for fitness
effects and both methods can show that the fitness effects are
slightly deleterious effect overall, with some mutations having
large effects.

However, there are some significant differences that are
shown in the ddPCR-MA experiment. ddPCR-MA reveals a

Table 1 Cumulative fitness effect (s) scaled by generation time per mutation

Organism Method used MA lines Average selective coeffi-
cient per mutation (s)

References

Escherichia coli MG1655 Microfluidics 1000a �0.003 Robert et al. (2018)
Escherichia coli K12 MG1655 Colony Counts 50 �0.03 Kibota and Lynch (1996a)
Escherichia coli BWT strain Spectrophotometry 50 �0.012 Gordo et al. (2011)
Burkholderia cenocepacia HI2424 Droplet digital PCR 43 �0.0070 This study
Burkholderia cenocepacia HI2424 Colony Counts 43 �0.0041 Dillon and Cooper (2016)
Salmonella typhimurium (S. enterica) Spectrophotometry 12 �0.00145 Lind and Andersson (2008)
Saccharomyces cerevisiae Phenotypic traits 151 �0.12–0.20 Hall and Joseph (2010)
Chlamydomonas reinhardtii CC-1373 Flow Cytometry 60 �0.0008 Kraemer et al. (2017)
Arabidopsis thaliana Phenotypic traits 40 �0.09 Shaw et al. (2002)
Drosophila melanogaster Viability traits 5 0–0.125 Sharp and Agrawal (2016)
Caenorhabditis elegans N2 Phenotypic traits 9 �0.12 Vassilieva et al. (2000)

aEstimated number of MA lines from microfluidic methodology (Robert et al. 2018).
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significantly lower total mean fitness and significantly larger av-
erage effect per mutation. There could be a few explanations for
this. First, colony counting methods may be underestimating the
overall effect. Although colony counting is a time-tested method
for rough growth estimates, it is well documented that pheno-
typic lag or growth lag from solid media growth can lead to un-
derestimation of cells counts and consequently underestimate
fitness effects (Carballo-Pacheco et al. 2020).

Second, this difference may be due to variation in fitness
measurements in different laboratory and environmental condi-
tions. Growth time, handling, water, and growth temperature are
all factors that can influence cell growth. It is important to note
that mutations can have different effects in different conditions
(Blount et al. 2012; Dillon and Cooper 2016). Growth on solid me-
dia is a very different condition than growth in liquid media, and
the effect of mutations in each condition may vary considerably.
For example, the number of context-specific mutations have
been shown to vary under different growth media and conditions
(Foster et al. 2015; Sung et al. 2015), and their effect may also vary
significantly between liquid and plate growth. The MA experi-
ment was evolved on solid media and thus the mutations are
likely to have less effect on solid media competition experiments,
leading to a small but consistently greater deleterious effect in
liquid ddPCR assays.

Third, every technology has some biases and this includes
ddPCR. Although ddPCR can quantify DNA at high resolution, it
also measures DNA from dead cells. To minimize the effect of
dead cells on fitness measurements, DNA was extracted from all
competition experiments at the exponential phase (17 h) where
live cells significantly outnumber dead cells. If higher precision is
needed, propidium monoazide can be added to the extracted
DNA prior to ddPCR to prevent amplification and quantification
of dead cell DNA (Gobert et al. 2018).

Furthermore, despite the precision and accuracy in measure-
ments, ddPCR may also have some issues such as false positives,
poor signal thresholding, and molecular dropout. Proper assay de-
sign and validation are critical to minimize these issues. We took sig-
nificant steps to optimize and test our marker, and investigators
developing ddPCR fitness assays should take particular caution with
marker design to ensure that the marker has limited fitness effects.

Thus, while it is nearly impossible to remove variation and
biases in fitness assays across different experimental conditions
and laboratory environments, high-throughput repeatable fitness
measurements through ddPCR will allow us to rapidly measure

fitness effects across different environmental conditions and
identify environment-specific differences in fitness effects.

