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Abstract—We propose a strong physical unclonable function
(PUF) provably secure against machine learning (ML) attacks
with both classical and quantum computers. Its security is
derived from cryptographic hardness of learning decryption
functions of public-key cryptosystems. Our design compactly re-
alizes the decryption function of the learning-with-errors (LWE)
cryptosystem. Due to the fundamental connection of LWE to
lattice problems, we call the construction the lattice PUF.

Lattice PUF is constructed using a physically obfuscated key
(POK), an LWE decryption function block, and a linear-feedback
shift register (LFSR) as a pseudo-random number generator.
The POK provides the secret key of the LWE decryption
function; its stability is ensured by a fuzzy extractor (FE). To
reduce the challenge size, we exploit distributional relaxations
of space-efficient LWEs. That allows only a small challenge-
seed to be transmitted with the full-length challenge generated
by the LFSR, resulting in a 100X reduction of communication
cost. To prevent an active challenge-manipulation attack, a self-
incrementing counter is embedded into the challenge seed.

We prototyped the lattice PUF with 2136 challenge-response
pairs (CRPs) on a Spartan 6 FPGA, which required 45 slices
for the PUF logic proper and 233 slices for the FE. Simulation-
based evaluation shows the mean (std) of uniformity to be 49.98%
(1.58%), of uniqueness to be 50.00% (1.58%), and of reliability
to be 1.26% (2.88%). The LWE concrete hardness estimator
guarantees that a successful ML attack of the lattice PUF will
require the infeasible 2128 CPU operations. Several classes of
empirical ML attacks, including support vector machine, logistic
regression, and deep neural networks, are used: in all attacks, the
prediction error remains above 49.76% after 1 million training
CRPs.

Index Terms—Strong PUF, PAC Learning, Lattice Cryptogra-
phy, ML Resistance.

I. INTRODUCTION

Silicon physical unclonable functions (PUFs) are security
primitives widely used in device identification, authentica-
tion, and cryptographic key generation [45]. Given an input
challenge, a PUF exploits the randomness inherent in CMOS
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technology to generate an output response. In contrast to weak
PUFs, also called physically obfuscated keys (POKs) using the
taxonomy of [19], which supply limited amount of challenge-
response pairs (CRPs), strong PUFs have an exponentially
large CRP space.

In this paper, we propose a strong PUF that is secure
against machine learning (ML) attacks with both classical
and quantum computers. As a formal framework to define ML
resistance, we adopt the probably approximately correct (PAC)
theory of learning [38]. Specifically, the PAC non-learnability
of a decryption function implies that with a polynomial num-
ber of samples, with high probability, it is not possible to learn
a function accurately by any means. The main insight, which
allows us to build such a novel strong PUF, is our reliance on
the earlier proof that PAC-learning a decryption function of a
semantically secure public-key cryptosystem entails breaking
that cryptosystem [25], [26], [28]. We develop a PUF for
which the task of modeling is equivalent to PAC-learning the
decryption function of a learning-with-errors (LWE) public-
key cryptosystem. The security of LWE cryptosystems is based
on the hardness of LWE problem that ultimately is reduced to
the hardness of several problems on lattices [41]. The input-
output mapping between the PUF and the underlying LWE
cryptosystem can be briefly summarized as follows: challenge
⇐⇒ ciphertext and response ⇐⇒ decrypted plaintext. No-
tably, LWE is believed to be secure against both classical and
quantum computers. Because of the intrinsic relation between
the proposed PUF and the security of lattice cryptography we
call our construction the lattice PUF.

The lattice PUF is constructed using a POK, an LWE
decryption function block, a linear-feedback shift register
(LFSR), a self-incrementing counter, and a control block. The
entire implementation is lightweight and fully digital.

The LWE decryption function block is the core module
of the lattice PUF, generating response (plaintext) to each
submitted challenge (ciphertext). Design parameters of the
LWE decryption function in the lattice PUF are chosen by
balancing the implementation costs, statistical performance,
and the concrete hardness of ML resistance. We develop
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a measure of ML security in terms of the total number
of operations needed to learn a model of the PUF. Such
concrete hardness is established by the analysis of state-of-the-
art attacks on the LWE cryptosystem [31], [37] and evaluated
by the estimator developed by Albrecht et al. [3]. Using this
estimator, we say that a PUF has k-bit ML resistance if a
successful ML attack requires 2k operations. We implement
the LWE decryption function with guaranteeing 128-bit ML
resistance. However, directly using a LWE decryption function
as a strong PUF is not efficient since 1-bit of response requires
1288-bit input challenges.

We further develop an improved design for resource-
constrained environments that dramatically (by about 100X)
reduces the communication cost associated with PUF response
generation. This is achieved by by exploiting distributional
relaxations allowed by recent work in space-efficient LWEs
[15]. This allows introducing a low-cost pseudo-random num-
ber generator (PRNG) based on an LFSR and transmitting only
a small seed. Finally, while the focus of the paper is a PUF
that is secure against passive attacks, we address the risk of an
active attack by adopting the technique in [49]: we introduce
a self-incrementing counter and embed the counter value into
a challenge seed. This makes the attack impossible as the
counter restricts the attacker’s ability to completely control
input challenges to the LWE decryption function.

