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Abstract—Confidential computing aims to secure the code and data in use by providing a Trusted Execution Environment (TEE) for
applications using hardware features such as Intel SGX. Timing and cache side-channel attacks, however, are often outside the scope
of the threat model, although once exploited they are able to break all the default security guarantees enforced by hardware.
Unfortunately, tools detecting potential side-channel vulnerabilities within applications are limited and usually ignore the strong attack
model and the unique programming model imposed by Intel SGX. This paper proposes a precise side-channel analysis tool,
ENCIDER, detecting both timing and cache side-channel vulnerabilities within SGX applications via inferring potential timing
observation points and incorporating the SGX programming model into analysis. ENCIDER uses dynamic symbolic execution to
decompose the side-channel requirement based on the bounded non-interference property and implements byte-level information flow
tracking via API modeling. We have applied ENCIDER to 4 real-world SGX applications, 2 SGX crypto libraries, and 3 widely-used
crypto libraries, and found 29 timing side channels and 73 code and data cache side channels. We also compare ENCIDER with three
state-of-the-art side channel analysis tools using their benchmarks. ENCIDER does not only report most of the bugs with 20%-50% run
time improvement and 65%-92% memory usage improvement, but also detects 9 missing bugs from these tools. We have reported our
findings to the corresponding parties, e.g., Intel and ARM, who have confirmed most of the vulnerabilities detected.

Index Terms—Software side channels, symbolic execution, SGX, API modeling, information-flow tracking.
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1 INTRODUCTION

Confidential computing aims to secure the code and
data in use by providing a Trusted Execution Environment
(TEE) for applications using hardware features such as Intel
SGX [1]. These efforts have led to wide-spread industry
initiatives. The recent, Confidential Computing Consortium
(CCC) project [2], unites Intel, Microsoft, Red Hat, etc. to
collaborate on and accelerate the adoption of confidential
computing. Major cloud providers including Azure, IBM,
and Google Cloud Platform (GCP) have already offered
SGX-as-a-Service, providing different SGX SDKs to ease
the development of enclave applications. Communication
and cryptocurrency applications such as Signal [3] and
Ledger [4] have implemented SGX enclaves designed to
maintain security even if the cloud provider is compro-
mised. Widely-used crypto libraries such as OpenSSL and
mbedTLS have also been ported to SGX enclaves [5], [6]
supporting more enclave applications.

While confidential computing provides runtime confi-
dentiality and integrity guarantees, side-channel attacks are
often outside the scope of its threat model. For instance,
SGX enclave implementations are vulnerable to timing [7],
[8], [9], [10] and memory-access attacks [11], [12]. Recent
work on micro-architectural vulnerabilities [13], [14] and
their applicability to SGX [15] highlight the impact of side-
channel attacks against confidential computing technologies
by breaking all the default security guarantees. Crypto
libraries such as OpenSSL and GnuTLS have combatted
side-channel attacks for years [10], [16], [17], and devel-
oped various defenses including blinding [7], constant-time
programming, pre-loading, hiding different types of failure
cases, and simplifying the API complexity [18]. Their use

in confidential computing such as Intel SGX demands strict
scrutiny since a vulnerability within them can easily defeat
the security guarantees enforced by hardware. Meanwhile,
vulnerabilities have been discovered within the Intel IPP
library [19], the default crypto library used by the Intel SGX
SDK [20], breaking the confidentiality of SGX enclaves.

There have been several efforts on automatically detect-
ing side channels in SGX enclaves [17], [21], [22]. However,
these studies either treat SGX enclaves as typical software
artifacts without considering the SGX programming model-
thus, potentially missing timing observation points- or only
focus on secret-dependent branches without considering
whether a cache side channel is actually feasible from the
code. In this paper, we present a precise side-channel analy-
sis tool, ENCIDER, which can detect both timing and cache
side channels while incorporating the SGX programming
model into the analysis. While the current implementation
focuses on SGX enclaves, ENCIDER can be applied to other
confidential computing technologies and even traditional
software components.

ENCIDER uses a programming model-guided symbolic
execution to facilitate the analysis of enclave implementa-
tions and cryptographic library functions. It uses precise
byte-level information flow tracking to minimize false pos-
itives, employing a novel decomposition-based and incre-
mental non-interference analysis that can detect both timing
and cache side channels. Finally, ENCIDER uses API mod-
eling to achieve scalability. We have applied ENCIDER to
4 real-world SGX enclaves, 2 SGX cryptographic libraries,
4 TLS implementations, and 3 widely-used cryptographic
libraries, and found 29 timing side channels and a total of 73
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(27 code and 46 data) cache side channels. If exploited, these
would break the security guarantees enforced by Intel SGX.
We have notified the corresponding parties and confirmed
most of the vulnerabilities that we found.

In summary, our contributions are as follows:

• We develop a novel decomposition-based side-
channel analysis approach that can detect both tim-
ing and cache side channels while optimizing the
number of calls to the underlying SMT solver [23].

• We design and implement ENCIDER, which lever-
ages the memory model of symbolic execution for
precise information-flow tracking and achieves scal-
ability through API modeling. Its ability to detect
three types of side channels can support secure code
development against remote as well as local attack-
ers. ENCIDER will be released at https://github.
com/sysrel/ENCIDER.

• We evaluate ENCIDER against real-world SGX en-
claves and crypto libraries. ENCIDER has found a
local timing side channel in mbedTLS-SGX that can
be exploited by Lucky 13 attacks [10], cache side
channels in the Signal Contact Discovery Service,
s2n, and mbedTLS, timing side channels in the SGX
IPP and SSL APIs and in the Ledger BOLOS en-
clave. ENCIDER is also able to detect previously
known timing and cache side channels in s2n, po-
larSSL, openSSL, mbedTLS, and libgcrypt libraries.
ENCIDER achieves 96% precision. We have reported
our findings to the corresponding parties, e.g., Intel1

and ARM2, who have confirmed most of the vulner-
abilities detected.

• We compare ENCIDER with three state-of-the-art
side channel analysis tools ct-verif [29], CacheS [30],
and DATA [31] using their benchmarks. ENCIDER
confirms the side channel freedom of the benchmarks
with 50% and 65% run time and memory improve-
ment comparing to ct-verif. ENCIDER not only de-
tects bugs with 20% and 92% run time and memory
improvement comparing to CacheS, but also detects
9 missing bugs from CacheS. ENCIDER reports some
of the leakages found by DATA, a dynamic analysis
tool, while covering more cases and not relying on
the availability of tests.

This paper is organized as follows. Section 2 provides
background information on Intel SGX. Section 3 discusses
the threat model and Section 4 provides a motivating ex-
ample and gives an overview of our approach. Section 5
presents the technical details of our approach and discusses
its correctness. Section 6 provides details on the implemen-
tation. Section 7 presents an evaluation of ENCIDER using
real-world enclaves and cryptographic libraries. Section 8
discusses related work. Section 9 concludes with directions
for future work.

1. Intel issued CVE-2021-0001 [24] and a security advisory [25], [26]
2. ARM issued CVE-2020-16150 [27] and a security advisory [28].

2 BACKGROUND

2.1 Intel SGX & Programming Model

The Intel Software Guard eXtensions (SGX) [1] are a set of
Instruction Set Architecture (ISA) extensions to the Intel x86
and x86 64 processor architectures, which aim to defend
ring-3 applications (unprivileged and user mode) against at-
tacks from ring-0 (kernel and operating system), Virtual Ma-
chine Monitor Mode (VMM, ring -1), System Management
Mode (SMM, ring -2) or even Intel’s Management Engine
(Intel ME, ring -3) [32]. This secure execution environment
in SGX is called an enclave and acts as a secure and attestable
storage for program code and data, providing runtime con-
fidentiality and integrity protections at the same time. With
the help of Intel’s EPID [33], a challenger can ensure that the
desired enclave has the correct measurement and is running
on a genuine Intel CPU with SGX enabled. This enables
remote verifiers to assure that a program runs securely and
as expected on an untrusted third-party’s platform.

Since an SGX enclave only runs within ring 3 (i.e., no
syscall), the SGX programming model requires developers
to partition applications and place only the most security-
sensitive code and/or data into an enclave [34]. To enter an
enclave, application code needs to execute ECALLs, which
are a set of fixed entry points defined by the enclave.
Similarly, when an enclave needs to communicate with
the application, e.g., opening a file, enclave code needs to
execute OCALLs, which are predefined functions between
enclaves and applications. Intel SGX SDK [20] offers the
Enclave Definition Language (EDL) to ease the definition of
ECALL and OCALL interfaces and provides the correspond-
ing setup and cleanup code when entering and leaving an
enclave. As a result, both ECALLs and OCALLs need to be
carefully designed and implemented to reduce the attack
surface to an enclave and the possible information leakage
from an enclave.

2.2 Side-channel Attacks Against SGX

While SGX enclaves provide both runtime confidentiality
and integrity, side channels are considered to be outside
the threat model, and it is the developer’s responsibility to
prevent these attacks [35]. A wide variety of side-channel
attacks have been demonstrated in the academic literature.
Controlled-channel attacks [36] use memory access patterns
to exfiltrate sensitive information from secure enclaves.
Cache-based side-channel attacks [37], [38] have also been
effectively deployed against SGX. Meanwhile, memory side-
channel hazards were discovered by Wang et al. [39] that
affect system elements ranging from TLBs to DRAM mod-
ules. CacheZoom [40] demonstrated how SGX amplifies
cache side channels by recovering AES keys in a production
environment.

Other side-channel vulnerabilities [21] are also found
within the Integrated Performance Primitives (IPP) cryp-
tographic library used by Intel SGX SDK. More recently,
microarchitectural attacks have been demonstrated to work
on SGX enclaves, notably the high-profile Meltdown [13]
and Spectre [14] attacks, while Foreshadow [15] attacks
extract the attestation key from enclaves, thus breaking SGX
remote attestation. These side-channel attacks are enabled
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Fig. 1. Attacker capabilities (AC) of an SGX attacker and various rules
(D) ENCIDER uses to detect the leakages.

by vulnerabilities within both hardware (e.g., microarchitec-
ture and caches) and software (e.g., input-dependent secret
processing). While the former can be fixed by microcode
updates or trampolines using the LFENCE instruction [41],
no tools currently exist to help detect side-channel vulner-
abilities within the code itself with a focus on SGX enclave
implementations.

In addition, side-channel attacks that occur within li-
braries developed before SGX can maintain their vulner-
abilities when placed within an enclave. An example is
the OpenSSL cryptographic library used by a number of
SGX applications. OpenSSL was shown to be vulnerable
to cache [42] and timing [16] side-channel attacks, and
such vulnerabilities could be exploited within an enclave
to exfiltrate secret data.

