2022 IEEE 28th Real-Time and Embedded Technology and Applications Symposium (RTAS) | 978-1-6654-9998-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/RTAS54340.2022.00028

2022 IEEE 28th Real-Time and Embedded Technology and Applications Symposium (RTAS)

RT-WiFi1 on Software-Defined Radio: Design and Implementation

Zelin Yun', Peng Wu', Shengli Zhou', Aloysius K. Mok*, Mark Nixon®, Song Han’
TUniversity of Connecticut
TEmail: {zelin.yun, peng.wu, shengli.zhou, song.han} @uconn.edu
University of Texas at Austin

'Email: mok@cs.utexas.edu
Emerson Automation Solutions

$Email: mark.nixon@emerson.com

Abstract—Applying high-speed real-time wireless technologies
in industrial applications has the great potential to reduce the
deployment and maintenance costs compared to their wired
counterparts. Wireless technologies enhance the mobility and
reduce the communication jitter and delay for mobile industrial
equipment, such as mobile collaborative robots. Unfortunately,
most existing wireless solutions employed in industrial fields
either cannot support the desired high-speed communications or
cannot guarantee deterministic, real-time performance. A more
recent wireless technology, RT-WiFi, achieves a good balance
between high-speed data rates and deterministic communication
performance. It is however developed on commercial-of-the-shelf
(COTS) hardware, and takes considerable effort and hardware
expertise to maintain and upgrade. To address these problems,
this paper introduces the software-defined radio (SDR)-based
RT-WiFi solution which we call SRT-WiFi. SRT-WiFi provides
full-stack configurability for high-speed real-time wireless com-
munications. We present the overall system architecture of
SRT-WiFi and discuss its key functions which achieve better
timing performance and solve the queue management and rate
adaptation issues compared to COTS hardware-based RT-WiFi.
To achieve effective network management with rate adaptation in
multi-cluster SRT-WiFi, a novel scheduling problem is formulated
and an effective algorithm is proposed to solve the problem.
A multi-cluster SRT-WiFi testbed is developed to validate the
design, and extensive experiments are performed to evaluate the
performance at both device and system levels.

Index Terms—Software-defined radio (SDR), RT-WiFi, full-
stack configurability

I. INTRODUCTION

A recent trend in smart factory automation is to employ
high-speed real-time wireless technologies to interconnect
heterogeneous industrial assets to perform various sensing and
control services, and support mobile equipment to conduct
designated tasks in a collaborative fashion [1]. Most of these
industrial applications have stringent requirements on both
high data throughput and deterministic real-time performance
(e.g., latency and jitter) [2], [3].

The existing efforts on the design and implementation of
real-time wireless solutions can be summarized in four main
categories. The first category includes those works focusing
on low-speed low-power real-time communication solutions,
such as WirelessHART, ISA 100.11a, WISA and 6TiSCH [4]-
[7]. Although those solutions can achieve deterministic com-
munication performance and have ultra-low energy footprint,
they cannot support high-speed communications, constrained
by the underlying IEEE 802.15.4/802.15.4e [8] physical layer

(PHY) and data link layer (DLL). The works in the second
category [9]-[14] achieve the real-time performance based
on IEEE 802.11e standard, including the hybrid coordination
function (HCF) controlled channel access (HCCA) which
enables the polling method [15]-[17] and the enhanced dis-
tributed channel access (EDCA) which enables priorities in
the transmissions and uses the highest priority for the real-
time transmissions to guarantee their access to the channel.
However, when EDCA is applied, the downlinks may compete
for the highest priority queue on the access point (AP)
side which may cause unnecessary delay and the ensuing
timing violations. The polling method in HCCA is not time-
efficient when the channel usage is high compared to assigning
communication schedules to the devices directly and it is
also subject to coexistence issues in the scenarios when
multiple APs use the same HCCA access function [1]. The
works in the third category study the applications of 5G
and Long Term Evolution (LTE) technologies in real-time
industrial applications [18]-[20]. However, the deployment
of LTE and 5G equipment do not exploit the license-free
bands and therefore misses the economic advantage and the
flexibility afforded by the extra bandwidth required for the
anticipated applications in the industrial automation field such
as robotics. For the last category, existing works [21], [22]
focus on modifying IEEE 802.11 standards and implementing
the systems on COTS hardware. For example, [21] proposes
a configurable real-time WiFi system, called RT-WiFi, based
on Qualcomm Atheros AR9285. It modifies the driver and
implements a network manager for scheduling deterministic
real-time communications. For the above works using COTS
hardware, a major issue is that COTS hardware is usually not
open-source, and many functions are not accessible which
makes it difficult to maintain and upgrade such system to
support frequently updated OS kernels and wireless protocols.!

To address the aforementioned issues in existing work, we
present in this paper the design and implementation of a
software-defined radio (SDR)-based RT-WiFi solution which
we name SRT-WiFi. SDR [24] is a radio communication
system where components that have been traditionally im-
plemented in hardware are instead implemented by means of
software on a PC or an embedded system. We design SRT-

IFor a more detailed discussion on the related work, please refer to our
technical report [23].

978-1-6654-9998-9/22/$31.00 ©2022 IEEE 254

DOI 10.1109/RTAS54340.2022.00028

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



BN 7 B X R 5y ) S
S «gP»\ (Pv\ '(PD" ng’ D «P:D «P:’ P
S S B S S S S S\ s‘,
Central |
AN 4 A A 4 A AN 4 A
Network N7 SN0 N7
Nyl Noo s | N
Manager AvK VK | Ny K
A== === = —=—=—F=—==>
’}’ Cluster 1 =~ AP Cluster2 =~ AP2 i Cluster 3 |~ AP3
§ Manager Manager 1l Manager
Backbone Network

Fig. 1: Overview of the multi-cluster SRT-WiFi network.

WiFi based on an advanced SDR platform (ZC706 develop-
ment board with Zynq-7000 and AD9364) where the radio
functions are programmed on field programmable gate array
(FPGA). This advanced SDR system can run in real time since
the radio functions are achieved by the logic blocks in FPGA
running at the speed as driven by an oscillator. With such a
programmable real-time radio system, SRT-WiFi can achieve
the key functions required to support high-speed real-time
communications, and also provide an open-source platform
to support ever-evolving IEEE 802.11 standards.

Fig. 1 gives the overview of a multi-cluster SRT-WiFi
network where multiple APs are synchronized and connected
to a backbone network. A central network manager (CNM)
manages all the network resources and allocates them to
the cluster managers (CMs) running on individual APs. In
each cluster, high-speed real-time point-to-point wireless com-
munications with rate adaptation are supported to deal with
the interfered environments. The clusters operate on multiple
channels meaning that one channel has one or multiple clusters
operating on it. Compared to COTS hardware-based existing
works, SRT-WiFi leverages the programmability of the SDR-
based PHY and DLL to provide full-stack configurability.’
By taking advantage of this full-stack configurability, it is
possible to add three major features in SRT-WiFi: i) more
precise time synchronization which leads to a smaller slot size
for packet transmission and higher sampling rate; ii) efficient
queue management which reduces possible downlink latency
caused by the limited number of queues in COTS hardware; iii)
more accurate signal-to-noise ratio (SNR) measurement, based
on which we propose a novel rate adaptation mechanism to
dynamically change the data rates based on the SNR measure-
ment of the links to guarantee the desired packet delivery ratio
(PDR) of each link; this adaptation outperforms the Minstrel
algorithm [25] employed in regular WiFi network. Based on
the proposed rate adaptation mechanism, we further formulate
and solve the multi-cluster SRT-WiFi network scheduling
problem (MSNS-RA) based on the dynamic rates determined
at run time. We implement the SRT-WiFi protocol and the
multi-cluster network management solution on a real testbed,
and validate the effectiveness of the designs through extensive
experiments at both device and system levels.

The remainder of this paper is organized as follows.
Section II presents the overall system architecture of SRT-

>The current version of SRT-WiFi system supports IEEE 802.11a/g. It can
be further extended to support emerging IEEE 802.11 standards, such as
802.11n/ac/ax. See the ongoing and future work in Section VII).

WiFi. Section III and Section IV describe the design of
the programmable logic (PL) component and the processing
system (PS) component of SRT-WiFi, respectively. Section V
introduces the multi-cluster network management framework
to support rate adaptation in SRT-WiFi to guarantee the timing
requirement of real-time tasks even in the presence of severe
interference. Section VI evaluates the performance of SRT-
WiFi at both device and system levels. We conclude the paper
in Section VII and discuss the ongoing and future work.

II. SYSTEM ARCHITECTURE

SRT-WiFi is based on the Openwifi project [26], [27] which
is a SoftMAC IEEE 802.11 design compatible with Linux
MACS80211. In this section, we first introduce Openwifi, and
then describe the SRT-WiFi architecture in detail (see Fig. 2).

