
RT-WiFi on Software-Defined Radio: Design and Implementation

Zelin Yun†, Peng Wu†, Shengli Zhou†, Aloysius K. Mok‡, Mark Nixon§, Song Han†
†University of Connecticut

†Email: {zelin.yun, peng.wu, shengli.zhou, song.han}@uconn.edu
‡University of Texas at Austin‡Email: mok@cs.utexas.edu§Emerson Automation Solutions

§Email: mark.nixon@emerson.com

Abstract—Applying high-speed real-time wireless technologies
in industrial applications has the great potential to reduce the
deployment and maintenance costs compared to their wired
counterparts. Wireless technologies enhance the mobility and
reduce the communication jitter and delay for mobile industrial
equipment, such as mobile collaborative robots. Unfortunately,
most existing wireless solutions employed in industrial fields
either cannot support the desired high-speed communications or
cannot guarantee deterministic, real-time performance. A more
recent wireless technology, RT-WiFi, achieves a good balance
between high-speed data rates and deterministic communication
performance. It is however developed on commercial-of-the-shelf
(COTS) hardware, and takes considerable effort and hardware
expertise to maintain and upgrade. To address these problems,
this paper introduces the software-defined radio (SDR)-based
RT-WiFi solution which we call SRT-WiFi. SRT-WiFi provides
full-stack configurability for high-speed real-time wireless com-
munications. We present the overall system architecture of
SRT-WiFi and discuss its key functions which achieve better
timing performance and solve the queue management and rate
adaptation issues compared to COTS hardware-based RT-WiFi.
To achieve effective network management with rate adaptation in
multi-cluster SRT-WiFi, a novel scheduling problem is formulated
and an effective algorithm is proposed to solve the problem.
A multi-cluster SRT-WiFi testbed is developed to validate the
design, and extensive experiments are performed to evaluate the
performance at both device and system levels.

Index Terms—Software-defined radio (SDR), RT-WiFi, full-
stack configurability

I. INTRODUCTION

A recent trend in smart factory automation is to employ

high-speed real-time wireless technologies to interconnect

heterogeneous industrial assets to perform various sensing and

control services, and support mobile equipment to conduct

designated tasks in a collaborative fashion [1]. Most of these

industrial applications have stringent requirements on both

high data throughput and deterministic real-time performance

(e.g., latency and jitter) [2], [3].

The existing efforts on the design and implementation of

real-time wireless solutions can be summarized in four main

categories. The first category includes those works focusing

on low-speed low-power real-time communication solutions,

such as WirelessHART, ISA 100.11a, WISA and 6TiSCH [4]–

[7]. Although those solutions can achieve deterministic com-

munication performance and have ultra-low energy footprint,

they cannot support high-speed communications, constrained

by the underlying IEEE 802.15.4/802.15.4e [8] physical layer

(PHY) and data link layer (DLL). The works in the second

category [9]–[14] achieve the real-time performance based

on IEEE 802.11e standard, including the hybrid coordination

function (HCF) controlled channel access (HCCA) which

enables the polling method [15]–[17] and the enhanced dis-

tributed channel access (EDCA) which enables priorities in

the transmissions and uses the highest priority for the real-

time transmissions to guarantee their access to the channel.

However, when EDCA is applied, the downlinks may compete

for the highest priority queue on the access point (AP)

side which may cause unnecessary delay and the ensuing

timing violations. The polling method in HCCA is not time-

efficient when the channel usage is high compared to assigning

communication schedules to the devices directly and it is

also subject to coexistence issues in the scenarios when

multiple APs use the same HCCA access function [1]. The

works in the third category study the applications of 5G

and Long Term Evolution (LTE) technologies in real-time

industrial applications [18]–[20]. However, the deployment

of LTE and 5G equipment do not exploit the license-free

bands and therefore misses the economic advantage and the

flexibility afforded by the extra bandwidth required for the

anticipated applications in the industrial automation field such

as robotics. For the last category, existing works [21], [22]

focus on modifying IEEE 802.11 standards and implementing

the systems on COTS hardware. For example, [21] proposes

a configurable real-time WiFi system, called RT-WiFi, based

on Qualcomm Atheros AR9285. It modifies the driver and

implements a network manager for scheduling deterministic

real-time communications. For the above works using COTS

hardware, a major issue is that COTS hardware is usually not

open-source, and many functions are not accessible which

makes it difficult to maintain and upgrade such system to

support frequently updated OS kernels and wireless protocols.1

To address the aforementioned issues in existing work, we

present in this paper the design and implementation of a

software-defined radio (SDR)-based RT-WiFi solution which

we name SRT-WiFi. SDR [24] is a radio communication

system where components that have been traditionally im-

plemented in hardware are instead implemented by means of

software on a PC or an embedded system. We design SRT-

1For a more detailed discussion on the related work, please refer to our
technical report [23].

1254

2022 IEEE 28th Real-Time and Embedded Technology and Applications Symposium (RTAS)

978-1-6654-9998-9/22/$31.00 ©2022 IEEE
DOI 10.1109/RTAS54340.2022.00028

20
22

 IE
EE

 2
8t

h
R

ea
l-T

im
e

an
d

Em
be

dd
ed

 T
ec

hn
ol

og
y

an
d

A
pp

lic
at

io
ns

 S
ym

po
si

um
 (R

TA
S)

 |
97

8-
1-

66
54

-9
99

8-
9/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

R
TA

S5
43

40
.2

02
2.

00
02

8

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

Central
Network
Manager

AP1 AP2 AP3Cluster 1
Manager

Cluster 2
Manager

Cluster 3
Manager

Fig. 1: Overview of the multi-cluster SRT-WiFi network.

WiFi based on an advanced SDR platform (ZC706 develop-

ment board with Zynq-7000 and AD9364) where the radio

functions are programmed on field programmable gate array

(FPGA). This advanced SDR system can run in real time since

the radio functions are achieved by the logic blocks in FPGA

running at the speed as driven by an oscillator. With such a

programmable real-time radio system, SRT-WiFi can achieve

the key functions required to support high-speed real-time

communications, and also provide an open-source platform

to support ever-evolving IEEE 802.11 standards.

Fig. 1 gives the overview of a multi-cluster SRT-WiFi

network where multiple APs are synchronized and connected

to a backbone network. A central network manager (CNM)

manages all the network resources and allocates them to

the cluster managers (CMs) running on individual APs. In

each cluster, high-speed real-time point-to-point wireless com-

munications with rate adaptation are supported to deal with

the interfered environments. The clusters operate on multiple

channels meaning that one channel has one or multiple clusters

operating on it. Compared to COTS hardware-based existing

works, SRT-WiFi leverages the programmability of the SDR-

based PHY and DLL to provide full-stack configurability.2

By taking advantage of this full-stack configurability, it is

possible to add three major features in SRT-WiFi: i) more

precise time synchronization which leads to a smaller slot size

for packet transmission and higher sampling rate; ii) efficient

queue management which reduces possible downlink latency

caused by the limited number of queues in COTS hardware; iii)

more accurate signal-to-noise ratio (SNR) measurement, based

on which we propose a novel rate adaptation mechanism to

dynamically change the data rates based on the SNR measure-

ment of the links to guarantee the desired packet delivery ratio

(PDR) of each link; this adaptation outperforms the Minstrel

algorithm [25] employed in regular WiFi network. Based on

the proposed rate adaptation mechanism, we further formulate

and solve the multi-cluster SRT-WiFi network scheduling

problem (MSNS-RA) based on the dynamic rates determined

at run time. We implement the SRT-WiFi protocol and the

multi-cluster network management solution on a real testbed,

and validate the effectiveness of the designs through extensive

experiments at both device and system levels.

The remainder of this paper is organized as follows.

Section II presents the overall system architecture of SRT-

2The current version of SRT-WiFi system supports IEEE 802.11a/g. It can
be further extended to support emerging IEEE 802.11 standards, such as
802.11n/ac/ax. See the ongoing and future work in Section VII).

WiFi. Section III and Section IV describe the design of

the programmable logic (PL) component and the processing

system (PS) component of SRT-WiFi, respectively. Section V

introduces the multi-cluster network management framework

to support rate adaptation in SRT-WiFi to guarantee the timing

requirement of real-time tasks even in the presence of severe

interference. Section VI evaluates the performance of SRT-

WiFi at both device and system levels. We conclude the paper

in Section VII and discuss the ongoing and future work.

II. SYSTEM ARCHITECTURE

SRT-WiFi is based on the Openwifi project [26], [27] which

is a SoftMAC IEEE 802.11 design compatible with Linux

MAC80211. In this section, we first introduce Openwifi, and

then describe the SRT-WiFi architecture in detail (see Fig. 2).