3 SECURITY MODEL

Although we are targeting SGX enclaves within the paper,
ENCIDER is general enough to be applied to any confiden-
tial computing technologies such as ARM TrustZone [43]
and AMD SEV [44]. Accordingly, we trust the corresponding
hardware features employed by CPUs, e.g., SGX instruction
extension, providing the claimed runtime confidentiality
and/or integrity guarantees. We also assume the basic
secure coding practices applied to confidential computing
environments including SDKs and applications, e.g., Intel
SGX SDK and enclave applications, to reduce the possibility
of compromise.

We consider a piece of data as secret if it represents
confidential information such as private keys and plaintext
data that needs to be protected against unauthorized access.
As all other works on side channel analysis we assume
that the user identifies data that is considered as secret and
we refer to secret (non-secret) data as high (low) security
sensitive.

Figure 1 illustrates the various capabilities of an attacker
within the context of SGX and the detection rules used
by ENCIDER to find the relevant leakages. We categorize
attacker capabilities in terms of branch target prediction
monitoring (AC1), cache access monitoring (AC2), page
access monitoring (AC3), and instruction single-stepping
(AC4).

modeled API

secret output

alias of
(see line 5)

secret tainted
value

secret dependent
branch

secret dependent
computation time

time 
equalizer

codeobservation point for a local timing side channel

Fig. 2. The local timing side channel that was detected by ENCIDER
in the ssl_decrypt_buf function in mbedtls 2.6.0 that is used in
mbedtls-SGX.

ENCIDER focuses on detecting two different attacks
against confidential computing: 1) remote and local timing
side-channel attacks caused by potential code path interfer-
ence when handling secret dependent data within enclave
programs, 2) cache side-channel attacks caused by potential
cache line sharing among data of differing security levels
within enclave programs.

A local timing side channel is associated with a timing
observation point, which is an action of the software that can
be observed by a local attacker and potentially leak infor-
mation about the secret data due to yielding different timing
measurements for different secret inputs. We consider three
special types of timing observation points: 1) end of the
computation (that is assumed by the related work), 2) ocall
callsites as predefined observation points, and 3) the first
time execution of a function on an execution path. Both
timing and cache side-channel attacks can leverage high
resolution timers, e.g., programmable APIC timers [40], to
extract the secret information protected by enclaves. Note
that attacks exploiting microarchitecture vulnerabilities such
as Spectre [14] and Meltdown [13] are out of scope. Similar
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to other work on IR level timing analysis [29], ENCIDER
needs to be supplemented with timing model data for
instructions whose timing cost are data-dependent.

4 MOTIVATION AND OVERVIEW

In this section, we present example code within mbedtls-
SGX that has a local timing side channel found by ENCIDER
and use it to demonstrate its salient features. The code in
Figure 2 is an excerpt from the ssl_decrypt_buf function
in mbedtls 2.6.0 [45] that is used in mbedtls-SGX [6]. This
function is part of the TLS protocol implementation and it
handles various modes of encryption. We focus on the CBC
mode that uses the Mac-Encode-Encrypt (MEE) approach
to generate the cipher text. Inside the ssl_decrypt_buf
function, a series of reverse operations that consists of
Decrypt-Decode-Mac is performed. The decryption is per-
formed by the mbedtls_cipher_crypt function at line
7. The secret (high-security sensitive) data is the plain-
text message stored in the dec_msg array that is the 4th
parameter of the mbedtls_cipher_crypt function. Note
that dec_msg includes the plaintext, the padding, and the
message authentication code (MAC). The padding length is
an important source of information that can be exploited
to perform the Lucky 13 attacks [10], which can result in
recovery of the plaintext. The MAC verification stage, which
includes lines 30-31, may take different amounts of time
depending on whether a message’s padding is valid (less
time) or not (more time).

The code in Figure 2 has gone through various fixes in
response to a series of side channel vulnerabilities. The first
vulnerability was a timing side channel [46] due to a MAC
verification that could be exploited by a remote attacker;
the code at lines 37-38, which performs time equalization
by performing extra compression operations when padding
was valid, was absent. The timing side channel was ad-
dressed by introducing the time equalization code, in which
the variable extra_run denoted the number of times the
compression functions should be executed to eliminate the
timing difference. However, in the fix, the loop condition
shown at line 37 was j<extra_run, which was later found
to be vulnerable to a code-based cache side channel [47]
as the mbedtls_md_process function ended up being ex-
ecuted only when the padding was valid. A local attacker
observing accesses to the cache lines that correspond to the
mbedtls_md_process basic blocks would reveal the key
information that would enable the Lucky13 attacks.

The fix for the code cache side channel mentioned above
was executing the loop at line 37 at least once by changing
the loop condition to j<extra_run+1 as shown in Figure 2.
However, this ensures that the mbedtls_md_process func-
tion gets executed for both cases of padding validity. A local
attacker can leverage the timing difference observable when
the mbedtls_md_process function gets called for the first
time to perform Lucky 13 attacks. Note that performing such
attacks in the SGX setting becomes easier due to the strong
attacker model as mentioned in Section 2.2. A possible fix
is to replace the call to the mbedtls_md_process at line 38
with an indirect call that executes the specific compression

function, which also gets executed from the update function,
and, hence, does not serve as a timing observation point 3.

As a novel feature, ENCIDER detects this local timing
side channel thanks to its ability to infer timing observa-
tion points, which appear on both the true and the false
branches of a secret dependent branch and reveal the secret
dependent timing difference to an attacker much earlier
than the exit point of the vulnerable code. An important
criterion for a timing observation point is for it to be
discernible. ENCIDER leverages its path-sensitive analysis
to identify callsites that execute a function for the first
time and reports the callsite, if any, revealing the maximum
timing difference for each secret dependent branch. Note
that other approaches that detect timing side channels such
as [29], [48], [49], [50] consider the end of the execution as
the only type of timing observation point. As demonstrated
through the example in Figure 2, code eliminating timing
side channels for a remote attacker may still host a timing
side channel that can be exploited by a local attack, which
may be even more powerful in the SGX setting. Evolution of
the ssl_decrypt_buf function demonstrates the difficulty
of developing side channel free code and the importance
of tools like ENCIDER that can detect multiple types of
side channels as each fix to a side channel may end up
introducing another type of side channel.

Figure 3 presents the architecture of ENCIDER, which
detects both timing and cache side channels in crypto-
graphic libraries, SGX enclaves, and SGX SDKs. The un-
derlying side channel detection algorithms, which are the
same for these different analysis targets, can be configured
to perform more precise analysis by providing the relevant
input specifications. As an example, for SGX enclaves and
SGX SDKs, specifying OCALLs enables detection of timing
side channels that are visible to the untrusted operating sys-
tem or the application through these special APIs. Therefore,
in addition to automatically inferring timing observation
points for local attackers, ENCIDER can also leverage the
programming model of SGX. Another important type of
input specification has to do with the sensitive arguments
of API functions.

ENCIDER uses dynamic symbolic execution as the un-
derlying program analysis technique. The precise memory
model provided by symbolic execution is leveraged to per-
form byte-precise labeling and precise tracking of high/low
attributes as information flows. However, dynamic symbolic
execution is known to have the path explosion problem,
which limits the scalability of the analysis. ENCIDER deals
with the path explosion problem by using the information
flow and timing models of certain API functions. As an
example, the local timing side channel can be detected
faster by abstracting away the mbedtls_cipher_crypt
function in Figure 2 by only modeling the key information-
flow characteristic, i.e., that the array pointed by dec_msg
(the fourth parameter) gets filled with secret data once the
function returns successfully. So, assuming that the user
specifies dec_msg as a high-security sensitive output of
mbedtls_cipher_crypt as part of the API specification in

3. We have responsibly disclosed the local timing side channel to
mbedTLS developers, who recently fixed the issue and issued CVE-
2020-16150.
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Fig. 3. The architecture of ENCIDER. Solid arrows denote data-flow and dashed arrows denote control-flow.

Figure 3, ENCIDER models the mbedtls_cipher_crypt
function by tracking the sensitive information flow and
detects the local timing side channel at least an order of
magnitude faster than the case that also analyzes this func-
tion (see Section 6.2). This also enables modular analysis by
focusing the side channel analysis on the code that uses the
modeled API. To automate side channel analysis, ENCIDER
uses under-constrained symbolic execution [51] to lazily
initialize function arguments of arbitrarily complex data
types and to avoid manually prepared test harnesses. This
makes ENCIDER useful for developers as well as pentesters.

As shown in Figure 3, ENCIDER keeps a generic API
model database, which stores the information flow and
the timing models of APIs that get typically used by
cryptographic libraries or SGX enclaves, such as Intel in-
trinsics instructions [52] and the SGX cryptographic API.
The information flow models specify the specific regions
of the API arguments that affect the specific region(s) of
the output arguments. ENCIDER uses the information flow
model at callsites of the modeled API functions to propagate
high/low security sensitive labeling on regions of memory
objects (see Section 6.2 for a more detailed discussion).

ENCIDER performs side channel analysis at the LLVM
Intermediate Representation (IR) [53] level. Similar to other
work on timing side channels [29], [50], it computes the cost
of each path as the number of IR instructions; modeled API
functions are, therefore, specified at the IR level. ENCIDER
utilizes the API model database for all types of analysis
targets. Finally, ENCIDER incorporates binary metadata into
code based cache side channel analysis to compute the
accuracy of analysis. We leverage the source location infor-
mation at the IR level and at the binary level to compute
a mapping between source lines and the virtual address re-
gions. ENCIDER can be configured to report code cache side
channels with an accuracy above a chosen threshold value
to let developers focus on fixing more likely vulnerabilities.
ENCIDER also reports secret dependent branches, timing
observation points, and the branch target distinguishing
points as illustrated in Figure 1 to address various capa-
bilities of an SGX attacker.

5 APPROACH

In this section, we start with the adaptation of a well-
established formulation of side channel freedom in Section
5.1. We explain the details of our novel side channel detec-
tion algorithm that can detect both timing and cache side
channels in Section 5.2, and conclude with a discussion of
the correctness in Section 5.3.

1 void foo(int L, int H)
2 if (H > 0) {
3 if (L < 1) {
4 // ru1
5 }
6 else if (L < 5) {
7 // ru2
8 }
9 else {

10 // ru3
11 }
12 }
13 else {
14 if (L < 0) {
15 if (H > -10) {
16 if (L == -1) {
17 // ru4
18 }

19 else {
20 // ru5
21 }
22 }
23 else {
24 if (L == -1) {
25 // ru6
26 }
27 else {
28 // ru7
29 }
30 }
31 }
32 else {
33 // ru8
34 }
35 }

Fig. 4. Sample code with low security (L) and high security (H) inputs.
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Fig. 5. Symbolic execution tree for the sample code in Figure 4. Circles
represent the internal nodes and squares represent the leaves anno-
tated with the resource usage. Filled circles represent the H-ancestors.