A. Openwifi Architecture

Openwifi has two major components: the Processing System
(PS) and the Programmable Logic (PL). PS is an operating
system (OS) running the major part of the data link layer
(DLL) and all the other higher layers. PL is an FPGA-based
embedded system running the real-time part of the DLL and
the physical layer (PHY). Both PL and PS are implemented
on an integrated System-on-Chip (SoC) which consists of an
FPGA (for PL) and an ARM processor (for PS). PL and
PS exchange data through the Advanced eXtensible Interface
(AXI) [28]. In addition, PL connects to a radio terminal for
packet transceiving.

In Openwifi, PL is designed as the wireless adaptor. As
shown on the right side of Fig. 2, PL has three main mod-
ules: the TX interface (TXI), the XPU (application-specific
processing unit) and the RX interface (RXI). The TXI and
RXI modules handle packet transmission and reception, re-
spectively. The XPU module runs the state machine of IEEE
802.11 channel access methods. To process general packet
transmissions, TXI first holds the packet passed from PS in its
queues and waits for the transmission trigger from XPU. The
carrier-sense multiple access (CSMA) block in XPU senses the
channel and runs the backoff mechanism. Once the channel is
available, XPU triggers TXI which in turn fires the packet to
the modulation block (OFDM TX).The modulated signal is
then passed through radio interface and finally emitted from
the antenna by the radio terminal. After sending the packet, the
XPU module waits for the acknowledgement (ACK) packet
from RXI if ACK is required. If ACK is correctly received
or not required, the transmission success is reported to PS. If
XPU does not receive the correct ACK after a pre-defined time
threshold, it triggers retransmission(s) until reaches the limit
of transmission attempts and then reports the failure to PS.
For a general packet reception, the signal from radio terminal
is demodulated by OFDM RX and pushed in a queue in RXI.
At the same time, XPU reads the packet header and applies
a packet filter to decide if this packet is destined for PS. If
so, RXI then fires the packet to PS. If the packet requires an
ACK, XPU generates the ACK packet in TXI and triggers
the transmission. Both TX and RX of the radio terminal run

255

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



Processing System (PS) Programmable Logic (PL) Radio Terminal g
User Space Kernel Space ( TX Interface i ng
Network MISC —| OFDM TX Driver . ' v
o L o |-
= |= = TDMA Driver 5 ] 3
xa | Qg - < & .
E % PN % E LI XPU Driver -- TDMA XPU CSMA Rad}o
Rf;al—]:irlne ~ ; <§t aloL RX Driver 1 5 Interface
as
Ll OFDM RX Driver 7] RX Interface OFDM
: : L o T
L ! Created Modules L ! Modified Modules x

Fig. 2: Overview of the SRT-WiFi system architecture design based on the Openwifi project.

in parallel, and all PL. modules have registers to be used for
configuring the operation mode and parameters.

The PS component is a Linux OS running on an ARM
processor. As a SoftMAC wireless device in Linux, the ma-
jor part of DLL is integrated in Linux kernel (MACS80211
subsystem [29]). Thus the MAC80211 driver is needed to
provide the interface of the wireless adaptor (PL) for the
Linux MAC80211 subsystem. The data exchanges between
the MACS80211 driver and PL rely on the sub-drivers (see the
left side of Fig. 2). All the sub-drivers are designed to provide
APIs for register operations to the MAC80211 driver so that
it can configure the wireless adaptor (PL). The TX and RX
drivers also handle TX and RX data packet transfer between
PS and PL, respectively.

B. SRT-WiFi Architecture

The key design goal of SRT-WiFi is to support precise time
synchronization and multi-cluster real-time communications
with effective rate adaptation at run time. For this purpose,
we present below the SRT-WiFi architecture, by modifying
PL and PS in Openwifi to add the required functions.

SRT-WiFi PL: The PL component of SRT-WiFi is designed
to i) achieve the real-time transmissions with high synchro-
nization time precision, ii) provide more efficient queue man-
agement and iii) measure the reception SNR of the links more
precisely in order to provide reference for rate adaptation.
To achieve real-time transmissions, we design a TDMA
block in XPU to supplement the CSMA block. The TDMA
block triggers the PHY and DLL activities with high time
precision. It runs either according to the local timer or synchro-
nizes with another device in the SRT-WiFi network. According
to our measurements (to be elaborated later), the synchro-
nization time error and standard deviation in the multi-cluster
SRT-WiFi are as low as 0.03 ps and 0.07 ps, respectively.
Different from the CSMA block which triggers the transmis-
sions following the DCF mechanism, the TDMA block triggers
the transmissions according to a schedule constructed by the
network managers in PS. The schedule is stored in the TDMA
block and updated at run time through a TDMA driver that is
added in PS (see Fig. 2). The TDMA and CSMA modes in
SRT-WiFi can be switched during the run time seamlessly.

256

For an AP working in the TDMA mode, it needs to handle
the links to all the connected stations. The transmissions on
those links have to follow the order of a schedule. With limited
number of queues, COTS hardware [21] must manage the
issue that the queued packets may block the transmissions of
upcoming packets that may cause unmanageable congestions.
SRT-WiFi provides an effective queue management which
supports more customized queues and significantly increases
the number of supported links for growing network scale.

By leveraging the capability of SRT-WiFi to have direct
access to the received signals, we are able to design novel
methods to measure the SNR precisely and implement it in the
OFDM RX module. The SNR information provides a reference
for the rate adaptation mechanism to adapt the TX data rates
and adjust the communication schedules at run time.

SRT-WiFi PS Kernel: As shown in Fig. 2, we add the TDMA
driver and modify the MAC80211 driver, TX and OFDM RX
drivers to provide an interface for exchanging the schedule,
queue and SNR information between PS and PL in the TDMA
mode. The TDMA driver is registered in the kernel as a
miscellaneous character driver (MISC). It provides APIs for
the network managers in the user space. The network manager
configures the schedule and queue information in PL through
the TDMA driver and updates the data rates in MAC80211
driver as well. The TX driver is modified to support queue
management and the OFDM RX driver is enhanced to support
reading the SNR values measured in PL.

SRT-WiFi Network Management: We call the network
managers running on individual APs cluster managers (CM)
and the ones running on the stations device managers (DM).
These network managers are designed for two purposes, i)
to exchange information at the application layer among all
the devices including the schedule, data rates and SNR of
links, ii) to manage the TDMA DLL on each device such as
configuring the schedule for the TDMA block and reading the
SNR measurement from the PL. All network managers run
in the user space so they are easy to maintain and upgrade.

III. SRT-WI1F1 PROGRAMMABLE LOGIC (PL) DESIGN

We first present the PL design of SRT-WiFi and focus on
the new functions in the XPU, TXI and OFDM RX modules.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



Beaconl | Beacon2 | Shared | Shared Linkl Link2 Link3 Idle Schedule
6 Mbps | 6 Mbps | 6 Mbps | 6 Mbps | 54 Mbps 36 Mbps 12 Mbps "
SO S1 S2 S3 S4 S5 T Sé6 S7 1T S8 T S9 eee | SI26 Atomic Slot
< Superframe B
Fig. 3: The timing diagram of an example superframe in multi-cluster SRT-WiFi with 127 atomic slots.
RX  (a) Synchronization Timer (ST) (b) Schedule Timer  (c)

Tk
H Detected

Sending

F

Update ST to
schedule timer

Yes

> valid s
No
Yes.
- [N
Wait for SSID Ldle

Get SSID Yes

Fetch
ueue number

Sending

!

[+—N

0

Header
MAC | .
Header

Payload - Yes
o || iy
Fig. 4: State machines of the schedule timer and the synchronization
timer (ST) in the TDMA block of SRT-WiFi.

[ +—N

v

State Transition —

Info Transfer ---->

A. TDMA Block Design

In the TDMA mode of SRT-WiFi, all transmissions follow a
schedule to coordinate the communications among devices and
avoid collision. The schedule describes the transmitting times
and orders of the links in a time period called superframe
which is a sequence of consecutive time slots. Each time
slot specifies the radio activities (TX, RX or Idle) and the
associated sender/receiver. At run time, the superframe is
repeated ad infinitum to generate schedule. To support rate
adaptation, the length of the time slot varies along with the
rate, since with the same packet length, a lower rate requires
longer time to transmit. The time slots use atomic slots (ASs)
as the basic time unit (to be elaborated later). In SRT-WiFi, the
lengths of superframe, time slot and AS are all configurable.

Fig. 3 shows the timing diagram of an example superframe
in an SRT-WiFi network. It has 127 ASs where SlotO and Slot1
are used by AP1 and AP2 to send beacons, respectively. Slot2
and Slot3 are shared slots for any link and usually used for the
association process. The other ASs are either assigned to links
for dedicated communications or left idle. The links using the
same MTU (Maximum Transmission Unit) but different data
rates require different slot lengths in terms of the number of
ASs. For example, Linkl, Link2 and Link3 use I, 2 and 3
ASs for their transmissions, respectively.’

