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Abstract
Much of modern learning theory has been split between two regimes: the classical offline setting,
where data arrive independently, and the online setting, where data arrive adversarially. While the
former model is often both computationally and statistically tractable, the latter requires no distri-
butional assumptions. In an attempt to achieve the best of both worlds, previous work proposed the
smooth online setting where each sample is drawn from an adversarially chosen distribution, which
is smooth, i.e., it has a bounded density with respect to a fixed dominating measure. Existing results
for the smooth setting were known only for binary-valued function classes and were computation-
ally expensive in general; in this paper, we fill these lacunae. In particular, we provide tight bounds
on the minimax regret of learning a nonparametric function class, with nearly optimal dependence
on both the horizon and smoothness parameters. Furthermore, we provide the first oracle-efficient,
no-regret algorithms in this setting. In particular, we propose an oracle-efficient improper algorithm
whose regret achieves optimal dependence on the horizon and a proper algorithm requiring only a
single oracle call per round whose regret has the optimal horizon dependence in the classification
setting and is sublinear in general. Both algorithms have exponentially worse dependence on the
smoothness parameter of the adversary than the minimax rate. We then prove a lower bound on
the oracle complexity of any proper learning algorithm, which matches the oracle-efficient upper
bounds up to a polynomial factor, thus demonstrating the existence of a statistical-computational
gap in smooth online learning. Finally, we apply our results to the contextual bandit setting to show
that if a function class is learnable in the classical setting, then there is an oracle-efficient, no-regret
algorithm for contextual bandits in the case that contexts arrive in a smooth manner.
Keywords: Online Learning, Smoothed Analysis, Oracle Complexity

1. Introduction

Modern learning theory has primarily focused on two regimes: batch and sequential settings. In
the former, data are independent and learning is easy while in the latter, Nature has the power to
adversarially choose data to make learning as difficult as possible. Much of the empirical success
in machine learning has derived from assuming that independence is satisfied and applying the
Empirical Risk Minimization (ERM) principle in the batch (offline) setting, for which algorithms
such as gradient descent have been highly successful even with complex function classes. However,
in many settings independence is likely to fail, and the sequential regime is attractive due to the
minimal assumptions made on the data generating process. Unfortunately, it suffers from poor
algorithmic efficiency and an inability to learn some of the most basic function classes.

A typical example of the gap in difficulty of learning in these two settings is furnished by
threshold functions on the unit interval. Classical theory tells us that in the batch setting, due to
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the combinatorial simplicity of the function class, a simple ERM approach efficiently and optimally
learns the class of thresholds; in contradistinction, an adversarial data generation process precludes
sequential (online) learning entirely (Littlestone, 1988). One way to escape the difficulty of adver-
sarial learning is to apply the technique of smoothed analysis introduced in a now-famous paper by
Spielman and Teng (2004), which focused on solving linear programs with the simplex algorithm.
In this regime, one analyzes worst case inputs that are perturbed by a small amount of stochastic
noise. Smoothed analysis in the setting of online learning was first introduced in Rakhlin et al.
(2011), where the authors showed non-constructively that thresholds again become learnable in this
setting. More recently, a series of papers (Haghtalab et al., 2020, 2021) has demonstrated that the
stochastic perturbation has beneficial effects in far greater generality than the class of thresholds; in
fact, any classification task that is possible in the batch setting is also statistically tractable in the
smoothed online setting.

In the more modern formulation of the smoothed paradigm studied in Haghtalab et al. (2020,
2021), instead of choosing an input that is then perturbed, the adversary chooses a distribution that
is restricted to be sufficiently anti-concentrated so as to not put too much mass on the set of “hard”
instances. This anti-concentration (referred to as σ-smoothness; Definition 1) is quantified by a
parameter σ ≤ 1 that governs how far from independent the adversary can be. When σ = 1, we
are in the batch setting where the data arrive i.i.d.; as σ tends to 0, the adversary is given more and
more power to choose bad instances, with the limit of σ = 0 being entirely adversarial.

While we provide a rigorous definition of the problem setting below, we outline the broad
strokes here. We consider learning over the course of T rounds where, at each round, Nature
reveals a context xt sampled in a σ-smooth manner, the learner reveals a prediction ŷt, and then
Nature reveals yt. Given a loss function, the objective of the learner is to minimize regret to the
best predictor in some function class F. When F is binary-valued and has finite VC dimension
d (i.e. is learnable in the batch setting), Haghtalab et al. (2021) proved that O

(√
dT log (T/σ)

)
regret is achievable, albeit with an inefficient algorithm. Two natural questions arise: can we ex-
tend these results to nonparametric, real-valued classes? and, more importantly, are there efficient
algorithms that can achieve comparable regret? In this paper, we answer both questions. With re-
gard to the first question, the natural extension of the covering-based argument in Haghtalab et al.
(2021) would yield suboptimal dependence on σ in the nonparametric regime; instead, we obtain
a nonconstructive proof through careful application of combinatorial inequalities and an adaptation
of the coupling lemma of Haghtalab et al. (2020).

For the question of practical algorithms, we need to more carefully consider what we mean by
efficiency. Certainly the algorithm of Haghtalab et al. (2021) is not efficient as it requires con-
structing an ε-net of F as a first step, which is exponential in the VC dimension of F. A natural
choice is to look to the batch setting and try to leverage the success of ERM-based approaches to
achieve reasonable runtime, as is done in Kalai and Vempala (2005); Hazan and Koren (2016); this
approach is supported further by the empirical success of various heuristics for ERM (Goodfellow
et al., 2016). As such, we suppose the learner has access to an ERM oracle (Definition 2) that can
efficiently optimize some loss over our function class F given as input a dataset; we analyze the
time complexity of our algorithms in terms of the number of calls to this oracle.

In our algorithmic results, we distinguish between proper and improper learners. Proper learners
are required, before seeing xt, to output a hypothesis f̂t ∈ F that is used to produce the prediction
ŷt := f̂t(xt), whereas improper learners can make any prediction ŷt based on knowledge of xt.
There are many settings in which proper (as opposed to improper) online learning may be desir-
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able for downstream applications, such as learning in games (Daskalakis and Golowich, 2021) and
reinforcement learning with function approximation (Foster et al., 2021). For proper learners, our
oracle time complexity results are optimal up to a polynomial factor in all parameters; the question
of optimality for improper learning remains an interesting open question.

We now briefly describe our key contributions (which are summarized in Table 1):

• In Section 3 we give tight upper bounds on the statistical rates of learning a real-valued
function class in the smoothed online setting without regard to computational efficiency, while
extending and providing a new proof to the case of binary classification treated in (Haghtalab
et al., 2021, Theorems 3.1 & 3.2). Our bounds are tight both in their dependence on T and
σ, up to logarithmic factors, showing that the regret in the smooth setting is only a factor
log(T/σ) away from that in the i.i.d. setting (Theorem 3). In the process of doing this, we
provide in Lemma 14 a more general and much simpler proof of the key technical step of
coupling from Haghtalab et al. (2021).

• In Section 4 we present an improper algorithm based on the relaxation method of Rakhlin
et al. (2012) with tight dependence on the horizon T but suboptimal dependence on σ: in par-
ticular, the regret in the smooth setting scales as σ−1/2 times that in the i.i.d. setting (Theorem
7). Our algorithm is efficient in the sense that it requires only O

(√
T log T

)
oracle calls per

round in general and only 2 oracle calls per round in the classification setting. We then show
in Proposition 8 that the polynomial dependence on σ is not an artifact of our analysis, but
rather inherent to the method.

• In Section 5 we present a proper algorithm based on Follow the Perturbed Leader (FTPL)
that exhibits optimal dependence on T for classification and suboptimal dependence on T in
general (Theorem 10). Further, the algorithm requires only 1 oracle call per round. We use a
Gaussian white noise with intensity approximated by µ as our perturbation, which allows for
optimization without enumeration of experts; to establish correctness, we overcome a major
technical hurdle introduced by the complicated dependence structure of this perturbation.

• In Section 6 we show that the suboptimality of the FTPL learner is inherent for oracle-efficient
algorithms: in particular, we provide a lower bound based on the method of Hazan and Koren
(2016) that demonstrates that any proper algorithm with access to an ERM oracle requires
Ω̃
(
σ−

1
2

)
time. Combined with the upper bound of log 1/σ of Theorem 3, this implies that

there exists an exponential statistical-computational gap in smoothed online learning.

• Finally, in Appendix A, we apply our results to the problem of Contextual Bandits. We show
in Theorem 13 that whenever a function class F is learnable offline, we can get vanishing
regret in the smooth contextual bandit setting with an oracle-efficient algorithm.

In an independent and concurrent work, Haghtalab et al. (2022) established several results sim-
ilar to our own. In particular, they provided an analysis of an improper algorithm similar to our
oracle-efficient improper learner from Section 4, as well as computational lower bounds similar to
those presented in our Section 6. Additionally, they presented an oracle-efficient proper learner in

1. This bound was shown in Haghtalab et al. (2021), though with slightly different log factors.
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Reference Algorithm Iterations Oracle calls Total time

Theorem 3 Non-constructive,
proper

Cls1: ε−2d log(1/σ)
Reg: ε−2 log(1/σ)

NA NA

Theorem 7 Relaxation-based,
improper

Cls: ε−2dσ−1

Reg: ε−2σ−1
Cls: ε−2dσ−1

Reg: ε−3σ−3/2

Cls: ε−4d2σ−3

Reg: ε−4σ−5/2

Theorem 10 FTPL,
proper

Cls: ε−2dσ−1

Reg: ε−3σ−1
Cls: ε−2dσ−1

Reg: ε−3σ−1
Cls: ε−4d2σ−5/2

Reg: ε−7σ−3

Theorems 11 & 52,
Corollaries 12 & 53

Computational
lower bound

for any proper alg.
NA

Cls:

max
{
σ−1/2ζ2, ε−2d

}
with ζ-approx. oracle

Cls:

max
{
σ−1/2, ε−2d

}
with exact oracle

Theorem 3.2 from
Haghtalab et al. (2021)

Statistical
lower bound

for any algorithm

Cls: ε−2d log(1/σ)
Reg: ε−2 log(1/σ)

NA NA

Table 1: Overview of our main results. For each algorithm/lower bound, the number of iterations T after
which the algorithm achieves regret ≤ εT is shown for two cases: (a) Cls: the case of binary
classification for a class F of VC dimension d; (b) Reg: the case of regression for a class F with
scale-sensitive VC dimension bounded as vc(F, α) . α−p, for some 0 < p < 2 (our results extend
to the case of p ≥ 2, which may be found in the theorem statements). We take L = 1 and suppress
logarithmic factors where possible.

the case of binary classification that, while based on the principle of FTPL, has a substantially differ-
ent analysis than our own in Section 5; note that our algorithm also applies for general, real-valued
function classes in the nonparametric regime.

We discuss further related work in Appendix B.

2. Problem Setup and Notation

In this section we formally define the smoothed online learning setting. We then introduce some
concepts and notation we use throughout the paper.

Miscellaneous notation. For distributions p, q on a measure space X, we write p � q if p is
absolutely continuous with respect to q. For a positive integer m, let [m] = {1, 2, . . . ,m}. For
expressions f, g we say f . g if there is some universal constant C such that f ≤ Cg. We also use
f = O(g) to signify the same thing.

2.1. Smoothed Online Learning

We consider the setting of smoothed online learning, following Haghtalab et al. (2021). Consider
a space X of covariates equipped with some sigma-algebra. Let F ⊂ [−1, 1]X be a function class
and ` : [−1, 1] × [−1, 1] → [0, 1] be an L-Lipschitz, convex loss function for some L > 0. Fix
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some T ∈ N denoting the number of rounds of learning. We consider the following learning setting,
making a distinction between improper learning and proper learning:

1. For each t ∈ [T ], nature samples xt ∼ pt for some distribution pt that may depend in any way
on the past samples xs for s < t and the algorithm’s past predictions. Nature also chooses
yt ∈ [−1, 1] adversarially (perhaps depending on xt) in a similar manner.

2. The learner makes a (possibly random) prediction as follows:

• Improper learner: The learner observes xt and makes a prediction ŷt ∈ [−1, 1].

• Proper learner: The learner chooses a hypothesis f̂t ∈ F, and its prediction is defined
as ŷt := f̂t(xt); the learner then observes xt.

3. Nature reveals yt ∈ [−1, 1] to the learner, and the learner incurs loss `(ŷt, yt).

With no restrictions on pt, the above online learning problem has been extensively studied, and es-
sentially tight rates are known (Rakhlin et al., 2015b; Block et al., 2021); furthermore, exponential
lower bounds are known for oracle-efficient proper learning algorithms (Hazan and Koren, 2016).
To circumvent these lower bounds, we consider the smooth setting. Our fundamental assumption
(Definition 1 below) is that there is a distinguished distribution µ on X, accessable to the learner
through efficient sampling, so that the adversary is constrained to choose covariates xt according
to some distribution with bounded Radon-Nikodym derivative with respect to µ. This assump-
tion, which follows that of Haghtalab et al. (2020, 2021), has been used extensively as well in the
smoothed analysis of local search algorithms (Manthey, 2020) and discrete optimization problems
(Beier and Vöcking, 2004). We emphasize the assumption that in all cases the learner has access
to µ through efficient sampling; note that a typical example to keep in mind is that µ is uniform on
some set, so the efficient sampling assumption is not very restrictive.

Definition 1 (Adaptive smooth distributions) Let p, µ be probability measures on a set X. We
say that p is σ-smooth with respect to µ if p� µ and

ess sup
dp

dµ
≤ 1

σ
.

Let P(σ, µ) denote the class of all distributions p that are σ-smooth with respect to µ. We denote this
class simply by P when σ, µ are clear from the context. For any T ∈ N, we let PT (σ, µ) denote the
space of joint distributions D on x1, . . . , xT ∈ X satisfying the following property: letting pt denote
the law of xt conditional on xs for all s < t, for all t ∈ [T ], pt ∈ P(σ, µ) almost surely. Similarly,
we let P̃T (σ, µ) denote the space of joint distributions D on (x1, y1), . . . , (xT , yT ) ∈ X × [−1, 1]
such that if pt is the law of xt conditional on (xs, ys) for s < t, then pt ∈ P(σ, µ) almost surely.
Note that no constraints are placed on the distribution of yt.

For σ = 1 we recover the notion of the data x1, . . . , xT being sampled iid from µ; as σ tends to zero,
the notion of σ-smoothness becomes weaker and thus we consider σ-smoothness as interpolating
between the favorable situation of i.i.d. data and the unfavorable adversarial situation.
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2.2. Minimax value

The goal of the learner is to minimize expected regret to the best function in F, defined as

E [RegT (F)] = E

[
T∑
t=1

`(ŷt, yt)− inf
f∈F

T∑
t=1

`(f(xt), yt)

]

with the expectation taken over both the sampling of xt ∼ pt and the learner’s possibly randomized
predictions. For any function class, we consider the minimax regret for proper learners to be the
value V

prop
T (F,P(σ, µ)), defined to be equal to the following expression:〈
inf

qt∈∆(F)
sup

pt∈P(σ,µ)
Ext∼pt sup

yt∈[−1,1]
E
f̂t∼qt

〉T
t=1

[
n∑
t=1

`(f̂t(xt), yt)− inf
f∈F

T∑
t=1

`(f(xt), yt)

]

where 〈·〉Tt=1 denotes iterated application of the enclosed operators. Similarly, we define the mini-
max regret for an improper learner to be V

improp
t (F,P(σ, µ)), defined to be equal to〈

sup
pt∈P(σ,µ)

Ext∼pt inf
qt∈∆([−1,1])

sup
yt∈[−1,1]

Eŷt∼qt

〉T
t=1

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

T∑
t=1

`(f(xt), yt)

]
.

It is straightforward to see that Vprop
T (F,P(σ, µ)) ≥ V

improp
T (F,P(σ, µ)).