5.1 Side Channel Freedom
Secure information flow is often expressed in terms of the
non-interference property [54], which informally states that
any legal run in a system produces the same low outputs
for the same low security inputs, regardless of the values of
the high security inputs. To check non-interference property
on a system, one needs to check every pair of runs in the
system. This implies that non-interference is not a safety
property [55], which can be checked by analyzing each run
individually.

An important type of output a system may implicitly
disclose is the usage of some computational resource such
as the execution time or memory units such as cache lines. In
the presence of an adversary that can monitor the resource
usage, it is important that resource usage does not reveal
high security inputs. An adaptation of the non-interference
property to side channel freedom states that a system uses
the same amount of resource for the same low security
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inputs, regardless of the values of the high security inputs.
This property is relaxed with a parameter ε by permitting
resource deviations for the same low security inputs up to ε
units.

We extend the well-established bounded side channel
freedom formulation by introducing a resource usage dif-
ference computation function, DIFFT , which is parame-
terized on the resource type T :

Definition 1 (Bounded Side Channel Freedom). Let H and
L denote the sequence of high-security and low-security inputs
of a program, P , respectively, and T denote the resource type.
Let RT (P ,L,H) denote the amount of resource type T usage
upon termination given the inputs L and H. We use a domain
RUT to denote the set of resource type T usages and a function
DIFFT : RUT × RUT 7→ R that quantifies the difference
between two resource type T usages. A system is free of resource
type T side channels iff

∀L1,L2,H1,H2. L1 = L2 ∧H1 6= H2 →
DIFFT (RT (P ,L1,H1),RT (P ,L2,H2)) < ε

(1)

Note that for some resource types, e.g., the execution
time, resource usage can be computed per path and in-
dependent from the alternative paths and the difference
in resource usage can be found from these independently
computed values. However, for some resource types the
resource usage difference needs to be computed relative to
the alternative paths. For instance, to precisely detect the dif-
ference in code (instruction) cache line accesses, one needs
to analyze all peer basic blocks4 that would be executed by
the alternative branches of a secret dependent branch 5. So,
the generic DIFFT function allows us to unify the side
channel freedom formulation for both types of resources. In
this work, we consider the resource types of execution time
and code cache lines and leverage path sensitive analysis for
partitioning the input space into equivalence classes and for
computing relative resource usage.

5.2 Finding Resource Side Channels

Unlike the verification approaches that reduce verification
of non-interference to safety verification using techniques
such as self-composition [55], ENCIDER does not transform
the program under analysis. Instead, ENCIDER analyzes
the original program at the IR level by leveraging symbolic
execution’s capability to generate a decomposition of the
input space. Since resource side channels involve the same
low security inputs, one needs to analyze each equivalence
class of paths w.r.t. low security inputs separately. We de-
sign ENCIDER to detect both timing and code cache side
channels at the same time. For the former, resource usage
corresponds to the duration of the computation whereas for
the latter resource usage corresponds to the utilized cache
lines.

Figure 4 shows a sample code with various conditional
statements that check the high security variable H or the low

4. Two basic blocks are peer basic blocks if each gets executed as a
different branch target of the same branch instruction.

5. Note that two alternative paths that emerge from the same secret
dependent branch may have peer basic blocks due to multiple branches,
some of which may implicitly depend on the secret.

Algorithm 1 An algorithm for computing resource usage
and detecting data-independent interference using symbolic
execution.
1: ComputeResourceUsage(P : Program, rt ∈ {time, cache}, H :

MemLoc, L: MemLoc, ε: REAL, τ : N )
2: s0: SEState ; s0.RU ← λhc.lc.term.undef ; s0.HA← undef ;
3: s0.HC ← true ; s0.LC ← true ;s0.term ← undef ;
4: s0.ru ← INIT (rt); s0.INST ← ∅; s0.reached ← ∅,
5: s0.IM ← λhc.lc.term.∅, Paths ← {s0}, HAnc ← ∅
6: Let s0 denote the initial symbolic execution state/path for P
7: Make H and L symbolic in s0
8: while τ seconds not elapsed and Paths 6= ∅ do
9: s← chooseNext(Paths)

10: s.succ ← ExecuteNextInstruction(s)
11: Paths ← Paths ∪ s.succ \ {s}
12: for each s′ ∈ s.succ do
13: s′.ru ← EXT (rt, s.ru, s.nextInst)
14: end for
15: if |s.succ| > 1 then
16: if ∃s′ ∈ s.succ.∃new . such that s′.PC ≡ s.PC ∧ new and

H ∩ Loc(new) 6= ∅ then
17: HAnc ← HAnc ∪ {s}
18: s.numSucc ← |s.succ|
19: for each s′ ∈ s.succ do
20: Let s′.PC ≡ s.PC ∧ new
21: s′.HA← s; s′.HC ← new ↓ H ; s′.LC ← true
22: end for
23: else if s.HA 6= undef then
24: for each s′ ∈ s.succ do
25: Let s′.PC ≡ s.PC ∧ new
26: s′.HA← s.HA ; s′.HC ← s.HC ; s′.LC ← s′.LC ∧

new
27: end for
28: end if
29: end if
30: end while
31: for each s ∈ Paths and s has terminated do
32: PropagateAndDetectLeakage(s, rt , ε)
33: end for

security variable L. rui denotes the resource usage of path
i and shown as the comment. Figure 5 shows the symbolic
execution tree annotated with the branch conditions and the
source lines of branches. To find resource side channels for
this example, we do not need to compare ru4 with ru5 and
ru6 with ru7 as they trivially satisfy the property given in
Equation (1) by differing on the low security inputs. Also,
ru1, ru2, and ru3 do not need to be compared to each other
as they have the same high security input leading to trivial
satisfaction of the property. However, ru1 and ru4 need to
be compared as they agree on the low security variable, L
== -1, and differ on the high security variable as H > 0
contradicts -10 < H <= 0.

Algorithm 1 shows how to use symbolic execution to
find resource side channels. We assume that each symbolic
path is represented with a symbolic execution state that
records the path condition, PC , and the program counter
or the next instruction to execute, nextInst . We extend
this minimal symbolic execution state representation with
metadata needed for resource side channel analysis.

We distinguish states that branch on high security vari-
ables by storing them in the HAnc set. For each execution
state, we keep track of the H-ancestor, HA, which is the
closest ancestor in the symbolic execution tree that branches
on the high security variables. In Figure 5, H-ancestors are
represented with the filled circles. Part of the path condition
that relates to the high security variables is stored in HC
representing the segment of the path condition that was
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TABLE 1
Specifics of computing resource usage based on the type of resource
(T for execution time and C for code cache lines). ru and R denote the
resource usage of a single path and a set of paths, respectively, and i,
BB0, and BB(i) denote an IR instruction, the first IR basic block, and

the IR basic block that contains the instruction i, respectively.

T ru R INIT EXT (ru, i) JOIN (R, ru)
T N Range 0 ru + Cost(i) [min(R.min,

[min,max ] ru),
(undef = max(R.max ,
[∞,−∞]) ru)]

C 2N 2N {BB0} ru ∪ {BB(i)} R ∪ ru
(undef = ∅)

introduced at the H-ancestor. Similarly, part of the path
condition that does not involve high security variables is
stored in LC representing the segment of the path condition
that was introduced after the H-ancestor. We also keep a
resource usage field, ru, representing the total amount of
resource used so far on the path. For H-ancestor nodes we
keep a resource usage map, RU , that records resource usage
range for various combinations of HC and LC values that
hold for its descendants.

The inputs to the algorithm consist of the program under
analysis, P , the type of resource, rt, which can be time or
cache, the memory locations that correspond to the high
security and the low security variables, H and L, a time
bound for symbolic execution, τ , and a resource bound, ε.
In Algorithm 1, we represent resource usage computation
as parameterized by the resource type. Specialization of the
resource usage computation according to the resource type
is explained in Table 1. We use N and 2N to denote the set
of natural numbers and the power set of natural numbers,
respectively.

The algorithm first applies symbolic execution to the
program under analysis while recording H-ancestor, HC ,
and LC information for each node. For the initial node
resource usage map is initialized to undefined for any pos-
sible combination of H relevant and L relevant constraint
pairs, H-ancestor is set to undefined, HC and LC are set
to true, and the resource usage, ru, is set to 0. Also, we
keep a map, RU , from a combination of H relevant and
L relevant constraint pairs and termination type to the
range of resource usage that gets initialized (lines 2-4) as
specified in Table 1 . Additionally, we keep metadata to
detect generic and special timing observation points, which
represent callsites that a local attacker can monitor and
observe secret dependent timing differences. A function call
is considered as a potential timing observation point if it
has not been executed before on that specific path. We keep
the set of functions reached on a path in the reached field
(initialized at line 4) so that we can identify such callsites.

Until the time bound is reached or there are no more
active paths, Algorithm 1 chooses the next symbolic exe-
cution path from the set of active paths, executes the next
instruction, updates the resource usage, and keep tracks of
the metadata (lines 8-30). When there is no branching, the
execution state preserves the current values of the metadata
except for the set of reached functions and whether the state
is a candidate timing observation point. However, when
there is branching, it checks if it is H relevant (D1 in Figure
1). If so, it updates the H-ancestor of its successors to the
parent, sets HC to the projection of the branching condition

Algorithm 2 An extension to the baseline symbolic execu-
tion of an instruction for collecting timing observation point
candidates.
1: ExecuteNextInstruction(s: SEState)
2: if s.HA 6= undef then s.INST ← s.INST ∪ {s.nextInst}
3: end if
4: TO ← ∅
5: if s.nextInst is a call instruction then
6: Let cs denote the callsite to be executed by s.nextInst
7: if cs.function 6∈ s.reached and s.HA 6= undef then
8: Let s′′ denote a copy of s that gets terminated at s.nextInst
9: s′′.term ← StackTrace(cs)

10: TO ← {s′′}
11: end if
12: s.reached ← s.reached ∪ {cs.function}
13: else if s.nextInst is a path terminating return instruction then
14: s.term ← exit
15: end if
16: return ExecuteNextInstructionBaseline(s) ∪ TO

on the H variables, and sets LC to true (lines 16-22). If it is
not H relevant branching, the algorithm considers whether
the branching node has an H-ancestor. If so, it updates
LC by conjoining it with the branching condition (lines
23-28). If the branching node does not have an H-ancestor
then it does not need to make any updates as there are no
deviations w.r.t. the H variables on the execution tree.

