TLPGNN: A Lightweight Two-Level Parallelism Paradigm for
Graph Neural Network Computation on GPU

Qiang Fu
charlesfoo@gwu.edu
George Washington University
Washington, DC, USA

ABSTRACT

Graph Neural Networks (GNNs) are an emerging class of deep
learning models on graphs, with many successful applications, such
as, recommendation systems, drug discovery, and social network
analysis. The GNN computation includes both regular neural net-
work operations and general graph convolution operations, which
take the majority of the total computation time. Though several
recent works have been proposed to accelerate the computation
for GNN, they face the limitations of heavy pre-processing, low
efficient atomic operations, and unnecessary kernel launches. In
this paper, we design TLPGNN, a lightweight two-level parallelism
paradigm for GNN computation. First, we conduct a systematic
analysis on the hardware resource usage of GNN workloads to
deeply understand the specialties of GNN workloads. With the in-
sightful observations, we then divide the GNN computation into
two levels, i.e., vertex parallelism for the first level and feature par-
allelism for the second. Next, we employ a novel hybrid dynamic
workload assignment to address the imbalanced workload distri-
bution. Furthermore, we fuse the kernels to reduce the number of
kernel launches and cache the frequently accessed data into reg-
isters to avoid unnecessary memory traffics. Together, TLPGNN
is able to significantly outperform existing GNN computation sys-
tems, such as DGL, GNNAdvisor, and FeatGraph, by 5.6x, 7.7x, and
3.3, respectively, on the average.

CCS CONCEPTS

» General and reference — Performance; - Computing method-
ologies — Massively parallel algorithms; - Computer systems
organization — Neural networks.

KEYWORDS
Graph Neural Networks, GPU, Performance

ACM Reference Format:

Qiang Fu, Yuede Ji, and H. Howie Huang. 2022. TLPGNN: A Lightweight
Two-Level Parallelism Paradigm for Graph Neural Network Computation on
GPU. In Proceedings of the 31st International Symposium on High-Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC °22, June 27-July 1, 2022, Minneapolis, MN, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9199-3/22/06...$15.00
https://doi.org/10.1145/3502181.3531467

Yuede Ji
yuede.ji@unt.edu
University of North Texas
Denton, TX, USA

H. Howie Huang
howie@gwu.edu
George Washington University
Washington, DC, USA

After
graph convolution

Before
graph convolution

Figure 1: An example of the graph convolution operation in
GCN. The sum operation is weighted based on degree.

Parallel and Distributed Computing (HPDC °22), June 27-July 1, 2022, Min-
neapolis, MN, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3502181.3531467

1 INTRODUCTION

Thanks to the ability to capture the relationships (edges) between dif-
ferent entities (vertices), the graph data structure [48] has long been
utilized to model a myriad of real applications, such as social net-
works [33], molecular graph structures [49], and biological-protein
networks [47]. In recent years, there has been a great surge of re-
search interest on graph neural networks (GNNs), in which each
vertex recursively aggregates feature vectors of all its neighbors
to compute its new feature vector. GNNs can accurately repre-
sent the high-dimensional features of vertices and edges as well as
the structure information into a low-dimensional embedding [22],
which can be further utilized for various tasks, e.g., node classifica-
tion [12], edge classification [25], and link prediction [53]. GNNs
have achieved promising results in various domains, including
chemistry [13], social science [9], knowledge graph [2, 14], recom-
mendation system [52], and neuroscience [3].

Motivation. GNN operations can be mainly classified into two
categories: classical dense neural network operations and general
graph convolution. Dense neural network operations, e.g., matrix
multiplication and activation function (ReLU), are applied to the
matrices denoting the features of all the vertices (or edges). The
general graph convolution operations in each layer accumulate
the features of each vertex’s neighbors, conduct certain operations
(e.g., sum) on them, merge with its own features, and generate
the new features for the next layer. Figure 1 shows an example
of the graph convolution operation in a representative GNN, i.e.,

https://doi.org/10.1145/3502181.3531467
https://doi.org/10.1145/3502181.3531467
https://doi.org/10.1145/3502181.3531467

GCN [26]. Specifically, for vertex A, it accumulates the features
of its neighbors B, C, D, denoted as fg, fc, and fp. Then, it merges
with its own feature f4, applies weighted sum operation sum(-), and
generates the new feature f;. The graph convolution is reported to
take about 60% of the total GNN computation time [18]. Because of
that, there are high demands for better computation methods for
graph convolution operations.

Limitation of state-of-art approaches. A major difference
between GNNs and traditional graph algorithms is the feature
vector on the vertex or edge. The dimension of the feature vec-
tor can be dramatically large (e.g., the input feature size of the
Cora dataset is 1,433 [31]). With such a newly added workload,
the runtime characteristics of GNNs on the GPU are drastically
different from traditional graph algorithms. Though several exist-
ing works have observed this and designed various optimization
techniques [18, 19, 46], they fail to provide a deep understanding of
the impact of such optimizations on hardware (e.g., GPU) resource
usage, e.g., atomic operations, coalesced memory access, and ker-
nel launches. For example, GNNAdvisor [46] simply claims that
the huge feature size will make the impact of workload imbalance
severer, while the impact is not clearly quantified. Therefore, we be-
lieve an in-depth understanding of hardware resource usage is the
foundations for designing more efficient computation techniques.

In addition, existing works [10, 18, 19, 44, 46] still face several lim-
itations to unleash the full potential of GPU. 1) Heavy pre-processing.
Existing works observe GNN computations can cause low data local-
ity [42]. To address that, they pre-process the graph by reordering
the vertices to make the ones sharing more common neighbors
closer [18, 19, 46]. However, the overhead of the pre-processing
is non-trivial, which can make the total computation time more
than the conventional computation methods. 2) Low efficient atomic
operations. To address the workload imbalance issue when distribut-
ing the workload based on vertex, existing works design different
edge-centric techniques [44, 46]. However, to get the correct re-
sult, they have to rely on atomic operations, which turn the paral-
lel operations into serial. This can actually bring more overhead
than the benefit gained from a more balanced workload. For ex-
ample, GNNAdvisor [46] balances the workload by partitioning
each vertex’s neighbors into several fix-sized groups, while they
have to atomically aggregate the messages from all the groups. 3)
Unnecessary kernel launches. Existing works launch many kernels
to implement a GNN, causing unnecessary read, store, and wait-
ing onto global memory [10, 44]. For example, DGL [44] uses 18
kernels to implement the graph attention network (GAT) as it re-
lies on the fine-grained sparse matrix kernels provided by NVIDIA
cuSPARSE [36].

Key insights and contributions. Motivated by these, we de-
sign TLPGNN, a lightweight two-level parallelism paradigm specif-
ically designed for GNN computation on GPU. First, we conduct a
systematic analysis to deeply understand the performance of GNN
workloads. We demonstrate our observations with extensive pro-
filing data which, to the best of our knowledge, has never been
studied in previous works. In summary, we observe three interest-
ing insights. 1) The atomic operations, especially atomic writing,
can drastically hurt the performance of GNN computation. 2) Coa-
lesced memory access is critically important for GNN workloads.
3) Using fewer kernels can lead to better performance in general.

Second, we propose a lightweight warp-centric two-level paral-
lelism paradigm for GNN computation on GPU. In the first level,
we apply vertex parallelism by mapping each vertex to one warp,
i.e., warp-vertex mapping. The benefits of vertex parallelism are
two-fold. On one hand, it can avoid atomic operations as the work-
load of each vertex is independent of others. On the other hand, it
can eliminate the branch divergence in each warp, that happens
when the threads in one warp come into different control paths.
In the second level, we apply feature parallelism by mapping each
dimension of the feature vectors to the threads within a warp. As
the threads within one warp are accessing consecutive global mem-
ory, this can make the memory access coalesced where the memory
addresses requested by all the threads in one warp fall into just a
few cache lines.

