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Abstract. In observational studies, regression coefficients for categorical regressors
are overwhelmingly presented in terms of contrasts with a reference category. For
unordered regressors with many categories, however, this approach often focuses
on contrasting different pairs of categories to one another with little substantive
rationale for foregrounding some comparisons with others. Mean contrasts, which
compare categories with the overall mean, provide an alternative to the reference
category, but the magnitude of mean contrasts is conflated with the relative sizes
of the categories. Instead, binary contrasts compare a category with all the other
categories, allowing the familiar interpretation for dichotomous regressors. Our
command binarycontrast computes binary contrasts.
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1 Introduction
With unordered polytomous explanatory variables, there is often no reason to consider
any one category as being more substantively fundamental for interpreting results than
the others. Consider when a categorical explanatory variable is the region of the coun-
try where a person lives. There may be no reason to think that comparisons with
any particular region are more interesting or important than the comparisons with any
other region. Nevertheless, the most common strategy for presenting coefficients for
such variables involves assigning one category as the reference category so that coeffi-
cients for other categories are identified as the contrasts between each of them and the
reference. For regions, one region will often be specified as the reference category for
some substantively irrelevant reason, like being first in alphabetical order.

While contrasts between any pair of categories other than the reference can typi-
cally be obtained by simple arithmetic, this still takes for granted that the most useful
quantities for interpretation are contrasts between pairs of categories. With regions,
for example, it may well be that pairs of regions are not the most useful comparisons
to foreground at all; instead, it may be more effective to compare each region with the
others as a whole.

To this end, an alternative approach is to present coefficients as the contrast of
each category with the overall mean, which is sometimes called “weighted effect coding”
(te Grotenhuis et al. 2017), “deviation coding”, or (our preference) “mean contrasts”
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(Johfre and Freese 2021). Mean contrasts do not involve a reference category; instead,
each category has its own coefficient. For a variable with k categories,

kX

m=1

pm�m = 0

where pm is the proportion of observations belonging to category m and �m is that cat-
egory’s coefficient. (In experimental research, one may simply be interested in results
balanced across treatments and thus not weighting by the proportion, but our discus-
sion here is directed to population-based observational studies for which estimates of
population proportions are both desirable and able to be estimated from one’s data.)

While interpreting results with the reference category approach involves treating
one category as different from the others, with mean contrasts the coefficients all have
a uniform interpretation as the difference between that category and the overall condi-
tional mean. With region of residence, for example, mean contrasts would estimate the
differences between each region and the country’s overall mean. But this interpretation
may also seem a bit peculiar, given that the observations in the category in question
also contribute to the overall mean. So with mean contrasts, a category is being con-
trasted partly with itself. One consequence is that, for mean contrasts, more frequent
categories will tend to have coefficients closer to zero simply by virtue of being larger
and hence more influential on the resulting mean. More populous regions tend to have
smaller mean contrasts because they are more populous. A further implication is that
differences in the magnitudes of mean contrasts cannot be interpreted as differences in
effect sizes.

If membership in category m was a binary variable, then the interpretation of �m

would be straightforward, along the lines of “living in [region m] is associated with a
�m difference in the outcome compared with those who do not live in [region m].” The
value of �m here would also not depend on the relative frequency of m. Of course, if
we were specifically interested only in m versus not-m—that is, interested only in the
contrast between one category and everyone else—we could just fit our model with a
binary measure instead of a polytomous one. Instead, we want to fit the model with
all the categories of our polytomous measure, yet we still want coefficients for each of
the k categories to represent the “binary contrast”, that is, the contrast between those
observations belonging to that category and those that do not.

In Stata, mean contrasts can be readily computed postestimation in Stata using
the contrast command, but binary contrasts cannot. Our command binarycontrast
rectifies this by leveraging the option of the contrast command to specify custom
contrasts. We will first present an example that illustrates binary contrasts. Then we
explain how binary contrasts are computed and how binarycontrast is implemented
in Stata.