Figure 5 shows the symbolic execution tree for the
sample code in Figure 4. Nodes are labeled with a pair of
source line numbers that correspond to the related branch
statements. Nodes (2,13) and (15,23), illustrated as filled
circles in Figure 5, perform H-branching. Node (2,13) is the
H-ancestor of nodes (6,3), (6,9), (14,32), (15,23), ru1, ru2, ru3,
and ru8. Node (15,23) is the H-ancestor of nodes (16.19),
(24,27), ru4, ru5, ru6, and ru7. HC for ru3 is H > 0 and HC
for ru7 is H ≤ −10. LC for ru3 is L ≥ 1 ∧ L ≥ 5 and LC
for ru5 and ru7 is L 6= −1.

Once the symbolic execution stage terminates, Algo-
rithm 1 executes Algorithm 3 to propagate resource usage
information from the leaf nodes that represent terminated
symbolic execution paths to the H-ancestors and to detect
interferences (lines 31-33).

5.2.1 Identifying Timing Observation Points

Algorithm 2 shows how we extended the logic for executing
an instruction symbolically to detect code locations that
are possible timing observation points (D4 in Figure 1). If
the executed instruction is on a secret-dependent branch,
it records the instruction for that state (lines 2-3). If the
instruction to be executed is a call instruction and the callee
is a function that has not been reached on the current path
(lines 5-7), we clone the current path in s′′, which gets
terminated at that callsite, and mark it as a candidate timing
observation point by recording the context of the callsite in
term , which represents the termination point for each path
(line 9). Note that paths that terminate regularly, i.e., due
to executing the return instruction of the entry function, are
represented with the generic exit token (lines 13-14). The set
of functions reached in the current path gets updated (line
12) and the instruction is executed using baseline symbolic
execution and the successors are returned along with the
cloned state s′′ (line 16).
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Algorithm 3 An algorithm for propagating resource usage
of a path in the symbolic execution tree and incrementally
checking resource usage leaks.
1: PropagateAndDetectLeakage(s: ExecutionState , rt ∈
{time, cache}, ε: REAL)

2: if s.HA 6= undef then
3: a← s.HA
4: if s 6∈ HAnc then
5: Let key denote (s.HC , s.LC , s.term)
6: a.RU [key]← JOIN (rt , a.RU [key], s.ru)
7: source[key]← s
8: a.IM [key]← a.IM [key] ∪ s.INST
9: else

10: for each hc, lc, term s.t. s.RU [(hc, lc, term)] 6= undef do
11: Let key denote (hc, lc, term)
12: a.RU [(s.HC ∧ hc, s.LC ∧ lc, term)]← s.RU [key]
13: source(s.HC ∧ hc, s.LC ∧ lc, term)← s
14: a.IM [(s.HC ∧ hc, s.LC ∧ lc, term)]← s.IM [key]
15: end for
16: end if
17: if all terminated descendants of a have been processed then
18: if ∃h1, h2.∃l1, l2.∃t1, t2.source(h1, l1) 6= source(h2, l2) ∧
19: h1 6≡ h2 ∧ l1 ∧ l2 6= false ∧ t1 = t2 then
20: topset1 ← a.IM (h1, l1, t1)
21: topset2 ← a.IM (h2, l2, t2)
22: if rt is time then
23: if diff (a.RU (h1, l1, t1), a.RU (h2, l2, t2)) ≥ ε then
24: if t1 = exit then
25: print timing leakage at a.progLoc
26: else
27: print leakage at timing obs. point t1 (t2)
28: end if
29: print |topset1∩topset2| as # of timing observation

points
30: end if
31: else// rt is cache
32: print |(topset1 \ topset2)∪ (topset2 \ topset1)| as # of

branch target distinguishing points
33: if CacheDiff(a.RU (h1, l1, t1), a.RU (h2, l2, t2)) ≥ ε
34: CacheDiff(a.RU (h2, l2, t2), a.RU (h1, l1, t1)) ≥ ε then
35: print code based cache leakage at a.progLoc
36: end if
37: end if
38: end if
39: PropagateAndDetectLeakage(a, rt , ε)
40: end if
41: end if

5.2.2 Propagating Resource Usage and Detecting Interfer-
ence

Algorithm 3 propagates resource usage bottom-up over the
symbolic execution tree focusing on the leaf nodes (termi-
nated paths) and all H-ancestors reachable from them. The
algorithm is recursive as there may be multiple H-ancestor
type nodes on a symbolic execution path. So, in addition
to propagating resource usage from the leaf nodes to their
H-ancestors, resource usage ranges at any H-ancestor type
node need to be propagated to their H-ancestors, and so on,
until the algorithm reaches the top level H-ancestor.

The inputs to Algorithm 3 consist of the symbolic exe-
cution path, s, the type of resource, rt, which can be time
or cache, and the bound ε. If s is not an H-ancestor then
we need to propagate the resource usage of s, i.e., s.ru, to
its H-ancestor (lines 4-8). Basically, the RU map of the H-
ancestor is updated by updating the resource usage range
for the combination of the constraints and the termination
location (s.HC , s.LC , s.term) to include resource usage of s
(line 6). Unlike the leaf nodes of the symbolic execution tree,
symbolic execution states of H-ancestor type nodes need

Algorithm 4 An algorithm for detecting code based cache
side channels.
1: CacheDiff(bbset1, bbset2: Set of Basic Blocks): R
2: Let diff ← bbset1 \ bbset2
3: Let BinMap : SourceLocInfo → 2Range denote source info to

virtual address range mapping
4: accuracy ← 0
5: for bb ∈ diff do
6: Let siblings = {bb′ | bb′′ ∈ pred(bb) ∧bb′ ∈ succ(bb′′)∩bbset2}
7: s1 ← {r | i ∈ bb ∧ r ∈ BinMap(i.source)}
8: s2 ← {r | bb′ ∈ siblings ∧ i ∈ bb′ ∧ r ∈ BinMap(i.source)}
9: mismatch ← 0

10: for var1 ∈ s1 do
11: for var2 ∈ s2 do
12: if ∃va. var1.min ≤ va ≤ var1.max ∧CacheLine(va) 6∈

CacheLines(var2) then
13: mismatch ← mismatch + 1
14: end if
15: end for
16: end for
17: if mismatch/(s1.size × s2.size) > accuracy then
18: accuracy ← mismatch/(s1.size × s2.size)
19: end if
20: end for
21: return 100× accuracy

to propagate all possible resource usages due to various
combinations of H relevant and L relevant constraints that
have been propagated by their descendants. Therefore, it
propagates each resource usage combination corresponding
to a different constraint and termination location combi-
nation by updating both the H relevant and L relevant
components with s.HC and s.LC , respectively (lines 10-15).

Once all descendants of an H-ancestor type node have
propagated their resource usages (line 17), Algorithm 3
checks for resource usage deviations for every pair of
equivalence classes whose constraints differ w.r.t. their H
constraints, intersect w.r.t. their L constraints, and agree on
the termination locations. For time side channels (lines 22-
30), it uses the resource usage ranges to detect the variation
in resource usage. If the two ranges differ at least ε units
(line 23), it reports the leakage along with the source code
location for the H-ancestor type node a. By checking the
type of termination location, our approach can report timing
leakages that can be locally observed at timing observation
points, i.e., term is not exit (lines 26-27). It also reports
the number of timing observation points (line 29). For
code based cache side channels (lines 31-37), it executes
CacheDiff (see Algorithm 4), which is explained below, to
check if there exists a cache line that can be used to leak
information about the high security sensitive inputs with
at least ε accuracy. It also prints the number of branch
target distinguishing points (line 32). Another action taken
by the algorithm when all descendants of an H-ancestor
type node have been processed is to propagate its resource
usage ranges to its H-ancestor, if any, via recursion (line 33).

To minimize the number of comparisons, Algorithm 3
records a source information for (HC ,LC ) pairs. As an
example, ru4 and ru6 would get compared to each other
when all descendants of the H-ancestor (15,23) in Figure
5 gets processed. To avoid their comparison again at node
(2,13), we track the source information. Initially, the source
information refers to the identifier for the leaf node that
corresponds to the (HC ,LC ) (line 7). At the time that an
H-ancestor gets visited, resource usage for its descendants
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have already been made as this is performed when its last
descendant gets traversed. So, in addition to propagating
its resource usage map to its H-ancestor, Algorithm 3 also
updates the source information for every (HC ,LC ) to its
identifier so that these pairs do not get compared to each
other at itsH-ancestor (line 13). Finally, we avoid redundant
comparisons by comparing the source information for the
candidate (HC ,LC ) pairs when resource leakage is checked
(line 18).

5.2.3 Finding Cache Side Channels

ENCIDER detects two types of cache side channels: those
that involve the instruction cache due to executing different
code locations for different secret values (D2 and D3 in Fig-
ure 1) and those that involve secret dependent data accesses
(D5 and D6 in Figure 1)6. The former is implemented as part
of the unified resource side channel Algorithms 1 and 3. We
first present detecting code based cache side channels and
then explain detection of data cache side channels.

5.2.3.1 Code based cache side channels: Algorithm
4 detects code based cache side channels and takes as input
two sets of basic blocks, where each set represents one of the
two symbolic execution paths with a common H-ancestor,
and a bound, ε, which represents the accuracy of computing
mismatching cache lines that can reveal information about
the high security sensitive inputs. The algorithm first com-
putes the difference between the two sets (line 2) and for
each basic block in the difference set it computes the sibling
basic blocks (line 6) using the predecessor (pred) and the
successor (succ) functions defined over the basic blocks in
a control-flow graph. Sibling basic blocks of a basic block
represent those that would be executed as different targets
of a branch instruction than that basic block. Note that
some basic blocks may not have siblings if the predecessor
is a basic block with an unconditional branch instruction.
However, there must exist at least one basic block in diff
such that the corresponding sibling set is not empty.

The algorithm leverages the source location information
in the IR and uses that to find out potential mappings to
virtual address ranges using a source location to virtual
address range mapping by considering source location in-
formation about individual instructions in the basic blocks
(lines 3, 7, and 8). So the algorithm checks every pair of
virtual address ranges that correspond to the basic block
in diff and those that correspond to those in siblings, to
see if there is a mismatch in terms of the cache lines (line
12). If so, it increments the number of mismatches. We
compute the accuracy as the ratio of mismatches over the
total number of pairs of virtual address ranges and record
the maximum one (lines 17-19) among all the basic blocks in
diff . Finally, the algorithm either returns 0 if no cache line
difference or returns a non-zero accuracy value of a cache
line mismatch. We provide more details about computing
the cache lines below and those about generating a mapping
from the source locations to virtual address ranges in the
Appendix.

