
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

1

Streaming Variational Monte Carlo
Yuan Zhao*, Josue Nassar*, Ian Jordan, Mónica Bugallo, and Il Memming Park

Abstract—Nonlinear state-space models are powerful tools to describe dynamical structures in complex time series. In a streaming

setting where data are processed one sample at a time, simultaneous inference of the state and its nonlinear dynamics has posed

significant challenges in practice. We develop a novel online learning framework, leveraging variational inference and sequential Monte

Carlo, which enables flexible and accurate Bayesian joint filtering. Our method provides an approximation of the filtering posterior which

can be made arbitrarily close to the true filtering distribution for a wide class of dynamics models and observation models. Specifically, the

proposed framework can efficiently approximate a posterior over the dynamics using sparse Gaussian processes, allowing for an

interpretable model of the latent dynamics. Constant time complexity per sample makes our approach amenable to online learning

scenarios and suitable for real-time applications.

Index Terms—Nonlinear state-space modeling, online filtering, Bayesian machine learning

✦

1 INTRODUCTION

Nonlinear state-space models are generative models for
complex time series with underlying nonlinear dynamical
structure [1], [2], [3]. Specifically, they represent nonlinear
dynamics in the latent state-space, xt, that capture the
spatiotemporal structure of noisy observations, yt:

xt = fθ(xt−1, ut) + ǫt (state dynamics model) (1a)

yt ∼ P (yt|gψ(xt)) (observation model) (1b)

where fθ and gψ are continuous vector functions, P denotes
a probability distribution, and ǫt is intended to capture unob-
served perturbations of the state xt. Such state-space models
have many applications (e.g., object tracking) where the flow
of the latent states is governed by known physical laws and
constraints or where learning an interpretable model of the
laws is of great interest, especially in neuroscience [4], [5],
[6], [7], [8], [9]. If the parametric form of the model and
the parameters are known a priori, then the latent states
xt can be inferred online through the filtering distribution,
p(xt|y1:t), or offline through the smoothing distribution,
p(x1:t|y1:t) [10], [11]. Otherwise the challenge is in learning
the parameters of the state-space model, {θ, ψ}, which is
known in the literature as the system identification problem.

In a streaming setting where data is processed one sample
at a time, joint inference of the state and its nonlinear dynam-
ics has posed significant challenges in practice. In this study,
we are interested in online algorithms that can recursively
solve the dual estimation problem of learning both the latent
trajectory, x1:t, in the state-space and the parameters of the
model, {θ, ψ}, from streaming observations [12].

Popular solutions such, as the extended Kalman filter
(EKF) or the unscented Kalman filter (UKF) [13], build an
online dual estimator using nonlinear Kalman filtering by
augmenting the state-space with its parameters [13], [14],

* equal contribution

• All authors are with Stony Brook University, Stony Brook, NY, 11794.
Y. Zhao and I. M. Park are with the Department of Neurobiology and
Behavior. J. Nassar and M. Bugallo are with the Department of Electrical
and Computer Engineering. I. Jordan is with the Department of Applied
Mathematics and Statistics.

[15], [16]. While powerful, they usually provide coarse
approximations to the filtering distribution and involve many
hyperparameters to be tuned which hinder their practical per-
formance. Moreover, they do not take advantage of modern
stochastic gradient optimization techniques commonly used
throughout machine learning and are not easily applicable
to arbitrary observation likelihoods.

Recursive stochastic variational inference has been pro-
posed for streaming data assuming either independent [17]
or temporally-dependent samples [6], [18], [19]. However
the proposed variational distributions are not guaranteed to
be good approximations to the true posterior. As opposed
to variational inference, sequential Monte Carlo (SMC)
leverages importance sampling to build an approximation
to the target distribution in a data streaming setting [20],
[21]. However, its success heavily depends on the choice of
proposal distribution and the (locally) optimal proposal dis-
tribution usually is only available in the simplest cases [20].
While work has been done on learning good proposals for
SMC [22], [23], [24], [25] most are designed only for offline
scenarios targeting the smoothing distributions instead of the
filtering distributions. In [22], the proposal is learned online
but the class of dynamics for which this is applicable to is
extremely limited.

In this paper, we propose a novel sequential Monte Carlo
method for inferring a state-space model for the streaming
time series scenario that adapts the proposal distribution
on-the-fly by optimizing a surrogate lower bound to the log
normalizer of the filtering distribution. Moreover, we choose
the sparse Gaussian process (GP) [26] for modeling the
unknown dynamics that allows for O(1) recursive Bayesian
inference. Specifically our contributions are:

1) We prove that our approximation to the filtering dis-
tribution converges to the true filtering distribution.

2) Our objective function allows for unbiased gradients
which lead to improved performance.

3) To the best of our knowledge, we are the first to
use particles to represent the posterior of inducing
variables of the sparse Gaussian processes, which

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

2

allows for accurate Bayesian inference on the in-
ducing variables rather than the typical variational
approximation and closed-form weight updates.

4) Unlike many efficient filtering methods that usually
assume Gaussian or continuous observations, our
method allows arbitrary observational distribu-
tions.

2 STREAMING VARIATIONAL MONTE CARLO

Given the state-space model defined in (1), the goal is to
obtain the latent state, xt ∈ R

dx , given a new observation,
yt ∈ Y, where Y is a measurable space (typically Y = R

dy or
Y = N

dy). Under the Bayesian framework, this corresponds
to computing the filtering posterior distribution at time t

p(xt|y1:t) =
p(yt|xt)

p(yt|y1:t−1)
p(xt|y1:t−1) (2)

which recursively uses the previous filtering posterior distri-
bution, p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

However, the above posterior is generally intractable
except for limited cases [12] and thus we turn to approximate
methods. Two popular approaches for approximating (2)
are sequential Monte Carlo (SMC) [20] and variational
inference (VI) [27], [28], [29]. In this work, we propose to
combine sequential Monte Carlo and variational inference,
which allows us to utilize modern stochastic optimization
while leveraging the flexibility and theoretical guarantees
of SMC. We refer to our approach as streaming variational
Monte Carlo (SVMC). For clarity, we review SMC and VI in
the follow sections.

2.1 Sequential Monte Carlo

SMC is a sampling based approach to approximate Bayesian
inference that is designed to recursively approximate a
sequence of distributions p(x0:t|y1:t) for t = 1, . . ., using
samples from a proposal distribution, r(x0:t|y1:t;λ0:t) where
λ0:t are the parameters of the proposal [20]. Due to the
Markovian nature of the state-space model in (1), the
smoothing distribution, p(x0:t|y1:t), can be expressed as

p(x0:t|y1:t) ∝ p(x0)
t∏

j=1

p(xt|xt−1)p(yt|xt). (3)

We enforce the same factorization for the proposal,
r(x0:t|y1:t;λ0:t) = r0(x0;λ0)

∏t
j=1 rj(xj |xj−1, yj ;λj).

A naive approach to approximating (3) is to use standard
importance sampling (IS) [30]. N samples are sampled from
the proposal distribution, x1

0:t, · · · ,xN0:t ∼ r(x0:t;λ0:t), and
are given weights according to

wi0:t =
p(xi0)

∏t
j=1 p(x

i
j |xij−1)p(yj |xij)

r0(xi0;λ0)
∏t
j=1 rj(x

i
j |xij−1, yj ;λj)

. (4)

The importance weights can also be computed recursively

wi0:t =
t∏

s=0

wis, (5)

where

wis =
p(ys|xis)p(xis|xis−1)

rs(xis|xis−1, ys;λs)
. (6)

The samples and their corresponding weights,
{(xi0:t, wi0:t)}Ni=1, are used to build an approximation
to the target distribution

p(x0:t|y1:t) ≈ p̂(x0:t|y1:t) =
N∑

i=1

wi0:t∑
ℓ w

ℓ
0:t

δxi
0:t

(7)

where δx is the Dirac-delta function centered at x. While
straightforward, naive IS suffers from the weight degeneracy
issue; as the length of the time series, T , increases all but one
of the importance weights will go to 0 [20].

To alleviate this issue, SMC leverages sampling-
importance-resampling (SIR). Suppose at time t− 1, we have
the following approximation to the smoothing distribution

p̂(x0:t−1|y1:t−1) =
1

N

N∑

i=1

wit−1∑
ℓ w

ℓ
t−1

δxi
0:t−1

, (8)

where wit−1 is computed according to (6). Given a new
observation, yt, SMC starts by resampling ancestor vari-
ables, ait ∈ {1, . . . , N} with probability proportional to the
importance weights, wjt−1. N samples are then drawn from

the proposal, xit ∼ rt(xt|xa
i
t

t−1, yt;λt), and their importance
weights are computed, wit, according to (6). The introduction
of resampling allows for a (greedy) solution to the weight
degeneracy problem. Particles with high weights are deemed
good candidates and are propagated forward while the ones
with low weights are discarded.