Across 43 MA lines, we found 27 MA lines that displayed sig-
nificant changes in relative fitness. Upon further examination,
we find that the ddPCR-MA lines that exhibited the largest benefi-
cial and deleterious fitness contained locus-specific mutations
within a repeat unit of the DNA repair enzyme excinuclease with
both extreme positive and negative fitness. Furthermore, we ob-
serve a significant excess of mutations within transcriptional reg-
ulators in lines from both ends of the fitness spectrum (Table 2).
While these mutations are overrepresented, they arise in a ge-
netic background with other mutations, and may not be the
cause of these large fitness differences. We propose that in the
future, ddPCR-MA can be used on intermediate MA stocks that
contain a subset of these mutations allowing us to tease out
these interactions at high resolution.

For available data, intraspecies variation of the average fitness
effect of a mutation does not differ more than two-fold between
experiments regardless of method (Table 1). On the other hand,
the average effect varies by three orders of magnitude in different
microorganisms, with the average effect increasing with genome
size. It would be expected that mutations would have a larger ef-
fect in smaller genomes with a higher density of coding sites, as
the probability of a mutation landing within essential protein
coding regions increases. However, the opposite is observed, with
mutations in species with larger genomes having a larger average
effect. It remains unclear why this is the case, so developing con-
sistent, reliable methods of fitness measurements such as
ddPCR-MA is critical to understand how these patterns evolve
across species.

Although ddPCR assays are highly accurate, an automated ro-
botic ddPCR machine has a large upfront cost (�100k USD). Thus,
accuracy and repeatability have a high upfront cost. Each sample
costs �1.60$ to run, which is comparable to real-time PCR experi-
ments that also use fluorescent labeling technology (Hayden et al.
2013; Taylor et al. 2017). Thus, the accuracy comes at high
upfront cost. As more and more laboratories begin to use third-
generation PCR technology, this cost should decrease. ddPCR
assays provide high-throughput measurements and 96 samples
take approximately 5 h to process once DNA is isolated, so when
compared to other methods such as flow cytometry or microflui-
dics that require expensive equipment (Table 1), ddPCR can be
completed more rapidly at a cheaper cost. Colony counting is
considerably cheaper at a slightly lower resolution and accuracy,

Table 2 Lys and excinuclease mutations found in MA lines with a large change in fitness measured using ddPCR

Scum Line_Chr_Site Mut. Type Gene product

20.1201 63_1_2680077 þ12 COD excinuclease ABC subunit C
20.1201 63_1_2087196 C>T S LysM domain/BON superfamily protein
20.0678 26_2_1996747 28 COD LysR family transcriptional regulator
20.0572 24_3_598965 C>T NS LysR family transcriptional regulator
20.0572 24_1_143249 G>C S LysR family transcriptional regulator
20.0536 11_1_2680077 þ6 COD excinuclease ABC subunit C
20.0269 14_1_743097 C>T S LysR family transcriptional regulator
20.0209 65_1_46681 C>T NS LysR family transcriptional regulator
20.0096 56_3_18850 G>C NS LysR family transcriptional regulator
0.0571 62_1_2680077 26 COD excinuclease ABC subunit C
0.0796 74_1_2680077 þ6 COD excinuclease ABC subunit C
0.0796 74_1_2750800 C>G NS LysR family transcriptional regulator

Cumulative effect of mutations on fitness (Scum) shown for MA line where mutation was found. 99% confidence interval for Scum is 20.057<X < 20.027, significant
selection coefficients are bolded. Line_Chr_Site indicates the MA line, chromosome, and the site of the mutation delimited by underscore. Mutation column (Mut.)
is the size of the indel (#) or the base substitution mutation, with Type column denoting whether the mutation is synonymous (S), nonsynonymous (NS), intergenic
(IG), or coding (COD). Mutations in excinuclease and Lys regulatory proteins are shown.

A. Rana et al. | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/219/2/iyab117/6325026 by U

N
C

 C
harlotte user on 29 July 2022



but also requires the most working time. For ddPCR, the largest
working time is the optimization of sample concentrations, PCR
temperatures, and primers for the target loci. This study provides
sample preparation steps, primers, and optimization protocols
that can enable other labs to easily replicate and extend this
work into other organisms.