To enable real-time communications in SRT-WiFi and im-
plement the schedule in PL, a TDMA block is added in the
XPU module (see Fig. 2). In the TDMA block, a register
page is implemented. Some registers are used to configure
TDMA parameters, such as the superframe length; the other
registers are assigned to keep the schedule information. Based
on the schedule information, the TDMA block employs a set
of timers called schedule timers to trigger the transmissions.
At the beginning of a time slot, the TDMA block fetches

3See Section VI for the detailed data rates and required slot lengths.

257

the link information associated with that slot and triggers the
transmission. The corresponding queue in the TXI module
sends a frame if it is not empty. The frame is then modulated
and sent through the radio terminal.

B. TDMA Time Synchronization Design

Another key function of SRT-WiFi is to achieve precise
time synchronization among the devices in the network. In
our design, we have multiple clusters in the same SRT-WiFi
network. Each cluster consists of an AP and multiple stations,
and the clusters may share the same channel. For those clusters
operating on the same channel, the devices need to be well
synchronized to avoid potential collision. The synchronization
mechanism of existing work using COTS hardware [30] is
to connect and synchronize the APs through an Ethernet
backbone network using the IEEE 1588 protocol [31]. The
stations are then further synchronized with the APs using the
beacon packets. For the synchronization among the APs, the
OS of each AP first updates its system timer with IEEE 1588
and then updates the timer in its wireless adaptor, which is
used to send packets at run time. For the synchronization on
the station side, they listen to the beacon packets and update
the system timer. Since the time synchronization on both APs
and stations are done by non-real-time OS, it may cause an
average time drift between the devices as high as 20 s [21].

To address this problem, in SRT-WiFi, we propose a new
synchronization method based on SDR which is performed at
the physical layer (PHY). It is worth noting that this method
is only suitable for the devices operating on the same channel.
For two APs operating on different channels to synchronize,
IEEE 1588 will still be employed. For the APs operating
on the same channel, we first designate a master AP (MAP)
and let the other APs be the slave APs (SAPs). We assume
that all SAPs can hear from the MAP, which provides the
reference clock. The SAPs synchronize with the MAP, and all
the stations synchronize to their corresponding APs. The key
design goal of SRT-WiFi synchronization is to avoid using the
timer in non-real-time OS but leverage the timer in hard real-
time PL. For this aim, timers are added in the TDMA block
with nanosecond precision for synchronization. We call them
TDMA timers, and they are set and run in hard real-time.
TDMA timers on MAP are set by its OS to unify the time on
MAP. TDMA timers on SAPs and stations synchronize with
the TDMA timers on MAP using PHY beacon signal and their
OS time are synchronized accordingly.

We now introduce the synchronization procedures. In SRT-
WiFi, PHY demodulation is achieved in the OFDM RX mod-
ule in PL. The demodulated symbols are passed to RXI and
XPU. In the TDMA block, a synchronization function is added
to utilize the baseband signal demodulation to synchronize

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



TABLE I: PDR with varied payload sizes and slot lengths

Payload (bytes) 50 100 [150 200 300 [400 [500
Slot Length (us) 110|118 [126 (130 (146 |162 |[174
Sampling Rate (Hz) |9090 8474 |7936 |7692 (6849 (6172 |5747
PDR (%) 99.7 199.6 [99.6 [99.6 (99.3 [99.7 (99.4

with a specific AP. More specifically, two TDMA timers are
added, one is called schedule timer and the other is called
synchronization timer (ST). ST is used to track the arrival
time of a beacon packet and the schedule timer is to run the
schedule. When a new packet arrives and the long training field
(LTF) of the PHY signal is detected in the OFDM RX module,
ST is reset. Next, the synchronization function waits for the
DLL packet header from the OFDM RX module. It checks
whether the packet is a beacon packet. If so, it continues to
wait for the service set ID (SSID) in the packet payload. Once
SSID is read, the synchronization function compares it with
the target SSID. If they match, ST is updated to the schedule
timer; otherwise, the synchronization function waits for the
next packet and the schedule timer runs as usual with no
update. This timer update procedure is summarized in Fig. 4
where Fig. 4 (a) shows how a packet is received and passes the
information to ST and Fig. 4 (b) shows how ST synchronizes
accordingly and triggers the update of the schedule timer.
Fig. 4 (c) shows how the schedule timer changes states to
update the time or trigger real-time transmissions as shown
in Fig. 4 (d). It is worth noting that this synchronization
method also works with higher bit rates in IEEE 802.11n/ac/ax
standards. With this method, our experiments show that the
synchronization time drift of the SRT-WiFi devices can be
maintained within 0.2 ps which is much better than the 20
ps [21] time draft observed on the COTS hardware. This more
precise time synchronization can help reduce the guard time
which is to avoid collisions between slots due to the syn-
chronization error and support smaller time slot length which
further improves the sampling rates. Table I presents the packet
delivery ratio (PDR) test results with varied application layer
payload sizes, the corresponding slot lengths and achievable
sampling rates. The guard time used in the experiments is
set at 10 ps. From the results, we can observe that with a
payload size of 50 bytes, the slot length can be set at 110 us
and the sampling rate can be as high as 9 kHz. The detailed
experimental results can be found in Section VI.

C. Queue Management

In SRT-WiFi, the packets from PS are first pushed in queues
before transmission. For COTS hardware-based solutions,
the queue implementation is not configurable. For example,
AR9285 used in the RT-WiFi implementation [21] uses only
8 queues. To support real-time transmissions in SRT-WiFi,
queues are assigned to individual links to guarantee the desired
timing performance. However, when the number of stations
increases beyond the number of queues in the AP, the packets
belonging to different links may share a queue, leading to
unexpected timing violations. For example, as shown in Fig. 5
(a), an AP has 10 associated stations while it only has 8 queues

Queuel Queuel Queue2 Queue?7
STA1 STA2 STA3 STA8
STA9 STA2 STA3 STA8
STAI10 STA2 STA3 oo STA8
(a) v
‘ STAIL ‘ ‘ STA9 ‘STAIO‘ STA1 ‘ ‘ STA9 ‘STA]O‘ STA1 ‘
Slot0 | Slotl Slot9 | Slotl0 | Slotl1 Slot19 | Slot20 | Slot0 | Slotl
T Quewed Queue Quewed Quewels
STAI ooe STA9 STAI10 (XX}
(b
. STAI STA9 [STAIO| STAI STA9 [STATO STAI
Slot0 | Slotl Slot9 | Slot10 | Slotl1 Slot19 | Slot20 | Slot0 | Slotl
7777777777 Buffer Slot5  BufferSlot6  BufferSlot7 ~ Buffer Slot47
XX [ STAT | [ STA9 | [ STAI0O | eee
(c)
‘ STAI ‘ STA9 ‘ STAI0| STAI STA9 ‘ STAT0 STAI ‘
Slot0 | Slotl Slot9 | Slotl0 | Slotl1 Slot19 | Slot20 | Slot0 | Slotl

Fig. 5: Queue management issues in RT networks with shared queues.

TABLE II: Max. and avg. delay (slot number) of packets in assigned
and dynamic queue management methods with 16 links.

Number of Queues 8 10 12 14 16

Assigned Maximum Delay (slot) | 2816 | 2358 | 1707 | 1125 82

Assigned Average Delay (slot) 336 236 159 87 16

Dynamic Maximum Delay (slot) 591 162 106 104 103

Dynamic Average Delay (slot) 271 42 16 16 16

so STA9 and STA10 have to share a queue with other links.
When two or more packets belonging to different links are
sharing the same queue, they have to wait until the packet at
the queue head being sent, although their assigned time slots in
the superframe may come first. This issue happens mainly on
the AP side when handling transmissions for multiple stations.

In SRT-WiFi, we assign the queues to different links and
the packets belonging to different links are pushed to the
corresponding queues as shown in Fig. 5 (b). The schedule
in the TDMA block stores the information on which queue
to be triggered for every slot. This is a feature of SDR-based
system since the number of supported queues can be extended
as long as the FPGA has enough resources.

This SDR-based queue implementation can eliminate the
queuing delay when the number of supported stations is
smaller than the number of implemented queues on the AP.
However, as the number of stations increases, the number of
queues cannot be increased infinitely. To address this issue,
we propose a dynamic buffer design in SRT-WiFi as shown in
Fig. 5 (c) where we use a buffer to replace the previous queues
and the buffer is composed of buffer slots and each buffer slot
only stores one packet at most. When a packet is passed from
the driver, TXI selects an unused buffer slot and pushes the
packet into it. At the beginning of each time slot, the TDMA
module checks the link information for that slot. It goes over
the buffer to check whether there is a packet belonging to
that link. If so, it transmits that packet. Since a buffer slot
only stores one packet, with the same FPGA resources, more
buffer slots can be implemented than queues.

