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Abstract—Enterprise networks evolve constantly over time.
In addition to the network topology, the order of information
flow is crucial to detect cyber-threats in a constantly evolving
network. Majority of the existing technique uses static snapshot
to learn from dynamic network. However, using static snapshots
is not sufficient as it largely ignores highly granular temporal
information and leads to information loss due to approximation of
aggregation granularity. In this work, we propose PIKACHU, a so-
phisticated, unsupervised, temporal walk-based dynamic network
embedding technique that can capture both network topology as
well as highly granular temporal information. PIKACHU learns
the appropriate and meaningful representation by preserving
the temporal order of nodes. This is important information to
detect Advanced Persistent Threat (APT) as temporal order helps
to understand the lateral movement of the attacker. Experi-
ments on two open-source datasets: LANL and OpTC datasets
demonstrated the effectiveness in detecting network anomalies.
PIKACHU achieves True Positive Rate (TPR) of 95.1% in LANL
and 98.7% on OpTC dataset. Furthermore, in the LANL dataset,
it achieves a 4.65% reduction in False Positive Rate (FPR) despite
similar area under ROC curve (AUC). In the OpTC dataset 16 %
improvement in AUC was obtained in comparison to the other
state-of-the-art approaches.

Index Terms—Network Anomaly, Graph Neural Network,
Anomaly Detection

I. INTRODUCTION

In real-time, the activities or events in computer networks
are captured as a stream of logs. The interaction in such a
network can be represented as a time-ordered sequence of
edges forming a dynamically evolving network. For exam-
ple, in an computer network, the process creation can be
represented as a time-ordered sequence of edges where the
edge represents the parent-child relationship. In this paper, we
consider the anomaly detection problem in a dynamic graph
where the goal is to detect whether the incoming edge is
anomalous or not. Let us take an example of the Advanced
Persistent Threat (APT) detection problem in a computer
network. During APT campaigns, the attacker will initially
authenticate the new system, get the foothold of the system,
and traverse through the network gaining access to additional
systems and credentials [1], [2]. The order of information flow
is crucial to understand the lateral movement of the attacker.
For example, during the day 1 attack campaign in the OpTC
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Fig. 1: Lateral movement in OpTC network during day 1 attack
campaign. Initially, the attacker connects to sysclient0201
(step 1) and uses privilege escalation to harvest login creden-
tials. Using elevated privilege, attacker move to sysclient0402
(step 2), sysclient0660 (step 3), and the domain controller
dcl.systemia.com (step 4) from where it spread to many other
system (step 5).

dataset (shown in Fig 1), the attacker initially connects to
a host sysclient0201 and download the PowerShell empire
to modify the registry key and bypass user account control
(UAC). The attacker then uses the privilege to harvest login
credentials and use it to move laterally to sysclient0402 and
sysclient0660 as an elevated agent. In the next stage, the
attacker pivot to the domain controller dcl.systemia.com and
finally spread to many other systems using the compromised
user credentials. In a evolving network like above, besides the
the network topology, the temporal order of event is important
to accurately understand, model, and predict the overall net-
work behavior [3], [4]. The assumption for APT detection is
that the information flows and the lateral movement induced by
malicious actors in the system are sufficiently different from
the normal behavior of the system [5], [6].

Recently, various network representation technique has
offered unprecedented possibilities to extract complex and
meaningful patterns from the network [7], [8] and use them
to identify malicious events. In dynamic network, heuristic
rule-based [6], [9]-[14] and neural network-based [4], [5],
[8], [15], [16] representation technique has been proposed for
network intrusion detection. The problem with the heuristic-
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based approach is that these approaches are rigid and fo-
cuses on specific types of anomalies. On the other hand, the
neural network-based embedding technique faces two main
challenges: (1) The embedding technique requires an elegant
model to digest both topological and temporal information [8]
and (2) Dividing the dynamic network as a sequence of a
static snapshot of graphs leads to information loss due to
approximation of aggregation granularity [4], [8], [17], [18]. In
addition, selecting an appropriate aggregation granularity (e.g.,
minute, hour, day, or week) is itself a challenging problem that
can lead to poor predictive performance or misleading results.