2.3. ERM oracle model

To capture the notion of computational efficiency, we consider the following ERM oracle model:

Definition 2 (ERM oracle) For ζ > 0, a ζ-approximate (weighted) empirical risk minimization
(ERM) oracle takes as input a sequence (x1, y1), . . . , (xm, ym) ∈ X × [−1, 1] of data, a sequence
w1, . . . , wm ∈ R of weights, and a sequence `1, . . . , `m of [−1, 1]-valued loss functions and outputs
some f̂ ∈ F satisfying

m∑
i=1

wi`i(f̂(xi), yi) ≤ inf
f∈F

m∑
i=1

wi`i(f(xi), yi) + ζ ·
m∑
i=1

|wi|. (1)

We remark that while Definition 2 allows for an arbitrary sequence `1, . . . , `m of loss functions, all
of our algorithms will set each `i equal to either ` (the given loss function of the learning problem)
or `Id, where `Id(ŷ, y) := ŷ.

We will measure the computation cost of algorithms via the following two metrics: first, the
number of calls to the ERM oracle, and second, the total computation time. To define the latter, we
must specify the manner in which our algorithm interacts with the ERM oracle: in particular, we
assume that there is a certain region of memory on which the algorithm lists tuples (xi, yi, wi). List-
ing (or modifying) any such tuple takes unit time, as does calling the ERM oracle, which performs
the optimization in (1) in unit time. This convention mirrors that of oracle machines in complexity
theory (Arora and Barak, 2009). We refer to the case that ζ = 0 the exact ERM oracle model, and
the case that ζ > 0 the approximate ERM oracle model.
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2.4. Statistical complexities

For a space X, an n ∈ N, and a function class F ⊂ [−1, 1]X, the Rademacher complexity, Rn(F),
and Gaussian complexity, Gn(F), conditional on x1, . . . , xn, are defined as follows:

Rn(F) := Eε

[
sup
f∈F

n∑
i=1

εif(xi)

]
, Gn(F) := Eγ

[
sup
f∈F

n∑
i=1

γif(xi)

]
,

where the εi are i.i.d. Rademacher random variables, and the γi are i.i.d. standard normal random
variables. It is a well-known fact that there is a universal constant C so that 1

C · Rn(F) ≤ Gn(F) ≤
C log n · Rn(F) for all F and n.

Furthermore, we consider the notion of scale-sensitive VC dimension from Kearns and Schapire
(1994); Bartlett et al. (1996) that characterizes learnability of F in a batch setting. For any α > 0 and
points x1, . . . , xm ∈ X, we say that F is shattered by the xi at scale α with witness s1, . . . , sm ∈ R
if for all (ε1, . . . , εm) ∈ {±1}m there is an fε ∈ F such that

εi(fε(xi)− si) ≥
α

2
for all i

We define the VC dimension of F at scale α, denoted by vc(F, α) to be the largest m such that there
exists a shattering set of size m. We let vc(F) = limα↓0 vc(F, α) denote the VC dimension of F.

3. Minimax Value

In this section, we provide tight bounds on V
prop
T (F,P(σ, µ)) without regard to oracle efficiency.

While our proof is nonconstructive, we emphasize that our results in Section 6 demonstrate that any
proper algorithm based on ERM oracle calls which achieves the optimal dependence on σ cannot
be computationally efficient. Our results show that Vprop

T (F,P(σ, µ)) is always a poly(log(T/σ))
factor away from the optimal statistical rates achievable in the batch setting. We now present our
bound:

Theorem 3 Let F : X→ [−1, 1] be a real-valued function class and denote by vc(F, δ) the scale-
sensitive VC dimension of F at scale δ > 0. Then, for some c > 0

V
prop
T (F,P(σ, µ)) . L log3/2(T ) · log

(
T

σ

)
inf
α>0

{
Tα+

√
T

∫ 2

α

√
vc (F, cδ)dδ

}
In particular, if vc(F, δ) ≤ d log

(
1
δ

)
for all δ > 0, then

V
prop
T (F,P(σ, µ)) . L log

3
2 (T ) log

(
T

σ

)√
dT

and if vc(F, δ) . δ−p for some p <∞, then

V
prop
T (F,P(σ, µ)) . L log

3
2 (T ) log

(
T

σ

)
T

max
(

1
2
,1− 1

p

)

Our result extends (Haghtalab et al., 2021, Theorem 3.1) to the cases of real-valued and nonpara-
metric function classes. In that paper, in order to prove their regret bounds for smoothed online
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classification, the authors introduced the clever approach of coupling, showing that if a distribution
p is smooth with respect to the uniform distribution on a discrete set, then in expectation we may
pretend the data comes independently from the uniform distribution. In Appendix C, we generalize
their result in Lemmas 14 and 24 with a dramatically simpler proof2. Namely, for any k ∈ N we
construct a coupling between (x1, . . . , xT ) ∼ D ∈ PT (σ, µ) and {Zjt }1≤t≤T

1≤j≤k
∼ µ⊗kT such that

{x1, . . . , xT } ⊂ {Zjt }1≤t≤T
1≤j≤k

with probability at least 1− e−σk.

Curiously, our proof of Theorem 3 is quite different from that of (Haghtalab et al., 2021, The-
orem 3.1), although we still use the coupling. In that paper, the authors apply the coupling to
analyze covering numbers with respect to L2(µ) (i.e. in the i.i.d. sense); the natural extension of
this technique would be to apply chaining (Dudley, 1967) and bound V

prop
T (F,D) by Eµ [RT (F)].

Unfortunately, Proposition 8 in the sequel shows that such a bound is not possible without a subop-
timal, polynomial dependence on σ. We instead go by a different approach, which is based on the
observation that the sequential fat-shattering dimension (see Definition 19) is bounded above by the
scale-sensitive VC dimension times a logarithmic factor in the domain size (Lemma 21). Though
the true domain X may be infinite, we show that it is possible adapt the coupling lemma of Hagh-
talab et al. (2021) to bound an “effective” domain size. In combination with the non-constructive
bounds using distribution-dependent sequential Rademacher complexity from Rakhlin et al. (2011);
Block et al. (2021), this provides a tight characterization of the minimax regret’s dependence on
the horizon T , the complexity of the function class, and the smoothness parameter σ. A full proof
is in Appendix C. Combining Theorem 3 with (Haghtalab et al., 2021, Theorem 3.2), we have a
complete characterization of the statistical rates of smooth online learning. We further note that our
proof applied to the results of Rakhlin and Sridharan (2015) immediately extends to nonconstruc-
tively show that the dependence of the minimax value on T for squared loss are the expected “fast
rates” from Rakhlin et al. (2017). Unfortunately, our efficient algorithms below do not provably
achieve these rates; resolving this disparity is an interesting future direction with applications to the
study of contextual bandits, as described in Appendix A.

Finally, before we proceed to consider oracle-efficient algorithms, we note that the requirement
that the learner has access to µ cannot be dropped without a substantial loss in the regret. In partic-
ular, we have the following result:

Proposition 4 There exists a function class F : [0, 1] → {±1} with vc(F) = 1 and an adversary
that is σ-smooth with respect to some unknown µ such that, no matter how the learner chooses ŷt,
it holds for T ≤ 1

σ that

E [RegT ] ≥ T

2
.

Proposition 4 is proved by letting F be thresholds on the unit interval and allowing the µ with
respect to which the adversary is σ-smooth adapt to the data sequence. The details can be found in
Appendix C. In particular, the result shows that for the learner to be able to ensure regret scaling as
in Theorem 3, he needs to have access to µ in some way. Critically, the size of the set of possible µ
in the lower bound of Proposition 4 is growing exponentially with T ; indeed, if we know that our

2. Already in the case of discrete distributions, the proof of (Haghtalab et al., 2021, Theorem 2.1) first demonstrates
their claim for uniform measures and then proceeds to apply convex analysis for the general case. They then claim
that Choquet’s Theorem (Choquet and Meyer, 1963, Corollaire 8) implies the general case when X is not discrete;
however, it is not a priori obvious that P(σ, µ) is compact in the relevant topology.
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adversary is σ-smooth with respect to some µ ∈ P , a finite class of distributions, then we can use
Hedge (Freund and Schapire, 1997) to aggregate predictions assuming smoothness with respect to
each µ ∈P and add an additive term of size O

(√
log(|P|)T

)
to our regret.

4. Relaxations and Oracle-Efficient Algorithms

In3 the previous section, we derived sharp bounds for the minimax regret in the smoothed online
setting, with sharp dependence on the key parameter σ. A natural next step is to design an algo-
rithm that achieves these bounds. One possibility, suggested in Haghtalab et al. (2021), constructs
a 1√

T
-net on ` ◦ F with respect to L2(µ) and runs Hedge (Freund and Schapire, 1997) on the re-

sulting covering. Unfortunately, in the nonparametric case, after optimizing δ this approach yields
suboptimal rates, corresponding to one-step discretization. Ideally, an algorithm achieving optimal
regret would construct nets at multiple scales and aggregate the resulting predictions in some way.
While there has been some progress on how to do this (Cesa-Bianchi and Lugosi, 1999; Gaillard
and Gerchinovitz, 2015; Daskalakis and Golowich, 2021), optimal rates are not yet achievable; in
any case, relying on the construction of δ-nets is inefficient as these can be exponentially large.

Thus in order to bring the smoothed online learning paradigm from the world of theory into that
of practice, we need more efficient algorithms. Presently, we describe an oracle-efficient improper
learning procedure. As we shall see, the algorithm has regret with optimal dependence on the
horizon, T , but suboptimal dependence on σ. We will improve the dependence on σ with a proper
learning algorithm in the following section, at the cost of worse dependence on T in general. Here,
we leverage the relaxation approach, studied in Rakhlin et al. (2012).

Definition 5 Fix T ∈ N. A sequence of real valued functions RelT (F|x1, . . . , xt) : Xt → R,
t ≤ T , is a relaxation if for any x1:T ∈ X, we have the following two properties:

sup
pt∈P(σ,µ)

Ex′t∼pt inf
qt∈∆([−1,1])

sup
y′t∈[−1,1]

[
Eŷt∼qt [`(ŷ, y

′
t)] + RelT (F|x1, y1, . . . , x

′
t, y
′
t)
]

(2)

≤ RelT (F|x1, y1, . . . , xt−1, yt−1)

− inf
f∈F

T∑
t=1

`(f(xt), yt) ≤ RelT (F|x1, y1, . . . , xT , yT )

As established in (Rakhlin et al., 2012, Proposition 1), a relaxation gives rise to both an algorithm
and an associated regret bound; indeed, any qt guaranteeing (2) at each time t yields a regret at most
RelT (F); the challenge, of course, is to define the relaxation. We have the following result:

Proposition 6 Suppose that D ∈ P(σ, µ). Then, for any function class F and L-Lipschitz, convex
loss function `, and any k ∈ N,

RelT (F|x1, y1, . . . , xt, yt) = Eµ,ε

sup
f∈F

2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)−
t∑

s=1

`(f(xs), ys)

+(T−t)3e−σk

(3)

3. In an earlier version of the paper, we used a slightly different relaxation with a worse rate. With a minor modification,
we get a quadratic improvement in the dependence of the regret on σ. While our improvement was independent of
other work, we note that Haghtalab et al. (2022) present the same final relaxation and analysis.
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is a relaxation, where the expectation is over independent xs,j ∼ µ and Rademacher random vari-
ables εs,j for s > t.

We provide a proof in Appendix D that uses the minimax theorem, symmetrization and Lemma
14. Applying (Rakhlin and Sridharan, 2014, Lemma 5.1) to reduce to deterministic predictions,
Proposition 6 gives rise to an algorithm that plays

ŷt = argmin
ŷ∈[−1,1]

sup
yt∈[−1,1]

`(ŷ, yt) + Eµ,ε

sup
f∈F

2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)


where we drop the additive constant from (3) because it does not depend on f and we let Lt(f) =∑t

s=1 `(f(xs), ys). After optimizing the resulting regret bound with respect to k, we get that the

regret of this algorithm isO
(
R
T log T

σ
(F)
)

, which has an optimal dependence on T up to logarithmic
factors, but is suboptimal with respect to σ. Note that while the supremum inside of the expectation
in (3) can be solved with an ERM oracle by letting `s(f(xs,j), ys) = f(xs,j) for x > t, we still
require a costly integration in order to find ŷt. We can compute this expectation by sampling from
µ and applying concentration but this approach requires many calls to the ERM oracle. Motivated
by the random playout idea in Rakhlin et al. (2012), we propose a much more efficient algorithm:

Theorem 7 Suppose that D ∈ P(σ, µ), F : X → [−1, 1] is a function class, and ` is an L-
Lipschitz, convex loss function. At each time t, for 1 ≤ j ≤ k, sample xt+1,j , . . . , xT,j ∼ µ and
εt+1,j , . . . , εT,j independently. After observing xt, predict

ŷt = argmin
ŷ∈[−1,1]

sup
yt∈[−1,1]

`(ŷ, yt) + sup
f∈F

6L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)

 (4)

Then the expected regret against any smooth adversary is

E [RegT ] ≤ 6LEµ [RkT (F)] +
√
T + T 3e−σk

Moreover, this regret can be achieved with O
(√

T log T
)

calls to the ERM oracle per round in

general and only 2 calls per round in the special case that `(ŷ, y) = 1−ŷy
2 . In particular, when

vc(F, δ) . δ−p for some p > 0, we have

E [RegT ] . L

(
T log (T )

σ

)max
(

1
2
,1− 1

p

)

Theorem 7 is proved in Appendix D. To understand why (4) is oracle-efficient, note that we can
discretize the interval [−1, 1] at scale 1

L
√
T

to produce a set S of size 2L
√
T . For each ŷ ∈ S, we

can exhaustively search S for the optimal yt with O(
√
T ) calls to the (value of the) ERM oracle.

Because the problem is convex in ŷ (due to the convexity of `), we can run zeroth order optimization
as in Agarwal et al. (2011) to find ŷt up to 1√

T
error in O

(√
T log T

)
calls to the oracle. If the

losses are linear, then the problem is convex in yt and is thus extremized on the boundary; further
leveraging the linear loss allows the problem to be solved in 2 oracle calls per round. Note that in the

10
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case of y being binary-valued, we can think of `(ŷ, y) = 1−ŷy
2 as the indicator loss when guessing

ŷ ∈ {±1} and thus, for classification, we can get optimal regret with 2 oracle calls per round.
While Theorem 3 demonstrates that regret can depend on σ only through a logarithmic fac-

tor, our relaxation-based algorithm has a polynomial dependence on σ. Unfortunately, this poly-
nomial dependence cannot in general be eliminated for any relaxation relying on the classical
Rademacher complexity. To see this, note that the regret of any algorithm is bounded below by
V
improp
T (F,P(σ, µ)). The following proposition shows that the value is in turn bounded below by a

polynomial factor of σ.

Proposition 8 For any σ ≤ 1 and 0 < p < 2, there exists a measure µ and a function class F

satisfying vc(F, δ) . δ−p such that for all T & 1
σ log

(
1
σ

)
with ` the absolute loss,

σ−
p
4Eµ [RT (F)] . V

improp
T (F,P(σ, µ))

We construct a measure such that the learning problem is easy when the population distribution is
µ by having µ concentrate a lot of mass on a distinguished point x∗ on which all the functions in
F agree; thus, a sample from µ will include many copies of x∗, which incur no regret. We then
consider an i.i.d. adversary and let pt be uniform over a set of points that shatters F at scale

√
σ; in

this way, we make it so a sample from pt will incur high regret and the gap between the performance
on samples from pt and µ is relatively large. A complete proof can be found in Appendix C. Note
that Proposition 8 is not in conflict with Theorem 3 because the example described above makes
RT (F) polynomially small in σ for a carefully designed µ; in essence, the separation is created by
making the Rademacher complexity much smaller than expected based on the complexity of the
function class F.