Table II presents the performance comparison between the
assigned and dynamic queue management methods with 16
links and the number of queues. We assume that each link

258

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



generates a packet periodically and a packet only requires one
atomic slot to transmit. If the corresponding queue is available,
the packet is pushed into queue. All transmissions follow a
randomly generated schedule where the throughput of each
link is guaranteed and the length of superframe is fixed. The
time between the packet being generated and transmitted is
recorded as the packet delay, and packets are not dropped due
to the delay. From the results, we can observe that in the
assigned queue management method (queues are assigned to
links), a few gap between the number of queues and links
may cause significantly large max./avg. delay. On the other
hand, with the same number of queues, the dynamic queue
management method is able to handle more links and keep
both max and avg. packet delay small. It however cannot
eliminate the delay since all the queues are shared.

D. SNR Measurement

To support the rate adaptation function in SRT-WiFi, we
propose two practical methods to achieve precise SNR mea-
surement in PL. Both methods utilize the short training field
(STF) in the preamble of 802.11 PHY signal. The first method
computes the cross-correlation [32] of the STFE. It is known
that STF consists of 10 same short symbols corresponding to
160 samples with 20 MHz sampling rate. So the samples in
STF repeat every 16 samples [33]. After the detection of STF,
it is buffered. We use the chips from the 33" to the last one
(in total 128 chips) and divide them into two groups each of
which has 64 chips. We compute the cross-correlation of the
two groups of chips as the p, and the SNR value (dB) can be
computed as follows:

SNR = 101og, <1fp) ()

where we assume that p < 1. The reason that we use two
groups of 64 chips is to exclude the chips at the beginning due
to the problems caused by the transient effects of initiating a
transmission in the hardware of the sender.

For the second method, after the STF detection, the STF and
a piece of background noise before the STF are buffered. The
STF signal is added by the background noise. We measure the
power of the background noise before the STF and the power
of the STF signal which is noise power plus the signal power.
Then the SNR (dB) can be computed as:

SNR = 101log;, (P e b “Oise> 2)
where Psrr is the signal power of the STF part and P, jse 1S
the power of the background noise signal before the STF. We
assume that Pspp is larger than P ise.

Both SNR measurement methods are implemented in the
OFDM RX module in SRT-WiFi, and their performance is
discussed in Section VI. An SNR value is computed every
time when a packet arrives. The computed SNR value is
buffered together with the source address if applicable (not all
the packets have the source address, if not the SNR value is
discarded) so that we know which link the SNR value belongs
to since there could be multiple packets being processed during

that time. This information is obtained by the device manager
on each device through the drivers. The device manager then
sends the SNR information to the central network manager to
determine the data rate of each link and the corresponding
schedule in the network. The performance of both SNR
measurement methods are discussed in Section VI.

IV. SRT-WIFI PROCESSING SYSTEM (PS) DESIGN

We now introduce the SRT-WiFi PS design including the
drivers in the kernel and the network managers in user space.

A. SRT-WiFi Drivers

The SRT-WiFi drivers are the interface between PL and
kernel with two purposes: i) configure parameters in the PL
modules to support different operation modes and functions
and ii) handle the packet exchange between PL and kernel.

We first present the PL configuration and the structure of the
drivers. As shown in Fig. 2, each module in PL is connected
to a corresponding driver in the kernel to operate its registers.
We call these drivers sub-drivers. They encapsulate the register
operation functions into APIs to be called in the MAC80211
driver. For the TDMA block in XPU, it also has registers
which are divided into two parts, 1) to keep information of
the network such as atomic slot length, superframe length and
the SSID of the AP that it synchronizes with, ii) to keep the
TDMA schedule including the link and queue information
of each time slot. To configure these registers, we add a
TDMA driver in the kernel. Since the functions of the TDMA
mode are not compatible with the MAC80211 subsystem, it
is difficult to configure the TDMA block through MAC80211.
Instead, we make the TDMA driver a miscellaneous character
driver (MISC). It provides reading and writing functions for
the user space. In the user space, the network manager calls
the APIs of the TDMA driver to configure the TDMA block so
that it can modify the schedule, set the parameters and switch
the working mode when necessary.

When the MACS80211 sub-system sends a packet, the packet
is passed to the MACS80211 driver and handled by the TX
operation function (TXO). In SRT-WiFi, we specify the TX
rate and queue for each link. The MAC80211 driver has access
to the TDMA driver so TXO fetches the assigned queue and
TX rate for the current packet using the destination address of
the packet as the key. The queue assignment and rate selection
are decided by CNM and each device stores that information
in a table in the TDMA driver. The packet is finally passed to
PL for transmission with the rate and queue information.

B. Network Manager

In SRT-WiFi, we have three types of network managers
forming a network management hierarchy, including the cen-
tral network manager (CNM), cluster managers (CM) running
on the APs and device managers (DM) running on the sta-
tions. CNM determines and updates the schedules and assigns
resources to the DMs through their associated CMs.

To maintain proper operations of the SRT-WiFi network,
CNM acquires the global knowledge from all devices includ-
ing the APs and stations. When a SRT-WiFi network starts,

259

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



CNM runs first and waits for CMs to connect and determines
the schedules to be assigned to the links. CMs then start its
cluster and the slave APs synchronize with the master AP in
the same channel and wait for the stations to connect. For
the convenience of synchronization and the joining process,
all beacon slots and shared slots are fixed during the system
operation, and this information is shared with all APs and
stations. When a station is powered on, it scans the channels,
synchronizes with the designated AP and joins the network.
After that, the DM on that station connects to the CM on the
AP to obtain and update the schedule. Before receiving the
schedule, the station can only use the shared slots to complete
the joining process in the CSMA mode.

A unique feature of SRT-WiFi network management is to
enable dynamic slot length in the schedule to support run-time
rate adaptation. For an individual link, the MTU is fixed while
the data rate changes along with the interference level. With
a lower data rate, a packet of the same length requires longer
time to transmit which may exceed the boundary of a time
slot and cause collision. In this work, we apply dynamic slot
length in the schedule to solve this issue. In the schedule,
we define an atomic slot (AS) to be a slot that has the
minimum length to support transmitting a packet with a size
of MTU at the highest rate. For a packet to transmit at a
lower rate, it can use multiple consecutive ASs in a non-
preemptive fashion. Thus by choosing different rates in the
run time, the packet transmission can take different number of
ASs. With this dynamic slot size assignment mechanism, we
will formulate and solve the multi-cluster SRT-WiFi network
scheduling problem with rate adaptation (MSNS-RA) below.

V. NETWORK MANAGEMENT

We now formulate the multi-cluster SRT-WiFi network
scheduling with rate adaptation (MSNS-RA) problem, prove
its NP-hardness, and present the design detail of a heuristic
scheduler.

A. System Model

Consider a set C = {Cy,Cy,...,Cy,} of clusters in a
multi-cluster SRT-WiFi network. Each cluster consists of one
SRT-WiFi AP and multiple SRT-WiFi stations forming a
star network topology. As the SRT-WiFi network is a time-
slotted system, we define an atomic slot (AS) as the minimal
uninterruptible time unit in the system. For each packet to be
transmitted in the SRT-WiFi network, it takes one or multiple
transmission units. A transmission unit is configured to be one
or multiple atomic slots based on the selected data rates.

Let II; = {71, 72, ..., Ti,n} be a set of tasks that transmit
the packets periodically in cluster C;. Each task 7; ; is char-
acterized by Tij = (Bi,j;Ui,j;Di,jaTi,j), where Bi,j e N
represents the size of the transmission unit for 7; ; (in number
of atomic slots), U; ; is the number of transmission units
required by 7; ;. The deadline and period of 7; ; are denoted
as D; ; and T; ;, respectively.

We assume that each task 7;; is released in a periodic
fashion with a set of instances {Z; ; , }7° . For a transmission

unit ! € [1,U; ;] of an instance Z; ; i, let s; j x; and f; ; k. rep-
resent its start time and finish time, respectively. Accordingly,
let r; ;j x; and d; ; k., be the release time and deadline of the [*"
transmission unit of Z; ; ... The release time r; ; 51 of the first
transmission unit is the release time of Z; ; ; and the deadline
d; j kU, ; of the last transmission unit is the deadline of Z; j .
In addition, it holds that Tijkp = fi,j,kﬁpfl with p € [2, UiJ‘]
and di,j,k,q = di,j,k,q—i—l — B@j with ¢ € [1, UiJ — 1}.