In this work, we present PIKACHU': a unsupervised node
embedding technique that capture both topological and tem-
poral information. Initially, PIKACHU breaks down the graph
stream into a sequence of static snapshots and uses the
temporal walk to traverse each snapshot. Next, the Skip-gram
model is used to capture the topological and granular temporal
information by maximizing the likelihood of preserving the
temporal order of the node. Finally, a gated-recurrent unit
(GRU)-based auto-encoder is used for learning long-term
temporal information. The architecture of PIKACHU is shown
in Fig 2. Below are the contributions of this paper:

e« We propose PIKACHU, a fully unsupervised dynamic
node embedding technique for detecting cyber threats. As
opposed to the previous dynamic embedding technique,
PIKACHU learns node embedding by preserving the tem-
poral order of the events to capture both topological
and highly granular temporal information and can detect
advanced cyber-threat with higher accuracy.

o We evaluate PIKACHU on LANL [19] and OpTC [20]
datasets. Our method significantly outperforms all the
baselines and demonstrates its capability of detecting
anomalies efficiently than previous methods (4.65% re-
duction in False Positive Rate in LANL dataset and 16%
improvement in AUC in OpTC dataset).

The remainder of this paper is organized as follows. Section

2 discusses the related work and section 3 describes the
proposed methodology. We describe the dataset, experimental
setup, and results in section 4 and we conclude in Section 5.

II. RELATED WORK

Our proposed framework is conceptually related to the
anomaly detection problem in dynamic/streaming graphs.
Techniques like GOutlier [9], CM-Sketch [10], SedanS-
pot [21], MIDAS [13], F-FADE [22], etc. has been proposed
to detect anomalies in edge stream. GOutlier [9] uses reservoir
sampling to maintain the structural summary of the graph
stream and identifies unusual bridging edges as anomalies
using the structural connectivity model. CM-Sketch [10] uses
both the structural information and historical behavior to
determine the anomalousness of an edge. SedanSpot [21]
maintains a rate adjusted sample of edges which is then used
to score the anomalousness of edges by giving diminishing
importance to far-away neighbors. MIDAS [13] maintains the

Ibased on a Pokémon character from a movie Detective Pikachu

Gr_p G4 Gr
Forward :
Temporal walk \WT “n lw,.l l‘,vr
Skip-Gram Skip-Gram Skip-Gram
lzr—u 1ZT—1 lZT
GRU  ----- » | GRU - GRU >
Encoder i g '
v v v
GRU > GRU >  GRU -
Node Embedding lHT_" l Hr_4 l Hy
GRU -~ > GRU  ----- » | GRU - -
Decoder ,: ,: ,:
v A v
GRU - » | GRU | - » | GRU ----- -
Ly Ly Zr

Fig. 2: Visual illustration of PIKACHU framework.

count-min-sketch of historical edge count as well as the current
edge count and uses a hypothesis testing-based approach to
detect anomalous micro-clusters (sudden burst of traffic). F-
FADE [22] uses a novel frequency-factorization technique to
efficiently model the time-evolving distributions of frequencies
between node pairs. The anomalies are then determined based
on the likelihood of the observed frequency of each incoming
interaction. AnomRank [23] proposes an online algorithm
for anomaly detection in a dynamic graph. StreamSpot [6],
GODIT [12], and SnapSketch [14] uses hash-based sketching
of shingles generated from random walks to convert graphs
into sketch vector. SpotLight [11] composes a sketch contain-
ing total edge weights of directed query subgraphs chosen
independently and uniformly at random. These methods mark
entire snapshots as an anomaly by clustering sketch vectors.
The above techniques are heuristic-based and are designed for
detecting a specific type of anomalies.

