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Abstract 

Water distribution systems (WDSs) face a significant challenge in the form of pipe leaks. Pipe 
leaks can cause loss of a large amount of treated water, leading to pressure loss, increased 
energy costs, and contamination risks. Locating pipe leaks has been a constant challenge for 
water utilities and stakeholders due to the underground location of the pipes. Physical 
methods to detect leaks are expensive, intrusive, and heavily localized. Computational 
approaches provide an economical alternative to physical methods. Data-driven machine 
learning-based computational approaches have garnered growing interest in recent years to 
address the challenge of detecting pipe leaks in WDSs. While several studies have applied 
machine learning models for leak detection on single pipes and small test networks, their 
applicability to the real-world WDSs is unclear. Most of these studies simplify the leak 
characteristics and ignore modeling and measuring device uncertainties, which makes the 
scalability of their approaches questionable to real-world WDSs. Our study addresses this 
issue by devising four study cases that account for the realistic leak characteristics (multiple, 
multi-size, and randomly located leaks) and incorporating noise in the input data to account 
for the model- and measuring device- related uncertainties. A machine learning-based 
approach that uses simulated pressure as input to predict both location and size of leaks is 
proposed. Two different machine learning models: Multilayer Perceptron (MLP) and 
Convolutional Neural Network (CNN), are trained and tested for the four study cases, and their 
performances are compared. The precision and recall results for the L-Town network indicate 
good accuracies for both the models for all study cases, with CNN generally outperforming 
MLP. 
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1 INTRODUCTION 

Water distribution systems (WDSs) face a significant challenge in the form of pipe leaks. Pipe leaks 
can cause loss of large amount of treated water in WDSs leading to pressure loss and increased 
energy costs. Leaks can also pose risks of water contamination [1]. As reported in [2], an estimated 
126 billion cubic meters of water is lost every year worldwide. With increasing demands and 
growing concerns about water scarcity in the face of climate change, the prevention of water 
losses from WDSs is crucial. Moreover, pipe leaks can grow over time and lead to breaks and 
bursts causing property damage and traffic disruptions. Therefore, timely detection and 
prevention of pipe leaks are paramount. Unlike pipe breaks, pipe leaks are tough to detect as the 
flow or pressure changes produced by leaks are not humanly discernable [3]. In addition, the 
underground location of pipes makes it even harder to detect leaks. Physical methods to detect 
leaks are expensive and can cause interruption to water service [4]. Computational approaches 
provide an economical alternative to physical methods. 

Several computational approaches have been proposed for leak detection (an extensive review is 
provided in [5]). Machine learning approaches are one of the data-driven computational 
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approaches that have gathered increasing interest in the last two decades in leak detection studies 
[6]. Machine learning methods use a large amount of data related to the hydraulic properties of 
WDSs such as pressure, flowrate, acoustic vibration, optics, or temperature for leak detection [7]. 
Pressure and flowrates are the most commonly used properties for leak detection [8]. 

While a good amount of research has been conducted on the application of machine learning 
models for leak detection in pipes [9], the question about their applicability to real-world WDSs 
remains unclear. One of the critical reasons for this lack of clarity concerns the scalability of the 
approaches considered in these studies. In [10] and [11], Convolutional Neural Network (CNN) 
was used for leak detection in a single pipe using simulated negative pressure wave and scalogram 
images of vibration signals as inputs, respectively. In [12], MLP was used with a cascade-forward 
back-propagation to detect leaks in a single pipe using simulated pressure data. However, 
analyzing leaks by isolating individual pipes in complex interconnected WDSs is not a viable 
solution in the field as it is difficult to isolate specific pipes. Further, the tools and resources 
required to collect some of these input data for individual pipes in large real-world WDSs are 
infeasible. Beyond single pipe analyses, several studies have considered complete or partial 
hydraulic systems. MLP was used in [13] to predict leaks in a simple hydraulic system using 
numerically obtained fluid transient waves as input. In [14], SVM was used to predict leak size and 
location for an isolated section of a WDS based on simulated pressure data. In [15], a model-based 
k-Nearest Neighbors (k-NN) classifier was used to identify leak events and locations. These 
studies still face the challenge of scalability as extrapolating their results and, therefore, 
application to the larger real-world WDSs is very challenging. 