Third, as vertex parallelism can cause imbalanced workload dis-
tribution, we design a hybrid dynamic workload distribution tech-
nique. It can switch between hardware- and software-implemented
dynamic workload distribution strategies based on the properties
of the input graph. In addition, we use kernel fusion to reduce
the number of launched kernels. We also use register caching to
cache both the frequently accessed graph index boundary and the
intermediate aggregation result.

Experimental methodology We evaluate our system by com-
paring with three state-of-the-art GNN computation frameworks,
including Deep Graph Library (DGL) [44], GNNAdvisor [46], and
FeatGraph [18]. We tested four widely used GNN models, i.e.,
Graph Convolutional Network (GCN) [26], GraphSage [15], Graph
Isomorphism Network (GIN) [51], and Graph Attention Network
(GAT) [43]. Our evaluation shows that TLPGNN is able to signif-
icantly improve the performance on average by 5.6x, 7.7x, and
3.3xover DGL [44], GNNAdvisor [46], and FeatGraph [18], respec-
tively. More importantly, TLPGNN does not rely on any pre-processing
techniques.

Limitations of the proposed approach. We find two major
limitations in the current stage of our work. 1) Our method is de-
signed for GNN models on homogeneous graphs, that only include
one type of vertices and edges. However, our designs for the ker-
nel is generic and should be also applicable to the GNN models
on heterogeneous graphs [28] with reasonable modifications. We
will explore this in future. 2) Although TLPGNN is evaluated on
one GPU, we believe our techniques can also be deployed on a
multi-GPU setting with the help of graph partition techniques, e.g.,
METIS [23], which we leave for future works.

2 BACKGROUND
2.1 Graph Neural Network

Mathematically, in the I-th layer of a GNN, we denote hfl as the
feature vector of vertex u, el as the feature of edge from vertex v
to u. The computation in each layer of GNNs can be expressed as
follows:

dy= Pyl e, n), (1)
veN (u)
it = o(dl), @)

where ¥ is a customizable function applied on the features of the
edge, source, and destination vertex, ED is a reduce function that

aggregates the features from all the edges of u, and o is the function
applied on the result of the reduce function. In the implementa-
tion of GNN’s one layer, the operations applied on the features of
vertices (edges) mainly follow a three-phase pattern chronically.
First, the features are processed by some regular neural operations,
e.g., Dropout, and Matmul. Next, all the features are fed into a
phase called “Graph Convolution”, in which each vertex gathers
the features of all its neighbors and the associated edges, applies
neural operations, combines the results with its own features, and
uses a reduce operation (e.g. max, mean) to produce a new feature
vector. At last, before passing to the next layer, the features are
usually applied by operations such as activation function, batch
normalization, and softmax, similar to traditional DNNs. The input
graph structure is only involved in the graph convolution phase.
As aresult, the computation that taken place during graph convo-
lution has a distinctive difference from the other two phases, that
consist of regular dense neural operations. Graph convolution is
naturally sparse due to the sparsity of the input graph. In this work,
we mainly focus on the performance of graph convolution as it
takes majority of the computation time.

2.2 GPU Architecture

In the CUDA programming model, a kernel is a function executed in
a GPU! device for parallel tasks. It consists of a grid of thread blocks
and a grid can have multiple thread blocks (compute thread arrays),
e.g., 256. Figure 2 shows a brief overview of the mapping between
the CUDA programming model and the underlying GPU hardware.
After the kernel has been launched, each block is assigned to a
streaming multiprocessor (SM). Then, a certain amount of hardware
resources including registers and shared memory are allocated
to each block. When a block completes the computation, the SM
releases the occupied hardware resources and reallocate them to
the next block. This process repeats till the end.

Each block can have up to 1,024 threads and every 32 continuous
threads are grouped as a warp [35]. For example, NVIDIA Volta V100
consists of 80 SMs, each of which has 64 KB register file and supports
up to 64 warps. The threads in one warp run in parallel following
single instruction multiple data (SIMD). If there are branches, e.g.,
if-else statements, first the threads satisfying the if condition
become active, but the remaining threads turn into idle. After the
if branch completes, the previously idle threads become active for
the else branch, while the other threads are idle. This is known
as branch divergence, which can reduce SM utilization thus greatly
lower the performance. During the execution of a kernel function,
when data in global memory are needed, each warp sends a memory
request containing the required data from all the threads in that
warp. The memory controller receives the request and locates the
cache line of the corresponding data. Then, it issues one or more
transactions to the global memory to retrieve the data. In this
process, if the required data belongs to a few shared cache lines,
e.g., all the threads in one warp are accessing continuous memory
addresses, then the issued memory transactions are kept to a low
level, resulting in high bus and cache utilization. This is known
as coalesced memory access, which can lead to better performance.
However, if all the required data belong to completely different

1We use Nvidia GPUs as representatives.

_S_MWETEO_ __@__ _warpn _ | - ;:;Erl’ﬂ_ __@__ _warpn _ |

’ Instruction Cache ‘ ’ Instruction Cache ‘

’ Warp Schedulers ‘ ’ Warp Schedulers ‘

’ Register Files ‘ ’ Register Files ‘

’ LI Cache/Shared Mem ‘ ’ LI Cache/Shared Mem ‘

)]

| L2 Cache |

]

| Global Memory |

Figure 2: An overview of the mapping between CUDA pro-
gramming model and GPU architecture. PE refers to process-
ing element, which could be FP32 core, FP64 core, INT core,
or Tensor core for different computing tasks.

cache lines, the memory controller has to issue a large number
of memory transactions (up to 32), leading to low bus and cache
utilization. This is known as uncoalesced memory access.

2.3 GPU Profiling

GPU profiling collects runtime statistics of the CUDA program. In
this work, we use NVIDIA Nsight Compute, an interactive kernel
profiler for CUDA applications. It provides detailed performance
metrics via a user interface and command-line tool [37]. We use
two well-known metrics, including cache hit, and global memory
traffic. Besides, we also use the following four metrics [19, 46].

o Streaming multiprocessor (SM) utilization rate measures the
utilization of the computing resources on a GPU, such as,
pipelining, and issue queue. A low value usually indicates
that the program does not well utilize the corresponding
resources.

Achieved occupancy is the ratio of the number of active warps

per SM over the maximum number of possibly active warps.

A higher value denotes a more balanced workload distribu-

tion among different warps.

e Sector per request is the average number of transactions is-
sued by the memory controller for each global memory re-
quest. A lower value indicates more coalesced memory ac-
cess.

o Stall for long scoreboard is the average cycles spent on waiting
for memory operations of all resident warps. A higher value
means many cycles are waiting for the data from the memory,
which is low efficient.

Table 1: Profiling result of Push, Edge-centric, GNNAdvisor
and Pull implementation for GCN over ovcar_8h dataset
with 128 feature size.

Metrics Push Edge GnnA. Pull
Runtime (ms) 3.3 2.8 10.4 1.8
Mem load traffics (GB) 1.5 1.6 2.6 1.7
Mem atomic store traffics (GB) 1.3 1.3 2.9 0.0
Stall for long scoreboard (cycle) 36.7 80.1 45.1 26.5
SM utilization 14.3% 17.4% 235% 41.1%

3 UNDERSTANDING PERFORMANCE OF GNN

In this section, we present a systematical analysis and profiling
to understand the runtime characteristics of GNN workloads. The
testing and profiling are on a NVIDIA Volta V100 GPU with 32GB
DRAM and the data are collected with NVIDIA Nsight Compute.
The impact can be summarized from three major perspectives, i.e.,
atomic operation, coalesced memory access, and kernel launches.