A. Openwifi Architecture

Openwifi has two major components: the Processing System

(PS) and the Programmable Logic (PL). PS is an operating

system (OS) running the major part of the data link layer

(DLL) and all the other higher layers. PL is an FPGA-based

embedded system running the real-time part of the DLL and

the physical layer (PHY). Both PL and PS are implemented

on an integrated System-on-Chip (SoC) which consists of an

FPGA (for PL) and an ARM processor (for PS). PL and

PS exchange data through the Advanced eXtensible Interface

(AXI) [28]. In addition, PL connects to a radio terminal for

packet transceiving.

In Openwifi, PL is designed as the wireless adaptor. As

shown on the right side of Fig. 2, PL has three main mod-

ules: the TX interface (TXI), the XPU (application-specific

processing unit) and the RX interface (RXI). The TXI and

RXI modules handle packet transmission and reception, re-

spectively. The XPU module runs the state machine of IEEE

802.11 channel access methods. To process general packet

transmissions, TXI first holds the packet passed from PS in its

queues and waits for the transmission trigger from XPU. The

carrier-sense multiple access (CSMA) block in XPU senses the

channel and runs the backoff mechanism. Once the channel is

available, XPU triggers TXI which in turn fires the packet to

the modulation block (OFDM TX).The modulated signal is

then passed through radio interface and finally emitted from

the antenna by the radio terminal. After sending the packet, the

XPU module waits for the acknowledgement (ACK) packet

from RXI if ACK is required. If ACK is correctly received

or not required, the transmission success is reported to PS. If

XPU does not receive the correct ACK after a pre-defined time

threshold, it triggers retransmission(s) until reaches the limit

of transmission attempts and then reports the failure to PS.

For a general packet reception, the signal from radio terminal

is demodulated by OFDM RX and pushed in a queue in RXI.

At the same time, XPU reads the packet header and applies

a packet filter to decide if this packet is destined for PS. If

so, RXI then fires the packet to PS. If the packet requires an

ACK, XPU generates the ACK packet in TXI and triggers

the transmission. Both TX and RX of the radio terminal run

2255

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

Programmable Logic (PL)
Radio Terminal

Radio
Interface

OFDM
TX

OFDM
RX

XPU

TX Interface

Queue 7

Queue 1Queue 0

RX Interface

Queue

TDMA CSMA

Processing System (PS)

Kernel Space

OFDM TX DriverMISC

TX Driver

TDMA Driver

XPU Driver

RX Driver

OFDM RX Driver

M
A

C
8
0
2
1
1

D
ri

v
er

L
in

u
x

M
A

C
8
0
2
1
1

User Space

Network
Manager

Real-time
Task nReal-time

Task 3
Real-time

Task 2
Real-time

Task 1

A
X

I

Created Modules Modified Modules

Fig. 2: Overview of the SRT-WiFi system architecture design based on the Openwifi project.

in parallel, and all PL modules have registers to be used for

configuring the operation mode and parameters.

The PS component is a Linux OS running on an ARM

processor. As a SoftMAC wireless device in Linux, the ma-

jor part of DLL is integrated in Linux kernel (MAC80211

subsystem [29]). Thus the MAC80211 driver is needed to

provide the interface of the wireless adaptor (PL) for the

Linux MAC80211 subsystem. The data exchanges between

the MAC80211 driver and PL rely on the sub-drivers (see the

left side of Fig. 2). All the sub-drivers are designed to provide

APIs for register operations to the MAC80211 driver so that

it can configure the wireless adaptor (PL). The TX and RX

drivers also handle TX and RX data packet transfer between

PS and PL, respectively.

B. SRT-WiFi Architecture

The key design goal of SRT-WiFi is to support precise time

synchronization and multi-cluster real-time communications

with effective rate adaptation at run time. For this purpose,

we present below the SRT-WiFi architecture, by modifying

PL and PS in Openwifi to add the required functions.

SRT-WiFi PL: The PL component of SRT-WiFi is designed

to i) achieve the real-time transmissions with high synchro-

nization time precision, ii) provide more efficient queue man-

agement and iii) measure the reception SNR of the links more

precisely in order to provide reference for rate adaptation.

To achieve real-time transmissions, we design a TDMA

block in XPU to supplement the CSMA block. The TDMA

block triggers the PHY and DLL activities with high time

precision. It runs either according to the local timer or synchro-

nizes with another device in the SRT-WiFi network. According

to our measurements (to be elaborated later), the synchro-

nization time error and standard deviation in the multi-cluster

SRT-WiFi are as low as 0.03 μs and 0.07 μs, respectively.

Different from the CSMA block which triggers the transmis-

sions following the DCF mechanism, the TDMA block triggers

the transmissions according to a schedule constructed by the

network managers in PS. The schedule is stored in the TDMA

block and updated at run time through a TDMA driver that is

added in PS (see Fig. 2). The TDMA and CSMA modes in

SRT-WiFi can be switched during the run time seamlessly.

For an AP working in the TDMA mode, it needs to handle

the links to all the connected stations. The transmissions on

those links have to follow the order of a schedule. With limited

number of queues, COTS hardware [21] must manage the

issue that the queued packets may block the transmissions of

upcoming packets that may cause unmanageable congestions.

SRT-WiFi provides an effective queue management which

supports more customized queues and significantly increases

the number of supported links for growing network scale.

By leveraging the capability of SRT-WiFi to have direct

access to the received signals, we are able to design novel

methods to measure the SNR precisely and implement it in the

OFDM RX module. The SNR information provides a reference

for the rate adaptation mechanism to adapt the TX data rates

and adjust the communication schedules at run time.

SRT-WiFi PS Kernel: As shown in Fig. 2, we add the TDMA

driver and modify the MAC80211 driver, TX and OFDM RX

drivers to provide an interface for exchanging the schedule,

queue and SNR information between PS and PL in the TDMA

mode. The TDMA driver is registered in the kernel as a

miscellaneous character driver (MISC). It provides APIs for

the network managers in the user space. The network manager

configures the schedule and queue information in PL through

the TDMA driver and updates the data rates in MAC80211

driver as well. The TX driver is modified to support queue

management and the OFDM RX driver is enhanced to support

reading the SNR values measured in PL.

SRT-WiFi Network Management: We call the network

managers running on individual APs cluster managers (CM)

and the ones running on the stations device managers (DM).

These network managers are designed for two purposes, i)

to exchange information at the application layer among all

the devices including the schedule, data rates and SNR of

links, ii) to manage the TDMA DLL on each device such as

configuring the schedule for the TDMA block and reading the

SNR measurement from the PL. All network managers run

in the user space so they are easy to maintain and upgrade.

III. SRT-WIFI PROGRAMMABLE LOGIC (PL) DESIGN

We first present the PL design of SRT-WiFi and focus on

the new functions in the XPU, TXI and OFDM RX modules.

3256

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S126

Beacon1
6 Mbps

Shared
6 Mbps

Shared
6 Mbps

Link1
54 Mbps

Link3
12 Mbps

Link2
36 Mbps

Idle
…

Beacon2
6 Mbps Schedule

Atomic Slot
Superframe

Fig. 3: The timing diagram of an example superframe in multi-cluster SRT-WiFi with 127 atomic slots.

Idle

Listening

Idle

Self
Sending

No Self
Sending

STF

LTF

PHY
Header

MAC
Header

MAC
Payload

Packet
Queueing

Reset STLTF
Detected

FC valid

If beacon?No

Wait for SSID

Yes

SSID matches?No

Get SSID

Yes

Trigger
timer update

Idle

Update timer?

Update ST to
schedule timer

Yes

No

If slot begins?No

Yes

Fetch
queue number

If packet
in queue

Trigger

Yes

No

Synchronization Timer (ST) (b) Schedule Timer (c)

Idle

Queue
Check

Sending

Triggered

Packet in
Queue?

Yes

RX (a) TX (d)

State Transition

Info Transfer

Fig. 4: State machines of the schedule timer and the synchronization
timer (ST) in the TDMA block of SRT-WiFi.

A. TDMA Block Design

In the TDMA mode of SRT-WiFi, all transmissions follow a

schedule to coordinate the communications among devices and

avoid collision. The schedule describes the transmitting times

and orders of the links in a time period called superframe

which is a sequence of consecutive time slots. Each time

slot specifies the radio activities (TX, RX or Idle) and the

associated sender/receiver. At run time, the superframe is

repeated ad infinitum to generate schedule. To support rate

adaptation, the length of the time slot varies along with the

rate, since with the same packet length, a lower rate requires

longer time to transmit. The time slots use atomic slots (ASs)

as the basic time unit (to be elaborated later). In SRT-WiFi, the

lengths of superframe, time slot and AS are all configurable.