To conclude, we have established that ddPCR-MA can be used
to provide high-resolution measurements of fitness effects in
microorganisms by tracking changes in their genotype frequency
during competition. Our work shows a significant correlation be-
tween ddPCR and colony counting methods, and has identified
the presence of specific mutation types associated with strong
beneficial and deleterious effects. The ddPCR-MA methodology is
agnostic with respect to cell type, can use fluorescent probes to
target specific alleles, and this high-throughput, highly accurate
method can be adapted to monitor genotype frequencies and fit-
ness effects in any environment desired (even complex liquid
environments such as blood). This platform will be predomi-
nantly useful when studying epistatic effects of spontaneous
mutations in microorganisms and can be further leveraged to
perform fitness assays in RNA viruses.

Acknowledgments
We thank Jaleh Abedini and Charanya Uppalapati for DNA isola-
tion process and help in labeling competition assays tubes.

Funding
This work is supported by the National Science Foundation
Division of Molecular and Cellular Biosciences grant number
1818125 to principal investigator W.S.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Author contributions
W.S. and A.R. conceived the ideas and designed methodology;
W.S., A.R., M.M.D., D.P., and N.T.T. collected the data; A.R. and
W.S. analyzed the data; A.R., W.S., M.M.D., and V.S.C. led the
writing of the manuscript. All authors contributed critically to
the drafts and gave final approval for publication.

Literature cited
Agnoli K, Schwager S, Uehlinger S, Vergunst A, Viteri DF, et al. 2012.

Exposing the third chromosome of Burkholderia cepacia complex

strains as a virulence plasmid. Mol Microbiol. 83:362–378.

Barrett RD, M’Gonigle LK, Otto SP. 2006. The distribution of beneficial

mutant effects under strong selection. Genetics. 174:2071–2079.

doi:10.1534/genetics.106.062406.

Bataillon T, Bailey SF. 2014. The year in evolutionary biology. Ann N

Y Acad Sci. 1320:76–92.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery

rate—a practical and powerful approach to multiple testing. J R

Stat Soc Series B. 57:289–300. doi:10.2307/2346101.

Blount ZD, Barrick JE, Davidson CJ, Lenski RE. 2012. Genomic analysis

of a key innovation in an experimental Escherichia coli population.

Nature. 489:513–518.

Blundell JR, Levy SF. 2014. Beyond genome sequencing: lineage track-

ing with barcodes to study the dynamics of evolution, infection,

and cancer. Genomics. 104:417–430.

Böndel KB, Kraemer SA, Samuels T, McClean D, Lachapelle J, et al.

2019. Inferring the distribution of fitness effects of spontaneous

mutations in Chlamydomonas reinhardtii. PLoS Biol. 17:

e3000192.doi:10.1371/journal.pbio.3000192.

Boynton PJ, Stelkens R, Kowallik V, Greig D. 2017. Measuring micro-

bial fitness in a field reciprocal transplant experiment. Mol Ecol

Resour. 17:370–380. doi:10.1111/1755-0998.12562.

Caballero A, Keightley PD. 1994. A pleiotropic nonadditive model of

variation in quantitative traits. Genetics. 138:883–900.

Carballo-Pacheco M, Nicholson MD, Lilja EE, Allen RJ, Waclaw B.

2020. Phenotypic delay in the evolution of bacterial antibiotic re-

sistance: mechanistic models and their implications. PLoS

Comput Biol. 16:e1007930.doi:10.1371/journal.pcbi.1007930.

Charlesworth B, Betancourt AJ, Kaiser VB, Gordo I. 2009. Genetic re-

combination and molecular evolution. Cold Spring Harb Symp

Quant Biol. 74:177–186. doi:10.1101/sqb.2009.74.015.

Charlesworth B, Borthwick H, Bartolome C, Pignatelli P. 2004.