We construct the lattice PUF to achieve a CRP space of
size 2136. Statistical simulation shows excellent uniformity,
uniqueness, and reliability of the proposed lattice PUF. The
mean (standard deviation) of uniformity is 49.98% (1.58%),
and of inter-class HD is 50.00% (1.58%). The mean BER
(intra-class Hamming distance (HD)) is 1.26%. We also vali-
date the empirical ML resistance of the constructed lattice PUF
via support vector machines (SVM), logistic regression (LR),
and neural networks (NN). Even with a deep neural network
(DNN), which is considered to be one of the most powerful
and successful ML attacks today, the prediction error stays
above 48.81% with 1 million training samples. The proposed
lattice PUF requires a 1280-bit secret key. A concatenated-
code-based fuzzy extractor (FE) is utilized to reconstruct stable
POK bits. Assuming an average bit error rate (BER) of 5%
for raw SRAM cells, the total number of raw SRAM bits
needed is 6.5K, in order to achieve a key reconstruction failure
rate of 10−6. We implement the entire PUF system (except
for raw SRAM cells) on a Spartan 6 FPGA. The PUF logic,
including an LWE decryption function, a 256-tap LFSR, a
128-bit self-incrementing counter, requires only 45 slices. The
concatenation-code-based FE takes 233 slices. Compared to
several known strong PUFs, the proposed PUF is significantly
more resource-efficient.

II. BACKGROUND WORK

In order for a strong PUF to be an effective security prim-
itive, the associated CRPs need to be unpredictable. In other
words, strong PUFs are required to be resilient to modeling
attacks via ML. The question of whether it is possible to

engineer a ML secure and lightweight strong PUF has been a
long-lasting challenge [46].

SVM is utilized to successfully attack a 64-bit arbiter PUF
(APUF) in [30]. Subsequent modification of the original APUF
aimed to strengthen ML resistance, including bistable ring
PUF [10], feed-forward APUF [30], and lightweight secure
PUF (LSPUF) [36], have also been broken via improved ML
attacks [5], [42], [44], [16]. Recent proposed interpose PUF
(IPUF) [39] claims provable ML resistance by assuming XOR
APUFs are hard to learn and rigorously reducing IPUF mod-
eling to XOR APUFs. Unfortunately, both their assumption
and claims are proved wrong: [43] demonstrates that XOR
APUFs and IPUFs are actually vulnerable to deep-learning-
based modeling attacks. There are often complex reasons why
claims and rigorous proofs of security fail in practice. The
most fundamental one is that their claims rely on recent
conjectures made from empirical findings. In contrast, the
security proof of lattice PUF is based on the hardness of
several basic lattice problems, which are seen as foundational
results in math and computer science, and are widely believed
true.

By exploiting higher intrinsic nonlinearity, some strong
PUFs [29], [47] exhibit empirically-demonstrated resistance
to a list of ML algorithms. Empirical demonstrations of ML
resistance are not fully satisfactory since they can never rule
out the possibility of other more effective ML algorithms.

The so-called controlled PUF setting [17] attempts to ensure
the ML resistance via cryptographic primitives such as hash
functions. However, the use of hash functions inside a PUF
endangers the promise of a strong PUF as a lightweight struc-
ture. Strong PUF constructions using established cryptographic
ciphers, such as AES [7], have similar challenges.

Recent work [14], [19], [21] have also utilized lattice-
based problems, including learning-parity-with-noise (LPN)
and LWE, to realize computationally-secure FEs and, as
a byproduct, to construct strong PUFs. 1 The fundamen-
tal security property that [14], [19], [21] rely upon is the
computational hardness of recovering a private key from a
public key in a public-key cryptosystem. Their CRP generation
is based on generating multiple private keys (playing the
role of PUF responses) and multiple public keys (playing
the role of PUF challenges). This is only possible because
multiple public keys are derived using a fixed (same) source
of secret POK bits, embedded in the error term of LPN or
LWE. As was shown in [4], the fact that multiple CRPs
have shared error terms can be easily exploited allows a
computationally-inexpensive algorithm for solving an LPN or
LWE instance, thus compromising the hardness of LPN or
LWE problems. Thus, by itself [14], [19], [21], the resulting
PUF does not have resistance against ML modeling attacks.
This vulnerability is fixed in [19], [21] by introducing a
cryptographic hash function to hide the original CRPs, which
violate the principle of lightweightness. In stark contrast, the

1A computational FE guarantees absence of information leakage from pub-
licly shared helper data via computational hardness in contrast to conventional
FEs that need to limit their information-theoretic entropy leakage.



proposed lattice PUF derives its security by directly exploiting
a distinctly different property of public-key cryptosystems: the
theoretically-proven guarantee that their decryption functions
are not PAC-learnable. In the lattice PUF, the above-discussed
vulnerability is absent since the publicly known challenges are
ciphertexts and the security of the cryptosystem ensures that a
fixed private key (the POK, in our case) cannot be recovered
from ciphertexts.

III. LWE DECRYPTION FUNCTIONS ARE HARD TO LEARN

This section formally defines ML resistance of strong PUFs
via the notion of PAC learning and shows why LWE de-
cryption functions are attractive for constructing post-quantum
ML-resistant PUFs. In this section, we focus on passive attacks
in which the attacker can observe the challenges sent to the
verifier but is unable to generate challenges of his or her
choice.

A. ML Resistance as Hardness of PAC Learning

A strong PUF can be modeled as a function f : C → R
mapping from the challenge space C (usually {0, 1}n) to the
response space R (usually {0, 1}). We call f the true model
of a strong PUF since it captures the exact challenge-response
behavior.