3.1 Atomic Operation

In a CUDA program, atomic operations help to avoid race con-
ditions when multiple threads are writing to the same memory
address concurrently. A number of implementations for the graph
convolution of GNNs have utilized atomic operations. In the imple-
mentation of using push updating policy [4], every vertex writes
the message to all of its neighbors along the out-going edges con-
currently. Therefore, the atomic operations are used to avoid race
conditions as different vertices are updating the same neighbors. In
edge-centric processing, each edge passes the message and writes
to the destination vertex concurrently, using the atomic operation
to guarantee the accuracy of the result when multiple edges are
writing to the same vertex [40]. GNNAdvisor divides each vertex’s
neighbors into groups with a fixed size, and uses atomic operations
to combine the intermediate results from different neighbor groups
into a single one. However, atomic operations will introduce extra
overhead.

To show the impact of atomic operations on GNNs, we tested four
different implementations of the graph convolution operations used
in GCN and many other GNNs. They are push, edge-centric, pull
updating policy, and the implementation from GNNAdvisor [46].
Push, edge-centric, and GNNAdvisor all use atomic operations to
update the feature vectors of each vertex, while pull is atomic free.
Table 1 shows the performance and related profiling metrics, where
edge refers to edge-centric and GnnA. refers to GNNAdvisor. First,
one can see that pull achieves 1.8, 1.6x, and 5.8xspeedups over
push, edge-centric, and GNNAdvisor. From the profiling metrics,
we notice that push, edge-centric, and GNNAdvisor have a large
amount of memory atomic store traffics, while pull does not. The
reason is the former three methods need to send an atomic write
request to memory for each edge, while pull does not. Higher mem-
ory store traffics can make each warp spend more cycles waiting
for memory operations (stall for long scoreboard), which in turn
decreases the utilization of streaming multiprocessors.

Observation I: Optimizations with atomic writing can dras-
tically lower the performance because of the huge extra over-
head. The larger feature size of GNN will enlarge the extra overhead

Table 2: Comparison between the implementations using
one thread and half warp for one vertex.

Metrics One Thread Half Warp
Runtime (ms) 434.9 15.9
Sector per request 9.2 2.1

L1 cache hit 42.3% 34.4%
Long scoreboard (cycle) 251.8 75.2

from the atomic operations, leading to low performance despite of
the performance benefits from the optimizations techniques.

3.2 Coalesced Memory Access

Coalesced memory access refers to the threads within the same
warp accessing the continuous memory addresses, as illustrated in
Section 2.2. In traditional graph processing, coalesced access is hard
to achieve because each vertex is associated with a scalar value
for feature, and the memory access is random due to the irregular
graph structure. Thus, the memory address accessed by each thread
in the same warp could fall into different cache lines. For each cache
line, the memory controller has to issue one request to retrieve it
from the global memory, leading to uncoalesced memory access.

T e e

(a) Uncoalesced access (b) Coalesced access

Figure 3: Memory access pattern

Nevertheless, GNN’s new characteristic (i.e., large feature size)
provides an opportunity to achieve a memory access pattern that is
more coalesced. Since the feature vector of each vertex is stored in
consecutive memory addresses, the access to one vertex’s feature
could be coalesced if adjacent threads in the warp are accessing the
adjacent indices of the feature vector. To demonstrate this, we show
the comparison between two different implementations of GCN’s
graph convolution operation. The first one uses a single thread to
process one vertex, so each thread of a warp needs to access the
same position of different vertices’ features at the same time, which
is demonstrated in Figure 3(a), resulting in memory requests for
many different cache lines. The second implementation uses half
warp (16 threads) to process one vertex. The threads in the same
half warp accesses 16 consecutive positions of a vertex’s feature
vector, which is more coalesced than the previous implementation,
as shown in Figure 3(b).

Table 2 shows the comparison of runtime and related profiling
metrics. First, one can see the implementation using half warp for
one vertex outperforms the runtime of one thread by 27.3x. From
the profiling metrics, we notice that one thread has an extremely
higher value of sector per request than the half warp implementa-
tion, i.e., 9.2 vs 2.1. This demonstrates that each warp in the first
implementation issues many more transactions to the global mem-
ory than the second implementation. This can lead to huge waste
on the memory bus and caches because too many unnecessary data

Table 3: Profiling result of DGL, three-kernel, and one-
kernel implementation for GAT’s graph convolution on the
reddit dataset with feature size 32.

Metrics DGL Three-Kernel One-Kernel
GPU Kernel launch 18 3 1
Runtime (ms) 122 74.6 16.1
GPU time (ms) 102 70.9 15.6
Runtime - GPU time (ms) 20 3.69 0.5
Global mem usage (GB) 10 2.8 1.5
Global mem traffics (GB) 35.9 19.5 4.8
Stall for long scoreboard (cycle) 241.4 241.1 18.0
Average SM utilization 13.8% 6.7% 51.7%

is loaded from DRAM. As a result, each warp in the first implemen-
tation waits for more cycles than the second one. In conclusion, we
get our second observation.

Observation II: Coalesced memory access can lead to tremen-

dous performance improvement if more threads within one
warp are used to process one vertex for GNN workloads.

3.3 Kernel Launches

A kernel function is the minimum executing unit of a CUDA pro-
gram. The graph convolution of a GNN could be implemented as
different numbers of kernels, and the launched number of kernels
has a major impact on the performance. Usually, more kernels mean
higher kernel launch overhead (i.e., it takes time to launch a GPU
kernel) and more memory traffics because more intermediate re-
sults need to be stored into the memory. To show the impact of
different number of kernels, we implement Graph Attention Net-
work (GAT)’s graph convolution phase as one kernel and three
kernels. We also compare with an implementation from a popu-
lar GNN framework DGL, which launches 18 GPU kernels for the
graph convolution of GAT.

Table 3 summarizes the performance and profiling results. One-
kernel implementation outperforms DGL and three-kernel imple-
mentation by 7.5xand 4.6x, respectively. We got three observations
from the profiling results. First, too many kernel launches will bring
extra overhead, which comes from the CUDA runtime to execute
the kernel on GPU. We measure such overhead with the difference
between runtime and GPU time (denoted as “Runtime - GPU time
(ms)” in Table 3). The runtime is the execution time conducting
all the computation and the GPU time is the total time spent on
GPU. One can see, DGL takes 20 ms, three-kernel implementa-
tion takes 3.69 ms, while one-kernel implementation only takes
0.5ms. Second, using more GPU kernels will consume more global
memory because the intermediate data needs to be stored in the
global memory for subsequent kernels. We can see that DGL uses
10 GB, three-kernel implementation uses 2.8 GB, while one-kernel
implementation only uses 1.5 GB. Consequently, this will increase
the global memory traffic. For example, the total memory traffic
of DGL is 35.9 GB, three-kernel implementation is 19.5 GB, while
one-kernel implementation is only 4.8 GB.

To conclude, implementations with more kernels will generate
more memory traffic, causing the increase of memory stalls. That
eventually decreases SM utilization, and hurts the overall perfor-
mance. What is worse, the large feature size of GNN can further

exacerbate this limitation. In short, we get the following observa-
tion.

Observation III: The graph convolution of GNNs should
be implemented with as few kernels as possible for better
performance.

4 TWO-LEVEL PARALLELISM

In this section, we present our novel warp-centric two-level paral-
lelism computation method.

4.1 Overview

The CUDA programming model provides a thread hierarchy with
different levels (i.e., thread, warp, and block) to parallelize the com-
puting tasks running on GPUs. And there are plenty of parallelism
opportunities in the computation of GNN’s graph convolution. To
unleash the full power of GPU, we have to find the best mapping
relation between the workload and GPU thread hierarchy. Since the
CUDA programming model is organized as a multi-level hierarchy,
we also divide the computation in the graph convolution of GNNs
into two levels. In the first level, the granularity of computation is
measured by the entities in the graph, i.e., vertex and edge. Each
vertex or edge has a certain amount of computing tasks associated
with it, and it can be assigned to one level of the CUDA thread hi-
erarchy. In the second level, we focus on the concrete computation
task of individual vertex or edge, that is, the specific computation
task for this vertex. In each level of the computation, we have differ-
ent choices of parallelism strategies and mapping relations between
CUDA thread hierarchy, which we will illustrate in the following
subsections.