Estimates of the genomic mutation rate for detrimental alleles in

Drosophila melanogaster. Genetics. 167:815–826. doi:10.1534/genet-

ics.103.025262.

Charlesworth B, Charlesworth D. 1998. Some evolutionary conse-

quences of deleterious mutations. Genetica. 102/103:3–19.

Charlesworth B, Morgan MT, Charlesworth D. 1993. The effect of del-

eterious mutations on neutral molecular variation. Genetics. 134:

1289–1303.

Chen JS, Witzmann KA, Spilker T, Fink RJ, LiPuma JJ. 2001.

Endemicity and inter-city spread of Burkholderia cepacia genomo-

var III in cystic fibrosis. J Pediatr. 139:643–649. doi:

10.1067/mpd.2001.118430.

Chevin LM, Lande R. 2011. Adaptation to marginal habitats by evolu-

tion of increased phenotypic plasticity. J Evol Biol. 24:1462–1476.

doi:10.1111/j.1420-9101.2011.02279.x.

Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, et al. 2005. A

Tn7-based broad-range bacterial cloning and expression system.

Nat Methods. 2:443–448. doi:10.1038/nmeth765.

Coenye T, Spilker T, Van Schoor A, LiPuma JJ, Vandamme P. 2004.

Recovery of Burkholderia cenocepacia strain PHDC from cystic fibro-

sis patients in Europe. Thorax. 59:952–954.

Coenye T. 2010. Social interactions in the Burkholderia cepacia complex:

biofilms and quorum sensing. Future Microbiol. 5:1087–1099.

Crowley DJ, Boubriak I, Berquist BR, Clark M, Richard E, et al. 2006.

The uvrA, uvrB and uvrC genes are required for repair of ultravio-

let light induced DNA photoproducts in Halobacterium sp.

NRC-1. Saline Syst. 2:11–11. doi:10.1186/1746-1448-2-11.

Davies EK, Peters AD, Keightley PD. 1999. High frequency of cryptic

deleterious mutations in Caenorhabditis elegans. Science. 285:

1748–1751.

Dickinson WJ. 2008. Synergistic fitness interactions and a high fre-

quency of beneficial changes among mutations accumulated un-

der relaxed selection in Saccharomyces cerevisiae. Genetics. 178:

1571–1578.

Dillon MM, Cooper VS. 2016. The fitness effects of spontaneous

mutations nearly unseen by selection in a bacterium with multi-

ple chromosomes. Genetics. 204:1225–1238. doi:10.1534/genet-

ics.116.193060.

Dillon MM, Rouillard NP, Van Dam B, Gallet R, Cooper VS. 2016.

Diverse phenotypic and genetic responses to short-term selection

in evolving Escherichia coli populations. Evolution. 70:586–599. doi:

10.1111/evo.12868.

10 | GENETICS, 2021, Vol. 219, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/219/2/iyab117/6325026 by U

N
C

 C
harlotte user on 29 July 2022



Dillon MM, Sung W, Lynch M, Cooper VS. 2015. The rate and molecu-

lar spectrum of spontaneous mutations in the GC-rich multi-

chromosome genome of Burkholderia cenocepacia. Genetics. 200:

935–946. doi:10.1534/genetics.115.176834.

Engledow AS, Medrano EG, Mahenthiralingam E, LiPuma JJ, Gonzalez

CF. 2004. Involvement of a plasmid-encoded type IV secretion

system in the plant tissue watersoaking phenotype of

Burkholderia cenocepacia. J Bacteriol. 186:6015–6024.

Eyre-Walker A, Keightley PD. 2007. The distribution of fitness effects

of new mutations. Nat Rev Genet. 8:610–618.

Eyre-Walker A, Woolfit M, Phelps T. 2006. The distribution of fitness

effects of new deleterious amino acid mutations in humans.

Genetics. 173:891–900. doi:10.1534/genetics.106.057570.

Fasanello VJ, Liu P, Botero CA, Fay JC. 2020. High-throughput analy-

sis of adaptation using barcoded strains of Saccharomyces cerevi-

siae. PeerJ. 8:e10118.