ML attacks are usually performed by relying on a functional
class of candidate models, collecting CRPs as the training data,
and running a learning algorithm to obtain a model from the
candidate class which best approximates the true model. In
addition to the approximation quality, the criteria of evaluating
the effectiveness and efficiency of the learning algorithm also
include the sample and time complexity. To claim that a strong
PUF is easy to learn, one can propose a learning algorithm
which finds a CRP model with good approximation quality
using a small number of sample CRPs and terminates in a short
time. The converse is difficult: to claim that a PUF is hard to
learn, one must show that all possible learning algorithms fail
to provide models with good approximation quality, or they
require a large number of CRPs or a long running time.

We argue that the only known framework for seeking a
provable notion of ML resistance with a formal analysis of
approximation quality, sample size, and time complexity is
the PAC learning model [38]. We now formalize the passive
modeling attack scenario in the context of PAC learning. A
PAC-term for a true model f of a strong PUF is a concept.
Denote as F the set of all possible PUF-realized functions
(every instance of a PUF creates its unique functional mapping
f ). The set of candidate models used in the learning algorithm
is the hypothesis set H. The goal of a learning algorithm
is to select a candidate model that matches the true model
well. Importantly, as shown later, the proof of PAC-hardness
guarantees that H does not have to be restricted to be the same
as F of true models. This generalization permits a stronger
representation-independent PAC-hardness proof. While not
always possible, representation-independent hardness can be
proven for PAC-learning of decryption functions ensuring that

no matter how powerful and expressive the chosen H is, PAC
learning decryption function requires exponential time.

Within the PAC model, CRPs in a training set are assumed
to be independent and identically distributed (i.i.d.) under a
certain distribution D.

We say a set F of strong PUFs is PAC-learnable using H, if
there exists a polynomial-time algorithm A such that ∀ε > 0,
∀δ > 0, for any fixed CRP distribution D, and ∀f ∈ F , given
a training set of size m, A produces a candidate model h ∈ H
with probability of, at least, 1− δ such that

Pr
(c,r)∼D

[f(c) 6= h(c)] < ε.

In conclusion, our strategy is to say that a strong PUF is
ML-resistant if it is not PAC-learnable (i.e., that it is PAC-
hard). PAC-hardness implies that any successful ML attack
requires at least an exponential running time.

B. Decryption Functions Are not PAC Learnable

What is critically important is that there exist functions that
are known to be not PAC-learnable. Specifically, a class of
decryption functions of secure public-key cryptosystems is not
PAC-learnable, as established by [25], [28]. We outline their
proof below.

A public-key cryptosystem is a triple of probabilistic
polynomial-time algorithms (Gen,Enc,Dec) such that: (1)
Gen takes n as a security parameter and outputs a pair of
keys (pk, sk), the public and private keys respectively; (2)
Enc takes as input the public key pk and encrypts a message
(plaintext) r to return a ciphertext c = Enc(pk, r); (3) Dec
takes as input the private key sk and a ciphertext c to decrypt a
message r = Dec(sk, c). We only need to discuss public-key
cryptosystems encrypting 1-bit messages (0 and 1).

One of the security requirements of a public-key cryptosys-
tem is that it is computationally infeasible for an adversary,
knowing the public key pk and a ciphertext c, to recover the
original message, r. This requirement can also be interpreted
as the need for indistinguishability under the chosen plaintext
attack (also often referred to as semantic security requirement)
[24]. Given the encryption function Enc and the public key
pk, the goal of an attacker is to devise a distinguisher A to
distinguish between encryption Enc(pk, r) of r = 0 and r = 1
with non-negligible probability:

|Pr[A(pk,Enc(pk, 0)) = 1]−Pr[A(pk,Enc(pk, 1)) = 1]| ≥ ε.

A cryptosystem is semantically secure if no polynomial-
time attacker can correctly predict the message bit with non-
negligible probability.

The connection between the above-stated security of a
public-key cryptosystem and the hardness of learning a con-
cept class associated with its decryption function was estab-
lished in [25], [28]. The insight of [25], [28] is that PAC-
learning is a natural result of the ease of encrypting messages
with a public key. Since the encryption function Enc and
the public-key pk is known, the distinguishing algorithm can
sample independent training examples in the following way:



(1) picking a plaintext bit r uniformly randomly from {0, 1},
(2) encrypting r to get the ciphertext c = Enc(pk, r). (We
later refer to the resulting distribution of ciphertext as the
”ciphertext distribution”.) Next, the distinguishing algorithm
passes the set of training examples ((c, r)’s) into an algo-
rithm for learning the decryption function Dec(sk, ·). The
PAC learning algorithm returns a model h(·) that aims to
approximate Dec(sk, ·). Using h(·), one could distinguish
between ciphertexts stemming from r = 0 and r = 1 with
non-negligible probability. This would entail violating the
semantic security of the cryptosystem. Technically, this can
be summarized as follows [25], [28].

Theorem 1: If a public-key cryptosystem is secure against
chosen plaintext attacks, then its decryption functions are not
PAC-learnable (under the ciphertext input distribution).

C. LWE Is Post-Quantum Secure

According to the cryptographic hardness above, decryption
functions of any secure public-key cryptosystem, such as
Rivest–Shamir–Adleman (RSA) and elliptic-curve cryptogra-
phy (ECC), can be used to construct ML-resistant PUFs. How-
ever, integer-factoring-based cryptosystems, including RSA
and ECC above, become insecure with the development of
quantum computers. Among all post-quantum schemes [6], the
LWE cryptosystem based on hard lattice problems appears to
be most promising due to its implementation efficiency and
stubborn intractability since 1980s.

A lattice L(V) in n dimensions is the set of all integral
linear combinations of a given basis V = {v1,v2, . . . ,vn}
with vi ∈ Rn:

L(V) = {a1v1 + a2v2 + . . . anvn : ∀ai ∈ Z}.