4.2 First Level: Vertex Parallelism

In the first level, the parallelism opportunity comes from the fact
that the workload associated with each vertex or edge can be pro-
cessed independently from others. Therefore, there are two different
types of parallelism: vertex parallelism and edge parallelism. Vertex
parallelism means processing multiple vertices in parallel, in con-
trast to edge parallelism, which processes multiple edges in parallel.
Although edge parallelism can avoid workload imbalance caused
by uneven edge distributions in vertex parallelism [40], the huge
overhead brought by atomic operations will dramatically hurt the
performance based on our Observation I. As a result, we choose to
use vertex parallelism in our design.

The next step is to decide how to map the workloads associated
with vertices in the graph to the underlying GPU’s execution units
in its thread hierarchy. With the vertex-centric processing pattern,
we can assign the workload of each vertex to one thread, warp, or
CTA (thread block). Here we argue that mapping each vertex to a
warp (as shown in Figure 4(a)) is superior to the other two methods
for better performance of graph convolution of GNNs.

First, using one CUDA thread for each vertex in the graph will
lead to divergent execution within each warp (as discussed in Section
2.2), due to the uneven edge distribution of vertices. To be more spe-
cific, within each warp, threads processing vertices with the small
number of neighbors would become idle after the jobs are done. Its
memory access pattern is also not optimal for the GPU, which will
cause too much useless data load from global memory to caches.

EEEN
[T TTT]

(LT TT]
(LT TT]

(a) First-level of Parallelism

(b) Second-level of Parallelism

Figure 4: Two-level Parallelism. (a) First-level: The computa-
tion of graph convolution of each vertex in the input graph
is assigned to single warp of GPU for execution. (b) Second-
level: Each element of feature vectors is assigned to an indi-
vidual CUDA thread.

On the other hand, mapping a vertex to a whole CTA introduces
synchronization overhead into the kernels. Specifically, to avoid
race conditions and ensure the correctness of results, coordinating
the warps in the same CTA to accomplish the computation of a
single vertex requires extra sync operations, and atomic operations
are needed to update the resulting feature of the vertex.

Warp is the actual minimum processing unit of GPU hardware,
executing SIMD instruction over multiple data with a 32-wide lane.
Assigning each vertex to a single warp means the workload running
by each individual warp won’t interfere with each other, which
means we can avoid any possible synchronization overhead. Since
each CUDA threads in the warp are working the same vertex, they
will follow the same control path, eliminating the branch divergence
caused by uneven edge distribution of the input graph. Further-
more, combined with the techniques in following subsection, we
can achieve coalesced memory access when loading features of
neighbors for graph convolution.

4.3 Second Level: Feature Parallelism

The reason why we need a second level of parallelism is two-fold.
First, the computation associated with each vertex could be paral-
lelized internally. Second, since we use one warp to process each
vertex, there is a parallel opportunity within one warp, given that
each warp has 32 threads. The computation within a vertex can be
expressed as a nested loop with two options for the looping order:
edge-then-feature or feature-then-edge. The former looping scheme
first iterates on each edge of the vertex being processed, and then
for each index of the feature dimension axis, calculating the value
in the index of the message generated by the edge and updating
the corresponding index of the vertex’s resulting feature. The latter
one uses reversed order, instead.

Since each warp has 32 threads, the inner loop of the nested
iteration could be partially parallelized. As shown in Figure 5(a),
in the feature-then-edge order, each warp can process the elements
at the same dimension of up to 32 messages generated by edges
in one step; after one dimension is finished, it moves to the next

Moving direction

; P or
msgDD!DDD----.
- OEO0-0 00000

:
mo (1] 01 [

(a) Edge Parallelism

uondauip Suiropy

oooo-oO

(b) Feature Parallelism
Figure 5: Two different looping schemes for each warp to
process a vertex. msqo, - - - , msg, are the messages generated
by the connecting edges of the vertex being processed.

dimension. In this parallel strategy, multiple edges are processed
at the same time, and feature dimensions are handled sequentially.
So we also refer to this as edge parallelism. While in the edge-then-
feature order (Figure 5(b)), each warp processes consecutive 32
elements of the same message generated by one edge in each step;
after one edge is finished, it moves to the next edge. And one can
notice that in this design, edge parallelism is ignored because all
edges are processed sequentially and multiple feature dimensions
are processed concurrently. So we call it feature parallelism.

In our kernel design for graph convolution, a feature parallelism
looping scheme is adopted for two major reasons. First, in the edge
parallelism scheme, all threads in one warp work on the same di-
mension of messages, then the same element of the resulting feature
needs to be updated according to those values. So each thread has
to read and write the same memory address, introducing atomic
operation overhead to avoid race conditions. In contrast, threads
of one warp in the feature parallelism scheme process different
dimensions at all times, which means they need to update different
elements of the resulting feature. So we can avoid the synchro-
nization overhead brought by the atomic operations. Second, to
calculate the element values at the same dimension of messages
from different edges, threads need to access the data distributed
in scattered addresses of global memory, leading to uncoalesced
memory access. Nevertheless, the memory access pattern in fea-
ture parallelism is perfectly coalesced, because all threads process
a continuous segment of a single message. As a result, we choose
to make use of feature parallelism and ignore the edge parallelism
for the free from atomic overhead and coalesced memory access,
according to our Observation I and II.

5 HYBRID WORKLOAD BALANCING

As vertex parallelism may cause imbalanced workload distribu-
tion, we design a hybrid workload balancing technique with both
software-based and hardware-based dynamic workload distribu-
tion.

Hardware-based assignment. As we mentioned in Section 2.2,
GPU dynamically assigns blocks to streaming multiprocessors for
execution. This characteristic can be utilized to implement our

Algorithm 1: Software-Based Dynamic Workload Assign-
ment
Parameters : Number of warps: nwarp;
Total number of vertices in graph: nvertex;
Number of vertices to process at each
iteration: step;

1 begin
2 Initialize global integer variable G «— 0;// G 1is the
starting index of unfinished vertices

3 for warp € Kernel do in parallel
4 sindex «— AtomicAdd(G,step) ;// Add step to G
atomically and return the old value of G.
5 while sindex < nvertex do
/* Processing vertices with consecutive
indices. */
6 for v € [sindex, min(sindex + step, nvertex)) do
7 L Processing vertex u;
8 sindex « AtomicAdd (G, step) ; // Request

workload again.

workload assignment technique. Specifically, we use the same num-
ber of warps as the number of vertices of the input graph, and each
of these warps processes only one vertex. Then, GPU hardware will
schedule the execution of these warps in a dynamic mode, in which
hardware resources will be released after one block is done and then
be allocated to the next new one. Since the minimum scheduling
unit is block, there will be workload imbalance within one block
if it has more than one warps. As a result, the number of warps in
each block becomes a tunable parameter for this implementation.
Fewer warps mean a more balanced workload but higher hardware
scheduling overhead, and more warps mean a more imbalanced
workload but lower hardware scheduling overhead.

Software-based assignment. Software-based dynamic work-
load assignment can be understood as the task pool model. All the
vertices needed to be processed are put into a task pool. Each warp
takes a fixed number of tasks from the pool at a time and executes
the computation on these vertices. After finishing the current work-
load, it checks if there are remaining tasks in the pool. If so, then
this warp will continue to pull the tasks from the pool until it is
empty. Specifically, as shown in Algorithm 1, we maintain a global
variable initialized as zero in the global memory to record the start-
ing of unfinished vertices, then each warp reads it and then adds a
pre-defined integer to the variable atomically. The returned value
indicates the starting index of a vertex to process at this iteration
for this warp. After finishing the workload of consecutive vertices
of the pre-defined number, each warp repeats the same action in
the next loop until the global variable exceeds the total number of
vertices. This implementation uses a fixed number of warps for all
inputs at the beginning, which normally is the maximum warps all
SM can run in parallel. All the hardware resources are allocated
once, so there is no hardware scheduling overhead.