The updated approximation to p(x0:t|y1:t) is now

p̂(x0:t|y1:t) =
1

N

N∑

i=1

wit∑
ℓ w

ℓ
t

δxi
0:t
, (9)

where xi0:t = (xit,x
ait
0:t−1). Marginalizing out x0:t−1 in (9)

gives an approximation to the filtering distribution:

p(xt|y1:t) =

∫
p(x0:t|y1:t)dx0:t−1

≈
∫ N∑

i=1

wit∑
ℓ w

ℓ
t

δxi
0:t

=
N∑

i=1

wit∑
ℓ w

ℓ
t

δxi
t
.

(10)

As a byproduct, the weights produced in an SMC run
yield an unbiased estimate of the marginal likelihood of
the smoothing distribution [21]

E[p̂(y1:t)] = E

[
t∏

s=1

1

N

N∑

i=1

wis

]
= p(y1:t), (11)

and a biased but consistent estimate of the marginal likelihood
of the filtering distribution [21], [31]

E[p̂(yt|y1:t−1)] = E

[
1

N

N∑

i=1

wit

]
. (12)

For completeness, we reproduce the consistency proof of (12)
in section A of the appendix. The recursive nature of SMC
makes it constant complexity per time step and constant
memory because only the samples and weights generated
at time t are needed, {wit, xit}Ni=1, making them a perfect
candidate to be used in an online setting [32]. These attractive

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

3

properties have allowed SMC to enjoy much success in fields
such as robotics [33], control engineering [34] and target
tracking [35].

The success of an SMC sampler crucially depends on
the design of the proposal distribution, rt(xt|xt−1, yt;λt).
A common choice for the proposal distribution is the tran-
sition distribution, rt(xt|xt−1, yt;λt) = p(xt|xt−1), which
is known as the bootstrap particle filter (BPF) [36]. While
simple, it is well known that the BPF needs a large number of
particles to perform well and suffers in high-dimensions [37].
In addition, BPF requires the knowledge of p(xt|xt−1) which
may not be known

Designing a proposal is even more difficult in an online
setting because a proposal distribution that was optimized
for the system at time t may not be the best proposal K
steps ahead. For example, if the dynamics were to change
abruptly, a phenomenon known as concept drift [38], the
previous proposal may fail for the current time step. Thus,
we propose to adapt the proposal distribution online using
variational inference. This allows us to utilize modern
stochastic optimization to adapt the proposal on-the-fly while
still leveraging the theoretical guarantees of SMC.

2.2 Variational Inference

In contrast to SMC, VI takes an optimization approach to
approximate Bayesian inference. In VI, we approximate the
target posterior, p(xt|y1:t), by a class of simpler distributions,
q(xt;ϑt), where ϑt are the parameters of the distribution. We
then minimize a divergence (which is usually the Kullback-
Leibler divergence (KLD)) between the posterior and the
approximate distribution in the hopes of making q(xt;ϑt)
closer to p(xt|y1:t). If the divergence used is KLD, then min-
imizing the KLD between these distributions is equivalent to
maximizing the so-called evidence lower bound (ELBO) [29],
[27]:

L(ϑt) = Eq[log p(xt,y1:t)− log q(xt;ϑt)], (13)

= Eq[logEp(xt−1|y1:t−1)[p(xt, xt−1,y1:t)]− log q(xt;ϑt)].

For filtering inference, the intractability introduced by
marginalizing over p(xt−1|y1:t−1) in (13) makes the problem
much harder to optimize, rendering variational inference
impractical in a streaming setting where incoming data are
temporally dependent.

2.3 A Tight Lower Bound

Due to the intractability of the filtering distribution, the
standard ELBO is difficult to optimize forcing us to define a
different objective function. As stated above, we know that
the sum of importance weights is an unbiased estimator of
p(y1:t). Jensen’s inequality applied to (11) [25], [39] gives,

log p(y1:t) = logE[p̂(y1:t)] ≥ E[log p̂(y1:t)]. (14)

Expanding (14), we obtain

log p(yt|y1:t−1) + log p(y1:t−1)

≥ E[log p̂(yt|y1:t−1)] + E[log p̂(y1:t−1)],
(15)

log p(yt|y1:t−1) ≥ E[log p̂(yt|y1:t−1)]−Rt(N) (16)

Algorithm 1 Streaming Variational Monte Carlo (Step t)

Require: {xit−1, w
i
t−1}Ni=1,Θt−1, yt, α

1: for k = 1, . . . , NSGD do
2: for i = 1, . . . , L do
3: ait ∼ Pr(ait = j) ∝ wjt−1 ⊲ Resample

4: xit ∼ r(xt|x
ait
t−1, yt; Θt−1) ⊲ Propose

5: wit ←
p(xi

t|x
ai
t

t−1
;Θt−1)p(yt|x

ai
t

t−1
;Θt−1)

r(xi
t|x

ai
t

t−1
,yt;Θt−1)

⊲ Weigh

6: end for
7: L̃t ← log(

∑
i w

i
t)

8: Θt ← Θt−1 + α∇ΘL̃t ⊲ SGD
9: end for

10: Resample, propose and reweigh N particles
11: return {xit, wit}Ni=1, Θt

where Rt(N) = log p(y1:t−1) − E[log p̂(y1:t−1)] ≥ 0 is the
variational gap. Leveraging this we propose to optimize

L̃t(Θt) = E[log p̂(yt|y1:t−1)]−Rt(N),

= E

[
log

(N∑

i=1

wit
)
]
−Rt(N).

(17)

We call L̃t the filtering ELBO; it is a lower bound to the
log normalization constant (log partition function) of the
filtering distribution where Rt(N) accounts for the bias of
the estimator (12). As Rt(N) is not a function of Θt, it can
be ignored when computing gradients.

There exists an implicit posterior distribution that arises
from performing SMC given by [40],

q̃(xt|y1:t) = p(xt,y1:t)E

[
1

p̂(y1:t)

]
, (18)

= p(xt, yt|y1:t−1)E

[
p̂(yt|y1:t−1)

−1 p(y1:t−1)

p̂(y1:t−1)

]
.

As the number of samples goes to infinity (17) can be made
arbitrarily tight; as a result, the implicit approximation to
the filtering distribution (18) will become arbitrarily close
to the true posterior, p(xt|y1:t), almost everywhere which
allows for a trade-off between accuracy and computational
complexity. We note that this result is not applicable in most
cases of VI due to the simplicity of variational families used.
We summarize this result in the following theorem (see the
proof in section B of the appendix).

Theorem 2.1 (Filtering ELBO). The filtering ELBO (17), L̃t, is a
lower bound to the logarithm of the normalization constant of the fil-
tering distribution, p(xt|y1:t). As the number of samples, N , goes

to infinity, L̃t will become arbitrarily close to log p(yt|y1:t−1).

Theorem 2.1 leads to the following corollary [41] (proof
in section C of the appendix).

Corollary 2.1.1. Theorem 2.1 implies that the implicit filtering dis-
tribution, q̃(xt|y1:t), converges to the true posterior, p(xt | y1:t),
as N →∞.

2.4 Stochastic Optimization

As in variational inference, we fit the parameters of the pro-
posal, dynamics and observation model, Θt = {λt, θt, ψt},

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

4

by maximizing the (filtering) ELBO (Alg. 1). While the
expectations in (17) are not in closed form, we can obtain
unbiased estimates of L̃t and its gradients with Monte Carlo.
Note that when obtaining gradients with respect to Θt, we
only need to take gradients of E[log p̂(yt|y1:t−1)]. We also
assume that the proposal distribution, r(xt|xt−1, yt;λt), is
reparameterizable, i.e. we can sample from r(xt|xt−1, yt;λt)
by setting xt = h(xt−1, yt, ǫt;λt) for some function h where
ǫt ∼ s(ǫt) and s is a distribution independent of λt. Thus we
can express the gradient of (17) using the reparameterization
trick [42] as

∇Θt
L̃t = ∇Θt

Es(ǫ1:L)[log p̂(yt|y1:t−1)],

= Es(ǫ1:L)[∇Θt
log p̂(yt|y1:t−1)],

= Es(ǫ1:L)

[
∇Θt

log
(L∑

i=1

wit
)
]
.

(19)

where L ≤ N is the number of subsamples to accelerate
calculations. In Algorithm 1, we perform NSGD stochastic
gradient descent (SGD) updates for each step.

While using more samples, N , will reduce the variational
gap between the filtering ELBO, L̃t, and log p(yt|y1:t−1),
using more samples, L, for estimating (19) may be detri-
mental for optimizing the parameters, as it has been shown
to decrease the signal-to-noise ratio (SNR) of the gradient
estimator for importance-sampling-based ELBOs [43]. The
intuition is as follows: as the number of samples used to
compute the gradient increases, the bound gets tighter and
tighter which in turn causes the magnitude of the gradient to
become smaller. The rate at which the magnitude decreases
is much faster than the variance of the estimator, thus driving
the SNR to 0. In practice, we found that using a small number
of samples to estimate (19), L < 5, is enough to obtain good
performance.