6. Note that the mask used in cache line computation can be config-
ured for page granularity to detect leakages that can be exploited via
page access monitoring

5.2.3.2 Data based cache side channels: ENCIDER
also checks for data based cache side channels that can
be leveraged in an access-based attack, which monitors
accesses to specific cache elements. Modern microprocessor
architectures are equipped with several layers of caches. In
Intel architectures, the L1 cache serves a single core and is
divided into an instruction cache and a data cache. The L2
cache also serves a single core while unifying the instruction
and data. The L3 cache is shared by all cores, unifies the
instruction and data, and is inclusive of the L1 and L2 cache.

To perform a cache based attack, one needs to consider
the specifics of the cache hierarchy, the cache placement
policy such as direct mapped or set associativity and the
cache size. Incorporating these details during side channel
analysis incorporates an unnecessary overhead to achieve
precise results. To strike a balance between efficiency and
usefulness, ENCIDER checks whether a secret dependent
address can compute two different indices that can be
used in cache placement. ENCIDER represents all secrets
as symbolic. So, similar to the approach of CacheS [30], it
first checks if an address involves secret dependent data. If
so, such an address is a formula, denoted by A[H], where
H represents the vector of secret variables. ENCIDER uses
a mask, M , as wide as the address size and checks for
satisfiability of the following formula:

A[H] &M 6= A[H ′] &M (2)

where H ′ is a renaming of the vector H and A[H ′] is
rewriting of the secret dependent address with the new
versions of the secret variables. Unlike CacheS [30], we
do not abstract symbolic expressions and we precisely track
flow of both secret and public data including the expressions
that can be used as array indices.

Similarly, given a virtual address V , we compute the
corresponding cache line as V & M for code based cache
side channel analysis. The flexibility of using a mask can
be realized through the fact that it can detect placement
at the page and cache line granularities as well as at a
smaller granularity within the cache line to assist detection
of CacheBleed [16] like side channels.

We have implemented ENCIDER on top of the KLEE [56]
symbolic execution engine, which analyzes LLVM bitcode.
In LLVM IR, an indirect memory access operation consists
of a getElementPtr (GEP) instruction followed by a load
instruction. The role of the GEP instruction is to compute the
address expression, which is used by the subsequent load
instruction as the operand. ENCIDER intercepts the GEP
instructions and analyzes the computed address expression
using Equation 2 to check for secret dependent memory
accesses.

ENCIDER achieves precise information-flow tracking by
labelling high/low regions in memory objects and prop-
agating these labels during symbolic execution. However,
ultimately, we need to decide whether a given symbolic
expression has any high/low information. Specifically, we
need to be able to do this for branch conditions to check for
timing side channels, and for derived memory addresses
computed by the GEP instructions to check for data cache
side channels.

Given an arbitrarily complex symbolic expression, we
traverse the abstract syntax tree (AST) of the symbolic ex-
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pression and map each subexpression to a set of high or low
regions. If this process returns an empty set then it means
the symbolic expression does not carry the label of interest
(high or low). The base case of this recursive traversal is
a read expression or array access/read at a specific offset,
which translates to a singleton of high/low range, if any,
or an empty set. If the offset is a symbolic expression then
ENCIDER conservatively assumes that the range spans the
whole memory object. Symbolic offsets are possible for array
accesses7. In our experience, this has not led to any false
positives as in our benchmarks the whole array was meant
to be labeled as high security sensitive.

Complex cases of the AST traversal include a binary or
a unary operator, for which we combine the set of ranges
computed for each operand based on the semantics of the
operator. As an example, assume that the privatekey is
256 bits and the whole region is marked as high sensitive:
[0,255] and that we need to map the left shift expression
(read w256 2 privatekey)� 4 to the set of high sensitive re-
gions if any. Here, w256 denotes the width of the expression
being 256 and 2 is the offset at which the read starts. The sen-
sitive region that corresponds to (read w256 2 privatekey)
is [2,255] and after applying the semantics of the left shift
operation, we would get [6,255] as the high sensitive region
in (read w256 2 privatekey)� 4.

5.3 Correctness

In this section, we discuss the correctness of our approach.
We assume that resource usage of an instruction is not
data dependent. This is a simplifying assumption rather
than a claim as certain instructions, such as the floating
point operations, may incur different overheads for different
operand values. However, this assumption has been made
by all related work that work at the IR level [29], [48], [49],
[50].

Definition 2. Given a symbolic execution path P , the data
independent resource usage of P is determined by the set of
instructions executed by P and not by the operands of those
instructions.

Definition 3. Two symbolic execution paths P1 and P2 interfere
if the path conditions of P1 and P2 agree on the low security
variables, differ on the high security variables, and the data-
independent resource usage differs by at least ε.

Claim 1. For a given program, Algorithm 1 generates data
independent resource usage for every feasible combination of high
security and low security constraints that have been explored by
the underlying symbolic execution engine.

Proof. Follows from the fact that resource usage is computed
for every leaf node in the symbolic execution tree that
represent terminated paths with feasible constraints.

Claim 2 (Conditional Completeness). If two symbolic exe-
cution paths P1 and P2 interfere then Algorithm 1 detects the
interference provided that these paths are explored to completion
by the underlying symbolic execution engine.

7. Note that accesses to struct fields involve constant offsets com-
puted by the compiler based on the struct layout

Proof. We prove this claim by contradiction; assume that
equation 1 does not hold and Algorithm 1 fails to detect the
interfering paths, p1 and p2, despite these paths being ex-
plored by the underlying symbolic execution engine. Since
there is an interference, there must be a secret dependent
branch and, hence, at least one common H-ancestor of p1
and p2 due to line 21 of Algorithm 1. Let s denote the
common H-ancestor that is closest to p1 and p2, i.e., lowest
in the symbol execution tree. Let Ci denote the condition
that there are no H-ancestors between the leaf node pi
and s, for 1 ≤ i ≤ 2. There are four cases regarding s,
p1, and p2: Case 1: Both C1 and C2 hold. For both p1 and
p2, the respective (HC , LC ) combinations are reflected to
RU map of s through the lines 5-7 in Algorithm 3. Case 2:
C1 holds and C2 does not hold. p1’s (HC , LC ) combination
would be propagated to the RU map of s as in Case 1. p2’s
(HC , LC ) combination would get propagated first to the
closest H-ancestor. Then the RU map of each intermediate
H-ancestor would be propagated in a consistent way with
its H-ancestor’s branching conditions until the (HC , LC )
combination of p2 gets propagated to RU map of s (lines 9-
12 in Algorithm 3). Case 3: C1 does not hold and C2 holds.
(Similar to Case2). Case 4: Neither C1 nor C2 hold. Both
p1’s and p2’s (HC , LC ) combinations are ultimately get
propagated to the RU map of s as explained in Case 2. Since
the (HC , LC ) combinations of p1 and p2 will be propagated
to the RU of s in each of the four cases and along with
their resource usage (see Claim 1) and since p1 and p2
do interfere, this would be detected by Algorithm 3 after
all terminated descendants of s get processed (lines 15-17),
leading to a contradiction.

6 IMPLEMENTATION

To implement ENCIDER, we have extended the KLEE [56]
symbolic execution engine in several dimensions to pre-
cisely track information flow and to apply security sensi-
tivity aware API modeling.

6.1 Information-Flow Tracking

Side channel analysis is an information-flow tracking
problem. Symbolic execution facilitates the tracking of
information-flow when the memory regions that carry the
information of interest are labeled as symbolic. However, in
real-world applications the high security sensitive and the
low security sensitive information are mixed inside the same
data structure.

The underlying symbolic execution engine, KLEE, uses
a single block of memory region to represent an aggregate
data type such as bolos_persistent_context_t that is
shown in Figure 6.

In KLEE a memory region is marked symbolic as a
whole and a unique identifier is used to refer to the sym-
bolic region. However, since the memory region is repre-
sented as an array of bytes, accesses to individual fields
are represented as array accesses. To precisely label high
and low sensitive inputs in the KLEE memory model, EN-
CIDER expects the user to specify high and low regions
using a byte offset and the size within the data type. As
an example, the offset & size tuple (72,32) refers to the
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TABLE 2
Example Intel intrinsic instructions and their modeling in terms of information flow.

Intel Intrinsic Semantics Information Flow Specification in ENCIDER
_mm_loadu_si128 dst [127 : 0]←MEM [mem addr + 127 : mem addr ] H(&dst , 0, 127)← H(mem addr , 0, 127)
_mm_xor_si128 dst [127 : 0] := (a[127 : 0] XOR b[127 : 0]) H(&dst , 0, 127)← H(&a, 0, 127) ∪H(&b, 0, 127)

struct cx_ecfp_private_key_s{
cx_curve_t curve; // low
int d_len; // low
unsigned char d[32]; // high
};
typedef struct cx_ecfp_private_key_s

cx_ecfp_private_key_t;
typedef struct bolos_persistent_context_s {
// high
uint8_t deviceWrappingKey[...];
// mixed
cx_ecfp_private_key_t endorsement_private_key1;
// high
uint8_t endorsement_private_key1_hash[32];
// mixed
cx_ecfp_private_key_t endorsement_private_key2;
...
} bolos_persistent_context_t;

Fig. 6. A sample data structure from the Ledger enclave with mixed (high
and low) security sensitive fields.

endorsement_private_key1_hash and is marked as
high whereas the offset & size tuple (26,4) refers to the
d_len field of the endorsement_private_key1 and is
marked as low.

ENCIDER uses two types of specifications for security
sensitivity. Type 1 specifies the high and low regions in a
given data structure type. Type 2 specifies high and low
arguments of function parameters. The user can choose
one of the three labels: high, low, and mixed. For pointer
arguments, if the sensitivity is high or low, that sensitivity
gets applied to all memory regions that can be reached
through dereferencing that pointer for any depth in the
dereferencing expression8. If the sensitivity is mixed then,
the user must have provided the type sensitivity specifi-
cation, which gets used by ENCIDER to decide how to
treat various regions of the memory object(s) that can be
reached from the pointer. Assuming that the user provides
a correct and complete specification for Type 1 and Type
2 specifications and that the sensitivity specification of a
type applies to all instances of that type, ENCIDER keeps
track of byte-precise sensitivity of the memory regions that
get created for each execution path and propagates them as
symbolic execution proceeds.

6.2 API Modeling
To tame the path explosion problem in symbolic execution,
ENCIDER uses user specified models of API functions. An

8. Note that it is possible that this may lead to inconsistencies in terms
of sensitivity labeling. In such cases, the user should use the mixed
label and let ENCIDER use the sensitivity specification of the type
information, if provided by the user and if possible, i.e., the sensitivity
specification of the type applies to all instances of that type, to precisely
track the sensitivity information.