Heuristic hybrid assignment. Based on our benchmarking,
we obtain two observations for the question of which workload
assignment method to choose. First, when the total number of

- ApplyVertex |

ApplyEdge

msgi

Figure 6: Two types of building-block kernels for the imple-
mentation of GNN’s graph convolution, ApplyEdge, and Ap-
plyVertex.

vertices in the input graph is relatively high, the software-based
method is better than the hardware-based one. This is because
the hardware-based method needs to allocate too many blocks,
leading to high hardware schedule overhead. Second, the software-
based method outperforms hardware-based if the average degree
of vertices is high. The high average degree means the workload
defined in each vertex is heavy, then the overhead from the atomic
operation will become negligible compared with computation on
the vertex. Therefore, we utilize a heuristic-based discriminant
to determine which method to use. Specifically, we use software-
based dynamic workload assignment when the number of vertices
is over 1M or the average degree is over 50, otherwise, we use the
hardware-based method.

6 KERNEL FUSION AND REGISTER CACHING

Kernel fusion. As we concluded in Observation III, using fewer
kernels for graph convolution can decrease memory usage and traf-
fics. While most existing works, such as DGL [44], FeatGraph [18],
use multiple kernels for the implementation. In general, there are
two types of basic kernels that could be considered as the building
block for the computation in graph convolution: ApplyEdge, and
ApplyVertex. As shown in Figure 6. ApplyEdge is responsible for
calculating the message generated by each edge, taking as input the
features of source and destination vertex, and the edge. ApplyVertex
is used to aggregate the message of each edge and generate the new
feature for each vertex.

Most GNN models’ graph convolution can be expressed as a
combination of these two types of kernels. Graph Attention Net-
work (GAT), which is more complicated, calculates an attention
coefficient for each edge and then aggregates all neighbors’ fea-
tures weighted by the softmax over all attentions; so one ApplyEdge
to obtain the attentions, two ApplyVertex for the softmax and ag-
gregation can be used to express the computation in its graph
convolution [44].

However, using separate kernels means that the messages gen-
erated by the ApplyEdge kernel for all edges need to be written to
the global memory. This could lead to significant computational
and memory bottlenecks, especially when each edge generates

int start = indptr[des_v]; // caching the index boundary
int end = indptr[des_v+1]; // caching the index boundary

float ret = 0.0; // caching the intermediate reduction result

for (int i = start; i < end; ++i) { // iterating the edge list
ret += features[indices[i]*blockDim.x+threadIdx.x];

}
result[threadIdx.x] = ret;

(2) With register caching

result[threadIdx.x] = 0.0;
for (int i = indptr[des_v]; i < indptr[des_v+1]; ++i) {
result[threadIdx.x] += features[indices[i]*blockDim.x+threadIdx.x];

¥

(b) Without register caching

Figure 7: The CUDA codes for each thread processing one
vertex in GCN model with/without register caching the in-
dex boundary and intermediate reduction result. The nvcc
compiler automatically use registers for the local temporal
variables defined within a kernel.

high-dimensional messages [39]. To address this problem, the com-
putation in the graph convolution of GNN models is fused into
a single kernel in our design. The fused kernel generates and ag-
gregates the message of each edge collectively without explicitly
storing the message. By doing so, first, we can avoid redundant
DRAM usage, which could be extremely huge if the input graph
has a large number of edges or the model uses a long message size.
Second, the total memory traffics could be decreased by a large
extent, which can greatly benefit the overall performance, given
that global memory operations in GPU are highly expensive.

Register caching. Each SM has a large number of registers, e.g.,
65,536 32-bit for each V100 SM. Each thread can use up to 255
registers and perform four register access for each clock cycle. In
our design, we find that using registers for two types of data objects
can greatly improve the overall performance: index boundary and
intermediate reduction result.

As shown in Figure 7, before iterating the edge list of the vertex,
each thread in the warp needs to read the starting index of the
edge list, and after each iteration, it also needs to check if the end
is reached by reading the end index. Since the index boundary
is accessed frequently, using registers to cache those two values
will reduce unnecessary global memory requests to a large extent.
Furthermore, GNN models use a reduction operation to aggregate
the messages from all edges into a single resulting feature. Updating
the resulting feature into the global memory in each iteration will
cause too many read and store transactions. As a result, caching
the intermediate reduction result in registers can eliminate most of
them; only one write operation is needed after the iteration over
the edge list.

7 EXPERIMENT AND EVALUATION

7.1 Experiment Setup

GNN models. We test four representative GNN models, includ-
ing Graph Convolutional Network (GCN) [26], GraphSage [15],

Table 4: Graph benchmarks sorted by edge count (K: thou-
sand, M: million).

Dataset (Abbr.) vertex # edge# avg.degree
Citeseer (CS) 3.3K 9.2K 2.7
Cora (CR) 2.7K 10.5K 3.8
Pubmed (PD) 19.7K 88.6K 4.5
Ogbn-arxiv (OA) 169K 1.1IM 6.5
PPI (PI) 56K 1.6M 28.5
DD (DD) 334K 1.6M 4.9
Ovcar-8h (OH) 1.8M 3.9M 2.2
Collab (CL) 372K 24.9M 66.9
Ogbn-protein (ON) 132K 79M 607
Reddit (RD) 232K 114M 491
Ogbn-product (OT) 2.4M 123.7M 51.5

Graph Isomorphism Network (GIN) [51], Graph Attention Network
(GAT) [43]. They are widely used in previous works and have a
remarkable diversity in terms of the computation [8]. GCN has been
used in many semi-supervised or unsupervised tasks, such as node
embedding, graph classification. it applies a weighted sum operation
for the neighbor’s features for each vertex in graph convolution.
GraphSage and GIN differ from GCN as to how they aggregate
messages from neighbors during graph convolution. GAT intro-
duces the attention mechanism [16] to learn the different weight
coefficients of different neighbors.

Compared works. We compare TLPGNN with three recent works
on GNN computation. 1) Deep Graph Library (DGL) [44] is a widely
used python framework aiming for easy-to-use and high-performance
GNN computation. It can take various tensor-based deep learning
frameworks as back ends, such as TensorFlow [1], PyTorch [38],
and MxNet [5]. To accelerate the computation, DGL uses the sparse-
dense matrix multiplication (spmm) kernels from cuSPARSE [36]. 2)
GNNAdvisor [46] is one of the state-of-the-art GNN computation
systems. It first improves the data locality by reordering the graph.
Then, it uses two-dimensional workload management to improve
GPU utilization for GNN workloads. 3) FeatGraph [18] is a tensor
compiler-based system to generate efficient GPU kernels with the
TVM framework [6]. A user can customize different GNN kernels
with user-defined functions.

Datasets. Table 4 lists the real-world datasets for evaluation.
They are commonly used to evaluate GNN models for various tasks,
such as node classification, link prediction, and graph classifica-
tion [7, 26, 46]. We also include three datasets (i.e., OA, ON, OT)
from Open Graph Benchmark [17], a realistic benchmark suite for
GNNs. We add additional data, e.g. vertex features, edge features,
and weight parameters, which are initialized to random 32-bits
floating numbers, following previous works [46].

Setting. We implement our kernel design using C++ & CUDA
C language, and its PyTorch front end using Python Language.
The total lines of code is roughly 3,000. We evaluate TLPGNN and
compared works on a server with 24-Core Intel(R) Xeon(R) Gold
6126 2.6GHz CPU and a Nvidia Tesla V100 GPU (32GB DRAM). The
server installs Centos 8 operating system, CUDA 11.1, GCC/G++

Table 5: Execution times (in ms) of TLPGNN, DGL, GNNAd-
visor (GNNA.) and FeatGraph (FeatG.) with feature size of
32. The speedup refers to the performance improvement of
TLPGNN over the best compared work for the correspond-
ing dataset.