In the improper procedure (4), we have our first efficient algorithm for the smoothed online
learning setting that works for a generic function class and achieves an optimal regret dependence
on the horizon T . There are three drawbacks to Theorem 7. First, ŷt is improper. Second, our
dependence on σ is significantly worse than the optimal statistical dependence explored in Section
3. Third, while the algorithm is efficient, we may hope to have an algorithm that makes only 1
oracle call per round in general. We address these issues in the following section.

5. Follow the Perturbed Leader and Oracle-Efficient Proper Learning

In the previous section, we provided an improper oracle-efficient algorithm that achieves optimal
dependence on the horizon T , but is improper and requires more than one oracle call per round; here
we demonstrate that a proper learner can have similar regret in some situations with only 1 oracle
call per time step. In the following section, we will show that our algorithm’s regret is optimal up
to a polynomial factor for any oracle-efficient algorithm.

In Rakhlin et al. (2012), the authors make use of the connection between relaxations, random
playout, and the Follow the Perturbed Leader (FTPL) style algorithms pioneered in Kalai and Vem-
pala (2005) to make the relaxation approach more efficient in some cases. We expand upon this
approach, using Theorem 7 as a starting point. Indeed, the prediction ŷt in (4) is cosmetically very
similar to that of FTPL, were we recall that the FTPL approach introduces a noise process ω(f)
and, at each time step, sets

ft ∈ argmin
f∈F

Lt−1(f) + ηω(f)

11
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for some real-valued parameter η. The perturbation ηω(f) acts to regularize the predictions; typi-
cally, the noise ω is independent across functions, with the classic example being exponential noise
in Kalai and Vempala (2005). On the other hand, up to a sign, the supremum in (4) returns the opti-
mal value of Lt(f) + ηω(f) with appropriate values of η and letting ω be the Rademacher process.
It is natural to wonder, then, if the min-max problem that is the source of the extra oracle calls is
really necessary; we show below that it is not in the sense that FTPL provides an efficient, proper
algorithm.

Were we to apply existing FTPL results, using independent perturbations for each f , we would
require the enumeration of representative “experts,” which would preclude the desired oracle-efficiency.
Above, we saw that a Rademacher process perturbation is motivated by the relaxations of the pre-
vious section, but analysis is much easier with a Gaussian process. We first treat the case of binary
classification:

Theorem 9 Suppose that F : X→ [−1, 1] is a function class and ` a loss function that is Lipschitz
in both arguments. Suppose further that we are in the smoothed online learning setting where xi
are drawn from a distribution that is σ-smooth with respect to some distribution µ on X. Let

ω̂t,n(f) =
1√
n

n∑
i=1

γt,if(Zt,i)

where the Zt,i ∼ µ are independent and the γt,i are indpendent standard normal random variables.
Suppose that ζ ≥ 0 and consider the algorithm which uses the approximate ERM oracle to choose
ft according to4

Lt−1(ft) + ηω̂t,n(ft) ≤ inf
f∈F

Lt−1(f) + ω̂t,n(f) + ζ (5)

and let ŷt = ft(xt). If F and yt are binary valued, vc(F) ≤ d, then for appropriate choices of n
and η5

E [RegT (ft)] .

√
dT log T

σ
+ ζT

More generally, if we let

ω̂t,n(f) =
1√
n

n∑
i=1

γt,i`(f(Zt,i), yt,i)

with yt,i drawn uniformly from εZ∩[−1, 1] and vc(F, δ) . δ−p for some p < 2, then for appropriate
choices of the parameters6, if ft is chosen according to (5),

E [RegT (ft)] . T
3
4σ−

1
4 log

(
T

σ

)
+ ζT

In order to improve the regret for the case of real-valued labels, we introduce a second, stabilizing
perturbation. The following result bounds the regret of the resulting algorithm:

4. Note that we have not included the total weight multiplying ζ in (5), as in (1); thus we are technically using a
ζ

T+log(1/δ)·n -approximate ERM oracle with probability 1−O(δ).
5. Specified in Proposition 40 in Appendix E.3
6. Given in Corollary 44 in Appendix E.3.
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Theorem 10 Suppose that F : X → [−1, 1] is a function class and ` : [−1, 1] × [−1, 1] → [0, 1]
is a loss function that is L-Lipschitz in both arguments. Suppose further that we are in the smooth
online learning setting where xt is chosen from a distribution that is σ-smooth with respect to some
µ. Fix ε > 0 and consider the following two processes:

ω̂t,m(f) =
1√
m

m∑
i=1

γt,if(Zt,i) ω̂′t,n(f) =

n∑
j=1

γ′t,j`(f(Z ′t,j), y
′
t,j)

where γt,i, γ′t,j are independent standard normal random variables, Zt,i, Z ′t,j ∼ µ, and y′t,j are
independent and uniform on εZ ∩ [−1, 1]. Suppose that ft is chosen according to

Lt−1(ft) + ηω̂t,m(ft) + ω̂t,n(ft) ≤ inf
f∈F

Lt−1(f) + ηω̂t,m(f) + ω̂t,n(f) + ζ

If there is some p < 2 such that vc(F, δ) . δ−p then for appropriate choices of the parameters7, we
have:

E [RegT (ft)] .
T

2
3 log T

σ
1
3

+ ζT

If 2 ≤ p <∞, then there are appropriate choices of parameters such that E [RegT (ft)] = o(T ).

In Appendix E.3 we provide a slightly more general form of the above regret bounds, including
in the case when the labels are smooth with respect to a known measure. Further, we give the precise
dependence of our regret bounds on n and η; the optimal values of these parameters are polynomial
in L, T, 1/σ, and the complexity of the function class. Interestingly, we can still achieve regret with
the same dependence on T by setting the parameters independently of σ and L; this is useful for
applications where we can assume σ-smoothness but do not know what σ is.

The proofs of Theorems 9 and 10 proceed similarly. First, we apply a variant of the classic “Be-
the-Leader” approach (Cesa-Bianchi and Lugosi, 2006, Lemma 3.1), which leads to a regret de-
composition into a perturbation term and a stability term. The perturbation term is easily controlled
with classical empirical process theory. For the stability term, we further decompose the regret into
a term quantifying the difference in losses of ft and ft+1 on a tangent sequence and another quan-
tifying the dependence of ft+1 on xt, yt. For the former term, we prove a novel anti-concentration
inequality for the infimum of a Gaussian process, which may be of independent interest, and apply
this inequality to control the Wasserstein distance between ft and ft+1. We bound the latter term in
the case of linear loss in a similar way as Haghtalab et al. (2022) did for the corresponding term in
their algorithm. This suffices for the binary labels case, but to extend to the more general setting, we
use a discretization scheme to reduce to the case that the labels are also chosen in a smooth manner
with respect to some distribution; we then reduce this setting to the case of linear loss and apply our
earlier bound. The details can be found in Appendix E.

The stability estimate was a significant technical challenge due to the complex dependence
structure of ω̂t,n accross F; most regret bounds for FTPL-style algorithms are simplified by inde-
pendent perturbations. To the best of our knowledge, Theorem 10 constitutes the first proof of an
FTPL regret bound where the algorithm uses a generic Gaussian process as the perturbation.

7. Outlined in Corollary 43 in Appendix E.3.
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6. Computational Lower Bounds

Comparing the results of Theorem 3 and Theorem 10, we notice that the requirement of oracle
efficiency incurs an exponential loss in the regret’s dependence on σ. In this section, we show that
this exponential gap is necessary for any oracle-efficient algorithm.

Theorem 11 Fix any T ∈ N and σ ∈ (0, 1]. In the ERM oracle model, any randomized algorithm
cannot guarantee expected regret smaller than T

200 against a σ-smooth online adversary over T
rounds and any binary F with |F| ≤ 1/σ in total time smaller than Õ(1/

√
σ).

Theorem 11 is proved in Appendix F by constructing a family of function classes on a space X of
size 1/σ and noting that a worst-case adaptive adversary is σ-smooth in this setting. The construc-
tion then mirrors that in Hazan and Koren (2016), which reduces from Aldous’ problem (Aldous,
1983); the main difference being that Definition 2 allows for negative weights in the ERM oracle,
which complicates the proof.

As an immediate corollary of Theorem 11, we obtain the following regret lower bound for
computationally efficient algorithms in the ERM oracle model, i.e., those whose total time after T
time steps is poly(T ):

Corollary 12 Fix any α ≥ 1, ε < 1/200, σ ∈ (0, 1], and d ≥ log 1/σ. Any algorithm whose total
time in the ERM oracle model over T rounds is bounded as Tα requires that T ≥ Ω̃

(
max

{
d
ε2
, σ−

1
2α

})
to achieve regret εT for classes F of VC dimension d against a σ-smooth adversary.

Corollary 12 and Theorem 3 show that there is an exponential statistical-computational gap for
smoothed online learning in the ERM oracle model: for general classes F, it is possible to achieve
regret proportional to log(1/σ), but the regret must be polynomial in 1/σ if the algorithm is required
to be oracle-efficient. While Theorem 11 and Corollary 12 get a lower bound only on the total
computation time, as opposed to the number of oracle calls, we provide analogous results obtaining
lower bounds on the number of oracle calls with an approximate ERM oracle in Theorem 52 and
Corollary 53 in the appendix. In particular, we show that any algorithm with TO(1) oracle calls with
a 1/TO(1)-approximate ERM oracle needs T ≥ max{d, 1/ε, 1/σ}Ω(1) to obtain sublinear regret
against binary classes of VC dimension d.
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Appendix A. Applications to Contextual Bandits

We apply our results to the study of contextual bandits. A series of recent papers (Foster and
Rakhlin, 2020; Simchi-Levi and Xu, 2021; Foster et al., 2020) has focused on reducing the con-
textual bandit framework to that of online learning, with Foster and Rakhlin (2020) introducing
an efficient and optimal reduction, SquareCB, that turns an online regression oracle into a fast,
no-regret contextual bandit algorithm. One of the key advantages of this reduction is the fact that
the learner “only” has to design algorithms that have small regret in the full-information setting,
thought to be an easier task than one that requires a careful balance of exploration and exploitation.
Unfortunately, there is still a dearth of oracle-efficient online algorithms with provably good regret
in general, limiting the broader application of these results. In Simchi-Levi and Xu (2021), the
authors use a similar reduction, but with an offline regression oracle, for which there are many prac-
tical algorithms; unfortunately, the result requires the contexts to arrive in i.i.d. fashion, unlike the
more general result of Foster and Rakhlin (2020). Here, we show that whenever a function class is
learnable in the offline setting, we can still use the SquareCB reduction to get a no-regret algorithm
that is efficient with respect to an ERM oracle in the smooth contextual bandit setting.

We consider the setting described in Foster et al. (2020) with the modification that contexts
arrive in a σ-smooth manner. Formally, at each 1 ≤ t ≤ T , Nature selects a σ-smooth distribution
pt, and samples xt ∼ pt, then samples a loss function `t independently from some distribution
depending on xt. The learner selects an action at ∈ [K] and observes `t(at). We are given a
function class F : X × [K] → [0, 1] and suppose that there is some unknown f∗ ∈ F such that
E [`t(a)|xt = x] = f∗(x, a) for all x ∈ X and a ∈ [K]. The goal is to minimize regret to the best
policy induced by F, where for any f ∈ F, we define πf (x) = argmina∈[K] f(x, a), i.e., we wish
to minimize

RegCB(T ) =

T∑
t=1

`t(at)− `t(πf∗(xt))

We have the following result:

Theorem 13 Suppose we are in the σ-smooth Contextual Bandit setting described above. If we
run SquareCB with the relaxation-induced online regressor from (4), we can achieve

E [RegCB(T )] ≤ 12
K log T√

σ

√
TRT (F)

with O
(√

T log T
)

calls to the ERM oracle per round. If we instead instantiate SquareCB with
the FTPL algorithm from Theorem 10 and RT (F) = o(T ), then E [RegCB(T )] = o(T ) as well with
only 1 call to the ERM oracle per round.

To prove Theorem 13, we observe that if the contexts arrive in a σ-smooth manner with respect to
µ, then the context-action pairs can be taken to be σ

K -smooth with respect to µ ⊗ Unif([K]). We
then apply (Foster and Rakhlin, 2020, Theorem 1). The details and precise rates in the case of the
FTPL instantiation can be found in Appendix G.

Note that the regret bound does not have optimal rates with respect to either T or K. In order to
recover optimal rates with respect to T , we would need to find an algorithm that exhibits fast rates
with square loss in the smoothed-online setting. This is an interesting further direction in its own
right, in addition to the practical implications on better rates for efficient algorithms for contextual
bandits.
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Appendix B. Related Work

Here we describe some recent of the recent literature and how it relates to our work.

Smoothed Analysis. Smoothed analysis was first introduced in Spielman and Teng (2004),
where it was proposed as an explanation for the gap between theoretical lower bounds and excel-
lent empirical performance of the simplex algorithm (Klee and Minty, 1972). Since then, smoothed
analysis has been applied to analyze the performance of algorithms for many other problems which
are known to be hard in the worst-case, such as the k-means algorithm for clustering (Arthur and
Vassilvitskii, 2006), the flip algorithm for finding a local max-cut (Etscheid and Röglin, 2017),
and more generally better-response algorithms for finding Nash equilibria in network coordina-
tion games (Boodaghians et al., 2020) (see also Roughgarden (2021) for a more comprehensive
overview).

In the context of learning theory, Rakhlin et al. (2011) gave a nonconstructive proof demon-
strating its utility for the specific case of threshold functions, while Haghtalab et al. (2020, 2021)
proved that the minimax regret of binary classification in smoothed online learning is governed by
VC dimension.

Online Learning. The optimal statistical rates attainable by online learning algorithms was
shown to be characterized by sequential complexity measures of the function class in Rakhlin
et al. (2015b); Rakhlin and Sridharan (2013); Rakhlin et al. (2015a). This characterization was
extended to the case of constrained adversaries (including the special case of smoothed adversaries)
in Rakhlin et al. (2011). Several subsequent papers have established further refined regret bounds
Block et al. (2021); Rakhlin and Sridharan (2015). The profusion of publications relating to algo-
rithmic questions about online learning is too large to enumerate here, but notable relevant work
includes Hazan and Koren (2016), which provides lower bounds on oracle-efficiency and Rakhlin
et al. (2012) which introduces a general framework for constructing algorithms.

Follow The Perturbed Leader. Our proper learning algorithm is motivated by Follow the Per-
turbed Leader (FTPL) Kalai and Vempala (2005); Hannan (2016). FTPL has been successful for
many problems, including learning from experts (Kalai and Vempala, 2005), multi-armed bandits
(Abernethy et al., 2015), and online structured learning (Cohen and Hazan, 2015), which includes
as special cases problems such as online shortest path (Takimoto and Warmuth, 2002) and online
learning of permutations (Helmbold and Warmuth, 2007). There is a similar diversity in methods
of proving regret bounds for FTPL style algorithms, including potential-based analysis (Abernethy
et al., 2014; Cohen and Hazan, 2015) and relaxation methods (Rakhlin et al., 2011). A common
approach, which we adopt, is to show that the algorithm is stable (Kalai and Vempala, 2005; Agar-
wal et al., 2019; Devroye et al., 2013; Agarwal et al., 2011). One of the primary advantages of
our FTPL approach is the fact that we do not generate independent noise for each function in our
class. In (Dudı́k et al., 2017), the authors present an FTPL-style algorithm which aims to do some-
thing similar, mitigating the computational burden by sharing randomness between functions. Their
method, however, is very different from ours in that they rely on their new notions of admissability
and implementability of a matrix to transform low-dimensional independent noise into a more struc-
tured form; in contradistinction, we directly use a Gaussian Process on the function class to ensure
stability of our algorithm.