The LWE problem is defined on the integer lattice L(V) =
{(a, 〈a, s〉)} with a basis V = (I; s), in which I is an n-
dimensional identity matrix and s is a fixed row vector (also
called the secret) in Znq . Throughout this paper, vectors and
matrices are denoted with bold symbols with dimension on
superscript, which can be dropped for convenience in case
of no confusion. Unless otherwise specified, all arithmetic
operations in the following discussion including additions and
multiplications are performed in Zq , i.e. by modulo q.

For the lattice L(V) = {(a, 〈a, s〉)} with dimension n,
integer modulus q and a discrete Gaussian distribution Ψ̄α for
noise, the LWE problem is defined as follows. The secret vec-
tor s is fixed by choosing its coordinates uniformly randomly
from Zq . Next ai’s are generated uniformly from Znq . Together
with the error terms ei, we can compute bi = 〈a, s〉 + ei.
Distribution of (ai, bi)’s over Znq × Zq is called the LWE
distribution As,Ψ̄α

. The most important property of As,Ψ̄α
is

captured in the following lemma:
Lemma 1: Based on hardness assumptions of several lattice

problems, the LWE distribution As,Ψ̄α
of (a, b)’s is indistin-

guishable from a uniform distribution in Znq × Zq .
Solving the decision version of LWE problem is to distin-

guish with a non-negligible advantage between samples from
As,Ψ̄α

and those generated uniformly from Znq × Zq . This

LWE problem is shown to be intractable to solve, without
knowing the secret s, based on the worst-case hardness of
several lattice problems [41]. Errors e are generated from a
discrete Gaussian distribution Ψ̄α on Zq parameterized by
α > 0: sampling a continuous Gaussian random variable with
mean 0 and standard deviation αq/

√
2π and rounding it to

the nearest integer in modulo q. Notice that error terms are
also essential for guaranteeing the indistinguishability: without
noise (a, b) becomes deterministic and the secret s can be
solved efficiently via Gaussian elimination methods.

We now describe a public-key cryptosystem based on the
LWE problem above in [9]:

Definition 1: (LWE cryptosystem)

• Private key: s is uniformly random in Znq .
• Public key: A ∈ Zm×nq is uniformly random, and e ∈

Zmq with each entry from Ψ̄α. Public key is (A,b =
As + e).

• Encryption: x ∈ {0, 1}m is uniformly random. To
encrypt a one-bit plaintext r, output ciphertext c =
(a, b) = (ATx,bTx + rbq/2c).

• Decryption: Decrypt the ciphertext (a, b) to 0 if b−〈a, s〉
is closer to 0 than to bq/2c modulo q, and to 1 otherwise.

Notice that each row in the public-key (A,b) is an instance
from the LWE distribution As,Ψ̄α

.
Correctness of the LWE cryptosystem can be easily verified:

without the error terms, b − 〈a, s〉 is either 0 or bq/2c,
depending on the encrypted bit. Semantic security of the LWE
cryptosystem follows directly from the indistinguishability
of the LWE distribution from the uniform distribution in
Znq × Zq . Ciphertexts (a, b) are either linear combinations or
shifted linear combination of LWE samples, both of which
are indistinguishable from the uniform distribution. This is
true because shifting by any fixed length preserves the shape
of a distribution. Therefore, an efficient algorithm that can
correctly guess the encrypted bit would be able to distinguish
LWE samples from uniformly distributed samples. This allows
[41] to prove that:

Theorem 2: Based on the hardness assumptions of several
lattice problems, the LWE cryptosystem is secure against
the chosen-plaintext attacks using both classical and quantum
computers.

When the error terms ei’s are introduced:

b− 〈a, s〉 =
∑
i∈S

bi + bq
2
cr − 〈

∑
i∈S

ai, s〉

=
∑
i∈S

(〈ai, s〉+ ei)− b
q

2
cr − 〈

∑
i∈S

ai, s〉

=bq
2
cr −

∑
i∈S

ei,

in which S is the set of non-zero coordinates in x. For a
decryption error to occur, the accumulated error

∑
i∈S ei must

be greater than the decision threshold bq/4c. The probability



of the error is given by [37]:

ErrLWE ≈ 2(1− Φ(
q/4

αq
√
m/2/

√
2π

))

= 2(1− Φ(

√
π

2α
√
m

)),

in which Φ(·) is the cumulative distribution function of the
standard Gaussian variable. We later use this expression to
find the practical parameters for the lattice PUF.

IV. DESIGN OF LATTICE PUF

The theoretical security guarantees in Section III shows that
an LWE decryption function can be used as a strong PUF with
challenges generated from a ciphertext distribution. In this sec-
tion, we first derive design parameters for the LWE decryption
function and show that such a direct implementation of lattice
PUF is inefficient in resource constrained environments due to
high-ratio of ciphertext to plaintext. As we will illustrate in the
following, an LWE decryption function with a 128-bit concrete
ML hardness requires transmitting 128.8K challenge bits in
order to produce a 100-bit response string. We then solve this
problem by exploiting distributional relaxations allowed by
recent work in space-efficient LWEs. The proposed strategy
allows introducing a low-cost PRNG based on an LFSR and
transmitting only a small seed, which results in a dramatic
reduction of effective challenge size. Last, we introduce a
simple defense to protect our PUF against a standard active
attack on the LWE decryption function.

The top-level architecture of the proposed lattice PUF is
shown in Figure 1.