API function can be modeled in three ways: 1) by imple-
menting a model function in C and with the same signature
as the original function, 2) as a side-effect free function that
returns a symbolic value, if the return type is not a void,
and 3) by defining its information flow. ENCIDER handles
callsites that involve modeled functions based on the type
of the model. Case 1) is handled by calling the model
function instead of the original function when handling all
the relevant callsites. Case 2) is handled by treating the
callsite as a no-op while copying a fresh symbolic value to
the register that holds the return value. Case 3) is handled
by applying the information flow specification.

The idea with information flow modeling is to capture
potential flow of high security sensitive bytes as a result
of executing a modeled API function. Type 3 specification
identifies which memory regions of the arguments flow
into which memory regions of the return value. We have
analyzed the functional specification of 262 Intel intrinsics
instructions [52] and manually modeled the information
flow for each of these instructions. Table 2 shows modeling
of some of the Intel intrinsics instructions. H(A,min,max)
denotes the set of high sensitive ranges [r1, r2] at memory
address A such that min ≤ r1 ≤ r2 ≤ max or an empty
range if none of the bits at address A are high sensitive. We
define a similar map L for low sensitive data.

7 EVALUATION

We have applied ENCIDER to various real-world SGX en-
clave implementations, SGX crypto APIs, and other widely-
used crypto libraries. We have run our experiments on an
Intel Xeon CPU 2.30GHz with 256 GB memory. We have
set ε to 0. A summary of results is provided in Table 3.
ENCIDER is able to detect new timing and code as well as
data based cache side channels. We also applied ENCIDER
to the benchmarks of three state-of-the-art side channel
analysis tools, ct-verif9 [29], CacheS [30], and DATA
[31]. In addition to detecting the side channels discovered
by CacheS, ENCIDER can also detect new types of side
channels in those benchmarks.

7.1 New Side Channels found by ENCIDER

7.1.1 Timing Side Channels
ENCIDER detects a timing observation point that can be

leveraged in a local timing side channel attack in mbedTLS-
SGX, which is discussed in Section 4 in detail. ENCIDER
detected similar timing observation points in Amazon’s s2n
library (at line 4 in Figure 7) and openSSL 1.0.1c (at line 7
in Figure 8). So, ENCIDER automatically detected timing
observation points in three different TLS implementations
that can be exploited by a local attacker to perform the

9. We have obtained the ct-verif benchmarks from [57].
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TABLE 3
A summary of vulnerabilities detected by ENCIDER: timing side channels (TSC), code based cache side channels (CCSC), and data based cache

side channels (DCSC). TOPS and BTDP denote maximum number of timing observation points and branch target distinguishing points,
respectively.F denotes new vulnerabilities detected by ENCIDER, ♦ denotes vulnerabilities detected exclusively by ENCIDER but fixed recently,
♣ denotes new types of vulnerabilities detected by ENCIDER but not by CacheS, ♥ denotes additional vulnerabilities detected by ENCIDER, �

denotes known vulnerabilities detected by both ENCIDER and CacheS.
Case Studies # Func. # TSC # CCSC # DCSC TOPS BTDP Time (secs) Memory (MB) Coverage (%)

Min Max Min Max Min Max
mbedTLS-SGX 1 1F 1F 1F 93 147 5014.97 5014.97 410.42 410.42 49.80 49.80
Signal Enclave 7 0 1F 1F 13 57 2.82 500.41 29.90 436.85 10.54 80.00
Ledger Bolos Enclave 8 1 ♦ 0 0 46 70 0.81 50.28 35.92 149.25 22.09 95.45
Tresor SGX 4 0 0 0 0 0 15.07 51.01 23.11 68.98 78.64 83.78
SGX IPP 8 1 ♦ 0 0 784 613 21.45 501.60 229.02 403.97 48.43 73.47
SGX SSL 9 1F 1F 0 423 398 56.27 589.01 15.36 678.58 21.69 41.94
openSSL 1.0.1c 1 1F, 2 ♦ 0 1 ♦ 155 173 2555.27 2555.27 2262.24 2262.24 81.25 81.25
s2n 1 1F 1 ♦ 1F 2F 226 422 475.94 475.94 654.32 654.32 78.57 78.57
polarssl 1 4 ♣ 4F 3F 38 63 526.77 526.77 209.31 209.31 72.32 72.32
libgrcypt 4 6 ♣ 7 ♣ 6 � 203 417 3.48 5241.25 16.08 759.39 82.03 100.00
openSSL 3 6 ♣ 8 ♣ 4 ♥ 9 � 89 129 2.37 796.14 56.94 579.80 47.50 94.74
mbedTLS 3 4 ♣ 4 ♣ 19 � 156 132 50.50 999.92 130.86 537.27 83.85 100.00
Total/Overall 50 29 27 46 784 613 0.81 5014.97 5.26 2262.24 10.54 100.00

1 int s2n_verify_cbc(struct s2n_connection *conn, struct
2 s2n_hmac_state *hmac,struct s2n_blob *decrypted) { ...
3 s2n_hmac_update(hmac,decrypted->data,payload_length);
4 s2n_hmac_digest_two_compression_rounds(hmac,...);
5 ...
6 s2n_constant_time_equals(decrypted->data +
7 payload_length, check_digest, mac_digest_size) ˆ 1;
8

9 s2n_hmac_update(copy, decrypted->data +
10 payload_length + mac_digest_size, decrypted->size -
11 payload_length - mac_digest_size - 1);

Fig. 7. ENCIDER detects a timing observation point at line 4 and secret
dependent memory accesses at lines 6-7 (79) and 9-10 (82) in s2n 0.9
. payload_length is secret dependent.
1 static int ssl3_get_record(SSL *s) {
2 enc_err = s->method->ssl3_enc->enc(s,0);
3 ... // may set decryption_failed_or_bad_record_mac
4 i=s->method->ssl3_enc->mac(s,md,0);
5 ... // may set decryption_failed_or_bad_record_mac
6 if (decryption_failed_or_bad_record_mac) {
7 ... SSLerr(...); ...

Fig. 8. ENCIDER detects a timing observation point at line 7 in openSSL
1.0.1c.

Lucky 13 attacks. This suggests constant time solutions,
e.g., the one implemented in openSSL in later versions
[58], are more secure than those that add equalization code,
e.g., s2n and mbedTLS, as even though the remote timing
attacks are thwarted with the latter approach, local timing
attacks may still remain feasible and even more so in the
SGX setting, e.g., mbedTLS-SGX. ENCIDER detected a local
timing side channel in the sgx_rsa3072_sign function
in SGX IPP library with multiple timing observation
points. The side channel is due to the secret dependent
branch in the ippsSet_BN function, which repeatedly
checks the last byte of a big number that happens to be
the private key when called from sgx_rsa3072_sign
to compute the actual length in a macro called FIX_BN:
for(; ((srcLen)>1) && (0==(src)[(srcLen)-1]);
(srcLen)--). Functions that serve as timing observation
points include cpSizeof_RSA_privateKey1 and
ippsRSA_GetSizePrivateKeyType1.

We have found a new timing side channel in one of
the functions of the cryptographic library libsecp256k1 [59].
A secret dependent composite condition (line 5 in Figure
9) gets translated into branch instructions by the clang
compiler. For an error case, i.e., a return value of zero, the
timing difference reveals whether the failure was due to

1 static int secp256k1_scalar_set_b32_seckey(
2 secp256k1_scalar *r, const unsigned char *bin) {
3 int overflow;
4 secp256k1_scalar_set_b32(r, bin, &overflow);
5 return (!overflow) && (!secp256k1_scalar_is_zero(r)); }

Fig. 9. The timing side channel that was found by ENCIDER in a
cryptographic API used by the Ledger Enclave involves the composite
condition at line 4.

an overflow or the scalar value being zero. This function
gets called from the exchange ecall in the Ledger Enclave,
which is designed to host blockchain and cryptocurrency
applications that are developed for the BOLOS operating
system [4].

ENCIDER detected the remote timing side channels in
the TLS implementations of openSSL, s2n and polarsll,
which can be exploited by the Lucky 13 attacks [10]. EN-
CIDER reported that some of the secret dependent branches
that were reported by CacheS [30] do lead to timing side
channels.

1 sgx_status_t sgxsd_enclave_remove_pending_request(...) {
2 uint64_t pending_request_count_mask = ((uint64_t){1} <<
3 g_sgxsd_enclave_pending_requests_table_order) - 1;
4 sgxsd_pending_request_t *p_found_pending_request =
5 &g_sgxsd_enclave_pending_req[p_pending_request->id_val &
6 pending_request_count_mask];
7 if (p_found_pending_request->id_val ==
8 p_pending_request->id_val) { ... } ...
9 }

Fig. 10. ENCIDER detects a code based cache side channel due to the
secret dependent branch at lines 7 and 8 and a cache side channel at
lines 5-6 in the Contact Discovery Service.

Table 3 shows the maximum number of timing obser-
vation points for each benchmark. We observe that when
one of the targets of the secret dependent branch is an error
case that gets handled immediately, e.g., by returning an
error code, there are fewer number of timing observation
points for a local attacker to exploit as in the case of Signal
Enclave. On the other hand, when different targets of a
secret dependent branch have long common computations,
e.g., s2n_verify_cbc, the number of timing observation
points increases.

7.1.2 Code based Cache Side Channels
ENCIDER detected a code based cache side channel in the
Signal Enclave. Signal [3] implements its Private Contact
Discovery Service using Intel SGX, securing user’s contact
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information within an enclave from service operators. Fig-
ure 10 shows the code snippet that has a secret dependent
branch at lines 7-8. Leveraging the binary metadata that
maps source line information to virtual address ranges in
Algorithms 1-4, ENCIDER computes 100% accuracy of this
cache side channel.

Analyzing the SGX SSL API using openSSL 1.1.0.j, re-
vealed a code based cache side channel in the implementa-
tion of the sgx_ecc256_compute_shared_dhkey function.
The vulnerability, as shown in Figure 11, is due to the BN_l
ebin2bn function which tries to detect the leading zero bits
in a given big number, which turns out to be the private key
when it gets called from sgx_ecc256_compute_shared_d
hkey. ENCIDER reports this vulnerability with an accuracy
of 33.33%. We realized that another OpenSSL function that
may get called in an alternative implementation of BN_leb
in2bn inside SGX SSL has the same type of side channel.
Also, we found out other SGX APIs, which pass secret
values to these functions and, hence, vulnerable to the same
type of side channels: sgx_ecc256_compute_shared_poi
nt, sgx_ecc256_calculate_pub_from_priv, and sgx_c
reate_rsa_priv2_key.

1 BIGNUM *BN_lebin2bn(const unsigned char *s, int len,
2 ...) { ...
3 s += len;
4 /* Skip trailing zeroes. */
5 for ( ; len > 0 && s[-1] == 0; s--, len--)
6 continue;

Fig. 11. The code based cache side channel that was found by EN-
CIDER due the secret dependent branch at line 5.