Contextual Bandits. There is a rich history of studying contextual bandits. Most relevant to
our work is the series of papers Foster and Rakhlin (2020); Simchi-Levi and Xu (2021); Foster et al.

20



SMOOTHED ONLINE LEARNING

(2020) which provides a reduction from contextual bandits to an online learning oracle. See these
papers for further references.

Appendix C. Proofs from Section 3

C.1. Proofs Related to the Coupling

We first extend (Haghtalab et al., 2021, Theorem 2.1) by providing a simpler and more general
proof of the coupling between D ∈ PT (σ, µ) and independent random variables drawn according
to µ. While we use a slightly different version (Lemma 24) in the proof of Theorem 3, the following
lemma is both simpler for exposition and is used in the proofs of the results in Section 4.

Lemma 14 Suppose that D ∈ PT (σ, µ). Then for any T there exists a measure Π with random
variables (xt, Z

j
t )1≤t≤T

1≤j≤k
satisfying the following properties:

1. xt is distributed according to pt(·|x1, . . . , xt−1) induced by D .

2. {Zjt }1≤t≤T
1≤j≤k

are iid according to µ

3. With probability at least 1− Te−σk, we have xt ∈ {Zjt }1≤j≤k for all t

Proof We construct the coupling recursively. For any t, suppose thatZjs , xs has been constructed for
s < t. If t = 0 then this is the empty set. Now, sample Zjt iid according to µ. Let πjt = σ dptdµ (Zjt ).

Note that πjt ≤ 1 by the assuption of σ-smoothness. Construct the random set St ⊂ [k] by adding
j to St iwth probability πjt independently for each 1 ≤ j ≤ k. If St is nonempty, then sample xt
uniformly from St. Otherwise, sample xt independently from pt. We now show that this process
exhibits the desired properties.

It is clear form the construction that Zjt are iid according to µ. To verify that xt ∈ {Zjt }, we
note that for any t, j, we have

P(Zjt ∈ St) = Eµ
[
σ
dpt
dµ

(Zjt )

]
= σ (6)

Because the Zjt are added to St independently, the probability that St is empty is (1 − σ)k. Thus,
by a union bound, the probability that there exists some t ≤ T such that any St is empty is bounded
by T (1− σ)k ≤ Te−σk.

Finally, to see that xt are distributed according to pt, let A ⊂ X be measurable and χA denote
the indicator for A. We compute:

P(Zjt ∈ A|Z
j
t ∈ St) =

P
(
Zjt ∈ A and Zjt ∈ St

)
P
(
Zjt ∈ St

)
=

P
(
Zjt ∈ A and Zjt ∈ St

)
σ

=
Eµ
[
χAσ

dpt
dµ (Zjt )

]
σ

= Ept [1A] = pt(A)
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where the second equality follows from (6), the third equality follows from the construction of St,
and the penultimate equality following from the definnition of the Radon-Nikodym derivative. The
result follows.

We further note that the coupling in Lemma 14 is optimal with respect to the dependence on k in
the third requirement, as seen in the following proposition.

Proposition 15 For any σ < 1 and non-atomic measure µ on X, there exists a measure on X, p
such that p is σ-smooth with respect to µ and the following property holds. For any coupling Π
which has random variables Zj for 1 ≤ j ≤ k and X such that Zj ∼ µ are independent and
X ∼ p, the probability that X ∈ {Zj} is bounded below by 1− (1− σ)k.

Proof Given µ, let A ⊂ X denote a measurable set such that µ(A) = σ. Let p be a measure on
X such that dp

dµ = 1
σχA. Then p is σ-smooth with respect to µ. Note that if Zj ∼ µ then with

probability 1 − σ, Zj 6∈ A. Thus with probability (1 − σ)k, none of Zj are in A. Thus with
probability at least (1− σ)k, X 6∈ {Zj |1 ≤ j ≤ k} if X ∼ p. The result follows.

C.2. Preliminaries on Distribution-Dependent Sequential Rademacher Complexity

In this section, we recall the definition of the distribution-dependent sequential Rademacher com-
plexity from Rakhlin et al. (2011) and how it relates to the minimax regret. To begin, we formally
construct a measure ρD used in the definition of distribution-dependent sequential Rademacher
complexity from Rakhlin et al. (2011).

Throughout, we follow Rakhlin et al. (2015b, 2011) and introduce as our basic object in ana-
lyzing sequential complexities a tree. Specifically, we consider complete binary trees z of depth T
with each vertex of the tree labelled by some element of X. We associate each ε ∈ {±1}T to a path
in the tree from the root to a leaf, where the path is constructed recursively by beginning at the root
and at each level going to the left if εt−1 = 1 and to the right otherwise. For a given tree z, we
denote by zt(ε) the label of the tth vertex along the path ε.

Let D be the joint distribution of z1, . . . , zT ∈ Z. Define pt(·, |z1, . . . , zt−1) as the distribution
under D of zt, given zs for s < t. We recursively construct the measure ρD on pairs of binary trees
as follows. We first construct the roots of each tree by sampling z0(ε), z′0(ε) ∼ p0 independently.
Suppose we have z1:t−1, z

′
1:t−1 already constructed. For any s < t, let

χs(ε) =

{
zs(ε) εs = 1

z′s(ε) εs = −1

then sample zt(ε), z
′
t(ε) independently from pt(·|χ1(ε), . . . , χt−1(ε)). In this way, we can recur-

sively construct the measure ρD .
With the definition of ρD completed, we can now define the key notion of complexity.

Definition 16 (Definition 2 from Rakhlin et al. (2011)) Given a space Z, a function class F ⊂
[−1, 1]Z, and a joint distribution D , let ρD be the measure on an ordered pair of binary trees of
depth T with values in Z, defined above. Then, we define the distribution-dependent sequential
Rademacher complexities as

R
seq
T (F,D) = E(z,z′)∼ρD

Eε

[
sup
f∈F

T∑
t=1

εtf(zt(ε))

]
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If P is a class of distributions D , we define

R
seq
T (F,P) = sup

D∈P
R
seq
T (F,D)

for any class of distributions P.

Intuitively, depending on the nature of the class P, RseqT (F,P) interpolates between the classi-
cal batch Rademacher complexity (if we force D to be iid) and the fully adversarial sequential
Rademacher complexity from Rakhlin et al. (2015b). In the special case that P = P(σ, µ), we see
that we are much closer to the classical Rademacher complexity than to the fully adversarial ana-
logue. Indeed, using Lemma 24, which is an extension of the coupling result contained in Lemma
14 above, we can bound the distribution-dependent sequential Rademacher complexity by that of
the classical Rademacher complexity:

Lemma 17 Let F ⊂ [−1, 1]X be a function class. Then, for any k ∈ N,

R
seq
T (F,P(σ, µ)) ≤

(
4

σ
log T

)
Eµ [RkT (F)] + 2T 2e−σk

In particular, in the case that vc(F) ≤ d, we have:

R
seq
T (F,P(σ, µ)) .

√
Td log

(
T

σ

)
and in the case that vc(F, δ) . δ−p, we have:

R
seq
T (F,P(σ, µ)) .

(
T log

(
T

σ

))max
(

1
2
,1− 1

p

)

Proof Let A be the high probability event in Lemma 24 below, i.e., the event that xt ∈
{
Zjt

}
1≤j≤k

for all t. We have for any D ∈ P(σ, µ),

R
seq
T (F,D) = E(z,z′)∼ρD

Eε

[
sup
f∈F

T∑
t=1

εtf(zt(ε))

]

= EΠEε

[
χA sup

f∈F

T∑
t=1

εtf(zt(ε))

]
+ EΠEε

[
χAc sup

f∈F

T∑
t=1

εtf(zt(ε))

]

≤ EΠEε

χA sup
f∈F

T∑
t=1

εtf(zt(ε)) +
∑

j such that Zjt 6=zt(ε)

Eεt,j
[
εt,jf(Zjt )

]+ 2T 2e−σk

≤ EΠEε

sup
f∈F

k∑
j=1

T∑
t=1

εt,jf(Zjt )

+ 2T 2e−σk

≤ 2T 2e−σk + Eµ [RkT (F)]
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where Π is the coupling in Lemma 24, the first inequality follows because εt is mean zero, the
second inequality follows by Jensen’s, and the lastfollows by definition of Rademacher complexity.
Setting k = 2

σ log T concludes the proof.

As is the case in both the fully adversarial and classical regimes, we see that VpropT (F,P) is deter-
mined up to constants by R

seq
T (F,P):

Proposition 18 (Theorem 3 and Lemma 20 from Rakhlin et al. (2011)) For any F, we have

V
prop
T (F,P(σ, µ)) ≤ 2 sup

D∈P̃T (σ,µ)

R
seq
T (` ◦ F,D).

where we recall from Definition 1 that P̃T (σ, µ) is the class of distributions on (xt, yt) such that the
xt are chosen in a σ-smooth way and the yt are adversarial. In the special case where ` is absolute
loss, we also have

sup
D∈P̃T (σ,µ)

R
seq
T (` ◦ F,D) ≤ V

prop
T (F,P(σ, µ))

In the statement of Proposition 18, ` ◦ F denotes the class of functions in [0, 1]X×[−1,1] of the form
(x, y) 7→ `(f(x), y), for f ∈ F. By Proposition 18, it suffices to provide upper and lower bounds on
R
seq
T (`◦F, P̃T (σ, µ)), which is significantly more tractable than working with the iterated operators

involved in V
prop
T (F,P).

In the proof below, we will also need a sequential analogue of vc(F, α):

Definition 19 (Definition 7 from Rakhlin et al. (2015b)) We say that a X-valued binary tree of
depth T , x, is shattered by F at scale δ ≥ 0 if there exists an R-valued binary tree s of depth T such
that for all ε ∈ {±1}T , there exists an fε ∈ F such that

εt (f(xt(ε))− st(ε)) ≥
α

2

Define the sequential fat-shattering dimension of F, fatδ(F) as the maximal T such that there exists
a tree of depth T shattering F at scale δ.

Finally, we require a structural result showing that worst-case sequential Rademacher complex-
ity contracts with Lipschitz loss functions:

Lemma 20 (Lemma 13 from Rakhlin et al. (2015b)) Let F be a function class with values in
[−1, 1] and let ` be L-Lipschitz. Then,

sup
D∈∆(X×T )

R
seq
T (` ◦ F,D) . L log

3
2 (T ) sup

D∈∆(X×T )

R
seq
T (F,D)

Because the supremum in Lemma 20 is taken over all distributions on the product space X×T , the
above distribution-dependent sequential Rademacher complexities are reduced to the adversarial
sequential Rademacher complexities of Rakhlin et al. (2015b). In the following section, we show
that on small domains, we can control fatδ(F) by vc(F, δ).
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C.3. Sequential and Batch Complexities

In this section, we prove the following lemma, which bounds the sequential fat-shattering dimension
by the scale-sensitive VC dimension when the domain is small:

Lemma 21 Let F be a function class from X to [−1, 1] and let fatδ(F) denote the sequential fat-
shattering dimension of F (Definition 19). Then, for any α > 0,

fatδ(F) . vc (F, cαδ) log1+α

(
C |X|

vc (F, cδ) δ

)
In order to prove this result, we require a generalization of the Sauer-Shelah lemma (Sauer, 1972;
Shelah, 1972). We first define covering numbers with respect to the sup norm:

Definition 22 Let F be a class of functions on X. A set S of functions on X is a δ covering if for all
f ∈ F, there exists a sf ∈ S such that

sup
x∈X
|sf (x)− f(x)| ≤ δ

We let N(F, δ) to be the minimal size of a δ-covering of F.

In order to bound fatδ(F) by vc(F, δ), we first recall a result that bounds N(F, δ) by vc(F, δ):

Theorem 23 (Theorem 4.4 from Rudelson and Vershynin (2006)) Let F be a function class on
X, a finite set, to [−1, 1]. Then for any α > 0, there are constants c, C > 0 such that

logN(F, δ) . vc(F, cαδ) log1+α

(
C |X|

vc(F, cδ)δ

)
The above theorem is an intermediate result, so our bound will come down to comparing fatδ(F) to
the covering numbers. We can now provide the main proof in the section.
Proof [(Lemma 21)] We first note that 2fatδ(F) ≤ N

(
F, δ3

)
. To see this, let d = fatδ(F) and let x

denote a depth d tree that shatters F at scale δ with witness tree s. Let S be a δ
2 net for F. For each

ε ∈ {±1}d, let fε be the function that realizes the shattering on path ε. If vfε ∈ F is the projection
into S, then we note that the function ε 7→ vfε is injective. Indeed, if there are two different ε, ε′

mapping to the same v ∈ S, then there is some t such that εt = −ε′t but εs = ε′s for s < t. Thus
xt(ε) = xt(ε

′) and st(ε) = st(ε
′). We know, however, that∣∣fε(xt(ε))− fε′(xt(ε′))∣∣ ≤ |fε(xt(ε))− v(xt(ε))|+ |v(xt(ε))− fε′(xt(ε))| ≤

2δ

3

Thus we have by the shattering assumption,

δ

2
≤ εt (fε(xt(ε)− st(xt(ε))))

= −ε′t (fε(xt(ε)− st(xt(ε))))

≤ −ε′t
(
fε′(xt(ε)− ε′t

2δ

3
− st(xt(ε)))

)
≤ −δ

2
+

2δ

3

≤ δ

6
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Thus we have a contradiction and the mapping is injective. But this means then that 2d ≤ N
(
F, δ2

)
as desired. By Theorem 23, for any α > 0, we have

fatδ(F) . log
(

2fatδ(F)
)
. log

(
N

(
F,
δ

3

))
. vc (F, cαδ) log1+α

(
C |X|

vc (F, cαδ) δ

)
as desired.

We are now ready to prove the main results from Section 3.

C.4. Proof of Theorem 3

By Proposition 18, it suffices to control the distribution-dependent sequential Rademacher complex-
ity of Definition 16, specialized to the case that Z = X× [−1, 1], and D ∈ PT (σ, µ). We first adapt
Lemma 14 to construct a coupling with ε, ρD and independent samples from µ; this will allow us to
move from sequential Rademacher complexity to standard Rademacher complexity. The lemma is
again a variant of the coupling in Haghtalab et al. (2021), albeit simpler to describe and preserving
independence between ε and Zjt . We have the following lemma:

Lemma 24 Suppose that D ∈ P̃T (σ, µ). Then for any T there exists a measure Π with ran-
dom variables (ε1:T , z(ε), z′(ε), Zjt , Z

j′

t )1≤t≤T
1≤j≤k

satisfying the following properties, where we write

z(ε) = (x(ε),y(ε)), z′(ε) = (x′(ε),y′(ε)) to separate the X- and [−1, 1]-components of z(ε) ∈ Z:

1. ε1:T are iid Rademacher random variables.

2. (z, z′) is distributed according ρ.

3. {Zjt , Z
j′

t } are iid according to µ

4. {ε, Zjt , Z
j′

t } are independent

5. With probability at least 1− 2T (1− σ)k, xt(ε) ∈ {Zjt }1≤j≤k for all t

Proof Given D , let:

• pt(·|(x1, y1), . . . , (xt−1, yt−1)) denote the distribution of xt under D given (xs, ys) for s < t
(since D ∈ P̃T (σ, µ), pt is σ-smooth with respect to µ a.s.);

• qt(·|(x1, y1), . . . , (xt−1, yt−1), xt) denote the distribution of yt under D given (xs, ys) for
s < t and xt.

We construct the coupling recursively. For any t, suppose that Zjs , Z
j′
s , εs, zs(ε) has been con-

structed for s < t. If t = 0 then this is the empty set. Now, sample Zjt , Z
j′

t iid according to µ and
εt a Rademacher random variable. Let πjt = σ dptdµ (Zjt ). Note that πjt ≤ 1 by the assumption of

σ-smoothness. As in the proof of Lemma 14, construct the random set St by adding each Zjt to St
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with probability πjt . If St is nonempty, then sample xt(ε) independently from St uniformly at ran-
dom; if St is empty, sample xt(ε) from pt(·|z1(ε), . . . , zt−1(ε)). Then sample yt(ε) independently
from qt(·|z1(ε), . . . , zt−1(ε),xt(ε)), and set zt(ε) = (xt(ε),yt(ε)).