Foster PL, Lee H, Popodi E, Townes JP, Tang H. 2015. Determinants of

spontaneous mutation in the bacterium Escherichia coli as

revealed by whole-genome sequencing. Proc Natl Acad Sci U S A.

112:E5990–E5999. doi:10.1073/pnas.1512136112.

Gallet R, Cooper TF, Elena SF, Lenormand T. 2012. Measuring selec-

tion coefficients below 10(-3): method, questions, and prospects.

Genetics. 190:175–186. doi:10.1534/genetics.111.133454.

Gobert G, Cotillard A, Fourmestraux C, Pruvost L, Miguet J, et al. 2018.

Droplet digital PCR improves absolute quantification of viable

lactic acid bacteria in faecal samples. J Microbiol Methods. 148:

64–73. doi:10.1016/j.mimet.2018.03.004.

Gonzalez CF, Pettit EA, Valadez VA, Provin EM. 1997. Mobilization,

cloning, and sequence determination of a plasmid-encoded

polygalacturonase from a phytopathogenic Burkholderia

(Pseudomonas) cepacia. Mol Plant Microbe Interact. 10:840–851.

Gordo I, Perfeito L, Sousa A. 2011. Fitness effects of mutations in bac-

teria. J Mol Microbiol Biotechnol. 21:20–35.

Hall DW, Joseph SB. 2010. A high frequency of beneficial mutations

across multiple fitness components in Saccharomyces cerevisiae.

Genetics. 185:1397–1409. doi:10.1534/genetics.110.118307.

Halligan DL, Keightley PD. 2009. Spontaneous mutation accumula-

tion studies in evolutionary genetics. Annu Rev Ecol Evol Syst. 40:

151–172. doi:10.1146/annurev.ecolsys.39.110707.173437.

Hartigan JA, Hartigan PM. 1985. The dip test of unimodality. Ann

Statist. 13:70–84.

Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, et al. 2013.

Comparison of droplet digital PCR to real-time PCR for quantita-

tive detection of cytomegalovirus. J Clin Microbiol. 51:540–546.

doi:10.1128/JCM.02620-12.

Heilbron K, Toll-Riera M, Kojadinovic M, MacLean RC. 2014. Fitness

is strongly influenced by rare mutations of large effect in a micro-

bial mutation accumulation experiment. Genetics. 197:981–990.

doi:10.1534/genetics.114.163147.

Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, et al.

2011. High-throughput droplet digital PCR system for absolute

quantitation of DNA copy number. Anal Chem. 83:8604–8610.

doi:10.1021/ac202028g.

Keightley PD, Lynch M. 2003. Toward a realistic model of mutations

affecting fitness. Evolution. 57:683–685; discussion 686–9.

Kibota TT, Lynch M. 1996a. Estimate of the genomic mutation rate

deleterious to overall fitness in E. coli. Nature. 381:694–696. doi:

10.1038/381694a0.

Kibota TT, Lynch M. 1996b. Estimate of the genomic mutation rate

deleterious to overall fitness in E. coli. Nature. 381:694–696.

Kondrashov AS. 1988. Deleterious mutations and the evolution of

sexual reproduction. Nature. 336:435–440. doi:10.1038/336435a0.

Kraemer SA, Bondel KB, Ness RW, Keightley PD, Colegrave N. 2017.

Fitness change in relation to mutation number in spontaneous

mutation accumulation lines of Chlamydomonas reinhardtii.

Evolution. 71:2918–2929. doi:10.1111/evo.13360.

Kraemer SA, Morgan AD, Ness RW, Keightley PD, Colegrave N. 2016.

Fitness effects of new mutations in Chlamydomonas reinhardtii

across two stress gradients. J Evol Biol. 29:583–593.

Lea DE, Coulson CA. 1949. The distribution of the numbers of

mutants in bacterial populations. J Genet. 49:264–285.

Lenski RE, Wiser MJ, Ribeck N, Blount ZD, Nahum JR, et al. 2015.