Another factor that limits the real-world application of some of the existing machine learning 
approaches relates to the simplifying assumptions regarding the characteristics of pipe leaks in 
WDSs. For example, the application of the Bayesian classifier in [16] to detect leaks assumes that 
there is only a single leak in the WDS, which is rarely true. In [17], unsupervised principal 
component analysis (PCA) was used for leak detection by assuming a single, constant size leak. 

Furthermore, very few studies have considered uncertainties associated with hydraulic 
simulation models and imprecision of measurement devices in real-world WDSs. The parameters 
such as demands, pipe roughness, pipe diameters, and lengths used in the hydraulic models have 
associated uncertainties [18]. These uncertainties affect the accuracy of the simulated pressure 
and flow data. One way to account for the hydraulic model parameter uncertainties is to add noise 
to these parameters prior to simulation, as shown in [19] and [20]. However, such an approach is 
inadequate to encapsulate the uncertainties related to the imprecision of measurement devices 
such as pressure sensors and flow meters of the real-world WDSs. 

This study proposes a machine learning-based approach to detecting and localizing leaks in WDSs, 
which considers multiple realistic leak scenarios and accounts for hydraulic model uncertainties 
and instrument imprecision. Two different machine learning models are used to predict leaks 
using simulated pressure measurements as input. The key contributions of this study with respect 
to previous approaches include: 

• Overcoming the unrealistic simplification about occurrence of a single leak at a time 
assumed by most state-of-the-art techniques [15] by generalizing to multi-leak problems. 

• Considering leaks of varying sizes to represent more realistic leak scenarios. 

• Accounting for the realistic nature of leak locations by considering the possibility of 
random leak locations anywhere within a WDS. 

• Consideration of the most common and impactful hydraulic model uncertainty, i.e., 
demand uncertainty, as well as measuring instrument imprecision through the addition of 
noise to the input data. 



Basnet et al. (2022) 

 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

 

 

• Simultaneous prediction of location as well as size of the leaks. 

Even though the machine learning models are trained using simulated pressure data, they are 
applicable to predict leaks using real-world measurements as long as the hydraulic model is a 
reasonable representation of the real system. For WDSs that have abundant real-world pressure 
sensor measurements, these models can easily be fine-tuned and tested using the real data. 

2 METHODS 

2.1 General Framework 

Figure 1 illustrates the general framework proposed in this study to detect and localize leaks in 
WDS pipes. The framework starts with a WDS hydraulic model that generates simulated 
operational pressure data. First, pressure data for a leak-free scenario is generated by simulating 
the hydraulic model using the EPANET simulator [21]. It is followed by pressure data generation 
for multiple different leak scenarios. Pressure differences between the leak scenarios and the 
leak-free scenario are then computed and stored as a pressure readings dataset. The 
corresponding leak scenarios are stored as a leak values dataset. Noise is then added to the 
pressure readings dataset when required for the case under study described in Section 2.5. The 
resulting pressure readings dataset and the leak values dataset are then randomly shuffled and 
split into training sets and testing sets; a train to test ratio of 80 to 20 is used. The training pressure 
dataset and the training leak values dataset are scaled and fed to machine learning models. The 
pressure data is considered as covariates and the leak values as responses. The models are trained 
and tuned, and the optimized models are selected for the prediction of leaks. Finally, the leak 
prediction and model evaluation are performed on the testing pressure and leak values datasets 
using the optimized models; predicted model outputs are compared with the corresponding true 
leak values. 