2.5 Learning Dynamics with Sparse Gaussian Pro-
cesses

State-space models allow for various time series models
to represent the evolution of state and ultimately predict
the future [44]. While in some scenarios there exists prior
knowledge on the functional form of the latent dynamics,
fθ(x), this is usually never the case in practice; thus fθ(x)
must be learned online as well. While one can assume a
parametric form for fθ(x), i.e. a recurrent neural network,
and learn θ through SGD, this does not allow uncertainty
over the dynamics to be expressed which is key for many
real-time, safety-critical tasks. An attractive alternative over
parametric models are Gaussian processes (GPs) [45]. Gaus-
sian processes do not assume a functional form for the latent
dynamics; rather, general assumptions, such as continuity
or smoothness, are imposed. Gaussian processes also allow
for a principled notion of uncertainty, which is key when
predicting the future.

A Gaussian process is defined as a collection of random
variables, any finite number of which have a joint Gaussian
distribution. It is completely specified by its mean and
covariance functions. A GP allows one to specify a prior
distribution over functions

f(x) ∼ GP(m(x), k(x, x′)) (20)

where m(·) is the mean function and k(·, ·) is the covariance
function; in this study, we assume that m(x) = x. With the
GP prior imposed on the dynamics, one can do Bayesian
inference with data.

With the current formulation, a GP can be incorporated by
augmenting the state-space to (xt, ft), where ft ≡ f(xt−1) .
The importance weights are now computed according to

wt =
p(yt|xt)p(xt|ft)p(ft|f1:t−1,x0:t−1)

r(xt, ft|ft−1, xt−1, yt;λt)
. (21)

Examining (21), it is evident that naively using a GP is
impractical for online learning because its space and time
complexity are proportional to the number of data points,
which grows with time t, i.e., O(t2) and O(t3) respectively.
In other words, the space and time costs increase as more
and more observations are processed.

To overcome this limitation, we employ the sparse GP
method [26], [46]. We introduce M inducing points, z =
(z1, . . . , zM), where zi = f(ui) and ui are pseudo-inputs and
impose that the prior distribution over the inducing points
is p(z) = N (0, k(u,u′)). In the experiments, we spread the
inducing points uniformly over a finite volume in the latent
space. Under the sparse GP framework, we assume that z is
a sufficient statistic for ft, i.e.

p(ft|x0:t−1, f1:t−1, z) = p(ft|xt−1, z)

= N
(
ft|mt +KtzK

−1
zz z,Ktt −KtzK

−1
zz Kzt

)
,

(22)

where mt = m(xt−1). Note that the inclusion of the inducing
points in the model reduces the computational complexity to
be constant with respect to time. Marginalizing out ft in (22)

p(xt|xt−1, z)

=

∫
p(xt|ft)p(ft|xt−1, z)dft

= N
(
xt|mt +KtzK

−1
zz z,Ktt −KtzK

−1
zz Kzt +Q

)
.

(23)

Equipped with equation (23), we can express the smoothing
distribution as

p(x0:t, z|y1:t) ∝ p(x0)p(z)
∏

p(yt|xt)p(xt|xt−1, z), (24)

and the importance weights can be computed according to

wt =
p(yt|xt)p(xt|xt−1, z)p(z|x0:t−1)

r(xt, z|xt−1, yt;λt)
. (25)

Due to the conjugacy of the model, p(z|x0:t−1) can
be recursively updated efficiently. Let p(zt|x0:t−1) =
N (zt|µt−1,Γt−1). Given xt and by Bayes rule

p(z|x0:t) ∝ p(xt|xt−1, z)p(z|x0:t−1), (26)

we obtain the recursive updating rule:

Γt =
(
Γ−1
t−1 +A⊤

t C
−1
t At

)−1
,

µt = Γt
[
Γ−1
t−1µt−1 +A⊤

t C
−1
t (xt −mt)

]
,

(27)

where At = KtzK
−1
zz and Ct = Ktt −KtzK

−1
zz Kzt +Q.

To facilitate learning in non-stationary environments,
we impose a diffusion process over the inducing variables.
Letting p(zt−1|x0:t−1) = N (µt−1,Γt−1), we impose the
following relationship between zt−1 and zt

zt = zt−1 + ηt, (28)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

5

where ηt ∼ N (0, σ2
zI). We can rewrite (25)

wt =
p(yt|xt)p(xt|xt−1, zt)p(zt|x0:t−1)

r(xt, zt|xt−1, zt−1, yt;λt)
, (29)

where

p(zt|x0:t−1) =

∫
p(zt|zt−1)p(zt−1|x0:t−1)dzt−1

= N (µt−1,Γt−1 + σ2
zI).

(30)

To lower the computation we marginalize out the inducing
points from the model, simplifying (29)

wt =
p(yt|xt)p(xt|x0:t−1)

r(xt|xt−1, yt;λt)
, (31)

where

p(xt|x0:t−1) =

∫
p(xt|xt−1, zt)p(zt|x0:t−1)dzt

= N (vt,Σt)
(32)

where vt = mt +Atµt−1 and Σt = Ct +At(Γt−1 + σ2
xI)A

⊤
t .

For each stream of particles, we store µit and Γit. Due to the
recursive updates (27), maintaining and updating µit and Γit
is of constant time complexity, making it amenable for online
learning. The use of particles also allows for easy sampling
of the predictive distribution (details are in section E of the
appendix). We call this approach SVMC-GP; the algorithm is
summarized in Algorithm 2.

Algorithm 2 SVMC-GP (Step t)

Require: {xit−1, µ
i
t−1,Γ

i
t−1, w

i
t−1}Ni=1,Θt−1, yt, α

1: for k = 1, . . . , NSGD do
2: for i = 1, . . . , L do
3: ait ∼ Pr(ait = j) ∝ wjt−1 ⊲ Resample

4: xit ∼ r(xt|yt, x
ait
t−1;µ

ait
t−1,Γ

ait
t−1,Θt−1) ⊲ Propose

5: wit ←
p(xi

t|x
ai
t

t−1
)p(yt|x

ai
t

t−1
;Θt−1)

r(xi
t|x

ai
t

t−1
,yt;µ

ai
t

t−1
,Γ

ai
t

t−1
,Θt−1)

⊲ Reweigh

6: end for
7: L̃t ← log(

∑
i w

i
t)

8: Θt ← Θt−1 + α∇ΘL̃t ⊲ SGD
9: end for

10: Resample, propose and reweigh N particles
11: Compute µit and Γit
12: return {xit, µit,Γit, wit}Ni=1, Θt

2.6 Design of Proposals

As stated previously, the accuracy of SVMC depends crucially
on the functional form of the proposal. The (locally) optimal
proposal is

p(xt|xt−1, yt) ∝ p(yt|xt)p(xt|xt−1), (33)

which is a function of yt and ft [47]. In general (33) is
intractable; to emulate (33) we parameterize the proposal
as

r(xt|xt−1, yt) = N (µλt
(ft, yt), σ

2
λt
(ft, yt)I), (34)

where µλt
and σλt

are neural networks with parameters λt.

3 RELATED WORKS

Much work has been done on learning good proposals for
SMC. The method proposed in [24] iteratively adapts its
proposal for an auxiliary particle filter. In [22], the proposal
is learned online using expectation-maximization but the
class of dynamics for which the approach is applicable for is
extremely limited. The method proposed in [23] learns the
proposal by minimizing the KLD between the smoothing
distribution and the proposal, DKL[p(x0:t|y1:t)‖r(x0:t;λ0:t)];
while this approach can be used to learn the proposal
online, biased importance-weighted estimates of the gra-
dient are used which can suffer from high variance if
the initial proposal is bad. Conversely, [25] maximizes
E[log p̂(y1:t)], which can be shown to minimize the KLD
between the proposal and the implicit smoothing distri-
bution, DKL[q(x0:t|y1:t)‖p(x0:t|y1:t)]; biased gradients were
used to lower the variance. In contrast, SVMC allows for
unbiased and low variance gradients that target the filtering
distribution as opposed to the smoothing distribution. In [48],
the proposal is parameterized by a Riemannian Hamiltonian
Monte Carlo and the algorithm updates the mass matrix by
maximizing E[log p̂(y1:t)]. At each time step (and for every
stochastic gradient), the Hamiltonian must be computed
forward in time using numerical integration, making the
method impractical for an online setting.