We assume that the sizes of atomic slots for all the clusters
are the same, and the number of available channels in the SRT-
WiFi network is H. We assign each cluster C; to a channel
h; € [1, H], and introduce the conflict condition as follows.

Definition 1. For any two instances I; jj, and Ly jr 1o with
1 = 14" or h; = hy hold, we say that they conflict with each
other if the following condition satisfies:

(Si gty figged) Ulsir oy firjrwr ] # 0 3)

where | € [1,U;;], I' € [1,Uy j], and it cannot hold that
1=1,7=73, k=K and | =1 at the same time.

Based on the conflict condition above, we define the feasible
condition of scheduling an instance in multi-cluster SRT-WiFi.

Definition 2. For any instance Z; j 1, it is feasibly scheduled
in a multi-cluster SRT-WiFi network if it does not conflict with
any other instance and the following condition holds:

[$i,g.k.0 figikt] S [P gty di g 1) S
where fi j ki = sijk1+ Bij and 1 € [1,U; j].

B. Problem Formulation

The MSNS-RA problem considers assigning channels to
individual clusters and then schedule the transmissions of the
packets to eliminate the schedule conflict.

Definition 3. Consider a set of clusters {C;}" | each execut-
ing a set of tasks {7; ;}_,, the MSNS-RA problem is to assign
a channel h; € [1, H] to each cluster C; and to find a feasible
schedule for all the tasks assigned with rate adaptation on the
same channel so that any instance of a task can be feasibly
scheduled based on Condition (3) and (4).

Theorem 1. MSNS-RA is NP-hard in the strong sense.

Proof. Our NP-hard proof uses the 3-Partition problem which
is known to be NP-hard [34]. An instance of 3-Partition
consists of a collection A = (x1,9,...,23,) of positive
integers such that > z; = nM, T <z < % for each
1 < i < 3n, there exists a partition of A into Ay, As,...,A,
such that }, ., ;= B foreach 1 <k <n [34].

From any instance of the 3-partition problem, we may
construct an equivalent instance of MSNS-RA. Assuming that
the total number of available channel in MSNS-RA is 1. Let
II be the set of tasks running in all the clusters. For each
integer x;, we map a corresponding task in P:¢ with its size
of transmission unit as x;, its number of transmission units as
1, its period and deadline as M. Also, we construct an extra
task with its size of transmission unit as M, its number of

260

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



transmission units as 1, its period and deadline as nM. The
above reduction is a polynomial reduction.

Since the extra task has taken the intervals in [k x M, (k +
1) x M| where k € [0, 2n—2] is an even number, if there exists
a partition of A into Ay, As,...,A,, in the 3-partition problem,
we can construct the corresponding solution to schedule each 3
tasks corresponding to the integers in A; in an unused interval
[(k+1) x M, (k+2) x M]. Also, if we could find a feasible
schedule for the MSNS-RA problem, we must schedule every
3 tasks in an unused interval [(k+1) x M, (k+2) x M] since
% <z < % This shows that there is a feasible schedule
if and only if there is a 3-Partition, which proves that the
MSNS-RA is NP-hard in the strong sense. O

C. Heuristic Scheduler Design

To address the MSNS-RA problem in the general case,
we propose an effective heuristic scheduler to perform the
channel and task assignment. The proposed scheduler design
contains a cluster scheduler and a set of task schedulers. The
cluster scheduler assigns the channels for individual clusters
by balancing the network utilization of channels. Once the
channel assignment is completed, the task schedulers are
employed to schedule the tasks in each cluster. The details
of the two schedulers are presented below.

1) Cluster scheduler: Given m clusters {C;}1,, the cluster
scheduler first computes and sorts the clusters according to
their network utilization in descending order. Specifically, for
each cluster C; with the corresponding task set {7; ;}7_;, the
network utilization of the cluster is computed as the sum of
its task utilization. To reduce the search space, we introduce
a heuristic to assign the clusters to each channel. We define
the network utilization of a channel as the sum of the network
utilization of all the tasks assigned to this channel. For a cluster
C;, with H available channels, we always select the channel
with the least network utilization and assign it to C;. For
example, we assign C to channel 1, Cs to channel 2, ... ,
Cp to channel H. For cluster C';741, we assign it to channel
H as the utilization of channel H is the lowest. For cluster
Ci 42, we compare channel H — 1 and channel H and select
the one with the lowest network utilization.

2) Task scheduler: After assigning the channels for in-
dividual clusters, the task scheduler aims to find a feasible
schedule for all the tasks assigned to the same channel. Given
n tasks {7;}7_, assigned to a channel h € [1, H] which may
be from different clusters with a hyper-period H, we utilize
the release times and deadlines of the transmission units of
all the instances of every task from the task set to build the
interval set 7. For any interval I € T with I = [s,€], s is
a release time of a transmission unit and e is the deadline of
that transmission unit. Let D; be the demand of the interval
I, which is defined as the sum of B;; of any transmission
unit of Z; ; ;. with its release time and deadline included in 1.

Following the EDF (Earliest Deadline First) scheduling
policy, we schedule the transmission units based on their dead-
lines. However, the sizes of transmission units from different
tasks might be different and a transmission unit cannot be

interrupted during execution. In this non-preemptive case, EDF
is known to be non-optimal. To improve the schedulability, we
consider the technique of inserting idle time. The key idea is
that for each instance popped from the ready queue we utilize
the future release patterns of tasks to decide whether or not
to insert the idle time to delay its execution. This prevents a
non-preemptive transmission unit from being scheduled in an
interval such that its demand plus part of this transmission
unit becomes larger than the length of the interval, thus
jeopardizing the schedulability. To overcome this problem,
we employ the following rule to insert the idle time in the
constructed schedule. For any transmission unit of a task
instance Z; ;. to be scheduled at time ¢. If there exists an
interval I = [s, ¢] satisfying the following two conditions:

o Condition 1: [s, €] C [t,d; j k1]
o Condition 2: t + B; ; > e — Dr.

then the release time of the transmission unit is set to s.

Since there may exist multiple intervals that satisfy the
above conditions, we change the release time of the trans-
mission unit to be the latest one. In addition, deferring the
release time to a later time can change the interval set 7. We
therefore update the interval set once a release time is updated.

With the above rule to insert idle time in the EDF schedule,
we describe the operation of the task scheduler in Alg. 1.
The task scheduler first computes the hyper-period H of the
task set assigned to the channel and initializes the interval
set 7 and the time ¢ based on the timing parameters of the
task instances. It then utilizes a ready queue () to schedule
the tasks based on EDF. Specifically, for each instance I; ;
popped from the ready queue, we employ the rule of inserting
idle time to decide if its release time will be deferred (Line 6-
11). In addition, we check if the current transmission unit can
be scheduled (Line 12-13). If the release time of the current
transmission unit is not modified, i.e., r; ; x,; = t, we schedule
it in time [¢, ¢+ B; ;]. Otherwise, we push it back to the ready
queue and update the interval set 7 (Line 19-20). Let N =
>oi 1 H/T; be the total amount of instances of all the tasks
where T; is the period. As computing the interval set takes
O(N?) time, the total time complexity of the task scheduler
is O(N3).

VI. PERFORMANCE EVALUATION

In this section we report our performance evaluation on the
SRT-WiFi design, at both component and system levels.* Fig. 6
presents the devices used in our SRT-WiFi testbed. We have
two hardware platforms. ZC706 consists of Z7045 SoC and
AD9364 radio chip. It is used as the hardware for both AP
and stations. ADRV9364-Z7020 consists of Z7020 SoC and
AD9364 radio chip. It is only used for some stations due to
its limited FPGA resources. USRP2900 is a traditional SDR
device. It is only used for testing purpose in the SRT-WiFi
testbed such as signal analysis and interference generation.

4More experimental results can be found in our technical report [23].

261

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



Algorithm 1: Task Scheduler

Input : A task set IT = {r;}
Output: A schedule S or reports failure

1 Compute the hyper-period #H of the tasks
2 Initialize a ready queue QQ = (), the interval set 7 and
time ¢

3 while An instance I, ,, . is released or Q) # 0 do

s Q=QU{L.,.)

5 Get the earliest instance Z; j ;, in () at current time
t with its {*" transmission unit to be scheduled

6 | for I €T withI=]s,e| do

7 Compute the demand D; of the interval [

8 if I Ct, di,j,k,l] At 4+ B;; + Dy > e then

9 ‘ Tijkl = max(rmvm, S)

10 end

11 end

12 if r; 1+ B j > d; jr,; then
13 ‘ return None // reports failure
14 end

15 if r; ;1 =t then

16 (865,10 fijka] = [t.t + Bij]
17 t= fijki

18 else

19 insert Z; ; 5, to II

20 update the interval set T

21 end

22 end

23 return S

USRP2900

Fig. 6: SDR hardware used in the SRT-WiFi testbeds.