We may construct the z′t(ε) similarly by constructing a set S′t in the same way, using Zj
′

t instead
of Zjt . Finally sample εt independently.

It is clear from the construction that εt, t ∈ [T ], are independent Rademacher random variables.
Similarly, it is clear that Zjt , Z

j′

t are iid according to µ and independent of ε. The remainder of the
properties are proved in the same way as in Lemma 14.

We are now ready to prove the theorem.
Proof (Theorem 3) By Theorem 18, it suffices to bound the distribution-dependent sequential
Rademacher complexity. Let Π be the coupling in Lemma 24 and let A denote the event that
xt(ε) ∈ {Zjt }1≤j≤k for all t (we continue to write zt(ε) = (xt(ε),yt(ε))). Then we compute for a
fixed k,

sup
D∈P

EρD ,ε

[
sup
f∈F

T∑
t=1

εt`(f(xt(ε)),yt(ε))

]

≤ EΠ,ε

[
sup
f∈F

T∑
t=1

εt`(f(xt(ε)),yt(ε))

]

≤ EΠ,ε

[
χAc sup

f∈F

T∑
t=1

εt`(f(xt(ε)),yt(ε))

]
+ EΠ,ε

[
χA sup

f∈F

T∑
t=1

εt`(f(xt(ε)),yt(ε))

]

≤ 2T 2e−σk + EΠ,ε

[
χA sup

f∈F

T∑
t=1

εt`(f(xt(ε)),yt(ε))

]

By the tower property of expectations, denoting by F|{Zjt } the restriction of F to the set of all Zjt ,
we have

EΠ,ε

[
χA sup

f∈F

T∑
t=1

εt`(f(xt(ε)),yt(ε))

]
= E

Zjt
iid∼µ

[
EΠ

[
χA sup

f∈F

T∑
t=1

εt`(f(xt(ε)),yt(ε))

∣∣∣∣{Zjt }1≤t≤T
1≤j≤k

]]

= E
Zjt

iid∼µ

EΠ

χA sup
f∈F|

{Zjt }

T∑
t=1

εt`(f(xt(ε)),yt(ε))

∣∣∣∣{Zjt }1≤t≤T
1≤j≤k



. L log
3
2 (T ) sup

{Zjt}1≤t≤T
1≤j≤k

sup
x

Eε

 sup
f∈F|

{Zjt }

T∑
t=1

εtf(xt(ε))


where the last inner supremum is over all x such that x is a {Zjt }-labelled binary tree of depth T ;
the last inequality follows, then, from Lemma 20. Let fatδ(F) denote the sequential fat-shattering
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dimension in Definition 19. We may apply (Block et al., 2021, Corollary 10 and Proposition 15),
which bounds the worst-case sequential Rademacher complexity by the sequential fat-shattering
dimension to get

sup
{Zjt}1≤t≤T

1≤j≤k

sup
x

Eε

 sup
f∈F|

{Zjt }

T∑
t=1

εtf(xt(ε))

 . sup
{Zjt}1≤t≤T

1≤j≤k

inf
α>0

{
αT +

√
T

∫ 1

α

√
fatδ

(
F{Zjt }

)
dδ

}

By Lemma 21, we have for any β > 0,

fatδ

(
F{Zjt }

)
. vc(F, cβδ) log1+β

C
∣∣∣∣{Zjt }1≤t≤T

1≤j≤k

∣∣∣∣
vc (F, cβδ) δ

 . vc(F, cβδ) log1+β

(
CkT

vc (F, cβδ) δ

)

independent of the realization of Zjt . Thus we have

E
Zjt

iid∼µ

EΠ

χA sup
f∈F|

{Zjt }

T∑
t=1

εt`(f(xt(ε)),yt(ε))

∣∣∣∣{Zjt }1≤t≤T
1≤j≤k


. L log

3
2 (T ) inf

α>0

{
αT +

√
T

∫ 1

α

√
vc(F, cβδ) log1+β

(
CkT

vc (F, cβδ) δ

)
)dδ

}

Putting everything together, we have

sup
D∈P

EρD ,ε

[
sup
f∈F

T∑
t=1

εt`(f(xt(ε)),yt(ε))

]

. 2T 2e−σk + L log
3
2 (T ) inf

α>0

{
αT +

√
T log1+β

(
3kT

vc (F, cβα)α

)∫ 1

α

√
vc(F, cβδ)dδ

}

Setting k = 2 log T
σ and β = 1 concludes the proof.

C.5. Proof of Proposition 4

Let F be the class of thresholds on the unit interval, i.e.,

F = {x 7→ sign(x− θ)|θ ∈ [0, 1]}

It is well-known that vc(F) = 1. Consider an adversary that sets x1 = 0, x2 = 1, y1 = −1, y2 = 1
and for all t > 2, sets

xt = xt−1 − yt−12−(t−2)
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and the yt are independent Rademacher random variables. Note that by construction, the adversary
is realizable with respect to F in the sense that for any realization of the (xt, yt), there is some f ∈ F

with f(xt) = yt for all t. Also by construction, we see that the expected number of mistakes in T
rounds is T

2 . For fixed T , let

PT =

{
1

T

T∑
t=1

δxt

}

be the set of empirical distributions generated by the contexts over all realizations of x1, . . . , xT .
Note that for each µ ∈ PT , the support has size T and thus the adversary constructed above is(

1
T

)
-smooth with respect to some µ ∈ PT . The result follows by noting that if T ≤ 1

σ then the
adversary is σ-smooth with respect to some µ ∈PT .

Appendix D. Proofs from Section 4

D.1. Proofs Related to Relaxations

Proof (Proposition 6) It suffices to prove (2) as the other property follows immediately from the
construction. For the sake of convenience, we denote

Lt(f) =
t∑

s=1

`(f(xt), yt)

We begin by noting that (Rakhlin and Sridharan, 2014, Lemma 5.1) tells us that due to the convexity
of ` in the first argument, it suffices to replace distributions qt over [−1, 1] with values ŷt ∈ [−1, 1].
In particular,

inf
qt∈∆([−1,1])

sup
yt∈[−1,1]

Eqt [`(ŷt, yt)] + Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)


= inf

ŷt∈[−1,1]
sup

yt∈[−1,1]
`(ŷt, yt) + Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)


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Now, omitting the feasible set for ŷt, yt to ease the notational load, we plug in our relaxation:

inf
ŷt

sup
yt
`(ŷt, yt) + Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)


= inf

ŷt
sup
yt

Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + `(ŷt, yt)− `(f(xt), yt)


≤ inf

ŷt
sup
yt

Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + ∂`(ŷt, yt)(ŷt − f(xt))]


≤ inf

ŷt
sup
yt

sup
gt∈[−L,L]

Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + gt(ŷt − f(xt))


= inf

ŷt
max

gt∈{−L,L}
Eµ,ε

gtŷt + sup
f∈F

2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)− gtf(xt)


where we let ∂` denote a subgradient of ` with respect to the first argument. The first inequality
follows by convexity, the second inequality follows by Lipschitzness, and the last equality follows
because the inner expectation is convex as a function of gt and so obtains its maximum on the
boundary. Let dt denote a distribution on {−L,L}; the yt vanishes because it only appeared in the
∂`(ŷt, yt) and this was bounded by gt. Then by the minimax theorem, we have

inf
ŷt

max
gt∈{−L,L}

Eµ,ε

gtŷt + sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)− gtf(xt)


= sup

dt

inf
ŷt

Egt∼dtEµ,ε

gtŷt + sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)− gtf(xt)


≤ sup

dt

Egt∼dtEµ,ε

inf
ŷt

Eg′t∼dt [g
′
tŷt] + sup

f∈F
2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)− gtf(xt)


≤ sup

dt

Eµ,εEgt∼dt

sup
f∈F

2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + (Eg′t∼dt [g
′
t]− gt)f(xt)


≤ sup

dt

Eµ,εEgt,g′t∼dt

sup
f∈F

2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + εt(g
′
t − gt)f(xt)


≤ sup

dt

Eµ,εEgt∼dt

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2εtgtf(xt)


= Eµ,ε

sup
f∈F

2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2Lεtf(xt)


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Now, it would seem that we are done, but note that xt ∼ pt while xs ∼ µ for s > t. We thus apply
suppt∈Pt Ext∼pt to all of the preceding equations and, adding back in the additive constant, we have
shown

sup
pt∈P

Ext∼pt inf
q

sup
yt

[
Eŷt∼q[`(ŷ, y)] + RelT (F|x1, y1, . . . , xt, yt)

]
≤ sup

pt∈P
Ext∼ptEµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2Lεtf(xt)

+ (T − t)3e−σk

Now, applying the coupling Π from Lemma 14, we have

Ext∼ptEµ,ε

sup
f∈F

2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2Lεtf(xt)


= Ext∼ΠEµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2Lεtf(xt)


= Ext∼ΠEµ,ε

χAc sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2Lεtf(xt)


+ Ext∼ΠEµ,ε

χA sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2Lεtf(xt)


where A is the event that xt ∈ {Zjt } for 1 ≤ j ≤ k and χA is the indicator. For the first term, we
have

Ext∼ΠEµ,ε

χAc sup
f∈F

2L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2Lεtf(xt)


≤ P(Ac)(n− t+ 1) ≤ (n− t+ 1)2e−σk

For the second term, we have

Ext∼ΠEµ,ε

χA sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) + 2Lεtf(xt)


≤ EΠ,µ,εχA sup

f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f) +
k∑
j=1

εt,jf(Zjt )


= Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)


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Putting this back together, we have

sup
pt∈Pt

Ext∼pt inf
q

sup
yt

[
Eŷt∼q[`(ŷ, y)] + RelT (F|x1, y1, . . . , xt, yt)

]
≤ Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)

+ (T − t+ 1)2e−σk + (T − t)3e−σk

≤ Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)

+ (T − t+ 1)3e−σk

= RelT (F|x1, y1, . . . , xt−1, yt−1)

as desired. Thus we have an admissable relaxation.

Proof (Theorem 7) It suffices to show the following claim:

sup
pt∈P

Ext∼pt

 sup
yt∈[−1,1]

`(ŷt, yt) + Eµ,ε

sup
f∈F

2L
T∑

s=t+1

k∑
j=1

εs,jf(xs,j)− Lt(f) + (T − t)3e−σk


≤ RelT (F|x1, y1, . . . , xt−1, yt−1)

Indeed, if this is the case, then ŷt is admissable with respect to RelT (F|·), for which we already
have a regret bound in Proposition 6. To prove the stated claim, we have

sup
yt

Eµ,ε

`(ŷt, yt) + sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)


≤ Eµ,ε

sup
yt
`(ŷt, yt) + sup

f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)


= Eµ,ε

inf
ŷ

sup
yt
`(ŷ, yt) + sup

f∈F

2L

n∑
s=t+1

k∑
j=1

εs,jf(xs,j)− Lt(f)


where the inequality follows by Jensen’s and the equality follow from the construction of ŷt in (4).
Now we may apply the proof of Proposition 6 with the expectation with respect to µ, ε taking place
outside of the minimax operation. This shows that

Eµ,ε

inf
ŷ

sup
yt
`(ŷ, yt)] + sup

f∈F

2L
n∑

s=t+1

k∑
j=1

εs,jf(xs,j)− Lt(f)

+ (T − t)3e−σk

≤ Eµ,ε

sup
f∈F

2L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)

+ (T − t+ 1)3e−σk

= RelT (F|x1, y1, . . . , xt−1, yt−1)
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as desired and the claim holds.
To prove the oracle efficiency claims, for a fixed δ, let S be a δ-discretization of [−1, 1] of size

2
δ . If we solve the minimax problem (4) over S, then by the assumption of ` being L-Lipshitz, we
the regret bound for our approximate solution is greater than that of the exact solution by at most an
additive constant of LδT . In general, for any fixed ŷ, we can optimize

sup
yt∈S

`(ŷ, yt) + sup
f∈F

6L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)

 (7)

with |S| calls to the ERM oracle. Now, note that (7) is convex in ŷ by the assumption of convexity in
the first argument of `. By a simple three point method from zeroth order optimization Agarwal et al.
(2011), which we prove as Lemma 25 for the sake of completeness below, we can minimize (7) with
respect to ŷ ∈ S with O(log |S|) evaluations of the supremum. Each evaluation of the supremum
requires O(|S|) calls to the ERM oracle so we require O (|S| log |S|) calls in total. Noting that
|S| ≤ 1

δ , we can get
RegT (ŷ) ≤ 2LRkT (F) + T 3e−σk + LTδ

with O
(
T
δ log

(
1
δ

))
calls to the ERM oracle. Setting δ = 1

L
√
T

recovers the bound in the theorem
statement. The last statement, on linear losses, is proven in Lemma 26, where we give an explicit
representation of the solution using only 2 oracle calls. Optimizing k concludes the proof.

Lemma 25 Let f : [0, 1]→ R be a convex function and let S ⊂ [0, 1]. Then

x0 ∈ argmin
S

f

can be found with O(log |S|) calls to a value oracle that returns f(x) given input x ∈ S.

Proof Motivated by Agarwal et al. (2011), we describe the following recursive algorithm that
shrinks S until it contains only one point, yet always includes the minimizer. Let S0 = S. To
construct Si+1 from Si, order the points x1, . . . , xm ∈ Si such that xi < xj for all i < j. Let
z1, z2, z3 be the 1

4 , 1
2 , and 3

4 quanatiles of S respectively and evaluate f(z1), f(z2), and f(z3) with
three calls to the value oracle. There are several cases:

f(z1) > f(z2) < f(z3) If the middle point is smaller than either point on the end, then be the
convexity of f we know that the minimum must occcur for some x such that z1 < x < z3. In this
case let Si+1 contain all the points x ∈ Si such that z1 < x < z3. Note that |Si+1| ≤ 1

2 |Si|.

f(z1) < f(z2) > f(z3) This case corresponds to the middle point being higher than the end points.
This is not possible, however, as f is convex.

f(z1) < f(z2) < f(z3) In this case, convexity assures us that the minimizer cannot be at any
point x ≥ z2 and so we let Si+1 to be the set of all points x ∈ Si such that x < z2. Note that
|Si+1| ≤ 1

2 |Si|.

f(z1) > f(z2) > f(z3) This is the mirror image of the previous case and can be handled similarly.
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f(z1) = f(z2) = f(z3) In this case, convexity ensures that the minimizer must have x ≤ z1 or
x ≥ z3 and so we let Si+1 be the set of x ∈ Si satisfying this constraint. Again, |Si+1| ≤ 1

2 |Si|.
In any case, with three calls to the value oracle, we reduce the size of Si by a factor of 2. Thus

we can find x0 in O(log |S|) calls as claimed.