Recent advances in graph embedding have inspired anomaly
detection techniques based on network embedding. The
anomaly detection approach based on network embedding
has been proposed in [24]-[27] but they are designed for
static graphs and ignore the dynamic and temporal nature
of the network. Approaches like CAD [15] and Netwalk [5]
proposes embedding-based anomaly detection technique on a
dynamic graph. However, they cannot capture the short-term
or long-term temporal patterns of nodes which are highly
important in dynamic graph stream frameworks. Techniques
like DynGem [28], EvolveGCN [29], tNodeEmbed [30], Add-
Graph [16], etc. divide graph streams into static snapshots and
use a recurrent neural network to capture the temporal patterns.
Kitsune [31] uses ensembles of auto-encoders for online
anomaly detection. Zhou et al. [32] uses dynamic graph clus-
tering with community detection model by ranking nodes ac-
cording to their deviance from both their closest cluster centers
plus historical behaviors to mark anomalies. LEADS [33] pro-
poses graph embedding based on substructures and graph edit
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distance for anomaly detection in heterogeneous graph stream.
In addition, approaches like CTDNE [4], StreamWalk [17],
TagGen [18], CAW [8], etc. propose using temporal walk
to capture highly granular temporal interaction for accurate
embeddings. CTDNE [4] uses the temporally valid walk to
learn embedding representing graphs at the finest temporal
granularity. StreamWalk [17] utilizes temporal walk to update
the node embedding over time to reflect a change in network
structure. TagGen [18] uses a bi-level self-attention mechanism
trained using temporal random walks. CAW-N [8] propose an
inductive learning model that uses causal anonymous walks
(CAW) extracted from temporal random walks for modeling
temporal networks.

III. PROPOSED METHODOLOGY
A. Background and Motivation

Initially, PIKACHU breaks down the graph stream into a
sequence of static snapshots where each snapshot represents all
edges that occur between a discrete time interval (e.g., minute,
hour, or day). Each snapshot is traversed using temporal walk.
A temporal walk traverses a graph in an increasing order
of time. For example, a sequence of nodes (vy,,vt,, ..., Vs, )
in a graph Gr = (Vr,Er) is a valid temporal walk
if {(Utl y Uto s ttl); (Utzv Vs, tt2)7 ey (Utn » Vtyins ttn)}e Ep and
ty, < t, < < t,. The sequence of nodes gener-
ated using temporal walk carries important information. In
a computer network, an edge can represent an interaction
between users and hosts and the temporal walk sequence can
provide important information about the lateral movement of
the user within the network. For instance, let us consider the
sequence of events e; = (ug,h1,1), ea = (hy,he,2), and
eq = (ho, hy,4) from Fig 3. If the event e; corresponds to
an user u; authenticating with host h; at time 1 and event ey
and ey corresponds with host h; communicating with ho at
time 2 and hy communicating with h4 at time 4 respectively.
Then the sequence {eq, e, e4} could potentially be the lateral
movement of user u; within the network after authenticating
with host hy. However, the event sequence {es,e4} such that
es = (us, h2,8) and eq4 = (ha,hy,4) can be considered a
valid walk by using a general random walk but does not
provide information on valid temporal events. Embedding
methods that ignore time order are highly likely to miss
crucial information and are prone to learning inappropriate
node embeddings that do not accurately capture the dynamics
in the network [4], [17], [18]. PIKACHU tries to address this
problem by introducing a temporal walk to traverse the graph
within each snapshot.

B. Problem Setting

Let G = {G1,Gsq,...,Gr, ...} be a graph stream where each
G denotes a graph at discrete time interval 7. We consider
a graph Gy = (Vp, Er) as a generic directed graph where
Vr and Er are the set of nodes and edges respectively. An
edge e; = (u,v,t) € Ep means that the node u and node v
have a connection at the timestamp ¢. The goal of this work
is to learn a function f : v — R? that maps each node v €

Fig. 3: Example of a dynamic graph. Edges are labelled by
arrival time. The node sequence (u; — h; — ho — h3) is
a valid temporal walk. However, general random walk-based
approach considers (uz — hy — h4) as a valid walk which is
not true for the temporal walk.

Vr to a d—dimensional time-dependent embedding using a
temporal walks. The node embedding will then be used to
detect anomalous edges in Er.