 
Figure 1. General framework for detecting leaks in WDS 

 

2.2 Machine Learning Models 

2.2.1 Multilayer Perceptron (MLP) 

Multilayer Perceptrons (MLPs) are supervised-learning models based on deep neural networks. 
An MLP model consists of an input layer, an output layer, and a selected number of dense hidden 
layers located between the input and the output layers (Figure 2). Activation layers follow hidden 
layers to activate or deactivate received signals. Multiple activation functions are available to be 
used in these activation layers. 

2.2.2 1-D Convolutional Neural Network (CNN) 
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Similar to MLPs, Convolutional Neural Networks (CNNs) are also supervised-learning-based deep 
neural networks. The key difference between CNNs and MLPs is the presence of convolutional and 
pooling layers in CNNs. As shown in Figure 3, the convolutional layers produce convolved feature 
maps, which allow for contextual learning, and the pooling layers downsample these maps to 
extract abstract features from the data. The convolutional layers use kernels or filters to extract 
the features. A one-dimensional (1-D) CNN model uses filters that only vary in depth (i.e., one 
dimension). CNN models also have an input, an output layer, some dense hidden layers, and 
activation layers similar to the MLPs. 

2.2.3 Hyperparameters and Model Tuning 

Total Number of Iterations (Epochs): MLP and CNN models are trained for a number of 
iterations (epochs) to ensure the stability in the training process. The optimal model and its 
corresponding weights are determined by monitoring the training and validation errors over the 
entire number of epochs. 

Error Function: The functions to calculate the training and validation errors are chosen based on 
the nature of the problem. In this study, leak detection is formulated as a regression type problem 
to simultaneously solve for both leak locations and sizes. Therefore, the mean squared error 
(MSE) function is used; mean absolute error (MAE) can be used as an alternative to MSE. 

Activation Function: A trial-and-error evaluation of multiple activation functions identified the 
Leaky Rectified Linear Unit (L-ReLU) as a suitable activation function for this study. L-ReLU 
prevents the problem of vanishing gradient during forward propagation like the regular rectified 
linear unit (ReLU) and has an added advantage of preventing vanishing gradients during 
backward propagation [22]. 

Optimizer: The commonly used Adam optimizer is used in this study. 

 
Figure 2: Multilayer Perceptron 

 

 
Figure 3: Convolutional Neural Network 

2.3 Study Network 

In this study, the leak detection methods are applied to a standard test network called the L-Town 
water network (Figure 4). The L-Town network has been previously used in several modeling and 
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simulation related researches. For example, this network was also used in the Leakage Detection 
and Isolation Methods (BattLeDIM 2020) [23] competition to evaluate the performances of 
different machine learning and computational models for leak detection. The L-Town network 
consists of 905 pipes and 782 junctions and is primarily a tank-regulated model network. 

 

 
Figure 4: L-Town water network 

2.4 Candidate Leak Regions 

Localizing leaks to the actual pipes or junctions requires large amount of data, which is infeasible 
to obtain from real-world WDSs. Therefore, a lesser resolution is adopted for leak localization in 
this study. The entire water network is divided into several sub-areas that are considered 
candidate leak regions. The L-Town network is divided into 33 candidate leak regions (Figure 5a). 
A k-means clustering technique [24] is used to divide the network into these 33 candidate leak 
regions based on Euclidean distances. Leaks are modelled as emitters in EPANET and are assumed 
to occur at the center of each pipe. Since EPANET supports emitters only on nodes, new junction 
nodes are inserted at the middle of every pipe in the network using the Morph package in WNTR 
[25]. Candidate leak nodes representing each leak region is assumed to be at the centroid of each 
leak region. Centroids of leak regions are estimated using k-nearest neighbour search algorithm. 
For any given leak scenario, a leak located anywhere within the boundaries of a candidate leak 
region is defined by this region. While a hydraulic distance-based clustering measure results in 
more homogeneous clusters, the less homogeneous clusters obtained using Euclidean distance-
based measure may pose a more significant challenge for the leak detection models. Therefore, 
the Euclidean distance-based clustering used here is a more conservative approach. 