Model Data DGL GNNA. FeatG. TLPGNN Speedup

CS 0.4 0.35 0.05 0.026 1.9x
CR 0.39 0.37 0.1 0.028 3.6
PD 0.35 0.39 0.17 0.033 5.2x
OA 0.69 11 5.1 1.2 0.6
PI 0.69 0.63 1.1 0.14 4.5x
GCN DD 2.2 1.2 0.45 0.3 1.5%
OH 6.6 3.6 14 1.2 1.2x
CL 4.2 - 5.3 1.1 3.8x%
ON 13.1 - 27.2 4.2 3.1x
RD 254 - 42.3 6.9 3.7x
oT 41.3 - 37.4 16.1 2.3x
CS 0.25 0.38 0.04 0.035 1.14x
CR 0.27 0.42 0.05 0.026 1.9x
PD 0.25 0.45 0.07 0.032 2.2x
OA 0.77 1.1 14 0.97 0.79x
PI 0.55 0.8 0.5 0.13 3.8x
GIN DD 1.1 1.2 0.37 0.24 1.5x
OH 3.9 3.4 1.6 1.1 1.5x%
CL 4.5 - 2.8 0.98 2.9x
ON 13.1 - 18.9 4.2 3.1x
RD 19.5 - 17.3 7.3 2.4x
oT 31.5 - 234 16.4 1.4x
CS 0.47 - 0.07 0.068 1.03x
CR 0.44 - 0.11 0.034 3.2x
PD 0.38 - 0.21 0.039 5.4x
OA 0.86 - 53 1.02 0.84x
PI 0.58 - 1.1 0.16 3.6x%
Sage DD 1.2 - 0.72 0.31 2.3x
OH 4.6 - 2.9 1.3 2.2x%
CL 4.6 - 5.6 1.0 4.6
ON 13.6 - 27.3 4.1 3.3x
RD 21.4 - 41.9 7.3 2.9x
oT 32.6 - 38.9 17.2 1.9x
CS 0.69 - 0.07 0.044 1.6
CR 0.71 - 0.09 0.059 1.5x%
PD 0.68 - 0.19 0.061 3.1x
OA 4.8 - 5.8 3.7 1.3x
PI 13 - 1.5 0.34 3.8x
GAT DD 1.3 - 0.61 0.41 1.5%
OH 3.4 - 1.9 1.6 1.2x
CL 10.3 - 7.7 24 3.2x%
ON 62.3 - 42.3 9.1 4.6
RD 102.2 - 56.6 14.6 3.9x%
oT 112.1 - 43.3 28.4 1.5x

8.5.0, and PyTorch 1.8.1. We report the results on the averages of
ten runs.

7.2 Performance Comparison

This section compares the performance of TLPGNN with three
recent GNN computation methods. We measure the execution time
of the single operation of graph convolution for each GNN model,
which is the focus of this study. We compare with GNNAdvisor

10000 ¢ & GCN== GIN

1000 | 4

100 E
Nl W i
CS CR PD OA Pl

DD OH

Atomic traffic (MB)

Figure 8: The memory traffic (MB) of the atomic writes in
GNNAdyvisor for GCN and GIN models over 7 datasets.

for GCN and GIN models as other models are not implemented. In
addition, GNNAdvisor faced illegal CUDA memory access for the
four largest graphs. For DGL and FeatGraph, we compared with
them for the four GNN models on all the graphs. The feature size
is set to 32.

Table 5 shows the execution times of TLPGNN and compared
works. The table also shows the speedups of TLPGNN over the
best baseline for the same dataset. On average, TLPGNN achieves
7.7% (up to 13.5x) speedup over GNNAdvisor, 5.6x (up to 13.9x)
over DGL, and 3.3x (up to 7.5x) over FeatGraph. For the four
graph datasets that have larger edge numbers and average degrees,
TLPGNN achieves an average of 3.7x speedup compared with DGL,
and and average of 4.1x speedup compared with Featgraph. For the
first three models (i.e., GCN, GIN, and GraphSage) whose graph
convolution operations are relatively simply constructed, TLPGNN
achieves 5.8x for GCN, 4.6x for GIN, and 4.7x for GraphSage. And
for the most complicated model GAT, TLPGNN outperforms the
other two baselines by 6.5xand 2.6x. Because of its complexity, DGL
uses 18 GPU kernels and FeatGraph uses 3, while TLPGNN keeps
the kernel number to one using our kernel fusion technique.

DGL’s implementations rely on general sparse-dense matrix
multiplication (SpMM) kernels provided by the vendor-shipped
library cuSPARSE [36]. First, DGL needs extra kernels to manipulate
the data formats of input in order to invoke the SpMM kernels [44].
Second, for complex GNN models such as GAT, a single SpMM
kernel is not enough to express the computation of the model’s
graph convolution, so DGL uses more kernels to compose it. These
two factors lead to the high number of kernel launches of DGL.
Specifically, DGL launches 6, 8, 10, and 18 GPU kernels for GCN,
GIN, GraphSage, and GAT, respectively. The unnecessary kernel
launches lead to sub-optimal performance of DGL. It is worth noting
that DGL outperforms TLPGNN for GCN, GIN, and GraphSage

100 D‘FeatGraph‘
% 80 [== TLPGNN
3 60
=
8
S 40
3
o 20

CS CR PD OA PI DD OH CL ON RD OT AVG

Figure 9: The achieved occupancy of GCN implementation
of FeatGraph and TLPGNN over all graph dataset (with av-
erage value).

25 =] \TLP\ T T

o0 L O TLP+Hybrid i
a B TLP+Hybrid+Cache

315 | h
[0
210 a
(%)

CS CR PD OA PI DD OH CL ON RD OT AVG
(a) GCN

D\TLP T T T T
20 ' @ TLP+Hybrid 1
| ® TLP+Hybrid+Cache

CS CR PD OA PI DD OH CL ON RD OT AVG
(c) GraphSage

O \TLP\ T T
O TLP+Hybrid
15 | B TLP+Hybrid+Cache 7

CS CR PD OA PI DD OH CL ON RD OT AVG
(b) GIN

30 D\TLP T T T T
25 |- O TLP+Hybrid B
a ® TLP+Hybrid+Cache)
-320 r ® TLP+Hybrid+Cache+Fusion b
D15 7

&0+ |

CS CR PD OA PI DD OH CL ON RD OT AVG
(d) GAT

Figure 10: Benefits of the newly designed techniques for (a) GCN, (b) GIN, (c) GraphSage, and (d) GAT.

models over the OA dataset, due to the excellent performance of
the SpMM kernel on the dataset according to our profiling.

GNNAdvisor partitions each vertex’s neighbor list into multiple
fix-sized groups and assign each group to one warp for processing.
As a result, each warp uses atomic operations to update the inter-
mediate result into the final result of the vertex. Figure 8 shows the
memory traffics of atomic writes for GNNAdivsor. As a contrast, the
two-level parallelism design allows TLPGNN to avoid any atomic
operations, which brings the performance improvement over GN-
NAdvisor. In addition, GNNAdvisor is suffering from two types
of pre-processing overhead: vertex reordering and partition build-
ing [46]. Unlike many existing works [46, 50], TLPGNN doesn’t
require any data pre-process.

FeatGraph makes use of TVM [6], a deep learning compiler
framework, to generate efficient GPU kernels for GNN operations.
One can notice it outperforms the other two baselines for most
experiment settings. However, TVM’s Tensor Expression API is
not flexible to manage the workload mapping between vertices
and CUDA threads, leading to low hardware utilization and oc-
cupancy. As shown in Figure 9, the average achieved occupancy
of FeatGraph’s GCN implementation for all datasets is 41.2%, in
comparison with TLPGNN’s average value of 68.2%.