J. Freese and S. Johfre 127

2 Example
The General Social Survey (GSS) is a biennial probability-based survey of adults in the
United States. In the GSS, subjective social standing is assessed on a 10-point scale. We
use this as our outcome, and we use race or ethnicity as our explanatory variable. We
code race or ethnicity as four categories, in which respondents who identify as Latino
are coded as Latino and other respondents are coded by self-identified race as White,
Black, or Other. Following Johfre and Freese (2021), we use Latino as the reference
category so that the estimated coefficients are positively signed. We fit the following
regression model in Stata:

. use gss_binarycontrast

. regress rank ib2.race, noheader

rank Coefficient Std. err. t P>|t| [95% conf. interval]

raceeth
Black .267884 .0575317 4.66 0.000 .1551141 .3806539
White .4106701 .045965 8.93 0.000 .3205726 .5007676
Other .2692301 .0850357 3.17 0.002 .1025488 .4359115

_cons 4.965481 .0419328 118.42 0.000 4.883287 5.047675

When we look at the coefficients for race or ethnicity, we can see that being White is
associated with the highest average subjective rank and being Latino is associated with
the lowest. For Black respondents, we note that the coefficient is closer to Whites than
it is for Latinos. Does this mean that Black respondents have higher subjective social
status than respondents who are not Black? There are more Whites than Latinos in
the United States, so the larger difference between Blacks and Latinos might be more
than offset by the larger number of Whites and their disproportionate influence on the
mean of non-Black respondents. One could thus reasonably look at the coefficients and
not know if being Black is positively or negatively associated with the outcome.
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We could instead calculate mean contrasts postestimation using contrast:

. contrast gw.race, effects nowald
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. t P>|t| [95% conf. interval]

raceeth
(Black

vs
mean) -.0594598 .0362551 -1.64 0.101 -.1305247 .011605

(Latino
vs

mean) -.3273438 .0390032 -8.39 0.000 -.4037953 -.2508923
(White

vs
mean) .0833263 .010831 7.69 0.000 .0620961 .1045565
(Other

vs
mean) -.0581137 .0723575 -0.80 0.422 -.199944 .0837166

The result indicates that being Black is indeed negatively associated with lower
subjective standing relative to the mean. Meanwhile, the result for Latinos is much
farther from zero than any of the other race or ethnic groups and nearly four times
as large in magnitude as the difference for Whites. Does this mean that the difference
between Latinos and non-Latinos is in fact larger than the difference between Whites
and non-Whites? From the mean contrasts, we cannot tell. There are more Whites
than Latinos in the GSS, so the reason that the difference is so much smaller for Whites
than Latinos could be that there are many more Whites in the sample.

Furthermore, to interpret the mean contrast of 0.083 for Whites, we might say
something like, “Being White is associated with a 0.08-point increase in subjective social
rank relative to the mean.” Notice, however, that this result is effectively comparing
Whites with another “group” that is mostly composed of Whites (that is, the whole
sample).

The binary contrast instead compares nonoverlapping groups, such as those who are
White with those who are not. We use our binarycontrast command to compute it:

. binarycontrast race

Contrast Std. Err. p [95% Conf. Interval]

raceeth
Black -.0701857 .0427951 0.101 -.1540699 .0136984
Latino -.3783651 .0450824 0.000 -.4667327 -.2899975
White .2517457 .0327227 0.000 .1876049 .3158865
Other -.0607455 .0756344 0.422 -.208999 .087508
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The result of 0.25 for Whites can be interpreted as meaning that the average sub-
jective rank for Whites is 0.25 points higher than the average for non-Whites. From the
above results, we can also see that the mean subjective social rank for Latinos is 0.38
points lower than for non-Latinos. To answer our above question, then, the difference
between Latinos and non-Latinos is indeed larger than the difference between Whites
and non-Whites but not nearly by the factor that the mean contrasts may have been
understood to suggest.