Fig. 3 shows the timing diagram of an example superframe

in an SRT-WiFi network. It has 127 ASs where Slot0 and Slot1

are used by AP1 and AP2 to send beacons, respectively. Slot2

and Slot3 are shared slots for any link and usually used for the

association process. The other ASs are either assigned to links

for dedicated communications or left idle. The links using the

same MTU (Maximum Transmission Unit) but different data

rates require different slot lengths in terms of the number of

ASs. For example, Link1, Link2 and Link3 use 1, 2 and 3

ASs for their transmissions, respectively.3

To enable real-time communications in SRT-WiFi and im-

plement the schedule in PL, a TDMA block is added in the

XPU module (see Fig. 2). In the TDMA block, a register

page is implemented. Some registers are used to configure

TDMA parameters, such as the superframe length; the other

registers are assigned to keep the schedule information. Based

on the schedule information, the TDMA block employs a set

of timers called schedule timers to trigger the transmissions.

At the beginning of a time slot, the TDMA block fetches

3See Section VI for the detailed data rates and required slot lengths.

the link information associated with that slot and triggers the

transmission. The corresponding queue in the TXI module

sends a frame if it is not empty. The frame is then modulated

and sent through the radio terminal.

B. TDMA Time Synchronization Design

Another key function of SRT-WiFi is to achieve precise

time synchronization among the devices in the network. In

our design, we have multiple clusters in the same SRT-WiFi

network. Each cluster consists of an AP and multiple stations,

and the clusters may share the same channel. For those clusters

operating on the same channel, the devices need to be well

synchronized to avoid potential collision. The synchronization

mechanism of existing work using COTS hardware [30] is

to connect and synchronize the APs through an Ethernet

backbone network using the IEEE 1588 protocol [31]. The

stations are then further synchronized with the APs using the

beacon packets. For the synchronization among the APs, the

OS of each AP first updates its system timer with IEEE 1588

and then updates the timer in its wireless adaptor, which is

used to send packets at run time. For the synchronization on

the station side, they listen to the beacon packets and update

the system timer. Since the time synchronization on both APs

and stations are done by non-real-time OS, it may cause an

average time drift between the devices as high as 20 μs [21].

To address this problem, in SRT-WiFi, we propose a new

synchronization method based on SDR which is performed at

the physical layer (PHY). It is worth noting that this method

is only suitable for the devices operating on the same channel.

For two APs operating on different channels to synchronize,

IEEE 1588 will still be employed. For the APs operating

on the same channel, we first designate a master AP (MAP)

and let the other APs be the slave APs (SAPs). We assume

that all SAPs can hear from the MAP, which provides the

reference clock. The SAPs synchronize with the MAP, and all

the stations synchronize to their corresponding APs. The key

design goal of SRT-WiFi synchronization is to avoid using the

timer in non-real-time OS but leverage the timer in hard real-

time PL. For this aim, timers are added in the TDMA block

with nanosecond precision for synchronization. We call them

TDMA timers, and they are set and run in hard real-time.

TDMA timers on MAP are set by its OS to unify the time on

MAP. TDMA timers on SAPs and stations synchronize with

the TDMA timers on MAP using PHY beacon signal and their

OS time are synchronized accordingly.

We now introduce the synchronization procedures. In SRT-

WiFi, PHY demodulation is achieved in the OFDM RX mod-

ule in PL. The demodulated symbols are passed to RXI and

XPU. In the TDMA block, a synchronization function is added

to utilize the baseband signal demodulation to synchronize

4257

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

TABLE I: PDR with varied payload sizes and slot lengths

Payload (bytes) 50 100 150 200 300 400 500
Slot Length (μs) 110 118 126 130 146 162 174
Sampling Rate (Hz) 9090 8474 7936 7692 6849 6172 5747
PDR (%) 99.7 99.6 99.6 99.6 99.3 99.7 99.4

with a specific AP. More specifically, two TDMA timers are

added, one is called schedule timer and the other is called

synchronization timer (ST). ST is used to track the arrival

time of a beacon packet and the schedule timer is to run the

schedule. When a new packet arrives and the long training field

(LTF) of the PHY signal is detected in the OFDM RX module,

ST is reset. Next, the synchronization function waits for the

DLL packet header from the OFDM RX module. It checks

whether the packet is a beacon packet. If so, it continues to

wait for the service set ID (SSID) in the packet payload. Once

SSID is read, the synchronization function compares it with

the target SSID. If they match, ST is updated to the schedule

timer; otherwise, the synchronization function waits for the

next packet and the schedule timer runs as usual with no

update. This timer update procedure is summarized in Fig. 4

where Fig. 4 (a) shows how a packet is received and passes the

information to ST and Fig. 4 (b) shows how ST synchronizes

accordingly and triggers the update of the schedule timer.

Fig. 4 (c) shows how the schedule timer changes states to

update the time or trigger real-time transmissions as shown

in Fig. 4 (d). It is worth noting that this synchronization

method also works with higher bit rates in IEEE 802.11n/ac/ax

standards. With this method, our experiments show that the

synchronization time drift of the SRT-WiFi devices can be

maintained within 0.2 μs which is much better than the 20

μs [21] time draft observed on the COTS hardware. This more

precise time synchronization can help reduce the guard time

which is to avoid collisions between slots due to the syn-

chronization error and support smaller time slot length which

further improves the sampling rates. Table I presents the packet

delivery ratio (PDR) test results with varied application layer

payload sizes, the corresponding slot lengths and achievable

sampling rates. The guard time used in the experiments is

set at 10 μs. From the results, we can observe that with a

payload size of 50 bytes, the slot length can be set at 110 μs
and the sampling rate can be as high as 9 kHz. The detailed

experimental results can be found in Section VI.

C. Queue Management

In SRT-WiFi, the packets from PS are first pushed in queues

before transmission. For COTS hardware-based solutions,

the queue implementation is not configurable. For example,

AR9285 used in the RT-WiFi implementation [21] uses only

8 queues. To support real-time transmissions in SRT-WiFi,

queues are assigned to individual links to guarantee the desired

timing performance. However, when the number of stations

increases beyond the number of queues in the AP, the packets

belonging to different links may share a queue, leading to

unexpected timing violations. For example, as shown in Fig. 5

(a), an AP has 10 associated stations while it only has 8 queues

STA1
STA9

STA10

Queue0

STA2

Queue1

STA3

Queue2

STA8

Queue7

STA1

Queue0

STA9

Queue8

STA10

Queue9 Queue15

STA1
Buffer Slot5

STA9 STA10

(a)

(b)

(c)
…

Slot0
STA1
Slot1

…
…

STA9
Slot9

STA10
Slot10

STA1
Slot11

…
…

STA9
Slot19

STA10
Slot20

…
Slot0

STA1
Slot1

…
Slot0

STA1
Slot1

…
…

STA9
Slot9

STA10
Slot10

STA1
Slot11

…
…

STA9
Slot19

STA10
Slot20

…
Slot0

STA1
Slot1

…
Slot0

STA1
Slot1

…
…

STA9
Slot9

STA10
Slot10

STA1
Slot11

…
…

STA9
Slot19

STA10
Slot20

…
Slot0

STA1
Slot1

STA2
STA2

STA3
STA3

STA8
STA8

Buffer Slot6 Buffer Slot7 Buffer Slot47

Fig. 5: Queue management issues in RT networks with shared queues.

TABLE II: Max. and avg. delay (slot number) of packets in assigned
and dynamic queue management methods with 16 links.

Number of Queues 8 10 12 14 16
Assigned Maximum Delay (slot) 2816 2358 1707 1125 82
Assigned Average Delay (slot) 336 236 159 87 16

Dynamic Maximum Delay (slot) 591 162 106 104 103
Dynamic Average Delay (slot) 271 42 16 16 16

so STA9 and STA10 have to share a queue with other links.

When two or more packets belonging to different links are

sharing the same queue, they have to wait until the packet at

the queue head being sent, although their assigned time slots in

the superframe may come first. This issue happens mainly on

the AP side when handling transmissions for multiple stations.

In SRT-WiFi, we assign the queues to different links and

the packets belonging to different links are pushed to the

corresponding queues as shown in Fig. 5 (b). The schedule

in the TDMA block stores the information on which queue

to be triggered for every slot. This is a feature of SDR-based

system since the number of supported queues can be extended

as long as the FPGA has enough resources.

This SDR-based queue implementation can eliminate the

queuing delay when the number of supported stations is

smaller than the number of implemented queues on the AP.

However, as the number of stations increases, the number of

queues cannot be increased infinitely. To address this issue,

we propose a dynamic buffer design in SRT-WiFi as shown in

Fig. 5 (c) where we use a buffer to replace the previous queues

and the buffer is composed of buffer slots and each buffer slot

only stores one packet at most. When a packet is passed from

the driver, TXI selects an unused buffer slot and pushes the

packet into it. At the beginning of each time slot, the TDMA

module checks the link information for that slot. It goes over

the buffer to check whether there is a packet belonging to

that link. If so, it transmits that packet. Since a buffer slot

only stores one packet, with the same FPGA resources, more

buffer slots can be implemented than queues.