A. LWE Decryption Function

Figure 2 shows the core component of the proposed lattice
PUF: the LWE decryption function. It takes a binary challenge
vector c = {c0, c1, . . . , cN−1} of size N = (n+1) log q which
maps to a ciphertext (a, b) in the following way:

ai =

log q−1∑
j=0

c(i−1) log q+j2
j , ∀i ∈ {1, 2, . . . , n},

b =

log q−1∑
j=0

cn log q+j2
j .

Here ai denotes the i-th element of the integer vector a ∈
Znq . In this paper, without specification, log(x) refers to
log2(x). Similarly, the private key s for the corresponding
LWE decryption function is realized by a binary secret key
W = {W0,W1, . . . ,Wn log q−1} of size n log q:

si =

log q−1∑
j=0

W(i−1) log q+j2
j , ∀i ∈ {1, 2, . . . , n}.

A modulo-dot-product b − 〈a, s〉 is computed using the
modulo-multiply-accumulate unit. It can be implemented in
a serial way using n stages. Recall that all additions and mul-
tiplications are performed in modulo q. Since q is a power of 2

in our construction, modulo addition and multiplication can be
naturally implemented by integer addition and multiplication
that keep only the last log q-bit result. Finally the response r
is produced by a quantization operation r = Q(b− 〈a, s〉):

Q(x) =

{
0 x ∈ [0, q4 ] ∪ ( 3q

4 , q − 1],

1 x ∈ ( q4 ,
3q
4 ].

The computation above can be directly implemented as a
strong PUF with 2N CRPs since it maps a challenge vector
c ∈ {0, 1}N into a binary response r ∈ {0, 1}. We now
discuss parameter selection for the LWE decryption function.
In general, we seek to find design parameters such that (1)
the resulting PUF has excellent statistical properties, such as
uniformity, uniqueness, and reliability, (2) successful ML at-
tacks against it require an un-affordably high time complexity
in practice, and (3) its hardware implementation costs are
minimized.

Prior theoretical arguments establish the impossibility of
a polynomial-time attacker. To guarantee practical security,
we need to estimate the number of samples and the actual
running time (or a number of CPU operations) required for
a successful ML attack. [41] shows that a small number of
samples are enough to solve an LWE problem, but in an
exponential time. Thus, we refer to runtime as concrete ML
resistance (or ML hardness) and say that a PUF has k-bit
ML resistance if any successful ML attack requires at least
2k operations. We adopt the estimator developed by Albrecht
et al. [3] to estimate concrete ML hardness. The concrete
hardness of an LWE problem increases with the increase of
LWE parameters n, q, and α for all types of attacks. Recall
that n represents the lattice dimension, q represents the range
of integer for each dimension, and α reflects the noise level in
CRP (ciphertext) generation. For a given set of parameters, the
estimator compares the complexity of several most effective
attacks, including decoding, basis reduction, and meet-in-the-
middle attacks [11], [20], [31]. We utilize the estimator in a
black-box fashion to find the set of parameters with the target
of 128-bit concrete ML resistance.

We consider two metrics of implementation cost, both of
which scale with n: the number of challenge and secret
bits needed (n log q), and the number of multiply-accumulate
(MAC) operations (n). This motivates the need to decrease n.

For conventional PUFs, such as APUF and SRAM PUF, an
output error is due to environmental noise, e.g. delay changes
in APUF and FET strength changes in SRAM PUF with
both voltage and temperature. In contrast, output errors of the
lattice PUF come from two sources: (1) environmental errors
of secret bits, and (2) errors of decryption during response
generation. The former can be thought as the failure of key
reconstruction in POKs. Since a single bit-flip completely
changes the challenge-response behavior of LWE decryption
function, the failure rate of key reconstruction needs to be low,
e.g. 10−6 (as widely adopted in other PUF applications [34]).
Section V describes how the target failure rate can be achieved
via a conventional FE based on the error-correcting codes. The



 

 

 

Fig. 1: Top-level architecture and data flow of the lattice PUF.

Fig. 2: Architecture of LWE decryption function.
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Fig. 3: Super-exponential decrease of decryption error rate
with the increase of secret bits. The analysis is done for 128-
bit concrete hardness.

latter corresponds to the decryption error and is orthogonal to
errors in the secret key s. Recall that in CRP generation of the
lattice PUF, a bit of plaintext r is sampled and the ciphertext
c is produced by a noisy encryption function c = Enc(r).
Given ciphertext c as input challenge, the decryption function
can output a wrong response r′ 6= r when the accumulated
error

∑
i∈S ei in the encryption function exceeds the decision

boundary.
The model for evaluating the decryption error rate is shown

in Section II. In order for a strong PUF to be used in
direct authentication, its decryption error rate should be small
enough for reliable distinguishability of long strings. We set
the target around 2%. Figure 3 explores the trade-off between
the number of secret bits and the decryption error rate needed
for 128-bit concrete ML hardness. It shows that, at fixed
concrete ML hardness, the decryption error rate decreases

super exponentially with the number of secret bits.
Considering the design metrics above, a feasible set of

parameters is found using the estimator in [3]. By setting
n = 160, q = 256, m = 256 and α = 2.20%, we achieve
a lattice PUF with 128-bit concrete hardness and a decryption
error rate of 1.26%.

In order to get a 1-bit response, (n + 1) log q = 1288
bits need to be sent to the lattice PUF as a challenge. For
direct authentication applications, usually around 100 bits of
responses are required. Therefore, the direct implementation
described so far would require C = 128.8K challenge bits.
This high ratio of challenge length to response length limits
its practical use in many scenarios when communication is
expensive.