Previous works have also tackled the dual problem of
filtering and learning the parameters of the model online. A
classic approach is to let the parameters of the generative
model evolve according to a diffusion process, θt = θt−1+υt:
one can then create an augmented latent state, x̃t = [xt, θt],
and perform filtering over x̃t either using particle filter-
ing [49] or joint extended/unscented Kalman filtering [16],
[15]. One can also use a separate filter for the latent state
and the parameters, which is known as dual filtering [16],
[15]. As SVMC is a general framework, we could also let the
parameters of the generative model evolve according to a
diffusion process and do joint/dual filtering; the availability
of the filtering ELBO allows us to learn the variance of
the diffusion online, while previous approaches treat this a
fixed hyper-parameter. Besides, as we demonstrate in later
experiments, we can learn the parameters of a parametric
model online by performing SGD on the filtering ELBO.
In [50], they combine extended Kalman filtering (EKF) with
Gaussian processes for dual estimation; the use of EKF
involves approximations and restricts the observation models
one can apply it on. Moreover, the use of a full Gaussian
process–as opposed to a sparse alternative–prevents it from
being deployed for long time series. In [2], particle filtering
is combined with a sparse Gaussian process to learn the
latent dynamics and the emission model online; while similar
to SVMC-GP, there are important differences between the
two works. Firstly–and most importantly–the latent fixed
dynamics are not learned online in [2]; training data is
collected a priori and used to pre-train the GP and is kept
during the filtering process. While a priori training data
can also be used for SVMC-GP, our formulation allows
us to continuously learn the latent dynamics in a purely
online fashion. Second, a fixed proposal–similar to the one
found in bootstrap particle filtering–is used while SVMC-
GP allows for the proposal to adapt on-the-fly. In [19], they

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

6

tackle the problem of dual estimation by leveraging the
recursive form of the smoothing distribution to obtain an
ELBO that can be easily computed online, allowing for the
parameters of the generative model to be inferred using SGD.
While similar to SVMC, we note that their approach relies on
simple parametric variational approximations which are not
as expressive as the particle based ones used in SVMC.

number of gradient steps number of particles
(for stochastic gradient)

NSGD LA B

Figure 1. Investigating how the performance of SVMC–measured via
RMSE (lower is better) and ELBO (higher is better)–depends on number
of gradient steps, NSGD and number of particles used to compute
stochastic gradient, L. For each setting, we run 100 realizations of SVMC
on the chaotic RNN data from sec. 4.1.2. Solids lines are the average
where error bars are the standard error. A) For a fixed number of particles
used to compute stochastic gradient, L = 4, the number of gradient
steps, NSGD taken at every time step is varied. B) For a fixed number
of gradient steps, NSGD = 15, the number of particles used to compute
stochastic gradient, L, is varied.

4 EXPERIMENTS

To showcase the power of SVMC, we employ it on a number
of simulated and real experiments. For all experiments, the
Adam optimizer was used [52].

4.1 Synthetic Data

4.1.1 Linear Dynamical System

As a baseline, we apply SVMC on data generated from a
linear dynamical system (LDS)

xt = Axt−1 + ǫt, ǫt ∼ N (0, Q),

yt = Cxt + ξt, ξt ∼ N (0, R).
(35)

LDS is the de facto dynamical system for many fields of
science and engineering due to its simplicity and efficient
exact filtering (i.e., Kalman filtering). The use of an LDS
also endows a closed form expression of the log marginal
likelihood for the filtering and smoothing distribution. Thus,
as a baseline we compare the estimates of the negative
log marginal likelihood, − log p(y1:T), produced by SVMC,
variational sequential Monte Carlo (VSMC) [25] (which is
an offline method) and BPF [36] in an experiment similar
to the one used in [25]. We generated data from (35) with
T = 50, dx = dy = 10, (A)ij = α|i−j|+1, with α = 0.42
and Q = R = I where the state and emission parameters
are fixed; the true negative log marginal likelihood is
1168.2. For SVMC and VSMC, we used the same proposal
parameterization as [25]

r(xt|xt−1;λt) = N (µt + diag(βt)Axt−1,diag(σ2
t)), (36)

prediction
horizon

S
V

M
C

-M
L

P
S

V
M

C
-G

P
p

re
d

ic
ti

v
e

 R
M

S
E

fast

slow

uncertain

confident

t = 100 t = 2000

true

inferred

start

stop

0

5

10

15

20

Kalman EM

SVMC-GP (t=100)

SVMC-GP (t=2000)

SVMC-MLP (t=100)

SVMC-MLP (t=2000)

−10

0

10

1600 2000 2400

−5

0

5

filtering prediction

time steps

0 100 200 300 400 500

A

B

C

D

E

Figure 2. NASCAR® Dynamics [51]. (A) True and inferred latent trajectory
using SVMC-GP. (B) Filtering and prediction. We show the last 500 steps
of filtered states and the following 500 steps of predicted states. (C)
Forecasting error. We compare the 500-step predictive MSE (averaged
over 100 realizations) of SVMC-GP, SVMC-MLP, and Kalman filter. The
transition matrix of the Kalman filter was learned by EM (offline). The
periodic tendency is due to the periodic nature of ground truth. (D)–(E)
Inferred dynamics as velocity field. For SVMC-GP, posterior variance of
dynamics is additionally shown as uncertainty.

where λt = {µt, βt, σ2
t }. To ensure VSMC has enough

time to converge, we use 25,000 gradient steps. To equate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

7

the total number of gradient steps between VSMC and
SVMC, 25,000/50 = 500 gradient steps were done at each
time step for SVMC. For both methods, a learning rate
of 0.01 was used where L = 4 particles were used for
computing gradients, which was used in [25]. To equate the
computational complexity between SVMC and BPF, we ran
the BPF with 125,000 particles. We fixed the data generated
from (35) and ran each method for 100 realizations; the
average negative ELBO and its standard error of each the
methods are shown in Table 1. To investigate the dependence
of the ELBO on the number of particles, we demonstrate
results for SVMC and VSMC using a varying number of
particles.

From Table (1), we see that SVMC performs better than
VSMC for all number of particles considered. While SVMC
with 100 particles is outperformed by BPF, SVMC with 1,000
particles matches the performance of BPF with a smaller
computational budget.

4.1.2 Chaotic Recurrent Neural Network

To show the performance of our algorithm in filtering data
generated from a complex, nonlinear and high-dimensional
dynamical system, we generate data from a continuous-time
"vanilla" recurrent neural network (vRNN)

τ ẋ(t) = −x(t) + γWx tanh(x(t)) + σ(x)dW (t). (37)

where W (t) is Brownian motion. Using Euler integration,
(37) can be described as a discrete time dynamical system

xt+1 = xt+∆(−xt+γWx tanh(xt))/τ + ǫt, ǫt ∼ N (0, Q)
(38)

where ∆ is the Euler step. The emission model is

yt = Cxt +D + ξt, ξt,1, · · · , ξt,dy
i.i.d∼ ST (0, νy, σy) (39)

where each dimension of the emission noise, vt, is indepen-
dently and identically distributed (i.i.d) from a Student’s
t distribution, ST (0, νy, σy), where νy is the degrees of
freedom and σy is the scale.

We set dy = dx = 10 and the elements of Wx are i.i.d.
drawn from N (0, 1/dx). We set γ = 2.5 which produces
chaotic dynamics at a relatively slow timescale compared
to τ [53]. The rest of the parameters values are: τ = 0.025,
δ = 0.001, Q = 0.01I , νy = 2 and σy = 0.1, which are kept
fixed. We generated a single time series of length of T = 500
and fixed it across multiple realizations. SVMC was ran
using 200 particles with proposal distribution (34), where the
neural network was a multi-layer perceptron (MLP) with 1
hidden layer of width 100 and relu nonlinearities; 15 gradient
steps were performed at each time step with a learning rate
of .001 with L = 4. For a comparison, a BPF with 10,000
particles and an unscented Kalman filter (UKF) was run.
Each method was ran over 100 realizations. We compare
the ELBO and root mean square error (RMSE) between the
true latent states, x1:T , and the inferred latent states, x̂1:T .1

With a similar computational budget, SVMC can achieve
better performance than a BPF using almost two orders of
magnitude less samples. To investigate the effect the number
of gradient steps has on the performance of SVMC, we plot
the RMSE and ELBO as a function of number of gradient

1. We use the posterior mean as our estimate of the latent states.

A

B

C

Choice 1

Choice 2

Reset

inferred latent trajectories

spontaneous

simulating the learned dynamics (forecasting with input)

raster of spike trains from 4 decision-making trials

sink

stimulus onset

reset

stimulus resetspontaneous

n
e

u
ro

n
s

n
e

u
ro

n
s

0

5

x
1

0

5

x
2

5 sec

5 sec

Figure 3. Winner-Take-All Spiking Neural Network. (A) 4 trials of training
data. The neuronal activity was drawn over a 25 sec time window. Each
row represents one neuron. Each dot represents that neuron fired within
that time bin. (B) Inference. The top-left panel shows the inferred latent
trajectories of several trials. In each trial the network started at the initial
state, eventually reached either choice (indicated by the color) after
the stimulus onset, and finally went back around the initial state after
receiving reset signal. The rest three panels show the phase portraits of
inferred dynamical system revealing the bifurcation and how the network
dynamics were governed at different phases of the experiment. At the
spontaneous phase (when the network receive no external input), the
latent state is attracted by the middle sink. After the stimulus is onset, the
middle sink disappears and the latent state falls into either side driven by
noise to form a choice. When the reset is onset, the latent state is pushed
back to the only sink that is close to the middle sink of the spontaneous
phase, and then the network is ready for a new trial. (C) Simulation
from the fitted model. We generated latent trajectory and spike train by
replicating the experiments on the fitted model. The result shows that the
model can replicate the dynamics of the target network.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

8

Table 1
Experiment 1 (LDS) with 100 replication runs (true negative log-likelihood is 1168.12). The average negative ELBO and runtime are shown with the

standard error for SVMC, VSMC and BPF where the number in parenthesis is the number of particles used.