Lemma 26 Suppose we are in the situation of Theorem 7 and the loss `(ŷ, y) = 1−ŷy
2 . Then the

problem (4) can be solved with two calls to the ERM oracle. In fact, ŷt is given by

1

2
sup
f∈F

6L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)− `(f(xt), 1)


− 1

2
sup
f∈F

6L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt−1(f)− `(f(xt),−1)


Proof We are trying to minimize with respect to ŷ ∈ [−1, 1].

sup
yt∈S

`(ŷ, yt) + sup
f∈F

6L

k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)

 (8)

Independent of ŷ, if ` is linear in y, then the expresion over which we are taking the supremum in
(8) is convex in y and thus yt ∈ {±1}. For the sake of simplicity, suppose that

sup
f∈F

6L
k∑
j=1

T∑
s=t+1

εs,jf(xs,j)− Lt(f)


is maximized by functions f+ and f− depending on if yt = 1 or yt = −1 (in the general case, we
could take a sequence of functions attaining the supremum). Let

a+ = 6L
k∑
j=1

T∑
s=t+1

εs,jf+(xs,j)− Lt(f+)

a− = 6L

k∑
j=1

T∑
s=t+1

εs,jf−(xs,j)− Lt(f−)

Then the solution to (4) is given by

min
ŷ∈[−1,1]

max

(
1− ŷ

2
+ a+,

1 + ŷ

2
+ a−

)
The maximum is taken over two linear functions of ŷ with opposite slope and so the minimax result
is where they intersect, assuming they intersect somewhere in [−1, 1], which they do if |a+ − a−| ≤
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1. Note that

a+ = 6L
k∑
j=1

T∑
s=t+1

εs,jf+(xs,j)− Lt(f+)

= 6L
k∑
j=1

T∑
s=t+1

εs,jf+(xs,j)− Lt−1(f+)− `(f+(xt), 1) + `(f+(xt),−1)− `(f+(xt),−1)

≥ 6L
k∑
j=1

T∑
s=t+1

εs,jf−(xs,j)− Lt(f−)− `(f+(xt), 1) + `(f+(xt),−1)

≥ a− − 1

By symmetry, |a− − a+| ≤ 1. Thus,

ŷt =
a+ − a−

2
∈ [−1, 1]

solves the minimax problem with two calls to the ERM oracle.

D.2. Proof of Proposition 8

In order to prove Proposition 8, we consider the following setting. Fix an α > 0, suppose that
vc(F, α) = m and let x1, . . . , xm shatter F at scale α. We let pt be uniform on x1, . . . , xm and let
µ = (1 − σ)δx∗ + σpt, where x∗ is a distinguished point satisfying f(x∗) = 0 for all f ∈ F. Note
that pt is σ-smooth with respect to µ. We compare the expected Rademacher complexity sampling
n points according to µ to that when sampling according to pt. We require two lemmata.

Lemma 27 Suppose we are in the above setting and X1, . . . , XT are sampled independently ac-
cording to µ. Then, with probability at least 1− δ, the number of indices i such that Xi 6= x∗ is at
most 2σT if T ≥ 3

σ log
(

1
δ

)
.

Proof Let Yi = 1[Xi 6= x∗]. Then Yi are independent Bernoulli random variables with parameter
σ and the number of such indices is the sum of Yi. Applying Chernoff’s inequality, we have

P

(
T∑
i=1

Yi ≥ 2σT

)
≤ e−

σT
3

The assumption of T large enough concludes the proof.

Lemma 28 Suppose that we are in the setting described above and X1, . . . , XT are sampled ac-
cording to pt. Suppose that T ≥ 8m log

(
m
δ

)
. Then with probability at least 1 − δ, for each

1 ≤ j ≤ m, there are at least T
2m indices i such that Xi = xj .

Proof Fix j and let Yi = 1[Xi = xj ]. Then the Yi are independent Bernoulli random variables with
parameter 1

m . Letting ST denote the sum of the Yi, which is the desired number of indices, we may
apply Chernoff’s inequality to get

P
(
ST ≤

1

2

T

m

)
≤ e−

T
8m
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and so with probability at least 1− δ
m , there are at least T

2m indices i such that Xi = xj . Applying
a union bound concludes the proof.

We may now adapt an argument from Mendelson (2002) and (Srebro et al., 2010, Lemma A.2) to
lower bound the Rademacher complexity according to pt:

Lemma 29 Suppose that we are in the above setting and suppose that T ≥ 8m log(2m). Then,

Ept [RT (F)] ≥ α

8

√
vc(F, α)T

Proof Let χA denote the indicator of the high probability event A from Lemma 28. Consider
any fixed choice of X1, . . . , XT so that the event A holds. For each j ∈ [m], k ∈ [T/(2m)], let
φ(j,m) ∈ [T ] denote the kth smallest value of i so that Xi = xj (that all such φ(j,m) exist is
guaranteed by A). Furthermore let Φ ⊂ [T ] denote the image of φ, so that |Φ| = T/2. Next, for any
ε ∈ {−1, 1}n, define f ε := arg maxf∈F

∑m
j=1

∑T/(2m)
k=1 εφ(j,m)f(xj).8

Ept [RT (F)] = Ept

[
Eε

[
sup
f∈F

T∑
i=1

εif(Xi)

∣∣∣∣X1, . . . , XT

]]

≥ Ept

[
χAEε

[
sup
f∈F

T∑
i=1

εif(Xi)

∣∣∣∣X1, . . . , XT

]]
(9)

≥ Ept

[
χAEε

[
T∑
i=1

εif
ε(Xi)

∣∣∣∣X1, . . . , XT

]]

≥ Ept

χAEε
 m∑
j=1

T
2m∑
k=1

εjkf
ε(xj)

∣∣∣∣X1, . . . , XT

+ Ept

χAEε
∑
i 6∈Φ

εif
ε(Xi)

∣∣∣∣X1, . . . , Xn



≥ Ept

χAEε
sup
f∈F

m∑
j=1

T
2m∑
k=1

εφ(j,k)f(xj)

∣∣∣∣X1, . . . , XT

 (10)

= P(A)Eε

sup
f∈F

m∑
j=1

T
2m∑
k=1

εφ(j,k)f(xj)


where (9) follows by Jensen’s inequality coupled with the fact that the εi are mean zero, and (10) fol-

lows since {εi : i ∈ Φ} are independent of {εi : i 6∈ Φ} (so that Ept
[
χAEε

[∑
i 6∈Φ εif

ε(Xi)

∣∣∣∣X1, . . . , XT

]]
=

8. If the argmax does not exist, we may instead consider a sequence of functions that approximates the argmax to
arbitrarily small precision.
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0), and by definition of f ε. By the triangle inequality and symmetry of the εi, i ∈ [T ], we have

Eε

sup
f∈F

m∑
j=1

T
2m∑
k=1

εφ(j,k)f(xj)

 ≥ 1

2
Eε

 sup
f,f ′∈F

m∑
j=1

T
2m∑
k=1

εφ(j,k)(f(xj)− f ′(xj))


≥ 1

2
Eε

 m∑
j=1

T
2m∑
k=1

εφ(j,k)(fε(xj)− f ′ε(xj))


where fε, f ′ε are chosen so that

sign

 T
2m∑
k=1

εφ(j,k)

 (fε(xj)− sj) ≥
α

2
sign

 T
2m∑
k=1

εφ(j,k)

(f ′ε(xj)− sj) ≤ −α2
for some s1, . . . , sm ∈ R. Note that there exist such fε, f ′ε ∈ F by the assumption that x1, . . . , xm
shatter F at scale α. We thus have

Eε

 m∑
j=1

T
2m∑
k=1

εφ(j,k)(fε(xj)− f ′ε(xt))

 ≥ 1

2
Eε

 m∑
j=1

∣∣∣∣∣∣
T
2m∑
k=1

εφ(j,k)

∣∣∣∣∣∣α


≥ m

2
αEε

∣∣∣∣∣∣
T
2m∑
i=1

εi

∣∣∣∣∣∣


≥ m

2
α

√
T

4m
(11)

=
α

4

√
Tm,

where (11) follows from Khintchine’s inequality. By Lemma 28, P(A) ≥ 1
2 . Thus, putting every-

thing together, we have
Ept [RT (F)] ≥ α

8

√
mT

We finally recall that m = vc(F, α) and conclude the proof.

The last thing we need to do is provide an upper bound on Eµ [RT (F)]. We can do this using
chaining and Lemma 27.

Lemma 30 Suppose we are in the setting above and suppose that T ≥ 3
σ log T . Then there is an

absolute constant C such that
Eµ [RT (F)] ≤ C

√
σT

Proof Let
A = {|{i|Xi 6= x∗}| ≤ 2σT}

and let χA denote the indicator for this event. By Lemma 27, P(A) ≥ 1 − 1
T . Note that as F is

uniformly bounded by 1, we always have the trivial upper bound of RT (F) ≤ T on any data set.
We can thus compute

Eµ [RT (F)] = Eµ [χART (F)] + (1− P(A))T ≤ Eµ [χART (F)] + 1
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By the definition of the event A, we have:

Eµ [χART (F)] = Eµ

χAEε
sup
f∈F

∑
Xi 6=x∗

εif(Xi) +
∑
Xi=x∗

εif(X∗)

∣∣∣∣X1, . . . , XT


= Eµ

χAEε
sup
f∈F

∑
Xi 6=x∗

εif(Xi)

∣∣∣∣X1, . . . , XT


≤ sup

Xi

Eε

[
sup
f∈F

2σT∑
i=1

εif(Xi)

]

We may now apply (Rudelson and Vershynin, 2006) to get that

sup
Xi

Eε

[
sup
f∈F

2σT∑
i=1

εif(Xi)

]
≤ C
√

2σT

∫ 1

0

√
vc(F, α)dα

Because vc(F, α) ≤ Cα−p for some p < 2, the result follows.

We are now ready to prove the main bound.
Proof (Proposition 8) Let α =

√
σ and set F, µ, pt,X as above. By Lemma 29 and Lemma 30, we

have

Ept [RT (F)]

Eµ[RT (F)]
≥ c

√
σvc(F,

√
σ)T

C
√
σT

= c

√
vc(F,

√
σ) ≥ cσ−

p
4

where the last inequality follows from the assumption on the complexity of F. We may now apply
the lower bound in Proposition 18 with D just independent copies of pt. The result follows.

Appendix E. Proof of Theorem 10

In this section we prove Theorem 10, which gives a regret bound for the follow-the-perturbed-leader
(FTPL) algorithm (5) with respect to general classes F for convex, Lipschitz loss functions. This
result bounds the regret of an FTPL style algorithm by a stability term and a term corresponding to
the size of the perturbation. In particular, we bound the stability term by controlling the Wasserstein
distance between the laws of ŷt and ŷt+1. The techniques involved are of independent interest as
we develop a novel Gaussian anti-concentration inequality that applies even when the labels are not
assumed smooth. We begin by stating and proving the relevant variant of the BTL lemma. Then, in
Appendix E.1 we provide the stability bound, using our Gaussian anti-concentration approach. We
continue in Appendix E.2 by controlling the final stability term in the below decomposition, in the
special case of linear loss. Finally, we conclude the proof in Appendix E.3 by extending from linear
loss to general loss in the case of smooth labels and applying a discretization approach to recover
full generality.

We consider the smoothed online setting with distribution µ. More specifically, we consider
the following setting: for some parameter n ∈ N, for each time step t ∈ [T + 1], consider points
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Xt,1, . . . , Xt,n ∈ X, and define

∀f ∈ F : ω̂t,n(f) :=
1√
n
·
n∑
i=1

γt,i · f(Xt,i), (12)

where γt,1, . . . , γt,n are i.i.d. standard normal random variables. We define µ̂t,n to be the distribution
µ̂t,n := 1

n

∑n
i=1 δXt,i , where δXt,i denotes the point mass at Xt,i. In what follows we will consider

iterates ft, 1 ≤ t ≤ T + 1, satisfying, for some ζ > 0,

Lt−1(ft) + η · ω̂t,n(ft) ≤ argmin
f∈F

Lt−1(f) + η · ω̂t,n(f) + ζ. (13)

We begin with a classic regret decomposition based on the well-known “Be-the-Leader” Lemma
(Kalai and Vempala, 2005; Cesa-Bianchi and Lugosi, 2006). We first prove a related, auxiliary
result that allows us to deal with different perturbations at each time step:

Lemma 31 Suppose ft, for t ∈ [T ], is defined as in (13), for any (adaptively chosen) sequence
(x1, y1), . . . , (xT , yT ) ∈ X× [−1, 1]. Then it holds that

E

[
T∑
t=1

`(ft+1(xt), yt)− inf
f∈F

T∑
t=1

`(f(xt), yt)

]
≤ ζ · (T + 1) + 2 · E

[
sup
f∈F

ω̂1,n

]
.

Proof We first use induction on T ≥ 0 to show the following statement:

E

[
T∑
t=1

`(ft+1(xt), yt)

]
≤ E

[
T∑
t=1

`(fT+1(xt), yt) + ω̂T+1,n(fT+1)

]
+ ζ · T + E

[
sup
f∈F

ω̂1,n(f)

]
.

(14)

To establish the base case T = 0, we note that 0 ≤ E [ω̂1,n(f1)] + E
[
supf∈F ω̂1,n(f)

]
, which

follows because E
[
supf∈F−ω̂1,n(f)

]
= E

[
supf∈F ω̂1,n(f)

]
≥ 0 (by symmetry of the process

ω̂1,n).
Now assume that (14) holds at some step T − 1, namely that

E

[
T−1∑
t=1

`(ft+1(xt), yt)

]
≤ E

[
T−1∑
t=1

`(fT (xt), yt) + ω̂T,n(fT )

]
+ ζ · (T − 1) + E

[
sup
f∈F

ω̂1,n(f)

]
.

(15)

By definition of fT in (13), we have

E

[
T−1∑
t=1

`(fT (xt), yt) + ω̂T,n(fT )

]
≤E

[
inf
f∈F

T−1∑
t=1

`(f(xt), yt) + ω̂T,n(f)

]
+ ζ

=E

[
inf
f∈F

T−1∑
t=1

`(f(xt), yt) + ω̂T+1,n(f)

]
+ ζ (16)

≤E

[
T−1∑
t=1

`(fT+1(xt), yt) + ω̂T+1,n(fT+1)

]
+ ζ, (17)
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where (16) follows because, conditioned on (x1, y1), . . . , (xT−1, yT−1), the process ω̂T,n is drawn
independently, as is the process ω̂T+1,n, and both have the same conditional distribution. From (15)
and (17) we have that

E

[
T−1∑
t=1

`(ft+1(xt), yt)

]
≤ E

[
T−1∑
t=1

`(fT+1(xt), yt) + ω̂T+1,n(fT+1)

]
+ ζ · T + E

[
sup
f∈F

ω̂1,n(f)

]
.

Adding E[`(fT+1(xT ), yT )] to both sides establishes (14), thus completing the inductive hypothesis.
To complete the proof of the lemma, we note that

E

[
T∑
t=1

`(fT+1(xt), yt) + ω̂T+1,n(fT+1)

]

≤E

[
inf
f∈F

T∑
t=1

`(f(xt), yt) + ω̂T+1,n(f)

]
+ ζ

≤E

[
inf
f∈F

T∑
t=1

`(f(xt), yt) + sup
f ′∈F

ω̂T+1,n(f ′)

]
+ ζ

=E

[
inf
f∈F

T∑
t=1

`(f(xt), yt)

]
+ E

[
sup
f∈F

ω̂T+1,n(f)

]
+ ζ,

which implies, combined with (14) and the fact that ω̂1,n and ω̂T+1,n are identically distributed, that

E

[
T∑
t=1

`(ft+1(xt), yt)− inf
f∈F

T∑
t=1

`(f(xt), yt)

]
≤ ζ · (T + 1) + 2 · E

[
sup
f∈F

ω̂1,n

]
.

Using Lemma 31, we get a decomposition of the regret into a stability term and a perturbation size
term. The stability term is further decomposed for the future analysis.