Table II presents the performance comparison between the

assigned and dynamic queue management methods with 16

links and the number of queues. We assume that each link

5258

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

generates a packet periodically and a packet only requires one

atomic slot to transmit. If the corresponding queue is available,

the packet is pushed into queue. All transmissions follow a

randomly generated schedule where the throughput of each

link is guaranteed and the length of superframe is fixed. The

time between the packet being generated and transmitted is

recorded as the packet delay, and packets are not dropped due

to the delay. From the results, we can observe that in the

assigned queue management method (queues are assigned to

links), a few gap between the number of queues and links

may cause significantly large max./avg. delay. On the other

hand, with the same number of queues, the dynamic queue

management method is able to handle more links and keep

both max and avg. packet delay small. It however cannot

eliminate the delay since all the queues are shared.

D. SNR Measurement

To support the rate adaptation function in SRT-WiFi, we

propose two practical methods to achieve precise SNR mea-

surement in PL. Both methods utilize the short training field

(STF) in the preamble of 802.11 PHY signal. The first method

computes the cross-correlation [32] of the STF. It is known

that STF consists of 10 same short symbols corresponding to

160 samples with 20 MHz sampling rate. So the samples in

STF repeat every 16 samples [33]. After the detection of STF,

it is buffered. We use the chips from the 33rd to the last one

(in total 128 chips) and divide them into two groups each of

which has 64 chips. We compute the cross-correlation of the

two groups of chips as the ρ, and the SNR value (dB) can be

computed as follows:

SNR = 10 log10

(
ρ

1− ρ

)
(1)

where we assume that ρ < 1. The reason that we use two

groups of 64 chips is to exclude the chips at the beginning due

to the problems caused by the transient effects of initiating a

transmission in the hardware of the sender.

For the second method, after the STF detection, the STF and

a piece of background noise before the STF are buffered. The

STF signal is added by the background noise. We measure the

power of the background noise before the STF and the power

of the STF signal which is noise power plus the signal power.

Then the SNR (dB) can be computed as:

SNR = 10 log10

(
PSTF − Pnoise

Pnoise

)
(2)

where PSTF is the signal power of the STF part and Pnoise is

the power of the background noise signal before the STF. We

assume that PSTF is larger than Pnoise.

Both SNR measurement methods are implemented in the

OFDM RX module in SRT-WiFi, and their performance is

discussed in Section VI. An SNR value is computed every

time when a packet arrives. The computed SNR value is

buffered together with the source address if applicable (not all

the packets have the source address, if not the SNR value is

discarded) so that we know which link the SNR value belongs

to since there could be multiple packets being processed during

that time. This information is obtained by the device manager

on each device through the drivers. The device manager then

sends the SNR information to the central network manager to

determine the data rate of each link and the corresponding

schedule in the network. The performance of both SNR

measurement methods are discussed in Section VI.

IV. SRT-WIFI PROCESSING SYSTEM (PS) DESIGN

We now introduce the SRT-WiFi PS design including the

drivers in the kernel and the network managers in user space.

A. SRT-WiFi Drivers
The SRT-WiFi drivers are the interface between PL and

kernel with two purposes: i) configure parameters in the PL

modules to support different operation modes and functions

and ii) handle the packet exchange between PL and kernel.
We first present the PL configuration and the structure of the

drivers. As shown in Fig. 2, each module in PL is connected

to a corresponding driver in the kernel to operate its registers.

We call these drivers sub-drivers. They encapsulate the register

operation functions into APIs to be called in the MAC80211

driver. For the TDMA block in XPU, it also has registers

which are divided into two parts, i) to keep information of

the network such as atomic slot length, superframe length and

the SSID of the AP that it synchronizes with, ii) to keep the

TDMA schedule including the link and queue information

of each time slot. To configure these registers, we add a

TDMA driver in the kernel. Since the functions of the TDMA

mode are not compatible with the MAC80211 subsystem, it

is difficult to configure the TDMA block through MAC80211.

Instead, we make the TDMA driver a miscellaneous character

driver (MISC). It provides reading and writing functions for

the user space. In the user space, the network manager calls

the APIs of the TDMA driver to configure the TDMA block so

that it can modify the schedule, set the parameters and switch

the working mode when necessary.
When the MAC80211 sub-system sends a packet, the packet

is passed to the MAC80211 driver and handled by the TX

operation function (TXO). In SRT-WiFi, we specify the TX

rate and queue for each link. The MAC80211 driver has access

to the TDMA driver so TXO fetches the assigned queue and

TX rate for the current packet using the destination address of

the packet as the key. The queue assignment and rate selection

are decided by CNM and each device stores that information

in a table in the TDMA driver. The packet is finally passed to

PL for transmission with the rate and queue information.

B. Network Manager
In SRT-WiFi, we have three types of network managers

forming a network management hierarchy, including the cen-

tral network manager (CNM), cluster managers (CM) running

on the APs and device managers (DM) running on the sta-

tions. CNM determines and updates the schedules and assigns

resources to the DMs through their associated CMs.
To maintain proper operations of the SRT-WiFi network,

CNM acquires the global knowledge from all devices includ-

ing the APs and stations. When a SRT-WiFi network starts,

6259

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

CNM runs first and waits for CMs to connect and determines

the schedules to be assigned to the links. CMs then start its

cluster and the slave APs synchronize with the master AP in

the same channel and wait for the stations to connect. For

the convenience of synchronization and the joining process,

all beacon slots and shared slots are fixed during the system

operation, and this information is shared with all APs and

stations. When a station is powered on, it scans the channels,

synchronizes with the designated AP and joins the network.

After that, the DM on that station connects to the CM on the

AP to obtain and update the schedule. Before receiving the

schedule, the station can only use the shared slots to complete

the joining process in the CSMA mode.

A unique feature of SRT-WiFi network management is to

enable dynamic slot length in the schedule to support run-time

rate adaptation. For an individual link, the MTU is fixed while

the data rate changes along with the interference level. With

a lower data rate, a packet of the same length requires longer

time to transmit which may exceed the boundary of a time

slot and cause collision. In this work, we apply dynamic slot

length in the schedule to solve this issue. In the schedule,

we define an atomic slot (AS) to be a slot that has the

minimum length to support transmitting a packet with a size

of MTU at the highest rate. For a packet to transmit at a

lower rate, it can use multiple consecutive ASs in a non-

preemptive fashion. Thus by choosing different rates in the

run time, the packet transmission can take different number of

ASs. With this dynamic slot size assignment mechanism, we

will formulate and solve the multi-cluster SRT-WiFi network

scheduling problem with rate adaptation (MSNS-RA) below.

V. NETWORK MANAGEMENT

We now formulate the multi-cluster SRT-WiFi network

scheduling with rate adaptation (MSNS-RA) problem, prove

its NP-hardness, and present the design detail of a heuristic

scheduler.

A. System Model

Consider a set C = {C1, C2, ..., Cm} of clusters in a

multi-cluster SRT-WiFi network. Each cluster consists of one

SRT-WiFi AP and multiple SRT-WiFi stations forming a

star network topology. As the SRT-WiFi network is a time-

slotted system, we define an atomic slot (AS) as the minimal

uninterruptible time unit in the system. For each packet to be

transmitted in the SRT-WiFi network, it takes one or multiple

transmission units. A transmission unit is configured to be one

or multiple atomic slots based on the selected data rates.

Let Πi = {τi,1, τi,2, ..., τi,n} be a set of tasks that transmit

the packets periodically in cluster Ci. Each task τi,j is char-

acterized by τi,j = (Bi,j , Ui,j , Di,j , Ti,j), where Bi,j ∈ N

represents the size of the transmission unit for τi,j (in number

of atomic slots), Ui,j is the number of transmission units

required by τi,j . The deadline and period of τi,j are denoted

as Di,j and Ti,j , respectively.

We assume that each task τi,j is released in a periodic

fashion with a set of instances {Ii,j,k}∞k=1. For a transmission

unit l ∈ [1, Ui,j] of an instance Ii,j,k, let si,j,k,l and fi,j,k,l rep-

resent its start time and finish time, respectively. Accordingly,

let ri,j,k,l and di,j,k,l be the release time and deadline of the lth

transmission unit of Ii,j,k. The release time ri,j,k,1 of the first

transmission unit is the release time of Ii,j,k and the deadline

di,j,k,Ui,j of the last transmission unit is the deadline of Ii,j,k.

In addition, it holds that ri,j,k,p = fi,j,k,p−1 with p ∈ [2, Ui,j]
and di,j,k,q = di,j,k,q+1 −Bi,j with q ∈ [1, Ui,j − 1].

We assume that the sizes of atomic slots for all the clusters

are the same, and the number of available channels in the SRT-

WiFi network is H . We assign each cluster Ci to a channel

hi ∈ [1, H], and introduce the conflict condition as follows.