A pressure node is assigned to each of the 33 candidate regions to track the pressure changes due 
to leak/s in that region. These pressure nodes represent pressure sensors in real-world WDSs. 
The locations of the pressure nodes are based on the locations used in BattLeDIM 2020 and are 
shown in Figure 5b. 
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 (a) (b) 

Figure 5: Candidate leak regions: (a) Leak regions; (b) Pressure sensors within each region 

2.5 Study Cases 

Four study cases are considered in this study to represent the realistic leak characteristics, and 
the uncertainties in input data due to water network model inaccuracies and measuring device 
imprecision are considered for this study. 

Case A: No-noise – Input pressure difference data is free of noise. It represents the ideal case of 
accurate WDS models and precise measuring devices. Leaks are assumed to occur at the centroid 
of each leak region. 

Case B: Demand-noise – Input pressure difference data accounts for the WDS model 
inaccuracies. To mimic the inaccuracies in demand values in the WDS model, random Gaussian 
noise are added to the demands prior to simulation. Simulated pressure data are then generated 
using the modified WDS model. A ten percent Gaussian noise is used. Leaks are assumed to occur 
at the centroid of each leak region. 

Case C: Mixed-noise – Input pressure difference data accounts for the WDS model inaccuracies 
as well as the measuring device imprecision. Unlike the demand-noise case, noise is added to the 
final pressure differences of the leak and leak free scenarios. A ten percent Gaussian noise is used. 
Leaks are assumed to occur at the centroid of each leak region. 

Case D: Random leaks – The leaks can be located anywhere within the boundaries of the 
candidate leak regions instead of their centroids.  No additional noise is imposed.  

2.6 Data Generation 

The input datasets used in this study constitute the leak scenario and the pressure difference 
datasets, which are generated in two sequential steps. 

2.6.1 Leak Scenario Generation 

The following four assumptions are considered for the generation of realistic leak scenarios for 
this study: 

• A leak scenario must consist of at least one leak.  

• A leak scenario can include a maximum of 3 leaks. 

• A leak can be located in any of the 33 candidate leak regions. 

• The leak size ranges from 0 to 5 as compared to the 0 to 3 range used in BattLeDIM 2020. 
The leak size is the discharge coefficient in the leak equation (1). 
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𝑞𝑞 = 𝐶𝐶 𝑝𝑝𝛾𝛾 (1) 

where q = flow rate, p = pressure, C = discharge coefficient, and Υ (=0.5) = pressure exponent. 

Applying the above assumptions, leak scenarios are generated using the following general 
procedure: 

Step 1 – For a leak scenario, the total number of leaks is determined by drawing in random a 
number n from the set {1, 2, 3}. 

Step 2 – Based on the outcome n of the previous draw, n candidate leak locations out of the 33 
candidate leak locations are drawn at random. 

Step 3 – For these n candidate leak locations, the leak sizes are randomly drawn from the leak size 
range of 0 to 5. 

Step 4 – Repeat steps 1 – 3 for 100,000 times to generate 100,000 leak scenarios. 

The 100,000 leak scenarios generated from the above procedure were saved as a leak scenario 
dataset. 

2.6.2 Pressure Data Generation 

Simulated pressure data are generated by the following procedure: 

Step 1 – As discussed in Section 2.4, assign one pressure node each to all 33 candidate regions. 
The locations of the pressure nodes are based on the locations used in BattLeDIM 2020. 

Step 2 – Simulate a leak-free scenario for the specified study case defined in Section 2.5 by running 
the base model with the EPANET simulator. Store the resulting pressure values at the 33 pressure 
nodes. 

Step 3 – Pick a leak scenario from the leak scenario dataset and add the associated leaks to the 
base model. Then, run this modified model with the EPANET simulator and store the resulting 
pressure values at the 33 pressure nodes. 