Additionally, ENCIDER reports code based side chan-
nels for some of the secret dependent branches that were
found by CacheS in all the three libraries. For these vul-
nerabilities, the number of vulnerabilities and the accu-
racy ranges are as follows: libgrcypt 1.6.1 (7): [50%,100%],
openSSL 1.0.2.f (8): [100%,100%], and mbedTLS 2.5.1 (4):
[75%,75%].

1 ssl->in_msglen-=(ssl->transform_in->maclen+padlen); ...
2 memcpy(tmp,ssl->in_msg+ssl->in_msglen,MAX_MAC_SIZE);

Fig. 12. The secret dependent memory accesses detected by EN-
CIDER in polarssl 1.2.4 at line 2 (1437). padlen is secret dependent.

Table 3 shows the maximum number of branch target
distinguishing points. We observe that if the code performs
various checks on a value that gets computed based the
on secret dependent condition, the number of branch tar-
get distinguishing points increases. For instance, srcLen,
which is computed by the FIX_BN macro in the SGX IPP
library, is checked for additional cases after the secret de-
pendent branch location and has the highest value among
our benchmarks.

7.1.3 Data based Cache Side Channels
ENCIDER found a true cache side channel in the sgxsd
_enclave_remove_pending_request function, which is
shown in Figure 10. The enclave stores the active tickets in
a pending requests table. The ticket values are sent to the
client application in encrypted form and they get decrypted
before being used inside the enclave. The size of the table
is computed as 2order and the lowest order many bits in
the ticket value is used as an index to the pending requests

TABLE 4
Comparison of time to detect side channel leakage without (wo) and

with (w) API modeling. T, SB, CC, and DC denote timing side channel,
secret dependent branch, code cache side channel, and data cache

side channel.

Case SC Location wo API w API Ratio
Study Type mod. (secs) mod. (secs) wo/w

polarSSL SB ssl tls.c:1393 112.59 7.83 14.95
SB ssl tls.c:1406 117.09 7.94 14.75
SB ssl tls.c:1408 127.26 8.27 15.39
SB ssl tls.c:1425 122.57 8.09 13.92

Signal CC sgxsd-e.c:444 127.14 45.45 2.80
DC sgxsd-e.c:439 206.08 2.38 86.59

openSSL T s3 pkt.c:448 5247.41 1993.93 2.63
T s3 pkt.c:487 5249.38 2156.69 2.43

TABLE 5
Information on the API specifications for the evaluation benchmarks.

Case Study API API Mix. #
Input Specs Output Specs Type API
#fnc #args #fnc #args

SIGNAL Enclave 7 14 4 5 0 8
Ledger Enclave 6 7 4 4 1 6
TresorSGX 15 45 0 0 0 15
SGX IPP 10 12 0 0 0 10
SGX SSL 8 23 0 0 0 8
s2n_verify_cbc 3 3 0 0 2 0
ssl_read_record 1 1 0 0 0 1
_gcry_mpih_add_1 1 1 0 0 0 1
_gcry_mpih_sub_1 1 1 0 0 0 1
_gcry_mpih_cmp 1 2 0 0 0 1
_gcry_mpi_powm 1 1 0 0 1 1
BN_is_bit_set 1 2 10 0 0 1
BN_mod_exp. 1 1 0 0 1 1
BN_num_bits. 1 1 0 0 0 1
mbedtls_internal. 1 1 0 0 1 1
mbedtls_mpi_exp. 1 1 1 0 1 1
mpi_mul_hlp 1 2 0 0 0 1

table. This leads to a secret dependent address computation.
ENCIDER reports that for different values of the ticket the
entry may be placed in a different cache line when cache
line size is 64 bytes.

We have found some data based cache side channels in
openSSL, s2n, two of them, shown in Figure 7, and in
polarssl, one of three as shown in Figure 12, and the
other two due to the DES_ROUND macro that looks up from a
table based on secret data in the des3_crypt_ecb function
(lines 678 and 679). It is well-known that to protect against
Lucky 13 attacks, secret dependent accesses like those found
in s2n and polarssl must be avoided [60]. The cache side
channel that ENCIDER detected in openSSL has been fixed
in later versions [58].

7.2 Impact of API Modeling
One of the contributions of ENCIDER is to model API
functions while incorporating the secret tainted parameters
into information-flow tracking. Table 5 shows the details
of API specifications for the evaluation benchmarks by
reporting the number of API functions modeled for input
arguments and output arguments and the number of mixed
type specifications. To evaluate the impact of API modeling
on the analysis performance, we have applied ENCIDER to
the case studies which call some API function to perform de-
cryption. Table 4 shows the timing information for without
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and with API modeling. We have not included mbedTLS-
SGX and s2n in this table, as without API modeling the
vulnerabilities could not be detected within 12 hours. The
speedup for openSSL is modest compared to other case
studies as some part of the cipher is implemented in assem-
bly and is not handled by ENCIDER. We tried compiling
openSSL with the no-asm option and in that case, similar
to mbedTLS-SGX, without API modeling the vulnerability
could not be detected within 12 hours. So, by modeling the
decrypt APIs ENCIDER can detect the side channel vulner-
abilities while achieving an order of magnitude speedup on
average.

TABLE 6
Comparison of ENCIDER with ct-verif. CT and TSC denote

constant-time and timing side channels.

ct-verif ENCIDER
CT? Time Mem TSC? Time Mem

tea yes 3.63 0.04 no 2.00 0.17
curve-donna yes 891.33 7.51 no 119.60 3.89
mee-cbc-nacl yes 191.68 4.67 no 165.89 1.24

ssl3 cbc rem. padding yes 3.41 0.41 no 1.01 0.02
tls1 cbc rem. padding yes 3.56 0.49 no 1.01 0.02

ssl3 cbc copy mac yes 4.08 0.44 no 1.01 0.02
ssl3 cbc dig. record yes 27.19 0.79 no 245.24 0.23

rlwe sample ct yes 4.8 0.04 no 1.00 0.02
salsa20 yes 6.04 0.08 no 1.00 0.02

chacha20 yes 11.82 0.1 0 no 8.04 0.03
sha256 yes 40.65 0.2 0 no 117.60 0.05
sha512 no 143.53 2.23 no 132.73 0.03

fix pow no 53.42 0.31 no 83.59 0.62
fix cmp yes 34.09 0.18 no 1.00 0.04

fix convert yes 51.36 0.17 no 1.00 0.04
fix div yes 38.75 0.17 no 1.00 0.04
fix exp yes 36.88 0.17 no 1.00 0.04
fix sin yes 42.08 0.17 no 1.00 0.04
fix mul yes 40.06 0.17 no 1.00 0.04
fix sqrt yes 50.7 0.17 no 1.00 0.04
fix eq yes 79.06 0.17 no 1.00 0.04
fix ln yes 47.23 0.21 no 5.02 0.05

Average 82.06 0.86 40.58 0.30

7.3 Comparing ENCIDER with ct-verif
We compare ENCIDER with ct-verif, which verifies
constant-time implementations. Due to dependencies of ct-
verif, we needed to install ct-verif and ENCIDER on an
Ubuntu 14 Virtual Machine with an 8GB RAM and a 128GB
disk. We used a timeout of 500 secs for ENCIDER. Table 6
shows the results of running both tools on the benchmarks
from [29]. ENCIDER is faster than ct-verif on 18 out of 22
benchmarks, and achieves 50% improvement of run time
and 65% improvement of memory usage on average. The
two tools agree on the verification results except for sha512
and fix_pow as ct-verif reports errors on the violation
of some loop invariants related to constant-time behavior.
According to [29], all testing cases are constant-time imple-
mentations. ENCIDER achieved zero false positive whereas
ct-verif missed two cases in our evaluation. We contacted
the ct-verif developers and confirmed that these two false
positives were due to the missing assumptions that the

instrumentation component of ct-verif failed to generate,
and that they would require manual intervention to get
fixed.
7.4 Comparing ENCIDER with CacheS
We have chosen CacheS among the related work due to
being the most recent static analysis work that can detect
both secret branches and cache side channels. We have used
the leakages reported by CacheS to compare CacheS and
ENCIDER in terms of precision and performance. We have
excluded the leakages that require analysis of assembly
or perl scripts. Results are shown in Table 7. Comparing
to CacheS, ENCIDER achieves 20% run time improvement
and 92% memory usage improvement in general. The only
exception is the libgcrypt benchmarks where the detection
of some of the leakages in the function _gcry_mpi_powm
required exploration of more number of paths.

Among the 81 leakages, ENCIDER detected 65 of them.
Four of the remaining 16 leakages were already reported
as false positives of CacheS. Inspecting the remaining 12
leakages revealed them as being false positives. ENCIDER
did not report any false positives for these benchmarks. It
also detected 9 additional leakages that were not reported
by CacheS within the analyzed functions. Our hypothesis on
why CacheS missed those leakages is that we compiled the
benchmarks for a 64-bit architecture and CacheS works for
a 32-bit architecture. Some configuration option in openSSL
applies to both architecture types and that’s why ENCIDER
got better coverage and detected those.

TABLE 7
Comparison of ENCIDER with CacheS. SB, CSC, T, and F denote

secret branches, cache side channels, true positives and false
positives, respectively. M, O, and L denote mbedtTLS 2.5.1, openSSL

1.0.2f, and libgcrypt 1.6.1.

CacheS ENCIDER
SB CSC Time Mem SB CSC Time Mem

T F T F (secs) (GB) T F T F (secs) (GB)
M 8 0 19 3 808.70 9.65 8 0 19 0 323.16 0.54
O 12 0 5 0 205.30 6.11 16 0 9 0 194.65 0.58
L 15 6 6 7 228.80 7.75 16 0 6 0 457.05 0.76

Sum 35 6 30 10 1242.80 23.51 40 0 34 0 974.65 1.87

TABLE 8
Comparison of ENCIDER with DATA. LKGSL, SB, and CSC denote the

number of source lines reported to have leakages, secret branches,
and cache side channels, respectively.

File DATA ENCIDER COMMON
LKGSL SB CSC

bn_add.c 8 6 19 4
bn_div.c 14 10 7 4
bn_gcd.c 11 5 0 0
bn_lib.c 13 18 11 6
bn_mul.c 1 5 5 0
bn_rand.c 1 1 0 0
bn_shift.c 8 4 4 3
evp/encode.c 4 9 1 2

7.5 Comparing ENCIDER with DATA
We compared ENCIDER with DATA [31], which uses differ-
ential dynamic analysis for detecting secret leakages. DATA
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uses random key generation to prepare secret inputs to the
cryptographic code under analysis. Since DATA does not
employ taint-tracking, it performs statistical tests to find
code locations that reveal statistically significant differences
among the generated dynamic traces. We were able to
install DATA and ENCIDER on an Ubuntu 16.04 machine
with an Intel Core i7@2.80GHz CPU and a 32 GB RAM.
We applied DATA to the rsa benchmark of openSSL as
mentioned in [31], and generated the source code locations
that correspond to the leaky assembly instructions that pass
the statistical tests. We applied ENCIDER on the functions
that are reported to have leakages.