SVMC (100) VSMC (100) SVMC (1,000) VSMC (1,000) SVMC (10,000) VSMC (10,000) BPF (125,000)
−ELBO 1188.3 ± 0.5 1195.9 ± 0.5 1178.3 ± 0.3 1183.6 ± 0.3 1173.8 ± 0.2 1179.8 ± 0.2 1177.0 ± 0.2
time (s) 47.5 ± 0.5 6390.2 ± 3.1 51.6 ± 0.3 6390.2 ± 3.1 64.5 ± 0.5 6390.2 ± 3.1 95.0 ± 0.7

Table 2
Experiment 2 (Chaotic RNN) with 100 replication runs. The average

RMSE (lower is better), negative ELBO (lower is better) and runtime per
step are shown with standard error.

SVMC (200) BPF (10,000) UKF
RMSE .34 ± .001 0.4 ± 0.002 3.9 ± 0.12

−ELBO (nats) 20.42 ± .008 24.16 ± 0.018 N/A
time (s) 18.78 ± 0.08 15.83 ± 0.09 0.8 ± 0.004

steps taken in figure 1A; taking more gradient steps leads to
a decrease in RMSE and an increase in the ELBO. We next
investigate the effect the number of samples used to compute
the stochastic gradient, L, has on the performance 1B; as
was demonstrated in [43], larger L leads to a decrease in
performance.

4.1.3 Synthetic NASCAR® Dynamics

We test learning dynamics online with sparse GP on a
synthetic data of which the underlying dynamics follow
a recurrent switching linear dynamical systems [51]. The
simulated trajectory resembles the NASCAR® track (Fig. 2A).
We train the model with 2, 000 observations simulated from
yt = Cxt + ξt where C is a 50-by-2 matrix. The proposal is
defined as N (µt,Σt) of which µt and Σt are linear maps of
the concatenation of observation yt and previous state xit−1.
We use 50 particles, squared exponential (SE) kernel and 20
inducing points for GP and 1E-4 learning rate. We also run a
SVMC (with the same setting on particles and learning rate
as the former) with MLP (1 hidden layer and 20 hidden units)
dynamics for comparison. GP dynamics not only estimate the
velocity field but also give the uncertainty over the estimate
while MLP dynamics is only a point estimate. To investigate
the learning of dynamics, we control for other factors, i.e.
we fix the observation model and other hyper-parameters
such as noise variances at their true values. (See the details
in section D of the appendix.)

Figure 2A shows the true (blue) and inferred (red) latent
states. The inference quickly catches up with the true state
and stays on the track. As the state oscillates on the track, the
sparse GP learns a reasonable limit cycle (Fig. 2F) without
seeing much data outside the track. The velocity fields in
Figure 2D–F show the gradual improvement in the online
learning. The 500-step prediction also shows that the GP
captures the dynamics (Fig. 2B). We compare SVMC with
Kalman filter in terms of mean squared error (MSE) (Fig. 2C).
The transition matrix of the LDS of the Kalman filter (KF)
is learned by expectation-maximization which is an offline
method, hence not truly online. Yet, SVMC performs better
than KF after 1000 steps.

1980 1985 1990 1995 2000 2005 2010 2015 2020
Step

0.5

1.0

1.5

2.0

2.5

On
e-

st
ep

 a
he

ad
 p

re
di

ct
iv

e
RM

SE

Dual Kalman
SVMC

Figure 4. Prediction of nonstationary dynamical system. The colored
curves (blue: EKF, red: SVMC) are the RMSEs (solid line: mean, shade:
stderr) of one-step-ahead prediction of nonstationary system during
online learning (50 trials each run, 10 runs). The linear system was
changed and the state was perturbed at the 2000th step (center). Both
online algorithms quickly learned the change after a few steps.

4.1.4 Winner-Take-All Spiking Neural Network

The perceptual decision-making paradigm is a well-
established cognitive task where typically a low-dimensional
decision variable needs to be integrated over time, and
subjects are close to optimal in their performance. To under-
stand how the brain implements such neural computation,
many competing theories have been proposed [54], [55], [56],
[57], [58]. We test our method on a simulated biophysically
realistic cortical network model for a visual discrimination
experiment [57]. In the model, there are two excitatory sub-
populations that are wired with slow recurrent excitation and
feedback inhibition to produce attractor dynamics with two
stable fixed points. Each fixed point represents the final
perceptual decision, and the network dynamics amplify
the difference between conflicting inputs and eventually
generates a binary choice.

The simulated data was organized into decision-making
trials. We modified the network by injecting a 60 Hz Poisson
input into the inhibitory sub-population at the end of each
trial to "reset” the network for the purpose of uninterrupted
trials to fit the streaming case because the original network
was designed for only one-time experiment. In each trial
the input to the network consisted of two periods, one 2-sec
stimulus signal with different strength of visual evidence
controlled by "coherence”, and one 2-sec 60 Hz reset signal,
each follows a 1-sec spontaneous period (no input). We
subsampled 480 selective neurons out of 1600 excitatory
neurons from the simulation to be observed by our algorithm.

Fig. 3 shows that SVMC (300 particles) with sparse GP
dynamics (150 inducing points, squared exponential kernel)
and MLP proposal (1 hidden layer, 1000 hidden units) with

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

9

dual-EKF
(0.01)

dual-EKF
(0.001)

SVMC
MLP

SVMC
(best)

SVMC
(median)

dual-EKF
(0.01, median)

dual-EKF
(0.01, best)

dual-EKF
(0.001, median)

dual-EKF
(0.001, best)

BA

Figure 5. Prediction performance on 3D data generated from an analog stable oscillator circuit. We compare Dual-EKF and SVMC both with dynamics
parameterized with MLP (2-20-2). (A) Normalized MSE of 100 time step prediction using the filtered system. Median and best out of 11 randomly
initialized filters are shown. To estimate the normalized MSE, 11 realizations were used, and for ease of visual parsing 11 bin moving window
averaging was applied. (B) Comparison of normalized MSE of the last 500 time steps.

L = 2, learning rate 1E-4 and 15 gradient steps, did well at
learning the dynamics of target network. The inferred latent
trajectories of several trials (Fig. 3B). In each trial the network
started at the initial state, eventually reached either choice
(indicated by the color) after the stimulus onset, and finally
went back around the initial state after receiving reset signal.
The other three panels (Fig. 3B) show the phase portraits of
the inferred dynamical system revealing the bifurcation and
how the network dynamics are governed during different
phases of the experiment. In the spontaneous phase (when
the network receives no external input), the latent state is
attracted by the middle sink. After the stimulus is onset, the
middle sink disappears and the latent state falls into either
side driven by noise to form a choice. When the reset is
onset, the latent state is pushed back to the only sink that
is close to the middle sink of the spontaneous phase, and
then the network is ready for a new trial. We generated a
latent trajectory and corresponding spike train by replicating
the experiments on the fitted model (Fig. 3C). The result
shows that the model can replicate the dynamics of the target
network.

The mean-field reduction of the network (Fig. 6 [58])
also confirms that our inference accurately captured the key
features of the network. Note that our inference was done
without knowing the true underlying dynamics which means
our method can recover the dynamics from data as a bottom-
up approach.

4.1.5 Nonstationary system

Another feature of our method is that its state dynamics
estimate never stops. As a result, the algorithm is adaptive,
and can potentially track slowly varying (nonstationary)
latent dynamics. To test adaptation to perturbation to both
the state and system, we compared a dual EKF and the
proposed approach (50 particles, GP dynamics with 10
inducing points and squared exponential kernel, linear

proposal, 1E-4 learning rate) on a 2D nonstationary linear
dynamical system. A spiral-in linear system was suddenly
changed from clockwise to counter-clockwise at the 2000th
step and the latent state was perturbed (Fig. 4). To adapt EKF,
we used Gaussian observations that were generated through
linear map from 2-dimensional state to 200-dimensional
observation with additive noise (N (0, 0.5)). To focus on the
dynamics, we fixed all the parameters except the transition
matrix for both methods, while our approach still has to
learn the recognition model in addition. Our method quickly
adapts in a few steps.