Sustained fitness gains and variability in fitness trajectories in

the long-term evolution experiment with Escherichia coli. Proc Biol

Sci. 282:20152292.doi:10.1098/rspb.2015.2292.

Li H, Durbin R. 2009. Fast and accurate short read

alignment with Burrows–Wheeler transform. Bioinformatics. 25:

1754–1760.

Lind PA, Andersson DI. 2008. Whole-genome mutational biases in

bacteria. Proc Natl Acad Sci USA. 105:17878–17883. doi:

10.1073/pnas.0804445105.

LiPuma JJ, Spilker T, Coenye T, Gonzalez CF. 2002. An epidemic

Burkholderia cepacia complex strain identified in soil. Lancet. 359:

2002–2003.

LiPuma JJ. 2005. Update on the Burkholderia cepacia complex. Curr

Opin Pulm Med. 11:528–533.

Liu L, Spilker T, Coenye T, LiPuma JJ. 2003. Identification by subtrac-

tive hybridization of a novel insertion element specific for two

widespread Burkholderia cepacia genomovar III strains. J Clin

Microbiol. 41:2471–2476.

Loewe L, Hill WG. 2010. The population genetics of mutations: good,

bad and indifferent. Philos Trans R Soc Lond B Biol Sci. 365:

1153–1167. doi:10.1098/rstb.2009.0317.

Lynch M, Sung W, Morris K, Coffey N, Landry CR, et al. 2008. A

genome-wide view of the spectrum of spontaneous mutations in

yeast. Proc Natl Acad Sci USA. 9272–9277. 105:

Mahenthiralingam E, Vandamme P. 2005. Taxonomy and pathogen-

esis of the Burkholderia cepacia complex. Chron Respir Dis. 2:

209–217.

McDermott GP, Do D, Litterst CM, Maar D, Hindson CM, et al. 2013.

Multiplexed target detection using DNA-binding dye chemistry in

droplet digital PCR. Anal Chem. 85:11619–11627. doi:10.1021/

ac403061n.

Morrison T, Hurley J, Garcia J, Yoder K, Katz A, et al. 2006.

Nanoliter high throughput quantitative PCR. Nucleic Acids Res.

34:e123.

Muller HJ. 1964. The relation of recombination to mutational ad-

vance. Mutat Res. 1:2–9.

Ottesen EA, Hong JW, Quake SR, Leadbetter JR. 2006. Microfluidic dig-

ital PCR enables multigene analysis of individual environmental

bacteria. Science. 314:1464–1467.

Perfeito L, Sousa A, Bataillon T, Gordo I. 2014. Rates of fitness decline

and rebound suggest pervasive epistasis. Evolution. 68:150–162.

doi:10.1111/evo.12234.

Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, et al.

2012. Evaluation of a droplet digital polymerase chain reaction

format for DNA copy number quantification. Anal Chem. 84:

1003–1011. doi:10.1021/ac202578x.

Poledne R, Zicha J. 2018. Human genome evolution and development

of cardiovascular risk factors through natural selection. Physiol

Res. 67:155–163. doi:10.33549/physiolres.933885.

Robert L, Ollion J, Robert J, Song X, Matic I, et al. 2018. Mutation dy-

namics and fitness effects followed in single cells. Science. 359:

1283–1286.

A. Rana et al. | 11

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/219/2/iyab117/6325026 by U

N
C

 C
harlotte user on 29 July 2022



Sharp NP, Agrawal AF. 2016. The decline in fitness with inbreeding:

evidence for negative dominance-by-dominance epistasis in

Drosophila melanogaster. J Evol Biol. 29:857–864.

Shaw FH, Geyer CJ, Shaw RG. 2002. A comprehensive model of muta-

tions affecting fitness and inferences for Arabidopsis thaliana.

Evolution. 56:453–463.

Sniegowski PD, Gerrish PJ, Johnson T, Shaver A. 2000. The evolution of

mutation rates: separating causes from consequences. Bioessays.

22:1057–1066. doi:10.1002/1521-1878(200012)22:12<1057::AID-BIE

S3>3.0.CO;2-W.