A. Synchronization

We first evaluate the effectiveness of the proposed time
synchronization mechanism in SRT-WiFi. To support multi-
cluster SRT-WiFi, we let the slave APs (SAPs) synchronize
with the master AP (MAP) and the stations synchronize with
either the MAP or SAP. In the experiments, we first test the
beacon interval of the MAP by configuring it to send the
beacon packets periodically. We use USRP2900 to capture the
beacon signal and use the COTS hardware (AR9285) working
in the monitoring mode to sniff the beacon packets.

In the tests, we set the slot length at 500 us and the super-
frame length at 127 slots so the expected beacon interval is
63.5 ms (one beacon per superframe). Fig. 7 (a) and (b) show
the time drift of the beacon interval measured by USRP2900
and AR9285, respectively. The time drift is measured as the
error between the inter-arrival time of two consecutive beacons
and the expected superframe length (63.5 ms). The SDR result

262

104
& 04 A AA A ANANAMPM A" A A —— SRT-WIFi
g (@)
= —101, : : : ‘
& 0 40 80 120 160
a8  10{
(]
£ o oY, —
F

“10l | | | (b)‘

0 40 80 120 160

Packet Sequence

Fig. 7: Time drifts in beacon interval by USRP2900 and AR9285.

10

_ , —— AP2

Z 0 gty hn o Sl mptiinnadtng o AP3

(e}

= -101, | | | _@

= 0 20 40 60 80 100

a 10

) —— AP2
S O
0 20 40 60 80 100

Packet Sequence

Fig. 8: Synchronization performance.

is measured directly from the captured base band signal and
the average error, maximal error and the standard deviation are
0.03 ps, 0.2 ps and 0.07 ps, respectively. On the other hand, the
result measured from AR9285 has the average error, maximal
error and the standard deviation as 0.13 ps, 1 ps and 0.54
us, respectively. From the comparison, we observed that SRT-
WiFi has much more accurate timer than the COTS hardware.
Thus the implementation using COTS hardware needs a larger
guard time in the slot design to avoid potential collision.
Next, we test the synchronization performance of multi-
cluster SRT-WiFi networks. In SRT-WiFi, the MAP provides
the reference clock. For the SAPs and stations to connect to
the MAP, they listen to the beacons from the MAP. We call
it level-1 synchronization. For the stations connecting to the
SAPs, we call it level-2 synchronization. We use three APs in
the experiments. To test level-1 synchronization performance,
we set AP1 as the MAP sending beacons in slot 0, and AP2
and AP3 as SAPs to synchronize with AP1. We use USRP2900
to measure the beacon sending time of the three APs. Fig. 8
(a) shows the sending time errors of AP2 and AP3. AP2 uses
slot 115 to send beacons. The average sending time error is
0.01 ps with a standard deviation of 0.08 ps. AP3 uses slot
117, and its average error is 0.03 us with a standard deviation
of 0.1 ps. These results show that the accuracy of level-1
synchronization can be well maintained within 1 ps. Next,
we let AP2 synchronize with AP1 and AP3 synchronize with
AP2 to test level-2 synchronization performance. We configure
API to send beacons in slot 0 and AP2 to send beacons in slot
2. The measured results in Fig. 8 (b) show that the average
error is 0.04 us. We further let AP3 synchronize with AP2
and send beacons in slot 119 and the average error is 0.5

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



USRP 1

Station

S i ] )

Signal Signal ‘
Combiner Divider

Fig. 9: Setup of the SRT-WiFi testbed for SNR measurement.

081 —e— Method 1: Cross-Correlation
o —*— Method 2: Signal Power
20.74
2

0.6

10 15 20 25 30
SNR Value (dB)

Fig. 10: Standard deviation of the two SNR measurement methods.

us and the standard deviation is 0.09 ps. This confirms that
although level-2 synchronization is slightly worse than level-
1 synchronization, the error can still be within 1 ps. It is
worth noting that the error comes from not only the SRT-WiFi
devices, but the SDR measurement since the sampling rate we
use in the experiment is 20 MHz. With a higher sampling rate
of SDR, more accurate results are expected.

B. SNR Measurement

In the second set of experiments, we test the SNR measure-
ment performance of SRT-WiFi, and the setup of the testbed
is shown in Fig. 9. We use two SRT-WiFi devices, one for AP
and one for station. The TX connector of the station connects
to the input of a signal combiner. The other input of the signal
combiner connects to a USRP device (USRP1). The combined
signal is then divided by a signal divider into two ways, one
to another USRP (USRP2) and the other connected to the RX
of the AP. Both RX of the station and TX of the AP use the
antennas. During the experiment, the signal from AP to the
station goes on air while the signal from station to AP goes
through the cable. We use USRPI to add controllable noise
to the signal from the station to the AP. The AP measures
the SNR. At the same time we use USRP2 to record the same
signal as the one received at the AP. We then compute the SNR
value from USRP?2 as the ground truth and compare the results
from AP to evaluate the SNR measurement performance.

Fig. 10 shows the standard deviation measured from both
the cross-correlation method and the signal power method.
We only test the SNR from 7 dB to 30 dB since when the
SNR is lower than 7 dB, the connection between the AP and
station is hard to maintain due to the high packet loss rate. The
experimental results show that the cross-correlation method
outperforms the signal power method in general and thus it is
used in all the following experiments.

Fig. 11 shows the packet delivery ratios of the SRT-WiFi
device under different SNR measured in the testbed. We vary
the SNR values by configuring USRP1 to add noise and let

1.0+
o
Z0.8 S I 6Mbps
~ ! /i —— 9Mbps
£0.6 i I —e— 12mbps
% ,! i ;l —+— 18Mbps
2 0.44 ! i —= 24Mbps
g 4 /!' / —&- 36Mbps
Q:f 0.2 / !- I —e- 48Mbps
00 , / S —+- 54Mbps
5 10 15 20 25 30

Set SNR Value (dB)
Fig. 11: PDR under different rates against SNR.

TABLE III: TX rates and slot lengths under different SNR values.

SNR threshold (dB) |25 |22 19 17 15 13 10 |7

Rate (Mbps) 54 |48 (36 (24 |18 |12 |9 6
Slot length (us) 174 | 186 [218 [282 [342 [470 |[594 |846
Atomic slot usage 1 2 2 2 2 3 4 5

the station send 500-byte UDP packets and count the number
of received packets on the AP side. This result gives us the
reference to perform rate adaptation.

Table III presents the data rates applied under different
channel SNR values and the corresponding slot lengths when
transmitting a 500-byte UDP packet. We give the SNR value
threshold for each data rate to be used only when the measured
SNR value is no smaller than the corresponding threshold. The
slot length includes the length of the data packet, the SIFS
(16 ps), the ACK and the guard time (10 ps). The settings in
Table III are applied in all the following experiments.

C. Rate Adaptation

In this subsection, we demonstrate the effectiveness of the
rate adaptation function in SRT-WiFi. In the experiment, we
add interference to the channel and measure the data rates
and PDR for both SRT-WiFi and regular WiFi networks. In
SRT-WiFi, the reception SNR is measured at each device and
sent to CNM. CNM then decides the data rate and constructs
the schedule for the devices. In this experiment, we set up
one AP and one station. We add the interference at the AP
side and let the station send UDP packets to the AP and
measure the PDR and SNR. The level of interference is not
fixed but varied every 0.5 second, meaning that in the first
half of each second, the interference rises to a set level while
in the next half of that second, the interference shuts down
so that we change the interference fast. Fig. 12 (b) shows the
measured SNR of the channel and Fig. 12 (a) zooms in part
of the measured SNR to show how the interference varies.
The minimum SNR values first decrease from 27 to 12 dB
and then gradually increase back. The data rates of both SRT-
WiFi and WiFi are shown in Fig. 12 (c). Regular WiFi uses
the Minstrel algorithm [25] for rate adaptation, which adapts
to the interference according to the transmission history. The
corresponding PDR is shown in Fig. 12 (d). From the figure it
can be observed that when the SNR value is lower than 20 dB,

263

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



TABLE V: Comparison of the computational overheads among HTS,

301 EDF and Z3 on large task sets.
Scheduler | Average time cost (s) | Schedulability | Termination ratio
201 EDF 0.019 0.75% 0%
(@) HTS 2.600 1837% 0%
50 5‘5 60 MS 73 2732.706 5.35% 45.9%
301
% 2rezz = » Uplink
~ 207 AP2 — * Downlink
Zz | ®
o~ 0 50 100 150
'%54’ D 1 T SRR E I [T T F s B
= v bl
g 361 T T —— wiE
& 13l © i - ---- SRT-WiFi
£ ’ e ‘ Fig. 13: An overview of the multi-cluster SRT-WiFi testbeds.
la) 0 50 100 150
1.0 > .
~ 0.9 ms‘y\‘}‘w‘.r?&\/ ‘\f" Xeon E5-2690 v3 2.6 GHz CPU. The scheduling problem
a 0'87 * v % -o¢- WiFi on each channel is formulated as a constraint programming
0'77 (d) X —°— SRT-WiFi problem, which can be solved by Z3.
) 50 100 150 We first simulate random task sets to evaluate the schedu-
Time (s) lability (% of schedulable task sets among all the generated

Fig. 12: Data rate and PDR comparison between SRT-WiFi and WiFi.