Table 8 presents various files from openSSL 3.0.0 and the
number of leaky code locations reported by Data (LKGSL)
and ENCIDER (SB and CSC). Column COMMON lists the
number of code locations that are found to be leaky by
both DATA and ENCIDER. A close inspection of the leakage
locations reveals that DATA seems to report leakages deeper
in the code while ENCIDER seems to cover more cases of
leakages due to using symbolic inputs.

To detect the leakages reported in Table 8, DATA ran for
a total of 83,315.14 secs and used a 4.90 GB of peak memory
whereas ENCIDER ran for a total of 1,464.13 secs and used
a 0.82 GB of peak memory.

7.6 False Positives

We have determined true positives using two methods: 1)
Contacting the developers and getting confirmation for the
new vulnerabilities, 2) Checking whether the vulnerabili-
ties have been previously known either through published
CVEs or being reported as true positives in previous stud-
ies. False positives were determined by studying the code
and manually checking whether the leakage could also be
detected via public return values or whether the data at
the leakage location is actually tainted with secret data. The
false positives reported by ENCIDER include three timing
and one data cache side channel. So, overall ENCIDER
reported four false positives out of 106 side channel reports,
achieving a precision of 96%. ENCIDER reported a false
timing side channel in the sgxsd_enclave_server_call
function of the ContactDiscovery Enclave of the Signal App
due to an unconstrained public return value of a modeled
API function in one of the paths. It turns out that the two
paths return two different public outputs and, hence, the
leak could be determined by the public outputs. This type
of false positives can be eliminated by providing a more
detailed model of the API function, e.g., by constraining
the return value. Another source of false positives is about
security labeling of APIs that get called inside a loop. If
the same memory cell is used for such a parameter in all
iterations, branching conditions on that memory cell before
the API function gets called are falsely detected as secret
dependent branches. ENCIDER reported three false positive
side channels of this type in openSSL 1.0.1c; two timing side
channels in the ssl3_get_record function and one data
cache side channel in the ssl3_enc function. This type of
false positives can be eliminated by providing an intrinsic
function for ENCIDER that can declassify the labels of such
memory locations at the appropriate locations, e.g., at the
beginning of the loop body.

7.7 Exploitability of Discovered Vulnerabilities

The feasibility of the local timing side channel in mbedTLS-
SGX that was detected by ENCIDER follows from the fea-
sibility of the code cache side channel in an earlier version
of the code [47], which shows that the callsite for the mb
edtls_md_process function can be exploited as a timing
observation point. In fact, mbedTLS developers agreed with
ENCIDER and fixed the vulnerabilities we reported in a
recent version. We think that the other timing observation
points found by ENCIDER are also possibly exploitable.
However, openSSL developers have previously fixed the
Lucky13 related vulnerabilities using a constant-time ap-
proach. s2n’s developer do not consider local attackers as a
serious threat due to the configuration of their servers. The
timing side channel in the secp256k1_ec_seckey_verif
y function can be exploitable when it is called from the mox
ie_bls_bip32_derive_secp256k1_private function in
the Ledger enclave as the failure case skips the subsequent
computations. The secret dependent branch in the BN_le
bin2bn function that gets called by several SGX SSL API,
including sgx_ecc256_compute_shared_dhkey, and the
timing side channel with multiple observation points inside
the sgx_rsa3072_sign function can be exploited by a local
attacker to facilitate a RACOON attack [64]. In fact, Intel
confirmed both side channels and is planning issuing of
a CVE. Finally, the data and code cache side channels in
Signal’s ContactDiscovery Service can be exploited together
to recover part of the secret ticket value, which is employed
as a “defense in depth” as indicated by the developers. Like
any side channel analysis tool, ENCIDER can be utilized
both for improving security of software as well as attacking
software. We hope that developers will incorporate EN-
CIDER to the development process to detect and remove
all types of leakages before deployment.

7.8 Limitations

Although ENCIDER can detect software side channels by
working at the IR level, the differences between the IR and
the binary executable and the details of the cache place-
ment may lead to false positives as well as false negatives.
Another source of false negatives may be due to the path
explosion problem, especially when few opportunities exist
for API modeling. Users can leverage the detailed coverage
information provided by KLEE to decide if increasing the
timeout may help with the side channel analysis.

8 RELATED WORK

SGX Side Channel Analysis: Table 9 provides a comparison
of ENCIDER with the related work on SGX side channel
analysis. Stacco [17] detects secret dependent control-flows
in SSL/TSL implementations running inside an SGX enclave
by comparing dynamically collected traces. DATA [31] uses
differential dynamic analysis to identify differences on ex-
ecution traces on a byte-address granularity and reports
those addresses that yield statistically significant differ-
ences. MicroWalk [21] uses mutual information analysis
over a set of traces extracted during dynamic analysis to
detect secret dependent branches and memory accesses in
binaries including the SGX IPP library. ANABLEPS [22]
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TABLE 9
Comparison of ENCIDER with other works that detect side channels in SGX enclaves.

Approach Analysis Side Channel Attack Type Input Memory Taint
Type Cache-level Page Branch Timing Generation Address Tracking

ICache DCache Level Level
Stacco [17] Dynamic X 7 X X 7 Prot. Know. Virtual 7

DATA [31] Dynamic X X X X 7 Random Virtual 7

MicroWalk [21] Dynamic X X X X 7 Random Virtual 7

ANABLEPS [22] Dynamic X 7 X X X Fuzzing Virtual 7

ENCIDER (this work) Static X X X X X Not needed Virtual X

TABLE 10
Comparison of ENCIDER with other state-of-the-art side channel analysis tools. ST : secret dependent time difference detection, PO: public

output, IR: IR-based resource usage, TO: infers timing observation points (detects local timing side channels), SBR: reports secret dependent
branches, CCL: code cache lines, DCL: data cache lines, DP : decision procedure, BSTR: byte-level specification and tracking of sensitive data,

API: incorporating sensitivity of the API parameters, BF : bug finding, V R: verification, LQ: leakage quantification.

Approach Timing SCA IR SBR Cache SCA DP Info. Flow St. Leak Type
ST PO TO IR CCL DCL BSTR API (BF,VR,LQ)

Almeida et al. [29] (ct-verif) X X 7 LLVM 7 7 7 SMT 7 7 7 VR
Pasareanu et al. [48] X 7 7 Bytecode X 7 7 MaxSMT X 7 7 BF, LQ

Antonopoulos et al. [49] (Blazer) X 7 7 Bytecode X 7 7 SMT X 7 7 VR
Chen et al. [50] (Themis) X 7 7 Bytecode X 7 7 SMT X 7 7 VR
CoCo-CHANNEL [61] X 7 7 Bytecode X 7 7 SMT X 7 7 VR

Wang et al. [62] (CacheD) 7 7 7 x86 7 7 X SMT X 7 7 BF
Brotzman et al. [63] (CaSym) 7 7 7 x86 X 7 X SMT X 7 7 BF

Wang et al. [30] (CacheS) 7 7 7 REIL X 7 X SMT X 7 7 BF
ENCIDER (this work) X X X LLVM X X X SMT X X X BF

detects secret dependent control-flows in enclave binaries
using concolic execution and fuzzing and has been ap-
plied to legacy applications running on a library OS. To
our knowledge, ENCIDER is the first IR-level side chan-
nel analysis tool that incorporates the strong attacker and
programming model of SGX to detect side channels that
can be exploited by all of the five types of attacks that are
mentioned in Table 9. Unlike these approaches, ENCIDER
reports the leakage sites as it employs taint tracking whereas
the approaches in [17], [21], [22], [31] may require additional
manual processing of the traces with differences in resource
usage to identify the leaky branch instructions. ENCIDER
complements the approach of Moat [65], which formally
verifies SGX enclaves for explicit leaks.
Side-channel Analysis: Table 10 provides a detailed com-
parison of ENCIDER with state-of-the-art side channel anal-
ysis approaches. Previous works on timing side channel
analysis [29], [48], [49], [50], [61] do not consider local attack-
ers and can only detect timing differences observed at pre-
defined code locations, e.g., termination points. ENCIDER,
on the other hand, can automatically infer timing obser-
vation points that can be exploited by local attackers (see
Section 4 for a motivating example). Also, the approaches in
[29], [48], [49], [50], [61] focus on resource types for which
the amount of resource usage can be computed indepen-
dent of the interfering paths, e.g., execution time, whereas
ENCIDER can also handle resource types that require the
details of the resource usage in the interfering paths, e.g.,
instruction cache lines. Another aspect in which our work
differs from [48], which also uses symbolic execution, is that
we decompose the secret dependent path constraints and
minimize the number of SMT queries instead of offloading
all such constraints to a MaxSMT solver, as our goal is to

detect side channels rather than quantify the leakage. Also,
MaxSMT solving is known not to scale to large input sizes
[48]. Similar to Blazer [49], ENCIDER follows a decomposi-
tion approach to detecting timing side channels. However,
ENCIDER differs from Blazer in two aspects: 1) ENCIDER’s
partitions are performed with respect to secret dependent
branches and the partitions are organized into a hierarchy to
optimize constraint solving; 2) ENCIDER can also generate
attack inputs.

Our work differs from other work on cache side channel
analysis [30], [62], [63] as ENCIDER detects code cache side
channels by leveraging the metadata extracted from the
binaries. While the approaches in [30], [63] also report secret
dependent branches like ENCIDER, they can lead to false
positives. The risk of a code cache side channel depends on
the memory locations of the basic blocks on the paths of the
secret dependent branch.

Our work differs from the work in [29], [30], [48], [49],
[50], [62], [63] by incorporating precise information flow
modeling of APIs. Finally, to our knowledge, our work is the
first to unify timing and cache side channel analyses within
the same non-interference analysis and ENCIDER is the first
tool to provide multiple types of secret leakage detection:
timing side channels (remote and local), and cache side
channels (instruction and data).

9 CONCLUSION

To address side-channel threats against confidential com-
puting, we have designed and implemented ENCIDER
detecting both timing and cache side-channel attacks au-
tomatically. ENCIDER uses dynamic symbolic execution
and supports SGX program modeling. We have applied
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ENCIDER to 4 real-world SGX enclave implementations, 2
SGX SDK crypto libraries, 3 TLS implementations, and 3
common crypto libraries. In total, we have found 29 timing
side channels and 73 cache side channels.
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