4.2 Real Data: Learning an Analog Circuit

It has been verified that the proposed methodology is capable
of learning the underlying dynamics from noisy streaming
observations in the above synthetic experiments. To test it in
real world, we applied our method to the voltage readout
from an analog circuit [59]. We designed and built this circuit
to realize a system of ordinary differential equations as
follows

ẋ = (5z − 5)[x− tanh(αx− βy)]
ẏ = (5z − 5)[y − tanh(βx+ αy)]

ż = −0.5(z − tanh(1.5z))

(40)

where · indicates the time derivative and α = β = 1.5 cos(π5).
This circuit performed oscillation with a period of approxi-
mately 2 Hz. The sampling rate was 2000 Hz.

We assume the following model:

xt = f(xt−1) + ǫt, (41)

yt = Cx+ d+ ψt, (42)

where xt ∈ R
2, yt ∈ R

3, ǫt ∼ N (0, 10−3) and ξt ∼
N (0, 10−3). We parameterize f(·) using an MLP (1 hidden
layer, 20 hidden units) and perform dual estimation using
SVMC and dual EKF on 3,000 time steps (Fig. 5A). We

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

10

chose two different levels of diffusion (0.001, 0.0001) on
the parameters for dual EKF to implement different learning
rates. We forecast 10 realizations of 100 steps ahead every
filtering step and show the mean and standard deviation of
the logarithm of MSE to the true observation (Fig.). As dual
EKF has trouble learning the parameters of the observation
model, we fixed C and d for dual EKF while we let SVMC
(500 particles, lr 1E-4 and 15 gradient steps) learn both the
parameters of the latent dynamics, C and d. Figure shows
SVMC achieve the same level of performance but of less
variance, and the slow convergence in the beginning was
due to learning more parameters. The inferred dynamics
shows that the limit cycle can implement the oscillation
(Fig. 5B). The prediction of future observations (500 steps)
resemble the oscillation and the true observation is covered
by 100 repeated predictions (Fig. 5C). The predictions started
at the final state of the training data, and we simulated
the future observation trajectory from the trained model
without seeing any new data. We repeated the procedure
of prediction 100 times. Figure. 5D shows the normalized
predictive MSE (relative to the mean observation over time).
The solid line is the mean normalized MSE and the shade is
the standard error. Since the simulation included the state
noise, the prediction diverged from the true observations as
time goes.

5 DISCUSSION

In this study we developed a novel online learning frame-
work, leveraging variational inference and sequential Monte
Carlo, which enables flexible and accurate Bayesian joint
filtering. Our derivation shows that our filtering posterior
can be made arbitrarily close to the true one for a wide class
of dynamics models and observation models. Specifically,
the proposed framework can efficiently infer a posterior
over the dynamics using sparse Gaussian processes by
augmenting the state with the inducing variables that follow
a diffusion process. Taking benefit from Bayes’ rule, our
recursive proposal on the inducing variables does not require
optimization with gradients. Constant time complexity per
sample makes our approach amenable to online learning
scenarios and suitable for real-time applications. In contrast
to previous works, we demonstrate our approach is able
to accurately filter the latent states for linear / nonlinear
dynamics, recover complex posteriors, faithfully infer dy-
namics, and provide long-term predictions. In future, we
want to focus on reducing the computation time per sample
that could allow for real-time application on faster systems.
On the side of GP, we would like to investigate the priors
and kernels that characterize the properties of dynamical
systems as well as the hyperparameters.

APPENDIX A

PROOF THAT p̂(yt|y1:t−1) IS A CONSISTENT ESTIMA-

TOR FOR p(yt|y1:t−1)

Proof. To prove that p̂(yt|y1:t−1) is a consistent estimator,
we will rely on the delta method [31]. From [60], we know
that the central limit theorem (CLT) holds for p̂(y1:t) and
p̂(y1:t−1)

√
N(p̂(y1:t−1)− p(y1:t−1))

d→ N (0, σ2
t−1), (43)

√
N(p̂(y1:t)− p(y1:t))

d→ N (0, σ2
t) (44)

where we assume that σ2
t−1 and σ2

t are finite. We can express
p̂(yt|y1:t−1) as a function of p̂(y1:t) and p̂(y1:t−1),

p̂(yt|y1:t−1) = g(p̂(y1:t), p̂(y1:t−1)) =
p̂(y1:t)

p̂(y1:t−1)
. (45)

Since p(y1:t)
p(y1:t−1)

= p(yt|y1:t−1) and g is a continuous function,
an application of the Delta method gives

√
N(p̂(yt|y1:t−1)− p(yt|y1:t−1))

d→ N (0,∇g⊤Σ∇g), (46)

where Σ1,1 = σ2
t , Σ2,2 = σ2

t−1 and Σ1,2 = Σ2,1 = σt,t−1

where by the Cauchy-Schwartz inequality, σt,t−1 is also
finite [31]. Thus, as N → ∞, p̂(yt|y1:t−1) will converge
in probability to p(yt|y1:t−1), proving the consistency of the
estimator.

APPENDIX B

PROOF OF THEOREM 2.1

Proof. It is well known that the importance weights produced
in a run of SMC are an unbiased estimator of p(y1:t) [21]

E[p̂(y1:t)] = p(y1:t) (47)

where p̂(y1:t) =
∏t
j=1

1
N

∑N
i=1 w

i
j . We can apply Jensen’s

inequality to obtain

log p(y1:t) ≥ E[log p̂(y1:t)]. (48)

Expanding both sides of (48)

log p(yt|y1:t−1) + log p(y1:t−1)

≥ E[log p̂(yt|y1:t−1)] + E[log p̂(y1:t−1)].
(49)

Subtracting log p(y1:t−1) from both sides gives

log p(yt|y1:t−1)

≥ E[log p̂(yt|y1:t−1)] + E[log p̂(y1:t−1)]− log p(y1:t−1).
(50)

Letting Rt(N) = log p(y1:t−1) − E[log p̂(y1:t−1)], where N
is the number of samples, we get

log p(yt|y1:t−1) ≥ E[log p̂(yt|y1:t−1)]−Rt(N), (51)

where by Jensen’s inequality (48), Rt(N) ≥ 0 for all values
of N . By the continuous mapping theorem [31],

lim
N→∞

E[log p̂(y1:t−1)] = log p(y1:t−1). (52)

As a consequence, limN→∞ E[Rt(N)] = 0. By the same logic,
and leveraging that p̂(yt|y1:t−1) is a consistent estimator for
p(yt|y1:t−1), we get that

lim
N→∞

E[log p̂(yt|y1:t−1)] = log p(yt|y1:t−1). (53)

Thus Lt will get arbitrarily close to log p(yt|y1:t−1) as N →
∞.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

11

APPENDIX C

PROOF OF COROLLARY 2.1.1

Proof. The implicit smoothing distribution that arises from
performing SMC [25] is defined as

q̃(x1:t) = p(x1:t,y1:t)E

[
1

p̂(y1:t)

]
. (54)

We can obtain the implicit filtering distribution by marginal-
izing out dx1:t−1 from (54)

q̃(xt|y1:t)

=

∫
p(x1:t,y1:t)E

[
1

p̂(y1:t)

]
dx1:t−1,

= p(xt,y1:t)E

[
1

p̂(y1:t)

]
,

= p(xt, yt|y1:t−1)E

[
p̂(yt|y1:t−1)

−1 p(y1:t−1)

p̂(y1:t−1)

]
.

(55)

In [25], [39], it was shown that

log p(y1:t) ≥ Eq(x1:t)[log p(x1:t,y1:t)− log q̃(x1:t)]

≥ E[log p̂(y1:t)].
(56)

Rearranging terms in (56), we get

log p(yt|y1:t−1) ≥ L̂t ≥ Lt. (57)

where

L̂t = Eq(x1:t)[log p(xt, yt|y1:t−1,x1:t−1)− log q̃(xt|x1:t−1)]

+ DKL[q̃(x1:t−1)‖p(x1:t−1,y1:t−1)]− log p(y1:t−1).
(58)

By Theorem 2.1, we know that lim
N→∞

Lt = log p(yt|y1:t−1),

and thus
lim
N→∞

L̂t = log p(yt|y1:t−1). (59)

Leveraging Theorem 1 from [25] we have

lim
N→∞

DKL[q̃(x1:t−1)‖p(x1:t−1,y1:t−1)] = log p(y1:t−1) (60)

which implies that

lim
N→∞

q̃(x1:t−1) = p(x1:t−1) a.e. (61)

thus plugging this into (59)

log p(yt|y1:t−1)

=

∫
−q̃(x1:t) log

p(xt, yt|y1:t−1,x1:t−1)

q̃(xt|x1:t−1)
dx1:t

=

∫
−q̃(x1:t) log

p(x1:t|y1:t)p(yt|y1:t−1)

q̃(xt|x1:t−1)p(x1:t−1|y1:t−1)
dx1:t

= log p(yt|y1:t−1)

+

∫
−q̃(x1:t) log

p(xt|x1:t−1,y1:t)

q̃(xt|x1:t−1)
dx1:t

(62)

which is true iff q̃(xt|x1:t−1) = p(xt|x1:t−1,y1:t) almost
everywhere. Thus by Lebesgue’s dominated convergence
theorem [31]

lim
N→∞

∫
q̃(xt|x1:t−1)dx1:t−1

=

∫
lim
N→∞

q̃(xt|x1:t−1)dx1:t−1

= p(xt|y1:t).