binarycontrast can also be used to generate exponentiated contrasts, such as odds
ratios for logistic regression or incidence-rate ratios for Poisson regression. To do so,
one specifies the eform option, just as with the contrast command itself. For example,
we can define someone as having a high subjective social status if he or she responds
using one of the top three categories on the 10-point scale. Using the binary variable
highstatus as our outcome, we can then fit a logit model with race or ethnicity as an
explanatory variable, and then we can compute the binary contrast as an odds ratio:

. logit highstatus ib2.race, noheader nolog or

highstatus Odds ratio Std. err. z P>|z| [95% conf. interval]

raceeth
Black 1.559303 .1206781 5.74 0.000 1.339843 1.814709
White 1.461069 .0938334 5.90 0.000 1.288263 1.657055
Other 1.342185 .1521006 2.60 0.009 1.074859 1.675997

_cons .2243173 .0133629 -25.09 0.000 .1995977 .2520983

Note: _cons estimates baseline odds.
. binarycontrast race, eform

Contrast Std. Err. p [95% Conf. Interval]

raceeth
Black 1.138559 .0614622 0.016 1.024249 1.265627
Latino .6794903 .0429345 0.000 .6003424 .7690729
White 1.145153 .0491793 0.002 1.052709 1.245716
Other .9590434 .0944926 0.671 .7906261 1.163337

For example, the result 1.14 for the Black category indicates that the odds of identify-
ing as high status are 14% higher for Black respondents than for non-Black respondents.

3 Computing binary contrasts
If y is our outcome of interest, we can define the mean and binary contrast for category
m conditional on covariate values x as

Mean contrast(m) = E(ym|x)� E(y|x)

Binary contrast(m) = E(ym|x)� E(y¬m|x)
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where y¬m refers to values of the outcome for observations in which our categorical
regressor is not m. We use ym to refer to the outcome value for observations in category
m, and so the contrast between category m and any category can be written as E(ym)�
E(yi). A more elaborate way of writing the mean contrast, then, would be as each of
the k contrasts E(ym)� E(yi) weighted by the frequency of i:

Mean contrast(m) = E(ym|x)� E(y|x)

= E(ym|x)�
kX

i=1

piE(yi|x)

=

P
k

i=1 pi{E(ym|x)� E(yi|x)}P
k

i=1 pi

Here the sum of the relative frequencies for all categories
P

k

i=1 pi is 1. For the binary
contrast, we instead want to compute the mean of the contrasts, excluding the contrast
of category m versus itself. We proceed in the same way as for mean contrasts, except
then we exclude category m by subtracting pmE(ym) from the numerator and pm from
the denominator:

Binary contrast(m) = E(ym|x)� E(y¬m|x)

= E(ym|x)�

P
k

i=1 piE(yi|x)� pmE(ym|x)⇣P
k

i=1 pi
⌘
� pm

= E(ym|x)�

P
k

i=1 piE(yi|x)� pmE(ym|x)

1� pm

=
(1� pm)E(ym|x)

1� pm
�

P
k

i=1 piE(yi|x)� pmE(ym|x)

1� pm

=
E(ym|x)� pmE(ym|x)

1� pm
�

P
k

i=1 piE(yi|x)� pmE(ym|x)

1� pm

=
E(ym|x)�

P
k

i=1 piE(yi|x)

1� pm

=

P
k

i=1 piE(ym|x)� E(yi|x)

1� pm

We arrive at a result for which, as written above, the only difference between the mean
contrast and binary contrast is the denominator, meaning that

Binary contrast(m)

Mean contrast(m)
=

1

1� pm

The binary contrast can therefore be obtained from the mean contrast for the same
category by multiplying the mean contrast by 1/(1� pm). This implies that the mean
and binary contrast for a given category will always be the same sign and that the
coefficients and standard errors for binary contrasts are always larger than those of the
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mean contrasts. For a given category, the proportional increase in the coefficient and
standard error is the same (a factor of 1/1� pm), implying that the p-value for the test
of the contrast versus zero is identical for the mean contrast and binary contrast.

binarycontrast uses Stata’s contrast command to automate the calculation of
the binary contrast. Consider a regression model with polytomous regressor B that is
specified with a reference category. We can use �j for the estimated coefficient for the
jth level of B, where �j = 0 if the jth level of B is the reference category. We can
specify a column vector �B that contains [�1 . . .�k] for the k categories of B.