TABLE IV: Comparison of schedulability among HTS, EDF and Z3.

Utilization 0.3 0.4 0.5 0.6 0.7 | 0.8 | 09
EDF (%) 45.8 | 195 | 104 | 5.2 26 | 0.8 | 0.5
HTS (%) 754 | 48.6 | 325 | 195 9.8 | 42 | 1.5

73 (%) 75.6 | 494 | 339 | 21.0 | 11.1 | 5.0 | 1.9
EDF & RCS (%) | 209 | 11.6 | 69 2.8 1.1 0.3 0
HTS & RCS (%) | 30.4 | 17.7 9.6 4.3 2.1 0.6 | 0.1
HTS & HCS (%) | 52.7 | 30.1 | 15.8 8.1 4.5 1.1 | 0.1

regular WiFi cannot keep stable transmissions. In SRT-WiFi,
we employ a conservative rate adaptation method. The CNM
buffers the measured SNR values for a time window and uses
the rate according to the lowest SNR value in the buffer. Once
a lower SNR is measured, the data rate is reduced immediately.
The rate does not go back until all the SNR values in the
buffer are higher than the SNR threshold of a higher rate (see
Table IIT). Although this method wastes some resources when
the channel condition is good, it provides stable transmissions.
The performance of this method in the presence of interference
is shown in Fig. 12 (c¢) and it is a step shape without fast
changes. Fig. 12 (d) shows the PDR of SRT-WiFi during the
test. It is always stable because it measures the lowest SNR
and applies the corresponding rate to improve the reliability.

D. Schedule Management

We now present our simulation results and a case study to
show the effectiveness of the proposed heuristic method to
solve the MSNS-RA problem. In the simulation studies, we
evaluate the performance of the proposed heuristic task sched-
uler (HTS) and heuristic cluster scheduler (HCS). For HTS,
we compare it with EDF and an efficient satisfiability modulo
theories (SMT) solver Z3 [35]. All the three algorithms are
implemented in Python and run in a CPU cluster node with

ones) of the three methods under the single-channel single-
cluster scenario. For each task set, we randomly generate
around 10 tasks with the total channel utilization varied from
0.3 to 0.9. Each schedulability value is generated with the
simulation of 2000 task sets. The schedulability comparison
of the three methods is shown in row 2 to 4 of Table IV.
The results show that HTS is significantly better than EDF
while slightly lower than Z3. In the results we keep the
infeasible task sets for comparison to show the trend of how
the utilization affects the schedulability. We further compare
the time costs of the three methods. Here we generate large-
scale task sets with 100 to 150 tasks in each task set and use
random channel utilization from 0.3 to 0.9. Each schedulability
value is still generated with the simulation of 2000 task sets.
The results are shown in Table V and it is clear that Z3 costs
much more time than HT'S. Besides, we set a timeout for Z3 as
5000 second and it reports 45.9% terminated cases. The above
results show that HTS can achieve a good balance between
performance and time cost.

For HCS, we compare it with the random cluster scheduler
(RCS) which randomly assigns the clusters to the channels
under the multi-cluster multi-channel scenario. In each task
set, we randomly generate 4 to 8 channels and 2 to 10
clusters with 5 to 15 tasks in each cluster. The average channel
utilization is also varied from 0.3 to 0.9. The tasks of clusters
are assigned to channels by HCS or RCS and then each
channel is scheduled by HTS or EDF. If all the channels
are schedulable we count it as a schedulable case and finally
compute the schedulability. From row 5 to 7 in Table IV, we
observe that with RCS, HTS keeps the advantage comparing
to EDF. With the proposed HTS scheduler and HCS cluster
working together, the schedulability is further improved.

In addition to the simulation studies, we also implement
HTS on a multi-cluster SRT-WiFi testbed and perform a case
study. The network is configured with two APs (AP1 and AP2

264

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



TABLE VI: Parameters of tasks used in the case study.

Task Number 1 2 3 4 5 6
Period (AS) 1515 (15| 15 | 30 | 30
Deadline (AS) 10 [ 10 | 10 | 10 | 29 | 30
Transmission Unit Number 1 1 1 2 2 1

TABLE VII: Comparison of SNR, PDR and data rates.

Scheduler SNR (dB) PDR (%) Rate (Mbps)
& Stage IAP2 [STA3 [STA4 |[AP2 [STA3 [STA4 [AP2 [STA3 [STA4
Heu.@S1 20.8 RI.1 [26.2 36 36 54
IHeu.@S2 20.6 [159 [19.0 [98.98 [98.94 [97.24 [36 18 24
Heu.@S3 20.5 [14.2 [16.8 36 12 18
IEDF@S1 20.8 RI.1 [26.2 98.26 98.20 36 36 54
IEDF@S2 20.6 [159 [19.0 [98.15 [98.42 24.5 [36 18 54
IEDF@S3 20.5 [14.2 [16.8 92.31 0 36 18 54

for Clusterl and Cluster2, respectively) in one channel and
each AP is connected with two stations (STA1 and STA2
in Clusterl, STA3 and STA4 in Cluster2). Fig. 13 gives an
overview of the testbed where CNM and APs are connected
to a router to form a backbone network. A USRP device is
used to generate interference and it is placed next to AP2. As
shown in Fig. 14, we assign a task to each link and the task
specifications are summarized in Table VI. Each instance of
the tasks sends a 500-byte UDP packet. With a fixed packet
length, the transmission time of the packet depends on the data
rate. In the experiment, we set the atomic slot (AS) length as
174 ps which is for transmitting a packet at 54 Mbps.

In the experiments, STA1 and STA2 in Cluster] transmit to
API in the uplink and AP1 transmits to STA1 in the downlink.
In Cluster2, AP2 synchronizes with AP1 and transmits to
STA3 in the downlink. At the same time, STA3 and STA4
transmit to AP2 in the uplink. During the experiments, we
add interference with three levels as three experiment stages
so that links need to adapt to proper rates to achieve good
PDR. We first apply HTS in Stage 1 and Fig. 14 shows the
constructed schedule. We then increase the noise level to Stage
2 and Stage 3, respectively. The measured SNR, PDR and
applied data rates of links in Cluster2 (sender name is used to
mark a link) are summarized in Table VII (a PDR of multiple
rows is the average PDR). The link quality of STA3 and STA4
drop significantly in each stage because the interferer is placed
close to AP2. The SNR of STA3 and STA4 drop to 14.2 dB
and 16.8 dB, respectively, therefore the rates of STA3 and
STA4 drop to 12 Mbps and 18 Mbps, respectively, to adapt
to the interference. On the other hand, STA1, STA2 and AP1
are barely affected by the interference and their average PDR
are 98.59%, 98.53% and 98.24%, respectively.

We then evaluate the performance of EDF under the same
experiment settings. EDF is only able to generate a feasible
schedule in Stage 1 and devices cannot require more atomic
slots when the interference level increases. With this con-
straint, in Stage 2 and Stage 3, the data rate of STA3 can
only drop to 18 Mbps while the rate of STA4 keeps the same.
This causes the PDR of STA4 to drop significantly in Stage 2
and its connection breaks in Stage 3. These results confirm that
our proposed heuristic method can generate feasible schedules

265

4 Task Release Time ¥ Task Deadline
Task 1 (STA1-API)
Task 2 (STA2-AP1)
Task 3 (AP1-STA1)
Task 4 (AP2-STA3)
Task 5 (STA3-AP2)

¥
Task 6 (STA4-AP2)
5 R 30 Slot#
Stage 2 (Only Heuristic): 4
2 Task 5 (STA3-AP2)

v
Task 6 (STA4-AP2)

v

Fig. 14: The task schedule constructed by the MSNS-RA heuristic.

4 Stage 3 (Only Heuristic):
Task 5 (STA3-AP2)

v
Task 6 (STA4-AP2)

and keep higher PDR in noisy scenarios compared to EDF.

VII. CONCLUSION AND FUTURE WORK

This paper presents the design, implementation and perfor-
mance evaluation of SRT-WiFi, a high-speed real-time wireless
system with full stack configurability that is based on software-
defined radio (SDR) platform. We discuss the design principles
of the programmable logic and processing system of the
SRT-WiFi system and show the advantages of SRT-WiFi on
high-precision synchronization, queue management and SNR
measurement-based rate adaptation compared to existing real-
time wireless solutions. We further formulate the multi-cluster
SRT-WiFi network scheduling problem with rate adaptation
(MSNS-RA) and propose an effective heuristic solution to
solve it. The performance of the system and the proposed
algorithm are thoroughly evaluated in our SRT-WiFi testbed.