Definition 1: ( TEMPORAL WALK) A temporal walk from
vy to v in G is a sequence of vertices (v1,vs, ..., Ux) such
that (v;,v;41) € Er for 1 < i < k, and T(v;,vi41) <
T(Ui+1,1]i+2) for 1 <i< (k‘ - 1).

C. Graph Traversal using Temporal Walk:

For each snapshot G'r, we select the initial edge e; =
(u,v,t) € Er using a uniform random distribution.

1
Ple) = 151 (D

Next, to start the temporal walk from the initial edge e; at
time ¢, we select the temporal neighbors of outgoing node v
at time ¢.

Definition 2: (TEMPORAL NEIGHBORHOOD) Temporal

neighborhood of a node v at time ¢ is denoted as 74(v) and
defined as the set of nodes such that:

n(v) = {(w',t')|e = (v,w',t') € Ex At >t} (2)

In Fig 3, let us suppose the initial edge be
(h1,h2,2), then the temporal neighborhood 7o(he) =
{(h3,3), (ha,4), (ha,5), (hs,9)}. It is to be noted that the
same node can appear multiple times in 7¢(v) because
there can be multiple activities between two nodes within
a single snapshot 7. For example, there can be multiple
authentication attempts by a user on the host machine, or
two hosts can exchange multiple packets of data. However,
a generic random walk with no notion of time would only
have 7¢(v) = {hs, hs}. Thus, leading to information loss
while a temporal walk can capture the temporal interaction
in a highly granular manner. This can be really valuable
information in solving complex problems like APT detection
where the temporal walk can perfectly track the movement
of the attacker from initial foothold to attacker’s lateral
movement through the network.
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The next node in the temporal walk Wr =
{(w',tY), ..., (w’,t*)}, where ¢ is the walk length, is
chosen from 7;(v) using a uniform random distribution.

1
|72(v)]

D. Skip-Gram for topological and short-term temporal depen-
dency:

Plw) =

3)

In natural language processing, the skip-gram model [34] is
used to construct the vector representations of a word where
the input is a text corpus and output is a set of vectors. The
Skip-gram model maximizes the co-occurrence probability
among the words that appear within a certain distance in a
sentence. The idea is to use a skip-gram [34] model to capture
network topology and short-term temporal features of the
graph stream at time 7. This technique has been successfully
employed by graph embedding techniques like node2vec [35],
Deepwalk [36], CTDNE [4], etc. in the past.

The learning task of a skip-gram model is to optimize
the temporal order-preserving node embedding. We seek to
maximizes the log-probability of observing a temporal walk
Wr for a node v conditioned on its node embedding given by
function f :v — R

max Z log P(Wrlf(v))). “4)
v; €V

The optimization problem is made tractable by assuming the
conditional independence of the node in the temporal walk
Wr when observed with respect to the source node v.

POWVrlf(w) = ] P'lf(v))) )
wiEWr

The conditional likelihood of each source-neighborhood node
pair can then be modeled using a softmax unit parametrized
by a dot product of their embedding vectors.

exp(f(w').f(v;))
e €op(F (00)- (7))
Finally, the optimization objective in Eq. 4 simplifies to:

max > [_IOngj+ > flwh)f(y

)] o
v; EVp wiEWr

Pwilf(e3)) =

(6)

where Z,, = >, v, exp(f(v;).f(vk)) is a per-node par-
tition function and can be approximated using negative sam-
pling [37]. Skip-gram model will generate the node embedding
Zr at each snapshot T encoding spatial information and short-
term temporal information. In a graph stream G, Z represents
state of nodes at a particular snapshot 7.

In each graph G, if S be the space of all possible random
walks and St be the space of all temporal walks then S; C S.
The temporal walk represents only a tiny fraction of possible
random walk [4]. The probability of sampling the temporal
walk using a generic random walk is extremely small given
that generic random walk samples the set of random walk
S from S [4]. Also, the majority of sampled walks S will

represent the temporally invalid node sequence. Hence, using
generic random walk for modeling dynamic graphs leads to
inaccurate node embedding.