(63)

APPENDIX D

SYNTHETIC NASCAR® DYNAMICS

An rSLDS [51] with 4 discrete states was used to generate
the synthetic NASCAR® track. The linear dynamics for each
hidden state were

A1 =

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
, A2 =

[
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

]
,

(64)

and A3 = A4 = I . The affine terms were B1 = −(A1 − I)c1,
(c1 = [2, 0]⊤), B2 = −(A2 − I)c2, (c2 = [−2, 0]⊤), B3 =
[0.1, 0]⊤ and B4 = [−0.35, 0]⊤. The hyperplanes, R, and
biases, r, were defined as

R =




100 0
−100 0
0 100


 , r =



−200
−200
0


 .

A state noise of Q = 0.001I was used.

APPENDIX E

PREDICTION USING SVMC-GP

Let w̃it =
wi

t∑
ℓ w

ℓ
t

be the self-normalized importance weights.
At time t, given a test point x∗ we can approximately sample
from the predictive distribution

p(f∗|x∗,y1:t)

=

∫
p(f∗|x∗, zt)p(zt|y1:t)dzt

=

∫
p(f∗|x∗, zt)p(zt|x0:t)p(x0:t|y1:t)dztdx0:t

=

∫
p(f∗|x∗,x0:t)p(x0:t|y1:t)dx0:t

≈
N∑

i=1

w̃it p(f∗|x∗,xi0:t)

=
N∑

i=1

w̃itN (vi∗,Σ
i
∗)

(65)

where

vi∗ = m(x∗) +A∗µ
i
t, (66)

Σi∗ = C∗ +A∗Γ
i
tA

⊤
∗ (67)

where A∗ = K∗zK
−1
zz and C∗ = K∗∗ − K∗zK

−1
zz Kz∗ + Q.

The approximate predictive distribution is a mixture of
SGPs, allowing for a much more richer approximation to the
predictive distribution. Equipped with (65), we approximate
the mean of the predictive distribution, µf∗ , as

µf∗ =

∫
f∗p(f∗|x∗,y1:t)df∗

≈
∫
f∗

N∑

i=1

w̃it p(f∗|x∗,xi0:t)df∗

=
N∑

i=1

w̃it

∫
f∗p(f∗|x∗,xi0:t)df∗

=
N∑

i=1

w̃it Ei[f∗] =
N∑

i=1

w̃itv
i
∗ = µ̂f∗

(68)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

12

where Ei[·] = Ep(f∗|x∗,x
i
0:t)

[·].
Similarly, we can also approximate the covariance of of

the predictive distribution, Σf∗

Σf∗ =

∫
(f∗ − µf∗)(f∗ − µf∗)⊤p(f∗|x∗,y1:t)df∗

≈
N∑

i=1

w̃it

∫
(f∗ − µf∗)(f∗ − µf∗)⊤p(f∗|x∗,xi0:t)df∗

=
N∑

i=1

w̃it Ei[(f∗ − µf∗)(f∗ − µf∗)⊤]

=
N∑

i=1

w̃it(Ei[f∗f
⊤
∗]− Ei[f∗]µ

⊤
f∗
− µf∗Ei[f∗]⊤ + µf∗µ

⊤
f∗
)

=
N∑

i=1

w̃it(Σ
i
∗ + vi∗v

i⊤
∗ − vi∗µ⊤

f∗
− µf∗vi⊤∗ + µf∗µ

⊤
f∗
)

≈
N∑

i=1

w̃it(Σ
i
∗ + vi∗v

i⊤
∗ − vi∗µ̂⊤

f∗
− µ̂f∗vi⊤∗ + µ̂f∗ µ̂

⊤
f∗
).

(69)

APPENDIX F

WINNER-TAKE-ALL SPIKING NEURAL NETWORK

sink

saddle

Spontaneous Stimulus onset

Figure 6. Mean field reduction of the Winner-Take-All spiking neural
network.

In Figure 6 the mean-field reduction of the spiking
network model is shown [58].

REFERENCES

[1] S. Haykin and J. Principe, “Making sense of a complex world
[chaotic events modeling],” IEEE Signal Processing Magazine, vol. 15,
no. 3, pp. 66–81, May 1998.

[2] J. Ko and D. Fox, “GP-BayesFilters: Bayesian filtering using
gaussian process prediction and observation models,” Autonomous
Robots, vol. 27, no. 1, pp. 75–90, 5 2009.

[3] C. L. C. Mattos, Z. Dai, A. Damianou, J. Forth, G. A. Barreto,
and N. D. Lawrence, “Recurrent gaussian processes,” International
Conference on Learning Representations (ICLR), 2016.

[4] S. Roweis and Z. Ghahramani, Learning nonlinear dynamical systems
using the expectation-maximization algorithm. John Wiley & Sons,
Inc, 2001, pp. 175–220.

[5] D. Sussillo and O. Barak, “Opening the black box: Low-dimensional
dynamics in high-dimensional recurrent neural networks,” Neural
Computation, vol. 25, no. 3, pp. 626–649, Mar. 2013.

[6] R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational gaussian
process state-space models,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2,
Montreal, Canada, 2014, pp. 3680–3688.

[7] B. C. Daniels and I. Nemenman, “Automated adaptive inference
of phenomenological dynamical models,” Nature Communications,
vol. 6, pp. 8133+, Aug. 2015.

[8] Y. Zhao and I. M. Park, “Interpretable nonlinear dynamic modeling
of neural trajectories,” in Advances in Neural Information Processing
Systems (NIPS), 2016.

[9] J. Nassar, S. Linderman, M. Bugallo, and I. M. Park, “Tree-structured
recurrent switching linear dynamical systems for multi-scale
modeling,” in International Conference on Learning Representations,
2019.

[10] Y. Ho and R. Lee, “A Bayesian approach to problems in stochastic
estimation and control,” IEEE Transactions on Automatic Control,
vol. 9, no. 4, pp. 333–339, Oct. 1964.

[11] S. Särkkä, Bayesian filtering and smoothing. Cambridge University
Press, 2013.

[12] S. S. Haykin, Kalman filtering and neural networks. Wiley, 2001.
[13] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter

for nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive
Systems for Signal Processing, Communications, and Control Symposium
(Cat. No. 00EX373). Ieee, 2000, pp. 153–158.

[14] E. A. Wan and A. T. Nelson, Dual extended Kalman filter methods.
John Wiley & Sons, Inc, 2001, pp. 123–173.

[15] E. A. Wan, R. Van Der Merwe, and A. T. Nelson, “Dual estimation
and the unscented transformation.” in NIPS, vol. 99, 1999.

[16] E. A. Wan and A. T. Nelson, “Dual kalman filtering methods
for nonlinear prediction, smoothing, and estimation,” Advances in
neural information processing systems, vol. 9, 1997.

[17] T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan,
“Streaming variational Bayes,” in Advances in Neural Information
Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, Eds. Curran Associates,
Inc., 2013, pp. 1727–1735.

[18] Y. Zhao and I. M. Park, “Variational joint filtering,”
arXiv:1707.09049, 2017.

[19] A. Campbell, Y. Shi, T. Rainforth, and A. Doucet, “Online
variational filtering and parameter learning,” arXiv preprint
arXiv:2110.13549, 2021.

[20] A. Doucet and A. M. Johansen, “A tutorial on particle filtering
and smoothing: Fifteen years later,” Handbook of nonlinear filtering,
vol. 12, no. 656-704, p. 3, 2009.

[21] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. Springer Science & Business Media, Mar. 2013.

[22] J. Cornebise, E. Moulines, and J. Olsson, “Adaptive sequential
monte carlo by means of mixture of experts,” Statistics and
Computing, vol. 24, no. 3, pp. 317–337, 2014.