Step 4 – Repeat Step 3 for all the 100,000 leak scenarios in the dataset. 

Step 5 – Compute the pressure differences between each of the 100,000 leak scenarios and the 
leak-free scenario. Then, combine the 100,000 pressure differences together as a pressure 
difference dataset. 

Step 6 – Add noise to the pressure difference data depending upon the study case discussed in 
Section 2.5. 

2.7 Model Validation and Testing 

2.7.1 Train-Test Split 

The input pressure and leak datasets are divided into training and test data. A training to test ratio 
of 80 to 20 is used to split the data. The two models are validated using the test datasets. 

2.7.2 Metrics and Thresholds 

The performance of the two machine learning models to predict leaks is evaluated using the two 
standard classification metrics: precision and recall. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 ×  100 (2) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 ×  100 (3) 
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where, TP = True Positives; FP = False Positives; and FN = False Negatives. 

In the context of this study, precision is the percentage of the actual leaks out of all leak predictions 
made by the models. Recall is the percentage of the actual leaks identified by our models out of all 
the leaks in the dataset. 

In this study, the problem of leak detection is formulated as a regression type problem to 
simultaneously solve for both leak locations and sizes. To assess the model performances in terms 
of precision and recall, a post-processing of model outputs is required. This post-processing 
involves the use of thresholds to determine correct/incorrect location and size classifications. A 
set of nine thresholds ranging from 0.1 to 0.9 increasing incrementally by 0.1 are used. The 
thresholds are in the same unit as leak sizes and represent the precision of the measuring devices 
for real-world systems. For example, a threshold of 0.1 means that the leaks that are smaller than 
0.1 in the dataset are considered as no-leaks and only the predictions that are within 0.1 units of 
the actual leak values are considered as correct classifications. 

2.8 Software and Tools 

The following software and tools were used in this study: 

• EPANET Simulator 2.0 version – Hydraulic simulations are performed using EPANET 
simulator. 

• WNTR Morph package – For splitting the network to add junction nodes at the middle of 
each pipe. 

• MatLab 2019b version – Input data generation is done by running EPANET simulator in 
MatLab. Matlab is also used to generate candidate leak regions and nodes. 

• Python version 3.7 – Model training, testing, and validation is done in Python. 

• Tensorflow version 2.1.6 – Machine learning models are built using the Tensorflow 
package. 

3 RESULTS AND DISCUSSION 

Leak prediction performance of the MLP and CNN models are studied for the four study cases 
described in Section 2.5. The two models are compared by calculating precision and recall 
accuracies for the test dataset. Table 1 summarizes the architecture and hyperparameters for the 
optimal MLP and CNN models. The optimal MLP model has four dense layers: the input layer and 
the output layer, with 33 units each, and the two central dense layers with 64 and 128 units. The 
optimal CNN model consists of six layers - four dense layers and two convolutional layers. Like 
MLP, two out of the four dense layers are the input and the output layers, with 33 units each. The 
remaining two dense layers are hidden layers with 500 and 100 units, respectively. The two 
convolutional layers (also hidden) that follow the input layers consist of 256 and 128 
filters. Figure 6 shows the trend of the training and validation mean squared errors for the no-
noise case for the two models. The validation errors show a general decreasing trend that stops 
after the 100th epoch, indicating model overfitting beyond 100 epochs. The same is true for the 
validation errors for the other three study cases. Therefore, the required number of iterations for 
all model training is set to 100 epochs. 
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Table 1. Machine learning model details 

Model Architecture Hidden 
Layers 

Dense 
Layers 

Convolutional 
Layers 

Activation 
Functions 

Learning 
Rate 

Optimizer 

MLP 33-64-128-
33 

2 4 - LReLU 0.05 Adam 

CNN 33-256-128-
500-100-33 

4 4 2 LReLU 0.05 Adam 

 