B. Challenge Compression through Distributional Relaxation

We now describe the proposed strategy based on space-
efficient LWE that overcomes the limitation on communica-
tion inefficiency. The LWE decryption function described in
Section IV-A requires a challenge c in the form c = (a, b) to
be sent from the server to the PUF. To represent vector a ∈ Znq
requires n log q bits while to represent scalar b ∈ Zq requires
only log q bits. Thus, the major cost of transmission lies in
sending a. We wish to avoid sending a directly and, instead,
to send a compressed (shorter) version of a and re-generate
its full-size version on the PUF. Our approach is enabled by
the recent results on the distributional behavior of a = ATx
[2] and the concept of space-efficient LWE [15].

Recall that b is given by:

b = bTx + rbq/2c
= (As + e)Tx + rbq/2c
= (ATx)T s + eTx + rbq/2c.

First, we replace the component a = ATx by a∗ uniformly
randomly sampled from Znq . That allows us to represent
challenge c = (a, b):{

a = ATx

b = (ATx)T s + eTx + rbq/2c

as c∗ = (a∗, b∗):{
a∗

b∗ = a∗T s + eTx + rbq/2c
.



In [2], it is proven that distribution of c∗ = (a∗, b∗) is statisti-
cally close to the original ciphertext distribution, therefore the
required security properties are preserved.

The advantage of the above approximation is that, as
shown by [15], several low-complexity PRNGs are capable of
producing an output string a′ suitably close to a∗ ∈ Znq within
the context of LWE cryptosystem. In particular, an LFSR
is an especially simple PRNG having the right properties.
Specifically, a vector a′ generated by an LFSR provides similar
concrete security guarantees against standard attacks on LWE,
such as CVP reduction, decoding, and basis reduction [15].
This is because LFSR-generated a′ maintains good properties
including:
• it is hard to find “nice” bases for a lattice with basis from

LFSR-generated a′;
• given an arbitrary vector in Znq , it is hard to represent it

as a binary linear combination of LFSR-generated a′’s;
• it is hard to find a short vector w that is orthogonal to

LFSR-generated a′’s.
The ability to rely on a simple PRNG to produce a′ allows

a dramatic reduction in challenge transfer cost. Now, the
challenge c′ contains only a small seeda′ into the PRNG and
the corresponding b′ as

b′ = (a′)T s + eTx + rbq/2c
= LFSR (seeda′)

T
s + eTx + rbq/2c.

Here LFSR(·) denotes the output generated by an LFSR.
With LWE parameters chosen as Section IV-A, using a

seed of length l = 256 is able to reduce the challenge
length from 1288 to 256 + 8 = 264 per one bit of response.
The improvement of efficiency becomes more pronounced for
generating multiple responses: This is because a′1 . . . a

′
t can

be generated sequentially from the l-bit seed, so that only
the seed and b′1, . . . , b

′
t ∈ Zq are required to be sent to the

PUF side. 100 bits of responses now require only transmitting
256 + 100× log 256 = 1056 bits for challenges.

C. Countermeasure for Active Attack

The focus of the paper is a PUF secure against passive
attacks in which the observed challenges can be used to derive
an internal model of the PUF. However, the LWE decryption
function is vulnerable to an active attack that supplies arbitrary
input challenges. (As we show, this risk also carries into an
LFSR-based variant).

The attack is premised on the ability to supply arbitrary
challenges (ciphertexts) as inputs to the decryption function.
The attack proceeds as follows. The attacker fixes a and
enumerates all possible b ∈ Zq for challenge c = (a, b). As
b increases from 0 to q − 1, the response r = Q(b − 〈a,b〉)
changes from Q(b − 〈a, s〉) = 0 to Q(b + 1 − 〈a, s〉) = 1
exactly when b satisfies

b− 〈a, s〉 = q/4.

We denote this specific value of b as b̂. The exact value of
〈a, s〉 can then be extracted by 〈a, s〉 = b̂− q/4. By repeating

this procedure n times, the attacker is able to set up n linear
equations (without errors):

〈a0, s〉 = b̂0 − q/4,
〈a1, s〉 = b̂1 − q/4,

· · ·
〈an−1, s〉 = b̂n−1 − q/4.

Gaussian elimination can then be used to solve for s. The
reason the attack succeeds is that attackers are able to fix a
and use it for multiple values of b.

We overcome the risk of such an attack by adopting the
technique in [49]: we introduce a self-incrementing counter to
embed the counter value into a challenge seed. This makes the
attack impossible as the counter restricts the attacker’s ability
to completely control input challenges to the LWE decryption
function. As a result, the attacker cannot enumerate all values
of b while keeping a unchanged. As shown in Figure 1, the
concatenation of the challenger-provided seed and the counter
value t (i.e. seeda′ ||t) is used as the seed for generating a.
The counter value is public and is incremented by 1 on each
response generation.

V. EXPERIMENTAL RESULTS

In this section, we build a behavior model simulator of the
constructed lattice PUF, in which the statistical model of raw
SRAM POKs follows from [32], [33] and other digital circuit
components are accurately emulated by Python. 1000 lattice
PUF instances are virtually manufactured (simulated) and their
CRPs are extracted to evaluate (1) statistical properties of the
lattice PUF, including uniformity, uniqueness, and reliability
with parameters chosen in Section IV, and (2) vulnerabil-
ity to state-of-the-art ML attacks. In order to quantize the
lightweightness, we implement the entire lattice PUF system
(except for the raw SRAM cells) on a Spartan 6 FPGA and
compare it with prior work.