We can then transform �B into various other contrasts of interest by specifying a
contrast matrix C and computing C�B . For example, mean contrasts are given by
defining C as a k ⇥ k matrix in which

Cmn =

(
1� pm if m = n

�pn if m 6= n

where pm is the (weighted) proportion of observations in category m. For the binary
contrast, we change this to

Cmn =

(
1 if m = n

�
pn

1�pm
if m 6= n

In Stata, the mean contrast as defined above can be computed using the contrast
command and its gw. operator. contrast also allows the user to specify a custom con-
trast matrix. binarycontrast works by creating the custom contrast matrix and calling
contrast. To construct the custom contrast matrix, binarycontrast requires the rela-
tive frequencies of the different categories, and it obtains these using Stata’s proportion
command. When using proportion to obtain relative frequencies, binarycontrast uses
the analytic sample and any weights that the user specified when fitting the model.

4 The binarycontrast command
4.1 Syntax
The command syntax is

binarycontrast varlist
⇥
, mcompare(method) mean eform

⇥
(name)

⇤

proportions
⇤

varlist includes variables for which one wants contrasts. While polytomous variables
should be specified when fitting the model using factor-variable syntax (that is,
i.region), one should not reuse factor-variable syntax with binarycontrast (that
is, binarycontrast region).
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4.2 Options
mcompare(method) provides the method for correcting for multiple comparisons. This

is passed along to the contrast command when it does its calculation. See [R] con-
trast for details. The default is mcompare(noadjust).

mean computes mean contrasts instead of binary contrasts. The results are not different
from using the contrast command directly.

eform
⇥
(name)

⇤
provides the exponentiated contrasts. If name is specified, it is used

to name the column in the displayed results.
proportions provides a table with the proportions for each category in addition to the

contrasts.

4.3 Stored results
binarycontrast stores the following in r():

Scalars
r(level) level for confidence interval (as specified in estimation command)

Macros
r(cmd) binarycontrast
r(var) variables for which results are provided
r(contrast_type) mean or binary
r(eform_name) heading of the contrasts column if a heading is assigned using the

eform() option
r(var_values) values of factor levels (in order indicated by r(var))
r(var_labels) labels of factor levels (in varlist order)

Matrices
r(table) table of results
r(proportions) proportions of each category (via proportion)
r(contrast_matrix) if only one factor variable is used, this matrix will contain the contrast

matrix for that variable

5 Discussion
Although reference categories are the dominant way that coefficients for categorical
regressors are presented, there is often little justification with unordered variables for
prioritizing any particular category for interpretation. Basing interpretations on an
arbitrary reference category may become increasingly strained for regressors with more
categories. Both mean and binary contrasts provide coefficients for all categories that
have a uniform interpretation, for which the sign of the coefficient corresponds with
whether category membership is positively or negatively associated with the outcome.

The principal advantages of binary contrasts over mean contrasts are that the mag-
nitude of the binary contrast for a category does not depend on the frequency of the
category and that its basic interpretation is the same as the familiar way of interpret-
ing a coefficient for a dichotomous regressor. Two disadvantages of the approach bear
emphasis. First, for mean contrasts, the contrast between any pair of categories re-
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mains available as a matter of simple subtraction, but this is not the case for binary
contrasts. Instead, one would need to multiply the binary contrast by the proportion
in the category—that is, convert it to a mean contrast—to then be able to recover the
contrast between a pair of categories. Second, while it is possible to extend binary
contrasts to categorical interaction terms, the calculation is more cumbersome and the
interpretation of the coefficient less clear, so binarycontrast does not include support
for interaction terms.

6 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-1

. net install st0666 (to install program files, if available)

. net get st0666 (to install ancillary files, if available)
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