Definition 1. For any two instances Ii,j,k and Ii′,j′,k′ with
i = i′ or hi = hi′ hold, we say that they conflict with each
other if the following condition satisfies:

[si,j,k,l, fi,j,k,l] ∪ [si′,j′,k′,l′ , fi′,j′,k′,l′] �= ∅ (3)

where l ∈ [1, Ui,j], l′ ∈ [1, Ui′,j′], and it cannot hold that
i = i′, j = j′, k = k′ and l = l′ at the same time.

Based on the conflict condition above, we define the feasible

condition of scheduling an instance in multi-cluster SRT-WiFi.

Definition 2. For any instance Ii,j,k, it is feasibly scheduled
in a multi-cluster SRT-WiFi network if it does not conflict with
any other instance and the following condition holds:

[si,j,k,l, fi,j,k,l] ⊆ [ri,j,k,l, di,j,k,l] (4)

where fi,j,k,l = si,j,k,l +Bi,j and l ∈ [1, Ui,j].

B. Problem Formulation

The MSNS-RA problem considers assigning channels to

individual clusters and then schedule the transmissions of the

packets to eliminate the schedule conflict.

Definition 3. Consider a set of clusters {Ci}mi=1 each execut-
ing a set of tasks {τi,j}nj=1, the MSNS-RA problem is to assign
a channel hi ∈ [1, H] to each cluster Ci and to find a feasible
schedule for all the tasks assigned with rate adaptation on the
same channel so that any instance of a task can be feasibly
scheduled based on Condition (3) and (4).

Theorem 1. MSNS-RA is NP-hard in the strong sense.

Proof. Our NP-hard proof uses the 3-Partition problem which

is known to be NP-hard [34]. An instance of 3-Partition

consists of a collection A = (x1, x2, ..., x3n) of positive

integers such that
∑

xi = nM , M
4 < xi < M

2 for each

1 ≤ i ≤ 3n, there exists a partition of A into A1, A2,...,An

such that
∑

xi∈Ak
xi = B for each 1 ≤ k ≤ n [34].

From any instance of the 3-partition problem, we may

construct an equivalent instance of MSNS-RA. Assuming that

the total number of available channel in MSNS-RA is 1. Let

Π be the set of tasks running in all the clusters. For each

integer xi, we map a corresponding task in Pi with its size

of transmission unit as xi, its number of transmission units as

1, its period and deadline as M . Also, we construct an extra

task with its size of transmission unit as M , its number of

7260

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

transmission units as 1, its period and deadline as nM . The

above reduction is a polynomial reduction.

Since the extra task has taken the intervals in [k×M, (k+
1)×M] where k ∈ [0, 2n−2] is an even number, if there exists

a partition of A into A1, A2,...,An in the 3-partition problem,

we can construct the corresponding solution to schedule each 3

tasks corresponding to the integers in Ai in an unused interval

[(k+1)×M, (k+2)×M]. Also, if we could find a feasible

schedule for the MSNS-RA problem, we must schedule every

3 tasks in an unused interval [(k+1)×M, (k+2)×M] since
M
4 < xi < M

2 . This shows that there is a feasible schedule

if and only if there is a 3-Partition, which proves that the

MSNS-RA is NP-hard in the strong sense.

C. Heuristic Scheduler Design

To address the MSNS-RA problem in the general case,

we propose an effective heuristic scheduler to perform the

channel and task assignment. The proposed scheduler design

contains a cluster scheduler and a set of task schedulers. The

cluster scheduler assigns the channels for individual clusters

by balancing the network utilization of channels. Once the

channel assignment is completed, the task schedulers are

employed to schedule the tasks in each cluster. The details

of the two schedulers are presented below.

1) Cluster scheduler: Given m clusters {Ci}mi=1, the cluster

scheduler first computes and sorts the clusters according to

their network utilization in descending order. Specifically, for

each cluster Ci with the corresponding task set {τi,j}nj=1, the

network utilization of the cluster is computed as the sum of

its task utilization. To reduce the search space, we introduce

a heuristic to assign the clusters to each channel. We define

the network utilization of a channel as the sum of the network

utilization of all the tasks assigned to this channel. For a cluster

Ci, with H available channels, we always select the channel

with the least network utilization and assign it to Ci. For

example, we assign C1 to channel 1, C2 to channel 2, ... ,

CH to channel H . For cluster CH+1, we assign it to channel

H as the utilization of channel H is the lowest. For cluster

CH+2, we compare channel H − 1 and channel H and select

the one with the lowest network utilization.

2) Task scheduler: After assigning the channels for in-

dividual clusters, the task scheduler aims to find a feasible

schedule for all the tasks assigned to the same channel. Given

n tasks {τi}ni=1 assigned to a channel h ∈ [1, H] which may

be from different clusters with a hyper-period H, we utilize

the release times and deadlines of the transmission units of

all the instances of every task from the task set to build the

interval set T . For any interval I ∈ T with I = [s, e], s is

a release time of a transmission unit and e is the deadline of

that transmission unit. Let DI be the demand of the interval

I , which is defined as the sum of Bi,j of any transmission

unit of Ii,j,k with its release time and deadline included in I .

Following the EDF (Earliest Deadline First) scheduling

policy, we schedule the transmission units based on their dead-

lines. However, the sizes of transmission units from different

tasks might be different and a transmission unit cannot be

interrupted during execution. In this non-preemptive case, EDF

is known to be non-optimal. To improve the schedulability, we

consider the technique of inserting idle time. The key idea is

that for each instance popped from the ready queue we utilize

the future release patterns of tasks to decide whether or not

to insert the idle time to delay its execution. This prevents a

non-preemptive transmission unit from being scheduled in an

interval such that its demand plus part of this transmission

unit becomes larger than the length of the interval, thus

jeopardizing the schedulability. To overcome this problem,

we employ the following rule to insert the idle time in the

constructed schedule. For any transmission unit of a task

instance Ii,j,k to be scheduled at time t. If there exists an

interval I = [s, e] satisfying the following two conditions:

• Condition 1: [s, e] ⊂ [t, di,j,k,l]

• Condition 2: t+Bi,j > e−DI .

then the release time of the transmission unit is set to s.

Since there may exist multiple intervals that satisfy the

above conditions, we change the release time of the trans-

mission unit to be the latest one. In addition, deferring the

release time to a later time can change the interval set T . We

therefore update the interval set once a release time is updated.

With the above rule to insert idle time in the EDF schedule,

we describe the operation of the task scheduler in Alg. 1.

The task scheduler first computes the hyper-period H of the

task set assigned to the channel and initializes the interval

set T and the time t based on the timing parameters of the

task instances. It then utilizes a ready queue Q to schedule

the tasks based on EDF. Specifically, for each instance Ii,j,k
popped from the ready queue, we employ the rule of inserting

idle time to decide if its release time will be deferred (Line 6-

11). In addition, we check if the current transmission unit can

be scheduled (Line 12-13). If the release time of the current

transmission unit is not modified, i.e., ri,j,k,l = t, we schedule

it in time [t, t+Bi,j]. Otherwise, we push it back to the ready

queue and update the interval set T (Line 19-20). Let N =∑n
i=1 H/Ti be the total amount of instances of all the tasks

where Ti is the period. As computing the interval set takes

O(N2) time, the total time complexity of the task scheduler

is O(N3).

VI. PERFORMANCE EVALUATION

In this section we report our performance evaluation on the

SRT-WiFi design, at both component and system levels.4 Fig. 6

presents the devices used in our SRT-WiFi testbed. We have

two hardware platforms. ZC706 consists of Z7045 SoC and

AD9364 radio chip. It is used as the hardware for both AP

and stations. ADRV9364-Z7020 consists of Z7020 SoC and

AD9364 radio chip. It is only used for some stations due to

its limited FPGA resources. USRP2900 is a traditional SDR

device. It is only used for testing purpose in the SRT-WiFi

testbed such as signal analysis and interference generation.

4More experimental results can be found in our technical report [23].

8261

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Task Scheduler

Input : A task set Π = {τi}ni=1

Output: A schedule S or reports failure

1 Compute the hyper-period H of the tasks

2 Initialize a ready queue Q = ∅, the interval set T and

time t
3 while An instance Ix,y,z is released or Q �= ∅ do
4 Q = Q ∪ {Ix,y,z}
5 Get the earliest instance Ii,j,k in Q at current time

t with its lth transmission unit to be scheduled

6 for I ∈ T with I = [s, e] do
7 Compute the demand DI of the interval I
8 if I ⊂ [t, di,j,k,l] ∧ t+Bi,j +DI > e then
9 ri,j,k,l = max(ri,j,k,l, s)

10 end
11 end
12 if ri,j,k,l +Bi,j > di,j,k,l then
13 return None // reports failure
14 end
15 if ri,j,k,l = t then
16 [si,j,k,l, fi,j,k,l] = [t, t+Bi,j]
17 t = fi,j,k,l
18 else
19 insert Ii,j,k to Π
20 update the interval set T
21 end
22 end
23 return S

ZC706

ADRV9364-Z7020

USRP2900

Fig. 6: SDR hardware used in the SRT-WiFi testbeds.