A. Statistical Analysis
Uniformity of a PUF characterizes unbiasedness, namely,

the proportion of ‘0’s and ‘1’s in the output responses. For an
ideal PUF f , the proportion needs to be 50%. We adopt the
definition of uniformity in [35] based on the average Hamming
weight HW(f) of responses r to randomly sampled challenges
c’s:

HW(f) = IEc[HW(r)] = IEc[HW(f(c))].

Here IEX represents expectation over random variable X . Note
that c follows the ciphertext distribution rather than the usual
uniform distribution [35]. Figure 4 shows uniformity obtained
using 1000 randomly selected challenges. The distribution is
centered at 49.98%, the standard deviation is 1.58%.

Uniqueness measures the ability of a PUF to be uniquely
distinguished among a set of PUFs. Based on [35], we define
this metric to be the average inter-class HD of responses
(ri, rj) under the same challenges c for a randomly picked
PUF pair (fi, fj):

HD(fi, fj) = IEc[HD(ri, rj)] = IEc[HD(fi(c), fj(c))].
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Fig. 5: Uniqueness and reliability of lattice PUF output.

For ideal PUFs, responses under the same challenges are or-
thogonal, namely, HD(fi, fj)’s are close to 50%. Uniqueness
is also evaluated under the ciphertext distribution.

Uniqueness is shown in Figure 5, evaluated for 1000 PUF
instances. The lattice PUF achieves near-optimal uniqueness:
inter-class HD is centered at 50.00%, its standard deviation is
1.58%.

Reliability of a PUF f is characterized by the average BER
of outputs with respect to their enrollment values:

BER = IEf ′ [HD(f, f ′)] = IEf ′,c[HD(f(c), f ′(c))].

As discussed in Section IV, the overall BER of the lattice PUF
is due to two components: the failure rate of key reconstruction
and LWE decryption error rate. Intra-class HD in Figure 5
reflects the result of decryption errors by assuming a perfect
key reconstruction.

B. Empirical ML Resistance

While the ultimate promise of lattice PUF is due to its
theoretically-supported reliance on hard computational prob-
lems, testing its resilience to empirical ML attacks is important
and provides additional confidence about the lattice PUF. We
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Fig. 6: ML attacks: Lattice PUF remains resistant to all
attacks (DNNs, LR, SVM,1-NN). DNN ultimately succeeds
in modeling two other strong PUFs.
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Fig. 7: Lattice PUF is resistant to both traditional ML attacks
and DNNs.

evaluate the vulnerability of lattice PUF to a range of tradi-
tional (i.e., not based on deep learning) ML attack methods,
including SVM, LR, and single-layer NN (1-NN), as well as
a number of DNNs. We use the Python package scikit-learn
[40] to implement SVM and LR. The SVM uses a nonlinear
kernel with radial basis functions (RBF). The 1-NN model uses
only one hidden feed-forward layer composed of 100 neurons,
with the rectified linear unit (ReLU) as the activation function.
Training of 1-NNs and subsequent DNNs are implemented
using Keras [12] with TensorFlow [1] backend.

DNNs represent a more powerful class of binary classifiers.
DNNs contain multiple hidden layers that produce superior
modeling expressiveness compared to 1-NNs [18]. Impor-
tantly, DNNs have been recently shown to be very effective
in attacking known strong PUFs, including XOR APUFs and
IPUFs [43]. Our baseline DNN experiment (DNN-1) is based
on the same network parameters as in [43]. The network has



TABLE I: Various configuration for DNN attacks.

Setup Hidden
Layers

Neurons
per Layer

Challenge
Distribution

Input
Format

Prediction
Error

DNN-1 4 100 PRNG Binary 49.86%
DNN-2 4 100 PRNG Real 49.84%
DNN-3 4 100 Ciphertext Binary 49.76%
DNN-4 6 100 PRNG Binary 49.80%
DNN-5 4 200 PRNG Binary 49.87%

TABLE II: Configuration of error-correcting codes.

Raw BER
(%)

Error-Correcting Code Raw POKs
Outer code Inner code

1 [236, 128, 14] N/A 2,360
5 [218, 128, 11] [3, 1, 1] 6,540

10 [220, 128, 12] [5, 1, 2] 11,000
15 [244, 128, 15] [7, 1, 3] 17,080

4 hidden layers, each containing 100 neurons. It uses ReLU
as the non-linear operator.

In addition to the baseline configuration, we explored
attacks using several other network architectures, hyper-
parameters, and numeric representations, as listed in Table
I. DNN-2 treats input as 161 integer numbers from 0 to
255, instead of 1288 binary bits. DNN-3 is different from
the baseline version in its CRP generation strategy (see more
below). DNN-4 and DNN-5 add more hidden layers and
more neurons per hidden layer respectively, compared to the
baseline DNN-1.

Figure 6 shows the results of the empirical attacks based
on the above ML algorithms. The figure shows the prediction
error of lattice PUF in response to these attacks with training
set size ranging from 1000 to 1 million and test set of size
200K. The Adam optimizer [27] terminates after 200 epochs,
and results in a prediction error of 49.86% for the proposed
lattice PUF, barely better than a random guess. The results
show that the prediction error of lattice PUF remains flat
for all attempted attacks: across the range of attacks and
CRP training set sizes, there is no measurable deviation of
the error from 0.5. In contrast, a DNN (with a configuration
corresponding to DNN-1) achieves less than 2% prediction
error for both 4-XOR APUF and (4, 4)-IPUF.