E. GRU for long-term temporal dependency:

The Skip-gram model focuses on modeling interactions
among nodes in close proximity (within the same snapshot) to
each other by preserving the temporal neighborhood. However,
it cannot anticipate interactions that could occur beyond the
current snapshot. During an APT campaign, after gaining
control of the network, an attacker can remain ideal for
hours, or sometimes even days or months to perform their
mission. Therefore, it is crucial to understand the interaction
over an extended period not just within the same snapshot.
Recurrent Neural Network (RNN) like GRU [38] can be used
to learn the long-term behavior patterns of the nodes. GRU
is a variant of the RNN network which is simpler, more
effective, and can record long-term information by avoiding
gradient vanishing and exploding problems [38]. PIKACHU
uses a GRU-based auto-encoder to encode long-term temporal
features. The general layout of an auto-encoder consists of
an input layer, an output layer, an encoder neural network, a
decoder neural network, and a latent space. Let us suppose &
is the encoder function and D decoder function. The encoder
function £ maps the static node embedding Zr to the latent
space Hyp ie. £ : Zp — Hyp. Similarly, the decoder function
D takes the latent space Hy and reconstructs the original data
ZT ie. D : Hyr — ZT The output is then compared with
the initial data to compute the reconstruction error. The auto-
encoder is trained by minimizing the reconstruction error as:

L(Zr,Z7) = ||(Zr — Z7)||? (8)

F. Anomaly Detection

Akoglue et. al define anomaly as a rare instance that deviates
significantly from normal behavior [39]. For any anomaly
detection task, it is necessary to accurately model the normal
behavior and then look for anomalous instances that deviate
from the normal behavior. In graphs, anomaly detection on
edge can be modeled using a conditional probability dis-
tribution of edges [25], in which the normal edges have a
higher probability of occurrence whereas an edge with a lower
probability is likely to be an anomaly.

Let us consider two vertices u and v. Let N (u) represents
the neighborhood of vertex u. The conditional probability
distribution over all pairs of u,v in graph Gr denoted by
P(v|u, N(u))r represents the probability that there exists
an edge between u and v at timestamp 7. In other words,
a probability distribution for each vertex is influenced by
its neighbors because in graph structure data nodes in a
densely connected group tend to have similar behaviors [25].
Furthermore, each edge (u,v) will appear in two probability
distribution P(v|u, N (u))r and P(u|v, N (v))p. Since N (u)r
and N (v)p are highly likely to be different P (v|u, N(u))r #
P(ulv, N(v))r. Finally, the anomalous edge can be detected
using this distribution: for an edge (u,v), the smaller the
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TABLE I: Summary of the dataset

Total Events | # of Snapshot | Anomalous Events Host Anomalous Host
LANL 18.79 mil 711 702 2,184* 104*
OpTC 40.56 mil 110 21,641 621 23

*In LANL dataset, we use user-based authentication events. Therefore, the number corresponds to users instead of hosts.

P(v|u, N(u))r and P(u|v, N(v))r, the more likely this edge
is anomalous. A similar technique is used by Ouyang et al.
[25] for detecting anomalous edges in static graphs.

In each snapshot, Hp maps each vertex u € Vp to a
d—dimensional vector Hp(u) € R?. For each node u and
its neighbors N (u)r we can get node embedding Hr(u) and
Hp(w)|w € N(u)p. Mean aggregate function g can be used
to get the aggregated embedding representation .

H = g(Hy(u), Hy (w)|w € N(u)r)

:|N<u>1T|+1<HT<U>+ > HT<w>> ®

wEN (u)r

Aggregate node embedding H can then be mapped into the
parameterized probability distribution P(v|u, N (u))r using a
mapping function F such that:

f(v,u, N(u))T = 75(”'“3 N(u))T

(10)
= F(H)|, = Softmax(W.H)|,

where W is d x |Vp| trainable weight matrix that can be
estimated from training data. The output of the softmax is
the estimate of P(v|u, N(u))r. The weight matrix W can be
estimated using the log-likelihood function such that:

L:L Z 1n’ﬁ((v|u7N(u))T;W)
w,v)EVr

11
|VT|( (b

This is basically a |Vp|-class classification problem where u
and N(u)r are inputs and the objective is to predict which
vertex have an edge connected with w. The loss function is

J = cross — entropy(f(u, N(u))r,v) (12)

The training sample consists of (u, N(u)r — v) as input and
v is the target variable. Using all the neighbors in N (u)r can
sometimes be computationally prohibitive. Therefore, we can
sample s neighbors uniformly with replacement from the set
of N(u)r —v as an approximation of N(u)r. We refer s as a
support set and the best value of s is estimated using parameter
tuning during experimentation.