A. Synchronization

We first evaluate the effectiveness of the proposed time

synchronization mechanism in SRT-WiFi. To support multi-

cluster SRT-WiFi, we let the slave APs (SAPs) synchronize

with the master AP (MAP) and the stations synchronize with

either the MAP or SAP. In the experiments, we first test the

beacon interval of the MAP by configuring it to send the

beacon packets periodically. We use USRP2900 to capture the

beacon signal and use the COTS hardware (AR9285) working

in the monitoring mode to sniff the beacon packets.

In the tests, we set the slot length at 500 μs and the super-

frame length at 127 slots so the expected beacon interval is

63.5 ms (one beacon per superframe). Fig. 7 (a) and (b) show

the time drift of the beacon interval measured by USRP2900

and AR9285, respectively. The time drift is measured as the

error between the inter-arrival time of two consecutive beacons

and the expected superframe length (63.5 ms). The SDR result

0 40 80 120 160
−10

0

10

(a)
SRT-WiFi

0 40 80 120 160
Packet Sequence

−10

0

10

T
im

e
D

ri
ft

(1
0
0

n
s)

(b)
AR9285

Fig. 7: Time drifts in beacon interval by USRP2900 and AR9285.

0 20 40 60 80 100
−10

0

10

(a)

AP2

AP3

0 20 40 60 80 100
Packet Sequence

−10

0

10

T
im

e
D

ri
ft

(1
0
0

n
s)

(b)

AP2

AP3

Fig. 8: Synchronization performance.

is measured directly from the captured base band signal and

the average error, maximal error and the standard deviation are

0.03 μs, 0.2 μs and 0.07 μs, respectively. On the other hand, the

result measured from AR9285 has the average error, maximal

error and the standard deviation as 0.13 μs, 1 μs and 0.54

μs, respectively. From the comparison, we observed that SRT-

WiFi has much more accurate timer than the COTS hardware.

Thus the implementation using COTS hardware needs a larger

guard time in the slot design to avoid potential collision.

Next, we test the synchronization performance of multi-

cluster SRT-WiFi networks. In SRT-WiFi, the MAP provides

the reference clock. For the SAPs and stations to connect to

the MAP, they listen to the beacons from the MAP. We call

it level-1 synchronization. For the stations connecting to the

SAPs, we call it level-2 synchronization. We use three APs in

the experiments. To test level-1 synchronization performance,

we set AP1 as the MAP sending beacons in slot 0, and AP2

and AP3 as SAPs to synchronize with AP1. We use USRP2900

to measure the beacon sending time of the three APs. Fig. 8

(a) shows the sending time errors of AP2 and AP3. AP2 uses

slot 115 to send beacons. The average sending time error is

0.01 μs with a standard deviation of 0.08 μs. AP3 uses slot

117, and its average error is 0.03 μs with a standard deviation

of 0.1 μs. These results show that the accuracy of level-1

synchronization can be well maintained within 1 μs. Next,

we let AP2 synchronize with AP1 and AP3 synchronize with

AP2 to test level-2 synchronization performance. We configure

AP1 to send beacons in slot 0 and AP2 to send beacons in slot

2. The measured results in Fig. 8 (b) show that the average

error is 0.04 μs. We further let AP3 synchronize with AP2

and send beacons in slot 119 and the average error is 0.5

9262

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

Station AP
USRP 1 USRP 2

Signal
Combiner

Signal
Divider

TX

RX

RX

TX

Fig. 9: Setup of the SRT-WiFi testbed for SNR measurement.

10 15 20 25 30
SNR Value (dB)

0.6

0.7

0.8

S
D

(d
B

)

Method 1: Cross-Correlation

Method 2: Signal Power

Fig. 10: Standard deviation of the two SNR measurement methods.

μs and the standard deviation is 0.09 μs. This confirms that

although level-2 synchronization is slightly worse than level-

1 synchronization, the error can still be within 1 μs. It is

worth noting that the error comes from not only the SRT-WiFi

devices, but the SDR measurement since the sampling rate we

use in the experiment is 20 MHz. With a higher sampling rate

of SDR, more accurate results are expected.

B. SNR Measurement

In the second set of experiments, we test the SNR measure-

ment performance of SRT-WiFi, and the setup of the testbed

is shown in Fig. 9. We use two SRT-WiFi devices, one for AP

and one for station. The TX connector of the station connects

to the input of a signal combiner. The other input of the signal

combiner connects to a USRP device (USRP1). The combined

signal is then divided by a signal divider into two ways, one

to another USRP (USRP2) and the other connected to the RX

of the AP. Both RX of the station and TX of the AP use the

antennas. During the experiment, the signal from AP to the

station goes on air while the signal from station to AP goes

through the cable. We use USRP1 to add controllable noise

to the signal from the station to the AP. The AP measures

the SNR. At the same time we use USRP2 to record the same

signal as the one received at the AP. We then compute the SNR

value from USRP2 as the ground truth and compare the results

from AP to evaluate the SNR measurement performance.

Fig. 10 shows the standard deviation measured from both

the cross-correlation method and the signal power method.

We only test the SNR from 7 dB to 30 dB since when the

SNR is lower than 7 dB, the connection between the AP and

station is hard to maintain due to the high packet loss rate. The

experimental results show that the cross-correlation method

outperforms the signal power method in general and thus it is

used in all the following experiments.

Fig. 11 shows the packet delivery ratios of the SRT-WiFi

device under different SNR measured in the testbed. We vary

the SNR values by configuring USRP1 to add noise and let

5 10 15 20 25 30
Set SNR Value (dB)

0.0

0.2

0.4

0.6

0.8

1.0

P
ac

k
et

D
el

iv
er

y
R

at
io 6Mbps

9Mbps

12Mbps

18Mbps

24Mbps

36Mbps

48Mbps

54Mbps

Fig. 11: PDR under different rates against SNR.

TABLE III: TX rates and slot lengths under different SNR values.

SNR threshold (dB) 25 22 19 17 15 13 10 7
Rate (Mbps) 54 48 36 24 18 12 9 6
Slot length (μs) 174 186 218 282 342 470 594 846
Atomic slot usage 1 2 2 2 2 3 4 5

the station send 500-byte UDP packets and count the number

of received packets on the AP side. This result gives us the

reference to perform rate adaptation.

Table III presents the data rates applied under different

channel SNR values and the corresponding slot lengths when

transmitting a 500-byte UDP packet. We give the SNR value

threshold for each data rate to be used only when the measured

SNR value is no smaller than the corresponding threshold. The

slot length includes the length of the data packet, the SIFS

(16 μs), the ACK and the guard time (10 μs). The settings in

Table III are applied in all the following experiments.

C. Rate Adaptation

In this subsection, we demonstrate the effectiveness of the

rate adaptation function in SRT-WiFi. In the experiment, we

add interference to the channel and measure the data rates

and PDR for both SRT-WiFi and regular WiFi networks. In

SRT-WiFi, the reception SNR is measured at each device and

sent to CNM. CNM then decides the data rate and constructs

the schedule for the devices. In this experiment, we set up

one AP and one station. We add the interference at the AP

side and let the station send UDP packets to the AP and

measure the PDR and SNR. The level of interference is not

fixed but varied every 0.5 second, meaning that in the first

half of each second, the interference rises to a set level while

in the next half of that second, the interference shuts down

so that we change the interference fast. Fig. 12 (b) shows the

measured SNR of the channel and Fig. 12 (a) zooms in part

of the measured SNR to show how the interference varies.

The minimum SNR values first decrease from 27 to 12 dB

and then gradually increase back. The data rates of both SRT-

WiFi and WiFi are shown in Fig. 12 (c). Regular WiFi uses

the Minstrel algorithm [25] for rate adaptation, which adapts

to the interference according to the transmission history. The

corresponding PDR is shown in Fig. 12 (d). From the figure it

can be observed that when the SNR value is lower than 20 dB,

10263

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150

20

30

S
N

R
(d

B
)

(b)

50 55 60 65 70 75

20

30

(a)

0 50 100 150

18

36

54

D
at

a
R

at
e

(M
b
p
s)

(c)
WiFi

SRT-WiFi

0 50 100 150
Time (s)

0.7

0.8

0.9

1.0

P
D

R

(d)
WiFi

SRT-WiFi

Fig. 12: Data rate and PDR comparison between SRT-WiFi and WiFi.

TABLE IV: Comparison of schedulability among HTS, EDF and Z3.