 
Figure 6. Training and validation error dynamics 

3.1 Comparison of CNN and MLP model performance 

The complete model performances for the MLP and the CNN models for the four study cases are 
summarized in Tables 2 and 3. Figures 7 – 10 show the precision and recall for the two models at 
three selected thresholds (0.1, 0.5, and 0.9) for the four study cases (no-noise, demand-noise, 
mixed-noise, and random leaks). The results at these three thresholds are representative of all 
nine thresholds considered in this study, with 0.1, 0.5, and 0.9 indicating the most, the mild, and 
the least stringent condition, respectively. The figures show that precision is generally high (> 
60%) for the CNN model at all three thresholds for all study cases except for the random leak case. 
Comparatively, precision for the MLP model is lower at all thresholds. The difference in precision 
between the two models is significantly high (> 40%) at 0.1 threshold for the no-noise, demand-
noise, and mixed-noise cases. This difference, however, starts to diminish as the threshold 
becomes less stringent. The higher precision for the CNN model compared to the MLP model for 
all four study cases indicates its superiority in minimizing false leak predictions even with noise 
in the input data.  

Similar to precision, recall for the CNN model is higher than the MLP model at the most stringent 
threshold (0.1) for all four study cases. However, the difference in recall of the two models at 0.1 
threshold is not as high as the difference in precision. At the lesser stringent thresholds, 
particularly at 0.9, the difference in recall for the two models is insignificant for the no-noise, 
demand-noise, and mixed-noise cases. However, this difference is significant for the random leak 
case at all thresholds, with the CNN model outperforming the MLP model throughout. Overall, the 
recall results are consistent with the precision results in implying the superior performance of the 
CNN model over the MLP for the L-Town network. 
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 (a) (b) 

Figure 7. Model performance for no-noise case: (a) Precision; (b) Recall. 

 
 (a) (b) 

Figure 8. Model performance for demand-noise case: (a) Precision; (b) Recall. 

 
 (a) (b) 

Figure 9. Model performance for mixed-noise case: (a) Precision; (b) Recall. 
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 (a) (b) 

Figure 10. Model performance for random leaks case: (a) Precision; (b) Recall. 

3.2 Problem complexity of the study cases 

The precision and recall for the four study cases (with both CNN and MLP) were compared to 
understand the complexity of the leak detection task associated with each of the cases. Both 
precision and recall at all thresholds for the ideal but unrealistic no-noise case (Figure 7) rank 
highest compared to the other three study cases (Figure 8 – 10) for both MLP and CNN models. 
Precision and recall are comparatively high (> 40%) even at the most stringent threshold (0.1) for 
the no-noise case. These high accuracies can be attributed to the fact that the leak signatures in 
the input pressure difference data that are key to locating leaks are unaffected without noise. The 
demand-noise case ranks second among these four cases based on the precision and recall values. 
While the uncertainty in demand parameters in the hydraulic model can generate noise in the 
simulated pressure data, the noise is systematic. Therefore, it affects the leak signatures to a lesser 
degree. For the mixed-noise case, the 10% Gaussian noise added to the input pressure differences 
introduces randomness in the data that affect the leak signatures to a comparatively greater 
degree. Therefore, the precision and recall of the two models for the mixed-noise case are 
significantly lower compared to no-noise and demand-noise cases. The leak signatures are affected 
to the highest degree for the random leaks case. While no direct noises are added to the input data 
as is done for the mixed-noise case, the randomness in leak locations within a leak region 
introduces the possibility of a multitude of leak signatures for the same leak scenario, which is the 
most challenging for the machine learning models to learn. Therefore, the random leaks case ranks 
lowest in precision and recall. The effect of the complexity of the mixed-noise and the random leaks 
cases is profound at the 0.1 threshold because the artificial noise created by the randomness in 
the input data drowns out the changes in pressure input caused by a leak size or leak size 
difference of 0.1. 
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Table 2. Precision for the study cases 