Lemma 32 Let ft be defined as in (13) and let (x1, y1), . . . , (xT , yT ) be any sequence of elements
in X × [−1, 1]. Let (x′1, y

′
1), . . . , (x′T , y

′
T ) be a tangent sequence, meaning that for all 1 ≤ t ≤ T ,

(x′t, y
′
t) is independent and identically distributed as (xt, yt) conditioned on (xs, ys) for s < t. Then

we may upper bound the expected regret by the following expression:

2ηE

[
sup
f∈F

ω̂1,n(f)

]
+

T∑
t=1

E
[
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t)
]

+
T∑
t=1

E
[
`(ft+1(x′t), y

′
t)− `(ft+1(xt), yt)

]
(18)

Proof By Lemma 31, we have

E

[
T∑
t=1

`(ft+1(xt), yt)− inf
f∈F

T∑
t=1

`(f(xt), yt)

]
≤ ζ · (T + 1) + 2 · E

[
sup
f∈F

ω̂1,n

]
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Adding and subtracting `(ft(xt), yt) from both sides and rearranging yields

E [RegT (ft)] ≤ E

[
T∑
t=1

`(ft(xt), yt)− `(ft+1(xt), yt)

]
+ 2ηE

[
sup
f∈F

ω̂1,n(f)

]
+ ζT

Now, note that ft is independent of (xt, yt) be construction, so E [`(ft(xt), yt)] = E [`(ft(x
′
t), y

′
t)].

Adding and subtracting `(ft+1(x′t), y
′
t) yields

E [`(ft(xt), yt)− `(ft+1(xt), yt)] = E
[
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t)
]

+ E
[
`(ft+1(x′t), y

′
t)− `(ft+1(xt), yt)

]
Applying linearity of expectation concludes the proof.

The classic decomposition in (18) allows for the control of each term independently. For the first,
empirical process theory allows us to control E [sup ω̂1,n(f)] by the entropy of F. The last term,
called “generalization error” in Haghtalab et al. (2022), can be controlled in the case of linear loss
by appealing to standard uniform deviations bounds; this is done in Appendix E.2. The key term
is the middle one, whose control guarantees that ft and ft+1 are close in an appropriate sense. We
now present this bound.

E.1. Regret Bound Using the Wasserstein Distance

In this section we provide our bound on the middle term of (18). In particular, for any t, we
show that E [`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t)] is small. We leverage the fact that ` is Lipschitz in

the first coordinate and use this fact along with the smoothness of x′t to reduce to showing that
||ft − ft+1||L2(µ) is small in expectation over the perturbation.

We first argue that it suffices to consider F such that

inf
f∈F
||f ||L2(µ) ≥

2

3
(19)

Indeed, take any F and any µ. Enlarge X to X ∪ {x∗}, where x∗ is a new point such that f(x∗) = 1
for all f ∈ F. Let µ̃ = 1

3µ + 2
3δx∗ . Then if pt is σ-smooth with respect to µ then it is σ

3 -smooth
with respect to µ̃. Moreover, ||f ||L2(µ̃) ≥

2
3 for all f ∈ F, and since all f take the same value on x∗,

an ERM oracle for the original class clearly yields an ERM oracle for the new class with domain
X∪{x∗} (the oracle can simply ignore all points of the form (x∗, y)). Thus, at the cost of shrinking
σ by a factor of 3, we will suppose this lower bound throughout this section.

In Lemma 33 below, we show that if ft, ft+1 are defined with respect to a common noise process
ω(·), then they are close with high probability. In the lemma, we consider an arbitrary Lipschitz
loss function `, and define Lt(f) :=

∑t
s=1 `(f(xs), ys).

Lemma 33 Fix any ζ > 0, t ∈ N, ` as above, and an arbitrary sequence (x1, w1), . . . , (xt−1, wt−1) ∈
X×R. Let ω denote a Gaussian process on a separable class F with covariance Σfg = EX∼µ [f(X)g(X)]
for some measure µ on X and, by abuse of notation, let ω(f) denote a single sample from this pro-
cess. Suppose that ft satisfies

Lt−1(ft) + ηω(ft) ≤ inf
f∈F

Lt−1(f) + ηω(f) + ζ,
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and for each (x,w) ∈ X× [−1, ], there is some ft+1,x,w such that

Lt,x,w(ft+1,x,w) + ηω(ft+1,x,w) ≤ inf
f∈F

Lt,x,w(f) + ηω(f) + ζ.

Suppose further that ft, ft+1,x,w are measurable with respect to the σ-algebra generated by ω. 9

Then,

P

(
sup

(x,w)∈X×[−1,1]
||ft − ft+1,x,w||L2(µ) > α

)
≤ 8(L+ 2ζ)2

α4η2 inff∈F ||f ||6L2(µ)

+
4(L+ 2ζ)

α2η inff∈F ||f ||4L2(µ)

E

[
sup
f∈F

ω(f)

]
.

(20)

Proof As F is seperable, it suffices to take a countable dense subset and assume that F is countable.
By assumption we can write ft = ft(ω) for some measurable function ft(·) (where measurability
is with respect to the product topology on RF).

Let

At =
{
g ∈ F| ||g − ft||L2(µ) > α and Lt−1(g) + ηω(g) ≤ Lt−1(ft) + ηω(ft) + 2L+ ζ

}
Note that for any g for which Lt−1(g) + ηω(g) > Lt−1(ft) + ηω(ft) + 2L + ζ and for any
(x,w) ∈ X× [−1, 1],

Lt,x,w(ft) + ηω(ft) = Lt−1(ft) + ηω(ft) + `(ft(x), w)

< Lt−1(g) + ηω(g) + `(ft(x), w)− 2L− ζ
= Lt(g) + ηω(g) + `(ft(x), w)− `(g(x), w)− 2L− ζ
≤ Lt(g) + ηω(g)− ζ,

where the final inequality follows because |`(ft(x), w)− `(g(x), w)| ≤ 2L as ` is L-Lipschitz.
Suppose that g 6∈ At. Then either ||g − ft||L2(µ) ≤ α or, using the above display, for all x,w,
Lt,x,w(ft) + ηω(ft) + ζ < Lt,x,w(g) + ηω(g), meaning that ft+1,x,w cannot be equal to g for any
choice of x,w. Hence, the event that sup(x,w)∈X×[−1,1] ‖ft − ft+1,x,w‖L2(µ) > α implies that for
some (x,w), ft+1,x,w ∈ At. Thus, it suffices to bound the probability that At is nonempty.

Let Dα(f) := {g ∈ F| ||g − f ||L2(µ) > α}. As F is assumed countable, we have

P(|At| = 0)

≥
∑
f∈F

P
(
ft(ω) = f and inf

g∈Dα(f)
Lt−1(g) + ηω(g)− (2L+ 4ζ) ≥ Lt−1(f) + ηω(f)− ζ

)

=
∑
f∈F

Ey
[
P
[
ft(ω) = f and inf

g∈Dα(f)
Lt−1(g) + ηω(g)− (2L+ 4ζ) ≥ y − ζ|Lt−1(f) + ηω(f) = y

]]
,

(21)

where in (21) the expectation is over the distribution of y = Lt−1(f) + ηω(f). We now fix an f
and let, for all g ∈ F,

Ωt(g) = Lt−1(g) + ηω(g).

9. Here we write Lt,x,w(f) =
∑t−1
s=1 `(f(xs), ws) + `(f(x), w).
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Note that the process Ωt is a Gaussian process and, conditioning on Ωt(f) = y remains a Gaussian
process. Then conditioned on Ωt(f) = y, Ωt has mean

mf,y(g) = Lt−1(g) +
EX∼µ [f(X)g(X)]

||f ||2L2(µ)

(y − Lt−1(f))

and covariance Σf ; critically, Σf does not depend on y. Let

γ(g) =
4(L+ 2ζ)

α2 ||f ||2L2(µ)

EX∼µ[f(X)g(X)] β(g) =
4(L+ 2ζ)

α2 ||f ||L2(µ)

− γ(g)

Then we have

m
f,y+

4(L+2ζ)

α2
= mf,y + γ. (22)

Now suppose that ||g − f ||L2(µ) > α, i.e., g ∈ Dα(f). Then

EX∼µ [f(X)g(X)] =
||f ||2L2(µ) + ||g||2L2(µ)

2
− 1

2
||f − g||2L2(µ) ≤ 1− α2

2

by ||f ||∞ ≤ 1 for all f ∈ F. Thus for all such g,

β(g) =
4(L+ 2ζ)

α2 ||f ||2L2(µ)

(1− EX∼µ[f(X)g(X)]) ≥ 2(L+ 2ζ)

||f ||2L2(µ)

≥ 2(L+ 2ζ).

We now fix y and note that

P
(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g)− 2(L+ 2ζ) ≥ y − ζ | Ωt(f) = y

)
≥ P

(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g)− β(g) ≥ y − ζ | Ωt(f) = y

)
= P

(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g)− β(g)− γ(g) + γ(g) ≥ y − ζ | Ωt(f) = y

)
= P

(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) + γ(g) ≥ y − ζ +

4(L+ 2ζ)

α2 ||f ||L2 (µ)2
| Ωt(f) = y

)
= P

(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ +

4(L+ 2ζ)

α2 ||f ||2L2(µ)

| Ωt(f) = y +
4(L+ 2ζ)

α2 ||f ||2L2(µ)

)

where the inequality follows from the control of χB by β, the second equality follows from γ+β =
4(L+2ζ)

α2||f ||2
L2(µ)

, and the last equality follows from the fact that a Gaussian process is determined only by

its covariance and mean (in particular, we are using (22)).
Note that Lt−1(f) + ηω(f) is a Gaussian random variable with mean Lt−1(f) and variance

η2 ||f ||2L2(µ). Denote by qf (y) the density of this distribution with respect to the Lebesgue measure
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on R. Now, we compute

P(|At| = 0)

=
∑
f∈F

∫ ∞
−∞

qf (y) · P
(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g)− 2(L+ 2ζ) ≥ y − ζ | Ωt(f) = y

)
dy

≥
∑
f∈F

∫ ∞
−∞

qf (y) · P

(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ +

4(L+ 2ζ)

α2 ||f ||2L2(µ)

| Ωt(f) = y +
4(L+ 2ζ)

α2 ||f ||2L2(µ)

)
dy

=
∑
f∈F

∫ ∞
−∞

qf (y) · P
(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ | Ωt(f) = y

)
dy

+
∑
f∈F

∫ ∞
−∞

qf (y) · P

(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ +

4(L+ 2ζ)

α2 ||f ||2L2(µ)

| Ωt(f) = y +
4(L+ 2ζ)

α2 ||f ||2L2(µ)

)
dy

−
∑
f∈F

∫ ∞
−∞

qf (y) · P
(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ | Ωt(f) = y

)
dy.

For the first term, we have

∫ ∞
−∞

qf (y) · P
(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ | Ωt(f) = y

)
dy

=

∫ ∞
−∞

qf (y) · P (ft(ω) = f | Ωt(f) = y) dy = P (ft(ω) = f) ,

where the first equality above follows since, conditioned on Ωt(f) = y, ft(ω) implies that infg∈Dα(f) Ωt(g) ≥
infg∈F Ωt(g) ≥ y − ζ. Hence

∑
f∈F

∫ ∞
−∞

qf (y) · P
(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ | Ωt(f) = y

)
dy =

∑
f∈F

P(ft(ω) = f) = 1.

For the second and third terms, using that

qf (z) =
1√

2π · η2 ||f ||2L2(µ)

· exp

(
−1

2
· (z − Lt−1(f))2

η2 ||f ||2L2(µ)

)
,
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we observe that

qf (y)− qf

(
y − 4(L+ 2ζ)

α2 ||f ||2L2(µ)

)
= qf (y)

1− exp

(y − Lt−1(f))2

2η2 ||f ||2L2(µ)

−

(
y − Lt−1(f)− 4(L+2ζ)

α2||f ||2
L2(µ)

)2

2η2 ||f ||2L2(µ)




≤
qf (y)

2η2 ||f ||2L2(µ)

(y − Lt−1(f)− 4(L+ 2ζ)

α2 ||f ||2L2(µ)

)2

− (y − Lt−1(f))2



=
qf (y)

2η2 ||f ||2L2(µ)

(
16(L+ 2ζ)2

α4 ||f ||4L2(µ)

− 8(L+ 2ζ)

α2 ||f ||2L2(µ)

(y − Lt−1(f))

)

Thus we have

−
∑
f∈F

∫ ∞
−∞

qf (y) · P

(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ +

4(L+ 2ζ)

α2 ||f ||2L2(µ)

| Ωt(f) = y +
4(L+ 2ζ)

α2 ||f ||2L2(µ)

)
dy

+
∑
f∈F

∫ ∞
−∞

qf (y) · P
(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ | Ωt(f) = y

)
dy

=
∑
f∈F

∫ ∞
−∞

(
qf (y)− qf

(
y − 4(L+ 2ζ)

α2 ||f ||2L2(µ)

))
P
(
ft(ω) = f and inf

g∈Dα(f)
Ωt(g) ≥ y − ζ | Ωt(f) = y

)
dy

≤
∑
f∈F

∫ ∞
−∞

qf (y)

2η2 ||f ||2L2(µ)

(
16(L+ 2ζ)2

α4 ||f ||4L2(µ)

− 8(L+ 2ζ)

α2 ||f ||2L2(µ)

(y − Lt−1(f))

)
P (ft(ω) = f |Ωt(f) = y) dy

≤ 8(L+ 2ζ)2

α4η2 inff∈F ||f ||6L2(µ)

∑
f∈F

P(ft = f)

− 4(L+ 2ζ)

α2η2

∑
f∈F

∫ ∞
−∞

y − Lt−1(f)

||f ||4
P (ft(ω) = f |Ω(ft) = y) qf (y)dy

=
8(L+ 2ζ)2

α4η2 inff∈F ||f ||6L2(µ)

− 4(L+ 2ζ)

α2η2

∑
f∈F

∫ ∞
−∞

y − Lt−1(f)

||f ||4
P (ft(ω) = f |Ω(ft) = y) qf (y)dy

(∗)
≤ 8(L+ 2ζ)2

α4η2 inff∈F ||f ||6L2(µ)

+
4(L+ 2ζ)

α2η inff∈F ||f ||4L2(µ)

E

[
sup
f∈F

ω(f)

]
,
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where the first inequality uses the previous computation, the second follows by linearity, and the last
equality follows because ft ∈ F is distinct. To see that inequality (∗) holds, note that, by definition,

(y − Lt−1(f))
d
= ηω(f) and thus,

1

η

∑
f∈F

∫ ∞
−∞

y − Lt−1(f)

||f ||4
P (ft(ω) = f |Ω(ft) = y) qf (y)dy = E

[
ω(ft)

||ft||4

]
We now have

−E
[
ω(ft)

||ft||4

]
≤ −E

[
inf
f∈F

ω(f)

||f ||4

]
(a)
=

∣∣∣∣E [− inf
f∈F

ω(f)

||f ||4

]∣∣∣∣
(b)

≤ E
[∣∣∣∣− inf

f∈F

ω(f)

||f ||4

∣∣∣∣]
(c)
= E

[
sup
f∈F

|ω(f)|
||f ||4

]
(d)

≤ 1

inff∈F ||f ||4
E

[
sup
f∈F
|ω(f)|

]
(e)

≤ 1

inff∈F ||f ||4
E

[
sup
f∈F

ω(f)

]
Note that by Jensen’s inequality,

E
[

inf
f∈F

ω(f)

||f ||4

]
≤ inf

f∈F
E
[
ω(f)

||f ||4

]
= 0

and so (a) holds. Then (b) follows from Jensen’s inequality, (c) follows from the symmetry of the
Gaussian, (d) follows by linearity, and (e) follows from the Sudakov-Fernique inequality (Sudakov,
1971; Fernique, 1975) applied to the contraction |·|. The result follows.

Note that Lemma 33 holds for an arbitrary measure µ on X and applies even in the case where
xt, wt are adversarially chosen. To apply this result, we choose µ to be the empirical measure on the
perturbation samples Xt,i. We consider two cases. First, we suppose that we are in a classification
setting, where we get better rates. We then prove the more general setting where F is real-valued.

Lemma 34 Suppose that we are in the smoothed online setting, ft is chosen so as to satisfy (13),
and the empirical distribution µ̂t,n satisfies

sup
f,f ′∈F

∣∣∣∣∣∣∣f − f ′∣∣∣∣2L2(µ)
−
∣∣∣∣f − f ′∣∣∣∣2

L2(µ̂t,n)

∣∣∣ ≤ ∆.