7.3 Technique Benefits

Figure 10 presents the speedups of using our design and optimiza-
tion techniques over the baseline method, which is an edge-centric
process implementation. For GCN, GIN and GraphSage, we mea-
sure the impact of our two-level parallelism (TLP), hybrid dynamic
workload assignment (Hybrid), and register caching (Cache). And
we also show the impact of kernel fusion (Fusion) for GAT model.
Our two-level parallelism design achieves 2.82x, 2.84x, 2.53x, and
1.63x speedups for the four GNN models, respectively. Only with
the two-level parallelism, the implementation is still suffering from
uneven workload distribution and unnecessary memory traffic. But

we can still see considerable improvement due to the exemption
from atomic operations. The hybrid dynamic workload assignment
brings 1.99x, 1.98x, 1.97x, and 3.1x speedups on the basis of the pre-
vious setting. The speedups from this technique over large graphs
are more significant than small ones because the issue of workload
imbalance is more severe in large graphs.

Register Caching is able to improve the performance by 2.3x,
2.15%,2.26x%,and 1.71x for GCN, GIN, GraphSage, and GAT. Coupled
with the previous two techniques, we can achieve speedups of 12.9x,
12.1x, 11.3x, and 8.6x averagely for all different GNN models. One
can notice that this technique performs much better on graphs with
large average degree numbers (i.e., PI, CL, ON, RD, and OT), which is
reasonable because a large degree means more unnecessary global
memory write without register caching. In addition, the kernel
fusion also brings speedup of 2.01x to GAT model. To sum up, each
individual technique plays an indispensable role in our design to
address a specific performance issue. When combined together,
they give us significant performance improvement.

7.4 Scalability

In this section, we demonstrate the scalability of TLPGNN from
two perspectives: thread count and feature size.

Scalability against thread count. To show the scalability against
the increasing of thread count, we increase the number of blocks
from 1 to 128 by launching 512 threads per block. Figure 11 presents
the speedups over the single block. We can observe that TLPGNN
achieves a stable linear scalability when increasing the number of
computation threads. Compared with the runtime of 512 threads,
TLPGNN with 128+512 threads is able to get 67.5%, 62.5x, 67.2x, and
45.3x speedup for GCN, GIN, GraphSage, and GAT, respectively, on
the average.

Scalability against feature size. Further, we evaluate the run-
time of TLPGNN when increasing the input feature size from 16 to

128 — CL 128 3 &L
64 - = ON } 64 - = ON .
g 32 = RD 1 g 321 =RD 7
g 16 - OT b g 16 - OT B
2 8r E 2 8 i
(2] 4 - %) 4 + i
2r B 2L _
1 1 1 1 1 \\ \"L 1 1 1 1 1 1 Q
,:65‘% q;v;\q’ &@"(L 4863/ \6(0\{1/{5{1:(9\ é"rb\r@% 'i(’&fi%&&6\(]/6"\{]/\6@\%%@1,&6’\{1@@\
(a) GCN (b) GIN
128 —¢ CL 128 3¢ el
641 = ON i 64 - = ON 2
2 321 = RD b 2 321 = RD
g 16 - OT b g 16 - OT g
e 8r B 2 8 _
)] 4 - B %) - -
2 r B 2L _
1 1 1 1 1 G 1 G 1 G \(\V 1 1 1 1 1 G 1 G 1 G \q/
N N IS} INGPEN SN R
\“o\q/ (i@@ &6\’7/ QQ(O\{L \‘_o,&; I?;i‘o Q)&‘o ,\’73’ (@\@(i%\’b&@@%@@@% %q:‘: b;‘o \(73,
(c) GraphSage (d) GAT

Figure 11: The scalability of TLPGNN against the number
of threads (shown in x-axis) for the four largest graphs (CL,
ON, RD, OT). (a) GCN, (b) GIN, (c) GraphSage, and (d) GAT.

128 = CL " 128 >CL "
© 64 = ON ¢ © 64 = ON 3
‘g 32 =+ RD * g 32 - =+ RD >
S 16 - OT g S 16 - OT g
. 8 |- — . 8 - -
€ €
s 4r 7 s 4r 7
P4 2+ i P4 2L i
1 | | | 1 | | |
16 32 64 128 256 512 16 32 64 128 256 512
(a) GCN (b) GIN
128 =CL " 128 >CL "
g 641 = ON p 2 641 = ON]
= 321 =+ RD ¢ = 32 =+ RD y
S 16 - OT S 16 - OT 1
. 8 - . 8 |
€ £
s 4r s 4r
z 2r z 2 r
1 ! ! 1

1 1 1
16 32 64 128 256 512
(d) GAT

1
16 32 64 128 256 512
(c) GraphSage

Figure 12: The scalability (normalized runtime) of TLPGNN
against feature sizes (shown in x-axis) for the four largest
graphs (CL, ON, RD, OT). (a) GCN, (b) GIN, (c) GraphSage,
and (d) GAT.

512. Figure 12 presents the normalized runtime by dividing the run-
time of different feature size over feature size 16. We also observe
that TLPGNN achieves a linear correlation between the runtime
and the feature sizes. When processing a feature size of 512 (32
times over the smallest one, i.e., 16), TLPGNN is 41.6x, 40.4x, 36.7 %,
and 27.3x slower than the feature size of 16. In addition, we find
the runtime of for the implementation with size 16 are 1.4x, 1.4x,
1.3x, and 1.4x faster than with size 32 for the four different models,
respectively. This actually demonstrates that even with half of the
threads in a warp idle, the performance of TLPGNN is not affected
much.

8 RELATED WORKS

In this section, we discuss the related works of TLPGNN in terms
of GNN systems, and traditional graph processing systems.

GNN systems. The last few years have seen an increased re-
search interest in building systems attempting to make GNN execu-
tion more efficient in various hardware platforms [7, 11, 18, 29, 42,
44, 46, 50]. NeuGraph [29] is a distributed training framework built
on top of TensorFlow [1] to address the challenge of GNN training
on extremely huge graphs. Deep Graph Library (DGL) [44] and
PyTorch-Geometrics [10] introduce a message-passing interface
onto the popular deep learning system for easy GNN programming
and execution. GNNAdvisor [46] proposes a runtime system to
accelerate GNN workload on a single GPU, by taking advantage
of the performance-relevant features of the model and input data.
It also employs techniques of workload management and memory
hierarchy mapping tailored for GNN to achieve better GPU hard-
ware utilization. SeaStar [50] presents an intuitive vertex-centric
programming interface for GNN programming and a couple of op-
timizations to generate efficient GPU kernels for GNN execution.
FeatGraph [18] makes use of deep learning compiler TVM [6] to
emit sparse matrix kernel for GNN computation on CPU and GPU.
In this work, we focus on the performance of graph-related opera-
tions in GNN computation, conduct an in-depth profile and analysis
in terms of several important performance factors. Based on the
observations from the analysis, our TLPGNN uses a novel design
coupled with optimization techniques to booster the performance
of GNN workloads.

Graph processing systems. The growing importance of graph
data has driven the development of numerous graph processing sys-
tems both on CPU and GPU platforms [20, 21, 24, 27, 30, 34, 41, 45].
Generally speaking, most of them are written as C++ template li-
braries, offering vertex-centric [32] or edge-centric APIs which can
be utilized to generate highly optimized kernels for various graph
algorithms. Gunrock [45] offers a set of flexible APIs to express
graph operation primitives, uses GPU-tailored optimizations for
memory efficiency and workload balance to achieve high perfor-
mance. SIMD-X [27] utilizes just-in-time task management and
push-pull-based kernel fusion to enable balanced workload assign-
ment and deliver better performance. However, traditional graph
processing systems are targeting workloads in which vertices and
edges are associated with scalar features, ignoring the additional
dimension of long feature size [18]. This makes those systems not
suitable for GNN workloads. TLPGNN’s design pays lots of atten-
tion to the additional feature dimension in GNNs and proposes
optimizations to address the performance issue brought by the new
factor, considering the feature parallelism.