Sniegowski PD, Gerrish PJ, Lenski RE. 1997. Evolution of high muta-

tion rates in experimental populations of E. coli. Nature. 387:

703–705. doi:10.1038/42701.

Sprouffske K, Aguilar-Rodriguez J, Sniegowski P, Wagner A. 2018.

High mutation rates limit evolutionary adaptation in Escherichia

coli. PLoS Genet. 14:e1007324.doi:10.1371/journal.pgen.1007324.

Sung W, Ackerman MS, Dillon MM, Platt TG, Fuqua C, et al. 2016.

Evolution of the Insertion-Deletion Mutation Rate Across the

Tree of Life. G3 (Bethesda). 6:2583–2591. doi:10.1534/g3.116.030

890.

Sung W, Ackerman MS, Gout JF, Miller SF, Williams E, et al. 2015.

Asymmetric context-dependent mutation patterns revealed

through mutation-accumulation experiments. Mol Biol Evol. 32:

1672–1683. doi:10.1093/molbev/msv055.

Sung W, Tucker AE, Doak TG, Choi E, Thomas WK, et al. 2012.

Extraordinary genome stability in the ciliate Paramecium tetraure-

lia. Proc Natl Acad Sci USA. 109:19339–19344. doi:10.1073/

pnas.1210663109.

Taylor SC, Laperriere G, Germain H. 2017. Droplet Digital PCR versus

qPCR for gene expression analysis with low abundant targets:

from variable nonsense to publication quality data. Sci Rep. 7:

2409.doi:10.1038/s41598-017-02217-x.

Tenaillon O, Toupance B, Nagard HL, Taddei F, Godelle B. 1999.

Mutators, population size, adaptive landscape and the adapta-

tion of asexual populations of bacteria. Genetics. 152:485–493.

Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS. 2013. Tangled

bank of experimentally evolved Burkholderia biofilms reflects se-

lection during chronic infections. Proc Natl Acad Sci USA. 110:

E250–E259.

Trindade S, Perfeito L, Gordo I. 2010. Rate and effects of spontaneous

mutations that affect fitness in mutator Escherichia coli. Philos

Trans R Soc Lond B Biol Sci. 365:1177–1186.

Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, et al. 2009.

Taxon K, a complex within the Burkholderia cepacia complex, com-

prises at least two novel species, Burkholderia contaminans sp.

nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol. 59:

102–111.

Vassilieva LL, Hook AM, Lynch M. 2000. The fitness effects of sponta-

neous mutations in Caenorhabditis elegans. Evolution. 54:

1234–1246.

Vogelstein B, Kinzler KW. 1999. Digital PCR. Proc Natl Acad Sci USA.

96:9236–9241.

Whale AS, Cowen S, Foy CA, Huggett JF. 2013. Methods for applying

accurate digital PCR analysis on low copy DNA samples. PLoS

One. 8:e58177.doi:10.1371/journal.pone.0058177.

Whale AS, Huggett JF, Tzonev S. 2016. Fundamentals of multiplexing

with digital PCR. Biomol Detect Quantif. 10:15–23. doi:

10.1016/j.bdq.2016.05.002.

Wloch DM, Szafraniec K, Borts RH, Korona R. 2001. Direct esti-

mate of the mutation rate and the distribution of fitness

effects in the yeast Saccharomyces cerevisiae. Genetics. 159:

441–452.

Zeyl C, DeVisser JA. 2001. Estimates of the rate and distribution of fit-

ness effects of spontaneous mutation in Saccharomyces cerevisiae.

Genetics. 157:53–61.

Zhang XS, Hill WG. 2005. Genetic variability under mutation selec-

tion balance. Trends Ecol Evol. 20:468–470. doi:10.1016/j.tree.

2005.06.010.

Communicating editor: P. J. Wittkopp

12 | GENETICS, 2021, Vol. 219, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/219/2/iyab117/6325026 by U

N
C

 C
harlotte user on 29 July 2022


	tblfn1
	tblfn2