[23] S. S. Gu, Z. Ghahramani, and R. E. Turner, “Neural adaptive
sequential monte carlo,” in Advances in Neural Information Processing
Systems, 2015, pp. 2629–2637.

[24] P. Guarniero, A. M. Johansen, and A. Lee, “The iterated auxiliary
particle filter,” Journal of the American Statistical Association, vol. 112,
no. 520, pp. 1636–1647, 2017.

[25] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei, “Varia-
tional sequential monte carlo,” in Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, A. Storkey and F. Perez-
Cruz, Eds., vol. 84. Playa Blanca, Lanzarote, Canary Islands: PMLR,
09–11 Apr 2018, pp. 968–977.

[26] M. Titsias, “Variational learning of inducing variables in sparse
gaussian processes,” in Artificial Intelligence and Statistics, Apr. 2009,
pp. 567–574.

[27] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational infer-
ence: A review for statisticians,” Journal of the American Statistical
Association, vol. 112, no. 518, pp. 859–877, 2017.

[28] C. Zhang, J. Butepage, H. Kjellstrom, and S. Mandt, “Advances
in variational inference,” IEEE transactions on pattern analysis and
machine intelligence, 2018.

[29] M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponential
families, and variational inference,” Foundations and Trends® in
Machine Learning, vol. 1, no. 1–2, pp. 1–305, 2008.

[30] A. B. Owen, Monte Carlo theory, methods and examples, 2013.
[31] A. W. Van der Vaart, Asymptotic statistics. Cambridge university

press, 2000, vol. 3.
[32] T. Adali and S. Haykin, Adaptive signal processing: next generation

solutions. John Wiley & Sons, 2010, vol. 55.
[33] S. Thrun, “Particle filters in robotics,” in Proceedings of the Eighteenth

conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc., 2002, pp. 511–518.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3153225, IEEE

Transactions on Pattern Analysis and Machine Intelligence

13

[34] A. Greenfield and A. Brockwell, “Adaptive control of nonlinear
stochastic systems by particle filtering,” in 2003 4th International
Conference on Control and Automation Proceedings. IEEE, 2003, pp.
887–890.

[35] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning,
navigation, and tracking,” IEEE Transactions on signal processing,
vol. 50, no. 2, pp. 425–437, 2002.

[36] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach
to nonlinear/non-gaussian bayesian state estimation,” in IEE
proceedings F (radar and signal processing), vol. 140, no. 2. IET,
1993, pp. 107–113.

[37] P. Bickel, B. Li, T. Bengtsson et al., “Sharp failure rates for the
bootstrap particle filter in high dimensions,” in Pushing the limits
of contemporary statistics: Contributions in honor of Jayanta K. Ghosh.
Institute of Mathematical Statistics, 2008, pp. 318–329.

[38] I. Žliobaitė, M. Pechenizkiy, and J. Gama, “An overview of concept
drift applications,” in Big data analysis: new algorithms for a new
society. Springer, 2016, pp. 91–114.

[39] T. A. Le, M. Igl, T. Rainforth, T. Jin, and F. Wood, “Auto-encoding
sequential monte carlo,” in International Conference on Learning
Representations, 2018.

[40] C. Cremer, Q. Morris, and D. Duvenaud, “Reinterpreting
Importance-Weighted Autoencoders,” arXiv e-prints, Apr 2017.

[41] P. Del Moral, “Non-linear filtering: interacting particle resolution,”
Markov processes and related fields, vol. 2, no. 4, pp. 555–581, 1996.

[42] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
arXiv:1312.6114 [cs, stat], May 2014, arXiv: 1312.6114.

[43] T. Rainforth, A. R. Kosiorek, T. A. Le, C. J. Maddison, M. Igl,
F. Wood, and Y. W. Teh, “Tighter variational bounds are not
necessarily better,” arXiv preprint arXiv:1802.04537, 2018.

[44] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its
Applications: With R Examples (Springer Texts in Statistics). Springer,
2010.

[45] C. K. I. W. Carl Edward Rasmussen, Gaussian Processes for Machine
Learning. MIT Press Ltd, 2006.

[46] E. Snelson and Z. Ghahramani, “Sparse Gaussian Processes using
Pseudo-inputs,” in Advances in Neural Information Processing Systems
18, Y. Weiss, B. Schölkopf, and J. C. Platt, Eds. MIT Press, 2006,
pp. 1257–1264.

[47] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo
sampling methods for bayesian filtering,” Statistics and computing,
vol. 10, no. 3, pp. 197–208, 2000.

[48] D. Xu, “Learning nonlinear state space models with hamiltonian
sequential monte carlo sampler,” 2019.

[49] J. Liu and M. West, “Combined parameter and state estimation
in simulation-based filtering,” in Sequential Monte Carlo methods in
practice. Springer, 2001, pp. 197–223.

[50] M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and
C. E. Rasmussen, “Robust filtering and smoothing with gaussian
processes,” IEEE Transactions on Automatic Control, vol. 57, no. 7, pp.
1865–1871, 2011.

[51] S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and
L. Paninski, “Bayesian learning and inference in recurrent switching
linear dynamical systems,” in Artificial Intelligence and Statistics,
2017, pp. 914–922.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR (Poster), 2015.

[53] D. Sussillo and L. Abbott, “Generating coherent patterns of activity
from chaotic neural networks,” Neuron, vol. 63, no. 4, pp. 544 – 557,
2009.

[54] O. Barak, D. Sussillo, R. Romo, M. Tsodyks, and L. F. Abbott, “From
fixed points to chaos: three models of delayed discrimination.”
Progress in neurobiology, vol. 103, pp. 214–222, Apr. 2013.

[55] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, “Context-
dependent computation by recurrent dynamics in prefrontal cortex,”
Nature, vol. 503, no. 7474, pp. 78–84, Nov. 2013.

[56] S. Ganguli, J. W. Bisley, J. D. Roitman, M. N. Shadlen, M. E. Gold-
berg, and K. D. Miller, “One-dimensional dynamics of attention
and decision making in LIP,” Neuron, vol. 58, no. 1, pp. 15–25, Apr.
2008.

[57] X.-J. Wang, “Probabilistic decision making by slow reverberation
in cortical circuits,” Neuron, vol. 36, no. 5, pp. 955–968, Dec. 2002.

[58] K.-F. Wong and X.-J. Wang, “A recurrent network mechanism of
time integration in perceptual decisions,” The Journal of Neuroscience,
vol. 26, no. 4, pp. 1314–1328, Jan. 2006.

[59] I. D. Jordan and I. M. Park, “Birhythmic analog circuit maze: A
nonlinear neurostimulation testbed,” 2020.

[60] N. Chopin et al., “Central limit theorem for sequential monte carlo
methods and its application to bayesian inference,” The Annals of
Statistics, vol. 32, no. 6, pp. 2385–2411, 2004.

Yuan Zhao received his Ph.D. from Stony Brook University in 2016.
He is a postdoc in the Department of Neurobiology and Behavior at
Stony Brook University. His research interests lie in machine learning
and computational neuroscience.

Josue Nassar received the B.S. and M.S. degree in electrical engineering
from Stony Brook University in 2016 and 2018, respectively. He is
currently a Ph.D. candidate in the department of electrical and computer
engineering at Stony Brook University. His research interest lie at the
intersection of computational neuroscience, control, signal processing
and machine learning.

Ian Jordan received the BS degree in electrical engineering, specializing
in control systems, from the New Jersey Institute of Technology in
2017. He is currently a PhD candidate at the Department of Applied
Mathematics and Statistics at Stony Brook University. His research
interests lie primarily in the field of applied dynamical systems theory, and
the theory behind the underlying dynamics of recurrent neural networks.

Mónica Bugallo Mónica F. Bugallo is a Professor of Electrical and
Computer Engineering and Associate Dean for Diversity and Outreach
of the College of Engineering and Applied Sciences at Stony Brook
University. She received her B.S., M.S, and Ph. D. degrees in Computer
Science and Engineering from University of A Coruña, Spain. Her
research interests are in the field of statistical signal processing, with
emphasis on the theory of Monte Carlo methods and its application to
different disciplines including biomedicine, ecology, sensor networks, and
finance. In addition, she has focused on STEM education and has initiated
several successful programs with the purpose of engaging students at
all academic stages in the excitement of engineering and research, with
focus on underrepresented groups. She is a senior member of the IEEE
and the Vice Chair of the IEEE Signal Processing Theory and Methods
Technical Committee and has served on several technical committees of
IEEE conferences and workshops.

Il Memming Park is an Associate Professor in Neurobiology and
Behavior at Stony Brook University. He is a computational neuroscientist
trained in statistical modeling, information theory, and machine learning.
He received his B.S. in computer science from KAIST, M.S. in electrical
engineering and Ph.D. in biomedical engineering from the University
of Florida (2010), and trained at University of Texas at Austin as a
postdoctoral fellow (2010-2014).