For the ongoing and future work, we shall keep improving
SRT-WiFi to support evolving features like higher bandwidth,
multiple-input and multiple-output (MIMO), beamforming and
orthogonal frequency division multiple access (OFDMA) in
IEEE 802.11n/ac/ax. Two features under development include
1) higher throughput with 40 MHz bandwidth and single-user
MIMO (SU-MIMO) in IEEE 802.11n/ac supporting multiple
data streams to be transmitted simultaneously and providing
more choices on data rate selection for SRT-WiFi, 2) multi-
user multiple-input and multiple-output (MU-MIMO) in IEEE
802.11ac enabling the AP to transmit packets to multiple
stations in one time slot which enhances the flexibility of
scheduling and further reduces the jitter and latency. Besides
the throughput, we also consider more complex network
topology like the ad hoc mode. And we will deploy our system
in real industrial testbeds to test the performance with interfer-
ence pattern of real industrial environments. We shall evaluate
how these features will affect the resource management in
SRT-WiFi to improve the throughput and further reduce the
transmission latency in SRT-WiFi networks.

VIII. ACKNOWLEDGEMENT

This work was partly supported by the National Science
Foundation under Award CNS-2008463 and TI-1919229.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



[1]

[2]

[3

=

[4

[5]

[6]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

REFERENCES

F. Tramarin, A. K. Mok, and S. Han, “Real-time and reliable industrial
control over wireless lans: Algorithms, protocols, and future directions,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1027-1052, 2019.

X. Guo, S. Han, X. S. Hu, X. Jiao, Y. Jin, F. Kong, and M. Lemmon, “To-
wards scalable, secure, and smart mission-critical iot systems: Review
and vision:(special session paper),” in 2021 International Conference on
Embedded Software (EMSOFT). 1EEE, 2021, pp. 1-10.

E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” JEEE
transactions on industrial informatics, vol. 14, no. 11, pp. 4724-4734,
2018.

J. Song, S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “A
complete wirelessHART network,” in Proceedings of the 6th ACM
conference on Embedded network sensor systems, 2008, pp. 381-382.
The International Society of Automation, “ISA  100.11a.”
[Online]. Available: https://www.isa.org/standards-and-publications/isa-
standards/isa-standards-committees/isal00

R. Steigmann and J. Endresen, “Introduction to WISA: WISA-wireless
interface for sensors and actuators,” White paper, ABB, 2006.

D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 3641, 2014.
“IEEE 802.15 WPAN™ Task Group 4. [Online].
https://www.ieee802.org/15/pub/TG4.html

Y. Cheng, D. Yang, H. Zhou, and H. Wang, “Adopting IEEE 802.11
MAC for industrial delay-sensitive wireless control and monitoring
applications: A survey,” Computer Networks, vol. 157, pp. 41-67, 2019.
G. Cena, L. Seno, A. Valenzano, and C. Zunino, “On the performance
of IEEE 802.11 e wireless infrastructures for soft-real-time industrial
applications,” IEEE Transactions on Industrial Informatics, vol. 6, no. 3,
pp. 425437, 2010.

L. Seno, S. Vitturi, and F. Tramarin, “Tuning of IEEE 802.11 MAC for
improving real-time in industrial wireless networks,” in Proceedings of
2012 IEEE 17th International Conference on Emerging Technologies &
Factory Automation (ETFA 2012). 1EEE, 2012, pp. 1-8.

G. Tian, S. Camtepe, and Y.-C. Tian, “A deadline-constrained 802.11
MAC protocol with QoS differentiation for soft real-time control,” IEEE
Transactions on Industrial Informatics, vol. 12, no. 2, pp. 544-554,
2016.

H. Trsek, J. Jasperneite, and S. P. Karanam, “A Simulation Case Study
of the new IEEE 802.11 ¢ HCCA mechanism in Industrial Wireless
Networks,” in 2006 IEEE Conference on Emerging Technologies and
Factory Automation. 1EEE, 2006, pp. 921-928.

R. Moraes, F. Vasques, P. Portugal, and J. A. Fonseca, “VTP-CSMA:
A virtual token passing approach for real-time communication in IEEE
802.11 wireless networks,” IEEE Transactions on Industrial Informatics,
vol. 3, no. 3, pp. 215-224, 2007.

D. K. Lam, K. Yamaguchi, Y. Shinozaki, S. Morita, Y. Nagao,
M. Kurosaki, and H. Ochi, “A fast industrial WLAN protocol and
its MAC implementation for factory communication systems,” in 2015
IEEE 20th Conference on Emerging Technologies & Factory Automation
(ETFA). 1EEE, 2015, pp. 1-8.

J. Lin, W. Liang, H. Yu, and Y. Xiao, “Polling in the frequency domain:
a new MAC protocol for industrial wireless network for factory au-
tomation,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 20, no. 4, pp. 211-222, 2015.

Y. Zheng, A. Xu, Y. Song, W. Zhao, and M. Liu, “Industrial wireless
deterministic communication based on WLAN: Design, implementation
and analysis,” in 2009 IEEE International Conference on Communica-
tions Technology and Applications. 1EEE, 2009, pp. 274-278.

B. Holfeld, D. Wieruch, T. Wirth, L. Thiele, S. A. Ashraf, J. Huschke,
1. Aktas, and J. Ansari, “Wireless communication for factory automation:
An opportunity for LTE and 5G systems,” I[EEE Communications
Magazine, vol. 54, no. 6, pp. 3643, 2016.

S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson, and J. Ansari,
“Ultra-reliable and low-latency communication for wireless factory au-
tomation: From LTE to 5G,” in 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE,
2016, pp. 1-8.

A. Aijaz, “Private 5G: The future of industrial wireless,” IEEE Industrial
Electronics Magazine, vol. 14, no. 4, pp. 136-145, 2020.

Available:

266

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]

[35]

Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“RT-WiFi: Real-time high-speed communication protocol for wireless
cyber-physical control applications,” in 2013 IEEE 34th Real-Time
Systems Symposium. 1EEE, 2013, pp. 140-149.

W. Liang, M. Zheng, J. Zhang, H. Shi, H. Yu, Y. Yang, S. Liu, W. Yang,
and X. Zhao, “WIA-FA and its applications to digital factory: A wireless
network solution for factory automation,” Proceedings of the IEEE, vol.
107, no. 6, pp. 1053-1073, 2019.

Z. Yun, P. Wu, S. Zhou, A. K. Mok, M. Nixon, and S. Han,
“RT-WiFi on Software-Defined Radio: Design and Implementation,”
2022. [Online]. Available: https://arxiv.org/abs/2203.10390

M. Dillinger, K. Madani, and N. Alonistioti, Software defined radio:
Architectures, systems and functions. John Wiley & Sons, 2005.

D. Xia, J. Hart, and Q. Fu, “Evaluation of the Minstrel rate adaptation
algorithm in IEEE 802.11 g WLANS,” in 2013 IEEE International
Conference on Communications (ICC). 1EEE, 2013, pp. 2223-2228.
J. Xianjun, L. Wei, and M. Michael. (2019) open-source
IEEE802.11/Wi-Fi baseband chip/FPGA design. [Online]. Available:
https://github.com/open-sdr/openwifi

X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi:
a free and open-source IEEE802. 11 SDR implementation on SoC,” in
2020 IEEE 91st Vehicular Technology Conference (VIC2020-Spring).
IEEE, 2020, pp. 1-2.

S. S. Math, R. Manjula, S. Manvi, and P. Kaunds, “Data transactions
on system-on-chip bus using AXI4 protocol,” in 2011 International
Conference on Recent Advancements in Electrical, Electronics and
Control Engineering. 1EEE, 2011, pp. 423-427.

D. C. Mur, “Linux Wi-Fi open source drivers-mac80211, ath9k/ath5k.”
Q. Leng, W.-J. Chen, P-C. Huang, Y.-H. Wei, A. K. Mok, and S. Han,
“Network management of multicluster RT-WiFi networks,” ACM Trans-
actions on Sensor Networks (TOSN), vol. 15, no. 1, pp. 1-26, 2019.

J. C. Eidson, Measurement, control, and communication using IEEE
1588.  Springer Science & Business Media, 2006.

E. A. Lee and D. G. Messerschmitt, Digital communication. Springer
Science & Business Media, 2012.
“IEEE 802.11 working group.” [Online]. Available:

https://www.ieee802.org/11/

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. USA: W. H. Freeman & Co., 1990.
L. De Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337-340.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.