After training, the probability of the existence of an edge
(u,v) can be estimated using the learned conditional proba-
bility estimation from the perspective of both w and v.

po = P(v]u, N(u))r
pu = P(ulv, N(v))r
The normal edge has a higher probability while anomalous

edges have lower probabilities. Finally, the anomaly score for
the edge is calculated using both p, and p,,.
(1 — pv) + (1 — pu)

score — 14
e : (14)

13)

IV. EXPERIMENTATION
A. Dataset

LANL Dataset [19]: The subset of Comprehensive Multi-
Source Cyber-Security Events dataset by Los Almos National
Labs (LANL) is used. LANL data consists of de-identified
event data across five data elements: window-based authen-
tication events, process start and stop events, DNS lookups,
network flows, and red-team activities over 58 days. In this ex-
periment, we choose the window-based authentication events.
We removed computer-account activities (user names ending
with “$”) and keep all human-driven activities. Also, we
removed events from LOCAL, SYSTEM, ANONYMOUS,
and ADMINISTRATOR accounts as they are not relevant for
enterprise-level integration [40]. The red team activity has 749
events over 58 days that are marked as anomalous authentica-
tion. Out of 12.4K users, we selected all 104 anomalous users
listed in red team activity and randomly selected 2,080 normal
users (1 : 20 ratio) to avoid extremely unbalanced data. Our
final data consist of 18.79 million authentication events from
2,184 users of which 702 events are anomalous.

OpTC Dataset [20]: DARPA Operationally Transparent
Cyber (OpTC) dataset contains events from an enterprise net-
work based on MITRE’s Cyber Analytics Repository (CAR)
data model. CAR model describe events in term of object,
action, and field. Object is a visible entity like file, process,
registry, task, thread, service, flow, etc. State change or event
that happens on an object is an action. For example, file
creation, file deletion, flow start, registry edit, etc. Observable
properties of an object like flow start time, process id, registry
type, etc. are fields. It consists of the data describing both
benign and malicious behaviors. In this experiment, we use
events related to flow start. i.e. FLOW object and START
events. Here, source and destination IP are nodes and each
flow start is an edge. The final data consist of 40.56 million
flow events from 621 hosts of which 21.6K events (and 23
hosts) are anomalous (or compromised). The summary of the
data used in the experiment is shown in Table 1.

B. Experimental Setup

We divide both datasets into 1-hour snapshots for simulating
dynamic graphs. For LANL, the first 40 hours (benign data
before the first anomalous event) is used for training anomaly
detectors and the rest is used for testing. Similarly, for the
OpTC dataset, the first 3 days of benign activity are used
for training, and the rest is used for testing. Anomalies are
the events that are listed in red team activities. For LANL,
red team activities are marked clearly. For OpTC, anomalous
events correspond to the flow generated by the host and a
specific process during or after the red team activity, i.e.,
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Fig. 4: AUC curve using PIKACHU and baseline approaches

TABLE II: Anomaly detection results using PIKACHU and the
baseline approaches. The result is the average of 5 run (&
standard deviation).