9 CONCLUSION

In this paper, we present TLPGNN, a high-performance two-level
parallelism design for efficient GNN computation on GPU. First,
we conduct an in-depth analysis on several important perspectives
related to the performance of GNN workloads: atomic operations,
coalesced memory access, and kernel numbers. We obtain several
insightful observations from our profiling and analysis. Based on
the observations, we design a two-level parallelism paradigm: the

first level makes use of vertex-parallelism to avoid atomic opera-
tion and unnecessary memory traffics; the second level exploits
feature-parallelism for coalesced memory access. To address the
workload imbalance caused by vertex-parallelism, we propose a
hybrid dynamic workload assignment to choose the best workload
balancing method according to the characterizes of the input graph.
The experiment results show that TLPGNN achieves significant
speedups over existing solutions for GNN computation.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their feedback and
suggestions. This work was supported in part by DARPA under
agreement number N66001-18-C-4033 and National Science Foun-
dation grants 1618706, 1717774, and 2127207. The views, opinions,
and/or findings expressed in this material are those of the authors
and should not be interpreted as representing the official views or
policies of the Department of Defense, National Science Foundation,
or the U.S. Government.

REFERENCES

(1]

l6

=

[7

[

[10]

(11

[12]

[15]

[16]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265-283.
Siddhant Arora. 2020. A survey on graph neural networks for knowledge graph
completion. arXiv preprint arXiv:2007.12374 (2020).

Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. 2021. Graph Neural
Networks in Network Neuroscience. arXiv preprint arXiv:2106.03535 (2021).
Maciej Besta, Michat Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To push or to pull: On reducing communication and synchroniza-
tion in graph computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing. 93-104.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 578-594.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gen: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257-266.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2020. Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982 (2020).

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The World Wide Web
Conference. 417-426.

Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

Qiang Fu and H Howie Huang. 2021. Automatic Generation of High-Performance
Inference Kernels for Graph Neural Networks on Multi-Core Systems. In 50th
International Conference on Parallel Processing. 1-11.

Xinyu Fu, Jiani Zhang, Zigiao Meng, and Irwin King. 2020. Magnn: Metap-
ath aggregated graph neural network for heterogeneous graph embedding. In
Proceedings of The Web Conference 2020. 2331-2341.

Victor Fung, Jiaxin Zhang, Eric Juarez, and Bobby G Sumpter. 2021. Benchmarking
graph neural networks for materials chemistry. npj Computational Materials 7, 1
(2021), 1-8.

Yang Gao, Yi-Fan Li, Yu Lin, Hang Gao, and Latifur Khan. 2020. Deep learn-
ing on knowledge graph for recommender system: A survey. arXiv preprint
arXiv:2004.00387 (2020).

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025-1035.

Dichao Hu. 2019. An introductory survey on attention mechanisms in NLP
problems. In Proceedings of SAI Intelligent Systems Conference. Springer, 432-448.

(17

[18

[19

)
=

[21

[22

[23

[24

[26

[27]

[28

[29

[30

[31

[32

[33

[34

[39

[40

[41]

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru
Zhang, and Yida Wang. 2020. Featgraph: A flexible and efficient backend for
graph neural network systems. arXiv preprint arXiv:2008.11359 (2020).

Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021.
Understanding and bridging the gaps in current GNN performance optimizations.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 119-132.

Yuede Ji and H Howie Huang. 2020. Aquila: Adaptive parallel computation of
graph connectivity queries. In Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing. 149-160.

Yuede Ji, Hang Liu, and H Howie Huang. 2018. ispan: Parallel identification
of strongly connected components with spanning trees. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 731-742.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving
the accuracy, scalability, and performance of graph neural networks with roc.
Proceedings of Machine Learning and Systems 2 (2020), 187-198.

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359-392.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:
Vertex-centric graph processing on GPUs. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing. 239-252.
Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. 2019. Edge-
labeling graph neural network for few-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11-20.
Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Hang Liu and H Howie Huang. 2019. Simd-x: Programming and processing
of graph algorithms on gpus. In 2019 {USENIX} Annual Technical Conference
({USENIX} {ATC} 19). 411-428.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? Revisiting, benchmarking, and refining heterogeneous
graph neural networks. (2021).

Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. Neugraph: parallel deep neural network computation on large
graphs. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19).
443-458.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135-146.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval 3, 2 (2000), 127-163.

Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a
vertex: a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 1-39.

Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. 2014. Informa-
tion network or social network? The structure of the Twitter follow graph. In
Proceedings of the 23rd International Conference on World Wide Web. 493-498.
Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. In Proceedings of the twenty-fourth ACM sym-
posium on operating systems principles. 456-471.

Nvidia. [n.d.]. Cuda C++ Programming Guide. https://docs.nvidia.
com/cuda/cuda- c-programming- guide/index html#features- and-technical-
specifications__technical-specifications- per-compute-capability

NVIDIA. 2021. cuSPARSE. https://developer.nvidia.com/cusparse

Nvidia. 2021. Nvidia Nsight Compute. https://developer.nvidia.com/nsight-
compute

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

Md Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2021. FusedMM:
A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Net-
works. In 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 256-266.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472-488.

Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135-146.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute

[42]

[43]

[44]

[45]

[46]

[47]

Chao Tian, Lingxiao Ma, Zhi Yang, and Yafei Dai. 2020. Pcgcen: Partition-centric
processing for accelerating graph convolutional network. In 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE, 936-945.
Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 1-12.

Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei
Ding. 2020. GNNAdvisor: An Efficient Runtime System for GNN Acceleration on
GPUs. arXiv preprint arXiv:2006.06608 (2020).

Wikipedia contributors. 2021. Biological network — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Biological network&

[48

[49

[50

[52

[53

0ldid=1039989954. [Online; accessed 25-August-2021].

Wikipedia contributors. 2021. Graph (discrete mathematics) — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Graph_(discrete_
mathematics)&oldid=1017809268. [Online; accessed 25-August-2021].
Wikipedia contributors. 2021. Molecular graph — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Molecular_graph&oldid=
1032100381. [Online; accessed 25-August-2021].

Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang Zheng,
James Cheng, and Fan Yu. 2021. Seastar: vertex-centric programming for graph
neural networks. In Proceedings of the Sixteenth European Conference on Computer
Systems. 359-375.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974-983.

Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in Neural Information Processing Systems 31 (2018), 5165—
5175.

https://en.wikipedia.org/w/index.php?title=Biological_network&oldid=1039989954
https://en.wikipedia.org/w/index.php?title=Biological_network&oldid=1039989954
https://en.wikipedia.org/w/index.php?title=Graph_(discrete_mathematics)&oldid=1017809268
https://en.wikipedia.org/w/index.php?title=Graph_(discrete_mathematics)&oldid=1017809268
https://en.wikipedia.org/w/index.php?title=Molecular_graph&oldid=1032100381
https://en.wikipedia.org/w/index.php?title=Molecular_graph&oldid=1032100381

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Network
	2.2 GPU Architecture
	2.3 GPU Profiling

	3 Understanding Performance of GNN
	3.1 Atomic Operation
	3.2 Coalesced Memory Access
	3.3 Kernel Launches

	4 Two-Level Parallelism
	4.1 Overview
	4.2 First Level: Vertex Parallelism
	4.3 Second Level: Feature Parallelism

	5 Hybrid Workload Balancing
	6 Kernel Fusion and Register Caching
	7 Experiment and Evaluation
	7.1 Experiment Setup
	7.2 Performance Comparison
	7.3 Technique Benefits
	7.4 Scalability

	8 Related Works
	9 Conclusion
	Acknowledgments
	References