Utilization 0.3 0.4 0.5 0.6 0.7 0.8 0.9
EDF (%) 45.8 19.5 10.4 5.2 2.6 0.8 0.5
HTS (%) 75.4 48.6 32.5 19.5 9.8 4.2 1.5
Z3 (%) 75.6 49.4 33.9 21.0 11.1 5.0 1.9

EDF & RCS (%) 20.9 11.6 6.9 2.8 1.1 0.3 0
HTS & RCS (%) 30.4 17.7 9.6 4.3 2.1 0.6 0.1
HTS & HCS (%) 52.7 30.1 15.8 8.1 4.5 1.1 0.1

regular WiFi cannot keep stable transmissions. In SRT-WiFi,

we employ a conservative rate adaptation method. The CNM

buffers the measured SNR values for a time window and uses

the rate according to the lowest SNR value in the buffer. Once

a lower SNR is measured, the data rate is reduced immediately.

The rate does not go back until all the SNR values in the

buffer are higher than the SNR threshold of a higher rate (see

Table III). Although this method wastes some resources when

the channel condition is good, it provides stable transmissions.

The performance of this method in the presence of interference

is shown in Fig. 12 (c) and it is a step shape without fast

changes. Fig. 12 (d) shows the PDR of SRT-WiFi during the

test. It is always stable because it measures the lowest SNR

and applies the corresponding rate to improve the reliability.

D. Schedule Management

We now present our simulation results and a case study to

show the effectiveness of the proposed heuristic method to

solve the MSNS-RA problem. In the simulation studies, we

evaluate the performance of the proposed heuristic task sched-

uler (HTS) and heuristic cluster scheduler (HCS). For HTS,

we compare it with EDF and an efficient satisfiability modulo

theories (SMT) solver Z3 [35]. All the three algorithms are

implemented in Python and run in a CPU cluster node with

TABLE V: Comparison of the computational overheads among HTS,
EDF and Z3 on large task sets.

Scheduler Average time cost (s) Schedulability Termination ratio
EDF 0.019 0.75% 0%
HTS 2.609 18.37% 0%
Z3 2732.706 5.35% 45.9%

AP1

STA1
STA2

AP2

STA3 STA4

USRP
Router

CNM Noise
Antenna

Uplink
Downlink

Fig. 13: An overview of the multi-cluster SRT-WiFi testbeds.

Xeon E5-2690 v3 2.6 GHz CPU. The scheduling problem

on each channel is formulated as a constraint programming

problem, which can be solved by Z3.

We first simulate random task sets to evaluate the schedu-

lability (% of schedulable task sets among all the generated

ones) of the three methods under the single-channel single-

cluster scenario. For each task set, we randomly generate

around 10 tasks with the total channel utilization varied from

0.3 to 0.9. Each schedulability value is generated with the

simulation of 2000 task sets. The schedulability comparison

of the three methods is shown in row 2 to 4 of Table IV.

The results show that HTS is significantly better than EDF

while slightly lower than Z3. In the results we keep the

infeasible task sets for comparison to show the trend of how

the utilization affects the schedulability. We further compare

the time costs of the three methods. Here we generate large-

scale task sets with 100 to 150 tasks in each task set and use

random channel utilization from 0.3 to 0.9. Each schedulability

value is still generated with the simulation of 2000 task sets.

The results are shown in Table V and it is clear that Z3 costs

much more time than HTS. Besides, we set a timeout for Z3 as

5000 second and it reports 45.9% terminated cases. The above

results show that HTS can achieve a good balance between

performance and time cost.

For HCS, we compare it with the random cluster scheduler

(RCS) which randomly assigns the clusters to the channels

under the multi-cluster multi-channel scenario. In each task

set, we randomly generate 4 to 8 channels and 2 to 10

clusters with 5 to 15 tasks in each cluster. The average channel

utilization is also varied from 0.3 to 0.9. The tasks of clusters

are assigned to channels by HCS or RCS and then each

channel is scheduled by HTS or EDF. If all the channels

are schedulable we count it as a schedulable case and finally

compute the schedulability. From row 5 to 7 in Table IV, we

observe that with RCS, HTS keeps the advantage comparing

to EDF. With the proposed HTS scheduler and HCS cluster

working together, the schedulability is further improved.

In addition to the simulation studies, we also implement

HTS on a multi-cluster SRT-WiFi testbed and perform a case

study. The network is configured with two APs (AP1 and AP2

11264

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Parameters of tasks used in the case study.

Task Number 1 2 3 4 5 6
Period (AS) 15 15 15 15 30 30

Deadline (AS) 10 10 10 10 29 30
Transmission Unit Number 1 1 1 2 2 1

TABLE VII: Comparison of SNR, PDR and data rates.

Scheduler SNR (dB) PDR (%) Rate (Mbps)
& Stage AP2 STA3 STA4 AP2 STA3 STA4 AP2 STA3 STA4
Heu.@S1 20.8 21.1 26.2

98.98 98.94 97.24
36 36 54

Heu.@S2 20.6 15.9 19.0 36 18 24
Heu.@S3 20.5 14.2 16.8 36 12 18
EDF@S1 20.8 21.1 26.2

98.15
98.26 98.20 36 36 54

EDF@S2 20.6 15.9 19.0 98.42 24.5 36 18 54
EDF@S3 20.5 14.2 16.8 92.31 0 36 18 54

for Cluster1 and Cluster2, respectively) in one channel and

each AP is connected with two stations (STA1 and STA2

in Cluster1, STA3 and STA4 in Cluster2). Fig. 13 gives an

overview of the testbed where CNM and APs are connected

to a router to form a backbone network. A USRP device is

used to generate interference and it is placed next to AP2. As

shown in Fig. 14, we assign a task to each link and the task

specifications are summarized in Table VI. Each instance of

the tasks sends a 500-byte UDP packet. With a fixed packet

length, the transmission time of the packet depends on the data

rate. In the experiment, we set the atomic slot (AS) length as

174 μs which is for transmitting a packet at 54 Mbps.

In the experiments, STA1 and STA2 in Cluster1 transmit to

AP1 in the uplink and AP1 transmits to STA1 in the downlink.

In Cluster2, AP2 synchronizes with AP1 and transmits to

STA3 in the downlink. At the same time, STA3 and STA4

transmit to AP2 in the uplink. During the experiments, we

add interference with three levels as three experiment stages

so that links need to adapt to proper rates to achieve good

PDR. We first apply HTS in Stage 1 and Fig. 14 shows the

constructed schedule. We then increase the noise level to Stage

2 and Stage 3, respectively. The measured SNR, PDR and

applied data rates of links in Cluster2 (sender name is used to

mark a link) are summarized in Table VII (a PDR of multiple

rows is the average PDR). The link quality of STA3 and STA4

drop significantly in each stage because the interferer is placed

close to AP2. The SNR of STA3 and STA4 drop to 14.2 dB

and 16.8 dB, respectively, therefore the rates of STA3 and

STA4 drop to 12 Mbps and 18 Mbps, respectively, to adapt

to the interference. On the other hand, STA1, STA2 and AP1

are barely affected by the interference and their average PDR

are 98.59%, 98.53% and 98.24%, respectively.

We then evaluate the performance of EDF under the same

experiment settings. EDF is only able to generate a feasible

schedule in Stage 1 and devices cannot require more atomic

slots when the interference level increases. With this con-

straint, in Stage 2 and Stage 3, the data rate of STA3 can

only drop to 18 Mbps while the rate of STA4 keeps the same.

This causes the PDR of STA4 to drop significantly in Stage 2

and its connection breaks in Stage 3. These results confirm that

our proposed heuristic method can generate feasible schedules

1 1

2 2

3 3

2 22 2

2 2

1

Task 1 (STA1-AP1)

Task 2 (STA2-AP1)

Task 3 (AP1-STA1)

Task 4 (AP2-STA3)

Task 5 (STA3-AP2)

Task 6 (STA4-AP2)

Stage 1:

Stage 2 (Only Heuristic):
2 2 Task 5 (STA3-AP2)

Task 6 (STA4-AP2)2

Stage 3 (Only Heuristic):
Task 5 (STA3-AP2)

Task 6 (STA4-AP2)2

3 3

Task Release Time Task Deadline

0 5 10 15 20 25 30 Slot #

Fig. 14: The task schedule constructed by the MSNS-RA heuristic.

and keep higher PDR in noisy scenarios compared to EDF.

VII. CONCLUSION AND FUTURE WORK

This paper presents the design, implementation and perfor-

mance evaluation of SRT-WiFi, a high-speed real-time wireless

system with full stack configurability that is based on software-

defined radio (SDR) platform. We discuss the design principles

of the programmable logic and processing system of the

SRT-WiFi system and show the advantages of SRT-WiFi on

high-precision synchronization, queue management and SNR

measurement-based rate adaptation compared to existing real-

time wireless solutions. We further formulate the multi-cluster

SRT-WiFi network scheduling problem with rate adaptation

(MSNS-RA) and propose an effective heuristic solution to

solve it. The performance of the system and the proposed

algorithm are thoroughly evaluated in our SRT-WiFi testbed.