Threshold No-noise Demand-noise Mixed-noise Random leaks 

MLP CNN MLP CNN MLP CNN MLP CNN 

0.1 45.2 87.2 28.8 80.5 15.9 60.5 2.7 7.1 

0.2 78.5 94.4 63.7 89.7 43.2 77.0 9.1 22.5 

0.3 89.4 96.3 79.9 93.5 61.6 84.0 17.7 36.9 

0.4 93.9 97.4 87.4 95.4 72.6 87.7 27.1 48.0 

0.5 96.0 98.0 91.6 96.5 79.2 90.0 36.1 56.5 

0.6 97.3 98.5 94.0 97.2 83.7 91.5 44.2 63.0 

0.7 98.0 98.7 95.5 97.7 87.0 92.6 51.2 68.3 

0.8 98.5 98.8 96.5 98.1 89.3 93.5 57.3 72.3 

0.9 98.8 98.9 97.1 98.3 91.1 94.3 62.8 75.6 

 
Table 3. Recall for the study cases 

Threshold No-noise Demand-noise Mixed-noise Random leaks 

MLP CNN MLP CNN MLP CNN MLP CNN 

0.1 43.9 64.1 31.5 58.3 22.7 31.7 8.1 13.0 

0.2 69.3 82.5 54.9 77.2 40.5 50.4 15.3 24.8 

0.3 81.6 88.9 69.6 85.4 53.0 62.0 22.1 34.9 

0.4 88.4 92.3 79.2 89.7 62.7 69.0 29.2 43.1 

0.5 92.2 94.3 85.6 92.4 69.8 73.9 35.9 50.0 

0.6 94.6 95.6 89.8 94.0 75.1 77.7 41.8 55.8 

0.7 96.1 96.4 92.6 95.1 79.3 80.6 47.3 60.8 

0.8 97.0 97.0 94.4 95.8 82.6 82.8 52.2 65.0 

0.9 97.7 97.4 95.7 96.5 85.4 84.7 56.7 68.6 

4 CONCLUSIONS 

In this study, a machine learning-based approach is proposed for detecting leaks in WDSs that 
takes into account the characteristics of leaks present in real-world WDSs. The impact of WDS leak 
characteristics (varying size, multiple occurrences, and random location) and the uncertainties 
associated with the hydraulic model parameter and measuring devices are studied by analyzing 
the performance of two different machine learning models. One of the key findings of this study is 
that the effectiveness of the machine learning-based leak detection method is model-dependent. 
In this study, the CNN model is more effective than the MLP model in detecting leaks. While this 
result is specific to the study network (L-Town) using pressure differences as input, its implication 
expands beyond this study. It establishes the need to explore multiple models when developing a 
leak detection method. The other key finding of this study highlights the necessity of considering 
various types of leak scenarios that bear realistic leak characteristics to understand better the 
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applicability of the leak detection models to real WDSs. Simplistic and unrealistic leak scenarios 
such as the no-noise case overestimate the performance of the models, as seen in this study. 
Models trained under such scenarios can severely underperform and be deemed useless for real 
WDSs. However, the high accuracies of the CNN and the MLP models for the three realistic study 
cases involving data noise, random leaks, and model and instrument uncertainties are proof of 
their potential for application to real-world leak detection problems. It is also important to point 
out that the locations of the pressure sensors used to generate the input data in this study are not 
based on hydraulic analysis and, therefore, are not optimal. Optimally located pressure nodes can 
further improve the accuracies of the models. 

Several possibilities remain open for improving the work done in this study. Continuing the 
exploration of real-world leak characteristics, the addition of other types of noise can be 
considered for the input data. Using multiple inputs instead of a single input such as pressure is 
another possibility to improve leak detection accuracy. Our work in progress includes adding flow 
data alongside pressure data to predict leak locations and size. Finally, to understand the true 
potential of these leak detection models, the next step forward for this study is to apply them to a 
real-world WDS. 
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