It is critical that the experiments also demonstrate that lattice
PUF design that utilizes the distributional relaxation of space-
efficient LWE (described in Section IV-B) shows the same
empirical resistance to ML attacks as the design not based on
such a relaxation. In Table 1, all design/attack combinations
except for DNN-3 are based on the compact (relaxation-based)
design in which CRPs are generated via a PRNG. Finally, we
also provide an expanded view of the results of ML attacks
on lattice PUF in Figure 7 by zooming in Figure 6. While
run-to-run variations of the training optimizer are observable,
the prediction error remains close to 50%.

C. Hardware Implementation Results

We now present the details of lattice PUF implementation
and analyze its hardware efficiency. The entire design, except

TABLE III: (a) Area consumption and (b) runtime of our
reference lattice PUF implementation on Xilinx Spartan-6
FPGA.

(a)

Module Size [slices]
LFSR 27

LWEDec 2
Controller 16

Total 45

(b)

Step Time [µs]
Seed seeda′ ||t load for LFSR 8

1-bit decryption from LWEDec 44
Total @ 33 MHz 52

TABLE IV: Hardware implementation costs of strong PUFs.

Design Platform PUF Logic [Slices]
POK+AES [7] Spartan 6 80

Controlled PUF [17] Spartan 6 127
CFE-based PUF [19], [21] Zynq-7000 9,825

Lattice PUF Spartan 6 45

Fig. 8: POK uses an FE to ensure stability of the secret seed.

for the raw (uninitialized) SRAM cells, was synthesized, con-
figured, and tested on a Xilinx Spartan-6 FPGA (XC6SLX45),
a low-end FPGA in 45nm technology.

Regarding the FE design, we adopt the homogeneous error
assumption, i.e., all cells have the same BER [8]. Prior work
shows that intrinsic BERs of the various POKs range from
0.1% [23] to 15% [33]. We study the POK and FE designs
under four levels of raw BER: 1%, 5%, 10%, and 15% to
explore design costs, and choose 5% as the raw SRAM BER
to benchmark our final implementation. Here the goal of FE
design is to ensure a key reconstruction of 1280 bits with
targeted failure rate at 10−6. As mentioned in Section IV,
with such nearly-perfect secret key reconstruction, the overall
output BER of the lattice PUF can reach the decryption error
rate analyzed above. We use concatenated error-correcting
codes, with a repetition code as the inner code, and a shortened
BCH code as the outer code. Concatenated codes are typically
more efficient than single codes in terms of code length and
hardware cost [8]. Block diagram of the FE design is shown in
Figure 8. Table II and V list the configuration and hardware
costs of error-correcting codes used at different BER levels
respectively. At the raw BER of 5%, 6.5K cells are needed to
construct the secret s of length 1280 bits at the target failure



TABLE V: Hardware utilization in FE design on Spartan 6 FPGA.

Raw BER
(%)

Outer Code Inner Code Total
Reg LUT Slice Reg LUT Slice Reg LUT Slice

1 905 893 276 0 0 0 905 893 276
5 730 688 232 0 1 1 730 689 233

10 785 740 243 0 3 2 785 743 245
15 973 913 326 0 7 3 973 920 329

rate 10−6. The FE design of the lattice PUF requires 233
slices. This portion of cost applies to all other strong PUF
candidates (AES PUF or other controlled PUF). This is also
cheaper than linear solver block used in the CFE-based strong
PUF [19], [21] for key reconstruction, which requires 65, 700
LUTs and 16, 425 slices.

Regarding the PUF logic, the total size of the lattice PUF
(without FE) for the Spartan-6 platform is 45 slices, most
of which is taken up by the LFSR and the controller. Table
IIIa shows the breakdown of resources needed to realize
the various modules. The core block implementing the LWE
decryption function (LWEDec) includes an 8-bit MAC and a
quantization block, as shown in Figure 2. The 256-bit LFSR
is implemented using RAM-based shift registers. The total
latency (at 33.3MHz clock) to generate a 1-bit PUF response is
47µs, and the total time to generate a 100-bit PUF response is,
approximately, 8µs+100×44µs ≈ 4.4ms since seed loading
is only executed once. Table IIIb lists the latency of each step
of response generation.

We compare the implementation cost of the lattice PUF
logic against established strong PUF designs [7], [17], [21]
in Table IV. The original strong PUF based on AES [7] is
implemented as an ASIC. Here, we adopt [13] as an FPGA
alternative to estimate the implementation cost of AES. Notice
that [7] uses no error correction since it guarantees reliability
via dark bit masking. Similarly, the FPGA implementation
of SHA-3 [22] is adopted to estimate the cost of a hash
function for the controlled PUF [17]. The FPGA utilization
result of the strong PUF based on the computational FE (CFE)
is presented via the number of LUTs in [21]. We estimate
the corresponding slice count using [48]. Compared to PUFs
based on AES [13] and SHA [22], our advantages in area
are minor. However, compared to [19], [21], which is another
PUF based on LWE, and which therefore provides similar
theoretical guarantees, our savings in area are significant.

VI. CONCLUSION

In this paper, we described a new strong physical unclon-
able function (PUF) that is provably secure against machine
learning (ML) attacks with both classical and quantum com-
puters. The security is derived from cryptographic hardness of
learning decryption functions of semantically secure public-
key cryptosystems within the probably approximately correct
framework. The proposed PUF compactly realizes the de-
cryption function of the learning-with-errors (LWE) public-
key cryptosystem as the core block. We implemented a lattice
PUF on a Spartan 6 FPGA. The design realizes a challenge-
response pair space of size 2136, requires 1280 physically

obfuscated key bits, and guarantees 128-bit ML resistance. The
PUF shows excellent uniformity, uniqueness, and reliability.
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