Approach | TPR | FPR | AUC
LANL Dataset

PIKACHU 95.1% (£0.11) 5.05% (£0.08) | .94 (+0.004)

NetWalk 65.8% (£0) 34.2% (£0) 74 (£0)

SedanSpot 90.3% (+0) 9.7% (+£0) 94 (+0)

F-FADE 43.6% (+0.85) 56.3% (£0.90) 46 (£.012)
OpTC Dataset

PIKACHU 98.7% (£0.01) | 0.42% (£0.008) | .99 (£.0003)

NetWalk 80.9% (£0.03) 19.1% (£0.06) | .83 (4.0002)

SedanSpot 47.8% (+0) 31.4% (£0) .56 (+0)

F-FADE 46.6% (+0.70) 53.4% (£0.78) 44 (£.014)

anomalous events are the events generated by the compromised
host. It should be noted that both the graph embedding and
anomaly detection approaches are unsupervised and the labels
are required only to evaluate the performance of the proposed
approach. We use a temporal walk of length (¢) 500. The
autoencoder consists of 2 layer GRU (the first layer with 64
units and a second layer with 128 units) with a dropout layer
(0.3 dropout rate) in between. The auto-encoder is trained
using 50 epochs. For anomaly detection, the learning rate
of 0.001 and 10 iteration is used to estimate the conditional
probability distribution of edges. In addition, to find the
influence of the size of the embedding dimensions d and the
support set s, we evaluate the performance of PIKACHU over
d = {50,100, 150,200,300} and s = {2,5,10,15,20,25}.
The optimal value of AUC is reported at d = 100 for both
datasets. Similarly, the optimal value of AUC is reported at
s = 10. Therefore, for final experimentation we use d = 100
and s = 10. Finally, we compare the performance against
three state-of-the-art anomaly detection method including Net-
Walk [5], SedanSpot [21], and F-FADE [22].

C. Results

True Positive Rate (TPR), False Positive Rate (FPR), and
area under the ROC curve (AUC) are used as our evaluation
metrics. Table II summarizes the result of anomaly detection.
PIKACHU has superior performance in terms of TPR, FPR, and
AUC on both datasets against other baseline approaches. Fig 4
(a) shows the AUC plot obtained on the LANL dataset. The
AUC plot on the OpTC dataset is shown in Fig 4 (b). As seen,
PIKACHU have the best AUC. NetWalk performs fairly well
with the second-best AUC on the OpTC as well as the LANL

dataset. NetWalk initially generates the node embedding and
dynamically updates the embeddings upon the change in a
network by only updating the network walk affected by the
new changes. It can learn the structural changes over time.
However, it cannot learn the long-term temporal dependency.
SedanSpot has similar AUC to that of PIKACHU on LANL
dataset (see Table II). However, FPR is high on the LANL
dataset and it performs poorly in the OpTC dataset. SedanSpot
maintains the rate adjusted samples of edges and defines
anomalies in terms of edge samples. A new edge is more
anomalous if adding it to the sample produces a larger change
in the distance between its incident vertices. It is primarily
designed for identifying bridge edges and bursts of activities as
anomalies. Therefore, it lacks generalization and is not adapt-
able to identify other types of anomalies. Also, their anomaly
detection is based primarily on the structural changes in the
graph. The performance of F-FADE is poor on both datasets.
F-FADE uses the frequency-factorization technique to model
the time-evolving distributions of frequencies of interactions
between node-pairs where anomalies are determined based on
the likelihood of the observed frequency of each incoming
interaction. Furthermore, NetWalk uses reservoir sampling to
maintain the compact record of vertex neighbors, SedanSpot
keeps only the rate adjusted edge samples and F-FADE keeps
only the most frequent interactions in memory. This use of
sampling strategy by baseline approaches ultimately leads to
information loss. However, we use all available edge samples
to perform a temporal walk in each snapshot and generate the
temporal order-preserving node embedding.

V. CONCLUSION

In this work, we propose PIKACHU, an unsupervised node
embedding approach for anomaly detection in a dynamic graph
that captures the short-term as well as long-term temporal
dependencies. The learned embeddings are highly effective in
learning the temporal order of edges that are vital for detecting
network anomalies like lateral movement and APT. Experi-
ments on real-world datasets demonstrated the effectiveness
in detecting network anomalies. PIKACHU achieves 4.65%
reduction in False Positive Rate in LANL dataset despite sim-
ilar AUC and 16% improvement in AUC in OpTC dataset in
comparison to the other state-of-the-art approaches. The results
demonstrate that modeling granular temporal information in
a dynamic graph is important for learning appropriate and
meaningful network representations.
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