For the ongoing and future work, we shall keep improving

SRT-WiFi to support evolving features like higher bandwidth,

multiple-input and multiple-output (MIMO), beamforming and

orthogonal frequency division multiple access (OFDMA) in

IEEE 802.11n/ac/ax. Two features under development include

1) higher throughput with 40 MHz bandwidth and single-user

MIMO (SU-MIMO) in IEEE 802.11n/ac supporting multiple

data streams to be transmitted simultaneously and providing

more choices on data rate selection for SRT-WiFi, 2) multi-

user multiple-input and multiple-output (MU-MIMO) in IEEE

802.11ac enabling the AP to transmit packets to multiple

stations in one time slot which enhances the flexibility of

scheduling and further reduces the jitter and latency. Besides

the throughput, we also consider more complex network

topology like the ad hoc mode. And we will deploy our system

in real industrial testbeds to test the performance with interfer-

ence pattern of real industrial environments. We shall evaluate

how these features will affect the resource management in

SRT-WiFi to improve the throughput and further reduce the

transmission latency in SRT-WiFi networks.

VIII. ACKNOWLEDGEMENT

This work was partly supported by the National Science

Foundation under Award CNS-2008463 and TI-1919229.

12265

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] F. Tramarin, A. K. Mok, and S. Han, “Real-time and reliable industrial
control over wireless lans: Algorithms, protocols, and future directions,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1027–1052, 2019.

[2] X. Guo, S. Han, X. S. Hu, X. Jiao, Y. Jin, F. Kong, and M. Lemmon, “To-
wards scalable, secure, and smart mission-critical iot systems: Review
and vision:(special session paper),” in 2021 International Conference on
Embedded Software (EMSOFT). IEEE, 2021, pp. 1–10.

[3] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
transactions on industrial informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[4] J. Song, S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “A
complete wirelessHART network,” in Proceedings of the 6th ACM
conference on Embedded network sensor systems, 2008, pp. 381–382.

[5] The International Society of Automation, “ISA 100.11a.”
[Online]. Available: https://www.isa.org/standards-and-publications/isa-
standards/isa-standards-committees/isa100

[6] R. Steigmann and J. Endresen, “Introduction to WISA: WISA-wireless
interface for sensors and actuators,” White paper, ABB, 2006.

[7] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 36–41, 2014.

[8] “IEEE 802.15 WPAN™ Task Group 4.” [Online]. Available:
https://www.ieee802.org/15/pub/TG4.html

[9] Y. Cheng, D. Yang, H. Zhou, and H. Wang, “Adopting IEEE 802.11
MAC for industrial delay-sensitive wireless control and monitoring
applications: A survey,” Computer Networks, vol. 157, pp. 41–67, 2019.

[10] G. Cena, L. Seno, A. Valenzano, and C. Zunino, “On the performance
of IEEE 802.11 e wireless infrastructures for soft-real-time industrial
applications,” IEEE Transactions on Industrial Informatics, vol. 6, no. 3,
pp. 425–437, 2010.

[11] L. Seno, S. Vitturi, and F. Tramarin, “Tuning of IEEE 802.11 MAC for
improving real-time in industrial wireless networks,” in Proceedings of
2012 IEEE 17th International Conference on Emerging Technologies &
Factory Automation (ETFA 2012). IEEE, 2012, pp. 1–8.

[12] G. Tian, S. Camtepe, and Y.-C. Tian, “A deadline-constrained 802.11
MAC protocol with QoS differentiation for soft real-time control,” IEEE
Transactions on Industrial Informatics, vol. 12, no. 2, pp. 544–554,
2016.

[13] H. Trsek, J. Jasperneite, and S. P. Karanam, “A Simulation Case Study
of the new IEEE 802.11 e HCCA mechanism in Industrial Wireless
Networks,” in 2006 IEEE Conference on Emerging Technologies and
Factory Automation. IEEE, 2006, pp. 921–928.

[14] R. Moraes, F. Vasques, P. Portugal, and J. A. Fonseca, “VTP-CSMA:
A virtual token passing approach for real-time communication in IEEE
802.11 wireless networks,” IEEE Transactions on Industrial Informatics,
vol. 3, no. 3, pp. 215–224, 2007.

[15] D. K. Lam, K. Yamaguchi, Y. Shinozaki, S. Morita, Y. Nagao,
M. Kurosaki, and H. Ochi, “A fast industrial WLAN protocol and
its MAC implementation for factory communication systems,” in 2015
IEEE 20th Conference on Emerging Technologies & Factory Automation
(ETFA). IEEE, 2015, pp. 1–8.

[16] J. Lin, W. Liang, H. Yu, and Y. Xiao, “Polling in the frequency domain:
a new MAC protocol for industrial wireless network for factory au-
tomation,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 20, no. 4, pp. 211–222, 2015.

[17] Y. Zheng, A. Xu, Y. Song, W. Zhao, and M. Liu, “Industrial wireless
deterministic communication based on WLAN: Design, implementation
and analysis,” in 2009 IEEE International Conference on Communica-
tions Technology and Applications. IEEE, 2009, pp. 274–278.

[18] B. Holfeld, D. Wieruch, T. Wirth, L. Thiele, S. A. Ashraf, J. Huschke,
I. Aktas, and J. Ansari, “Wireless communication for factory automation:
An opportunity for LTE and 5G systems,” IEEE Communications
Magazine, vol. 54, no. 6, pp. 36–43, 2016.

[19] S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson, and J. Ansari,
“Ultra-reliable and low-latency communication for wireless factory au-
tomation: From LTE to 5G,” in 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE,
2016, pp. 1–8.

[20] A. Aijaz, “Private 5G: The future of industrial wireless,” IEEE Industrial
Electronics Magazine, vol. 14, no. 4, pp. 136–145, 2020.

[21] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“RT-WiFi: Real-time high-speed communication protocol for wireless
cyber-physical control applications,” in 2013 IEEE 34th Real-Time
Systems Symposium. IEEE, 2013, pp. 140–149.

[22] W. Liang, M. Zheng, J. Zhang, H. Shi, H. Yu, Y. Yang, S. Liu, W. Yang,
and X. Zhao, “WIA-FA and its applications to digital factory: A wireless
network solution for factory automation,” Proceedings of the IEEE, vol.
107, no. 6, pp. 1053–1073, 2019.

[23] Z. Yun, P. Wu, S. Zhou, A. K. Mok, M. Nixon, and S. Han,
“RT-WiFi on Software-Defined Radio: Design and Implementation,”
2022. [Online]. Available: https://arxiv.org/abs/2203.10390

[24] M. Dillinger, K. Madani, and N. Alonistioti, Software defined radio:
Architectures, systems and functions. John Wiley & Sons, 2005.

[25] D. Xia, J. Hart, and Q. Fu, “Evaluation of the Minstrel rate adaptation
algorithm in IEEE 802.11 g WLANs,” in 2013 IEEE International
Conference on Communications (ICC). IEEE, 2013, pp. 2223–2228.

[26] J. Xianjun, L. Wei, and M. Michael. (2019) open-source
IEEE802.11/Wi-Fi baseband chip/FPGA design. [Online]. Available:
https://github.com/open-sdr/openwifi

[27] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi:
a free and open-source IEEE802. 11 SDR implementation on SoC,” in
2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring).
IEEE, 2020, pp. 1–2.

[28] S. S. Math, R. Manjula, S. Manvi, and P. Kaunds, “Data transactions
on system-on-chip bus using AXI4 protocol,” in 2011 International
Conference on Recent Advancements in Electrical, Electronics and
Control Engineering. IEEE, 2011, pp. 423–427.

[29] D. C. Mur, “Linux Wi-Fi open source drivers-mac80211, ath9k/ath5k.”
[30] Q. Leng, W.-J. Chen, P.-C. Huang, Y.-H. Wei, A. K. Mok, and S. Han,

“Network management of multicluster RT-WiFi networks,” ACM Trans-
actions on Sensor Networks (TOSN), vol. 15, no. 1, pp. 1–26, 2019.

[31] J. C. Eidson, Measurement, control, and communication using IEEE
1588. Springer Science & Business Media, 2006.

[32] E. A. Lee and D. G. Messerschmitt, Digital communication. Springer
Science & Business Media, 2012.

[33] “IEEE 802.11 working group.” [Online]. Available:
https://www.ieee802.org/11/

[34] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. USA: W. H. Freeman & Co., 1990.

[35] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

13266

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 29,2022 at 15:19:45 UTC from IEEE Xplore. Restrictions apply.