Suppose further that for all f ∈ F and all x ∈ X, f(x) ∈ {±1}. Then

E
[
`(ft(xt), yt)− `(ft+1(x′t), y

′
t)
]
≤30(L+ 2ζ)3 log η

ση
E

[
1 + sup

f∈F
ω̂t,n(f)

]
+

2L∆

σ
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Proof Let (x′t, y
′
t) ∈ X × [−1, 1] be a sample distributed independently and identically to (xt, yt)

conditioned on (x1, y1), . . . , (xt−1, yt−1), f1, . . . , ft−1. Since ft is selected independently of (xt, yt),
it is immediate that

E[`(ft(xt), yt)] = E[`(ft(x
′
t), y

′
t)]. (23)

Therefore, it suffices to bound

E[`(ft(x
′
t), y

′
t)− `(ft+1(x′t), y

′
t)].

Let us now fix any values of S := {(x1, y1), . . . , (xt−1, yt−1), f1, . . . , ft−1}. By Lemma 33,
there is a joint distribution ν over (f ′t , f

′
t+1), so that, conditioned on S:

1. The marginal distribution of f ′t , conditioned on S, is equal to the marginal distribution of ft,
conditioned on S.

2. The marginal distribution of f ′t+1, conditioned on S, is equal to the marginal distribution of
f ′t+1, conditioned on S.

3. It holds that

Pν
(∣∣∣∣f ′t − f ′t+1

∣∣∣∣
L2(µ)

> α
)
≤ 8(L+ 2ζ)2

α4η2 inff∈F ||f ||6L2(µ̂t,n)

+
4(L+ 2ζ)

α2η inff∈F ||f ||4L2(µ)

E

[
sup
f∈F

ω̂t,n(f)

]
.

(24)

In particular, this joint distribution ν is constructed by setting f ′t to equal ft from (13) and then
defining f ′t+1 so that

Lt−1(f ′t+1) + `(f ′t+1(xt), yt) + ηω̂t,n(f ′t+1) ≤ argmin
f∈F

Lt−1(f) + `(f(xt), yt) + η · ω̂t,n(f) + ζ.

Note that ω̂t,n has been used here as opposed to ω̂t+1,n. Since ω̂t,n and ω̂t+1,n have the same
distribution, the first two requirements of ν above are immediate. To see that the third holds, we
note that, in the notation of Lemma 33, f ′t+1 is exactly ft+1,x,w with x = xt, w = yt, and thus (24)
is immediate from (20) (with the distribution µ set to µ̂t,n and the Gaussian process ω set to ω̂t,n).

By the first two conditions above of the coupling ν and since (x′t, y
′
t) is drawn independently

from (f ′t , f
′
t+1), it holds that E[`(ft(x

′
t), y

′
t)] = E[`(f ′t(x

′
t), y

′
t)] and E[`(ft+1(x′t), y

′
t)] = E[`(f ′t+1(x′t), y

′
t)].

Fix any 0 < β < α. By L-Lipschitzness of `, the fact that f ′t , f
′
t+1 ∈ {±1}, and the fact that

(x′t, y
′
t) are drawn independently from f ′t , f

′
t+1, we have

Eν, x′t∼pt, y′t

[
(`(f ′t(x

′
t), y

′
t)− `(f ′t+1(x′t), y

′
t)) · χβ≤||f ′t−f ′t+1||L2(µ̂t,n)

≤α

]
(25)

≤ LEν, x′t∼pt

[∣∣f ′t(x′t)− f ′t+1(x′t)
∣∣ · χβ≤||f ′t−f ′t+1||L2(µ̂t,n)

≤α

]
= LEν

[
Ex′t∼pt [(f

′
t(x
′
t)− f ′t+1(x′t))

2 | f ′t , f ′t+1] · χβ≤||f ′t−f ′t+1||L2(µ̂t,n)
≤α

]
≤L
σ
· Eν

[
Ex′t∼µ[(f ′t(x

′
t)− f ′t+1(x′t))

2 | f ′t , f ′t+1] · χβ≤||f ′t−f ′t+1||L2(µ̂t,n)
≤α

]
≤ L · (α2 + ∆)

σ
Pν(
∣∣∣∣f ′t − f ′t+1

∣∣∣∣
L2(µ̂t,n)

> β)
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Set S = dlog min{η, 1/∆}e and let αi = 2
1−i
2 . Then, noting that ||f ||L2(µ̂n) = 1 for all f ∈ F, we

see, using (24),

Ex′t∼pt
[
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t)
]

= Ex′t∼pt
[
`(f ′t(x

′
t), y

′
t)− `(f ′t+1(x′t), y

′
t)
]

≤ Ex′t∼pt

[(
`(f ′t(x

′
t), y

′
t)− `(f ′t+1(x′t), y

′
t)
)
· χ||f ′t−f ′t+1||L2(µ̂t,n)

≤αS

]
+

S∑
i=0

Ex′t∼pt

[(
`(f ′t(x

′
t), y

′
t)− `(f ′t+1(x′t), y

′
t)
)
· χαi<||f ′t−f ′t+1||L2(µ̂t,n)

≤
√

2αi

]

≤
L(α2

S + ∆)

σ
+

S∑
i=0

(
8(L+ 2ζ)2

α4
i η

2
+

4(L+ 2ζ)

α2
i η

E

[
sup
f∈F

ω̂t,n(f)

])
L(α2

i + ∆)

σ

≤ 4L

σ
·
(

1

η
+ ∆

)
+

S∑
i=0

(
8(L+ 2ζ)2

α2
i η

2
+

4(L+ 2ζ)

η
E

[
sup
f∈F

ω̂t,n(f)

])
2L

σ

≤ 4L

σ
·
(

1

η
+ ∆

)
+

S∑
i=0

(
8(L+ 2ζ)2

η
+

4(L+ 2ζ)

η
E

[
sup
f∈F

ω̂t,n(f)

])
2L

σ

≤ 30(L+ 2ζ)3 log η

ση
E

[
1 + sup

f∈F
ω̂t,n(f)

]
+

2L∆

σ
,

where the second inequality follows by the above argument (setting β = 0 for the first term) and
from (24), the third inequality follows from ∆ ≤ α2

i for all i ≤ S, the penultimate inequality
follows from 1

α2
i
≤ 1

η for i ≤ S and the last inequality follows from S ≤ log η. The result follows
from the above display and (23).

We now prove a more general result that has worse dependence on η.

Lemma 35 Suppose that we are in the smoothed online setting, ft is chosen so as to satisfy (13),
and the empirical distribution µ̂t,n satisfies

sup
f,f ′∈F

∣∣∣∣∣∣∣f − f ′∣∣∣∣2L2(µ)
−
∣∣∣∣f − f ′∣∣∣∣2

L2(µ̂t,n)

∣∣∣ ≤ ∆.

Suppose further that inff∈F ||f ||2L2(µ̂t,n) ≥ 1/2. Then

E
[
`(ft(xt), yt)− `(ft+1(x′t), y

′
t)
]
≤1200(L+ 2ζ)3 log η

√
ση

E

[
1 + sup

f∈F
ω̂t,n(f)

]
+ 4L ·

√
∆

σ

Proof Exactly as in the proof of Lemma 34, we introduce the independent sample (x′t, y
′
t), as well

as the coupling ν over (f ′t , f
′
t+1). In particular, (23) and (24) continue to hold. Next, we bound the
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expression in (25) as in the proof of Lemma 34 but this time applying Jensen’s inequality:

Ex′t∼pt
[
(`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t))χβ≤||ft−ft+1||L2(µn)≤α

]
≤ LEx′t∼pt

[
|ft(xt)− ft+1(xt)|χβ≤||ft−ft+1||L2(µn)≤α

]
≤ LP

(
sup
x,y
||ft − ft+1,x,y||L2(µ̂n) > β

)√
Ex′t∼pt

[
(ft(x′t)− ft+1(x′t))

2χ||ft−ft+1||L2(µn)≤α

]

≤ LP
(

sup
x,y
||ft − ft+1,x,y||L2(µ̂n) > β

)√
α2 + ∆

σ
.

Setting S = dlog min{√η, 1/
√

∆}e and αi = 21−i for 0 ≤ i ≤ S, we have:

Ex′t∼pt
[
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t)
]

≤ Ex′t∼pt
[(
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t)
)
· χ||ft−ft+1||L2(µ̂n)≤αS

]
+

S∑
i=0

P
(
||ft − ft+1||L2(µ̂n) > αi

)
Ext∼pt

[(
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t)
)
· χ||ft−ft+1||L2(µ̂n)≤2αi

]

≤ L ·
√
α2
S + ∆

σ
+

S∑
i=0

(
8(L+ 2ζ)2

α4
i η

2 inff∈F ||f ||6L2(µ)

+
4(L+ 2ζ)

α2
i η inff∈F ||f ||4L2(µ)

E

[
sup
f∈F

ω̂n(f)

])
L ·
√
α2
i + ∆

σ

≤ L ·
√

8(∆ + 1/η)

σ
+

S∑
i=0

(
512(L+ 2ζ)2

α3
i η

2
+

64(L+ 2ζ)

αiη
E

[
sup
f∈F

ω̂n(f)

])
L ·
√

2

σ

≤ L ·
√

8(∆ + 1/η)

σ
+

S∑
i=0

(
512(L+ 2ζ)2

√
η

+
64(L+ 2ζ)
√
η

E

[
sup
f∈F

ω̂n(f)

])
L ·
√

2

σ

≤ 1200(L+ 2ζ)3 log η
√
ση

E

[
1 + sup

f∈F
ω̂n(f)

]
+ 4L ·

√
∆

σ
,

where we used the fact that ||f ||L2(µ̂n) ≥
1
2 , α2

i ≥ ∆, and 1
αi
≤ √η for all i ≤ S.

Finally, we need to verify that ||·||L2(µ) and ||·||L2(µn) are close together, a key condition of Lemmas
34 and 35. The below standard result shows that this condition holds in high probability.

Lemma 36 There is a constant C > 0 so that the following holds. Consider any distribution µ
over X, suppose x1, . . . , xn ∼ µ are sampled independently, and define µ̂n := 1

n

∑n
i=1 δxi . For any

δ > 0, with probability at least 1− δ over the xi, we have

sup
f,f ′∈F

∣∣∣∣∣∣∣f − f ′∣∣∣∣2L2(µ)
−
∣∣∣∣f − f ′∣∣∣∣2

L2(µ̂n)

∣∣∣ ≤ C√
n
·

 1

n
Gn(F) +

√
log
(

1
δ

)
n

 .
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Proof Write F2 = {x 7→ f(x)2 : f ∈ F}. Standard results in empirical processes, such as
(Wainwright, 2019, Theorem 4.10) guarantee that with probability at least 1− δ,

sup
f,f ′∈F

∣∣∣∣∣∣∣f − f ′∣∣∣∣2L2(µ)
−
∣∣∣∣f − f ′∣∣∣∣2

L2(µn)

∣∣∣ ≤ C
 1

n
Rn(F2) +

√
log
(

1
δ

)
n


Noting that F has image in [−1, 1] and thus the square is 2-Lipschitz, we may apply contraction and
the bound of Rademacher complexity by Gaussian complexity to conclude the proof.

E.2. Bounding the generalization error

In this section, we bound the final term in (18). This term was called the “Generalization Error” in
Haghtalab et al. (2022) and our control of this quantity follows a similar general approach as their
Lemma 4.5. For our proof, we require the following variant of the coupling approach of Lemma 14:

Lemma 37 (Lemma 4.6 of Haghtalab et al. (2022)) Fix a distribution µ on a set X and suppose
that p ∈ P(σ, µ). Suppose thatX1, . . . , Xm ∼ µ are iid. Then there is an external probability space
with sample space Ω and measure ν which produces a sample R ∼ ν so that the following holds.
There is a measurable function I : Xm × Ω→ [m] so that, for some event E = E(X1, . . . , Xm, R)
with Pr(E) ≥ 1 − (1 − σ)m, (XI |E, (Xi)i 6=I) ∼ p (in words, conditioned on the event E and the
value of any measurable function of (xi)i 6=I , XI has conditional distribution p).

We restrict our focus to linear loss `(f(x), y) = yf(x). and provide the following bound:

Lemma 38 Suppose that we are in the smoothed online setting. Fix any t ∈ [T − 1] and suppose
that ft+1 is chosen so as to satisfy (13), with the process ω̂n,t(·) defined as in (12), and the param-
eters η, n satisfy η/

√
n ≥ L. Furthermore, let (x′t, y

′
t) be an independent sample drawn from the

conditional distribution of (xt, yt) given {(xs, ys)}s≤t−1 and {fs}s≤t−1. Then, for some constant
c0 ∈ (0, 1), it holds that

E[`(ft+1(x′t), y
′
t)− `(ft+1(xt), yt)] ≤ 4L · log T

c0σn
· Rc0σn/(2 log T )(F) + 2ζ +

2Lnσ

T 2
.

Proof Fix any realization of (x1, y1), . . . , (xt−1, yt−1), f1, . . . , ft−1. Recalling the definition of
smoothed adversary, let pt denote the conditional distribution of xt (which is the same as the con-
ditional distribution of x′t) given (x1, y1), . . . , (xt−1, yt−1). Also let qt(·|xt) denote the conditional
distribution of yt given xt (and conditioned on the fixed values of (xs, ys), s < t, which are
omitted for clarity). Recall that we make no smoothness assumption on qt. We denote the dis-
tribution of (xt, yt), where xt ∼ pt and yt ∼ qt(·|xt) as pt � qt. Furthermore let p̃t denote the
conditional distribution of (xt, sign(yt)) given (x1, y1), . . . , (xt−1, yt−1) (i.e., where xt ∼ pt and
yt ∼ qt(·|xt)). Set c0 := Prγ∼N(0,1)(γ ≥ 1) > 0, where N(0, 1) is the standard normal distribution.
Let µ̃ ∈ ∆(X×{−1, 0, 1}) denote the product of µ and the distribution over {−1, 0, 1} which puts
mass c0 on 1,−1 and mass 1 − 2c0 on 0. For any measurable subset A ⊂ X and and b ∈ {−1, 1},
we have, from σ-smoothness of pt that for each b ∈ {−1, 1},

p̃t(A× {b})
µ̃(A× {b})

=
pt(A) · Pr(x,y)∼p̃t(y = b|x ∈ A)

µ(A) · c0
≤ 1

c0
· pt(A)

µ(A)
≤ 1

c0σ
,
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meaning that p̃t ∈ P(c0σ, µ̃).
Define the function thr : R→ {−1, 0, 1} as follows:

thr(y) :=


1 : y ≥ 1

0 : y ∈ (−1, 1)

−1 : y ≤ −1.

Recall the i.i.d. samples (xi, γi), i ∈ [n] defining the process ω̂n(·) in (12); note that (xi, thr(γi)) ∼
µ̃ by the definition of µ̃ and thr. For i ∈ [n] set zi = (xi, thr(γi)). Fix m = 2 log T · 1

c0σ
. We

divide the i.i.d. sample (z1, . . . , zn) into n/m groups of m samples each: the first group consists
of (z1, . . . , zm), the second consists of (zm+1, . . . , z2m), and so on. By Lemma 37, for each group
index 0 ≤ j < n/m, letting Ωj denote the sample space of the external probability space in the
statement (of Lemma 37) andRj ∈ Ωj denote the corresponding random variable, there is a function
Ij : (X×{−1, 0, 1})m×Ωj so that for some event Ej = Ej(zjm+1, . . . , zjm+m, Rj) occuring with
probability at least 1− (1− c0σ)m, letting Ij = Ij(zjm+1, . . . , zjm+m, Rj),

(zI |Ej , (zjm+i : i 6= I)) ∼ pt.

In particular, we have applied Lemma 37 with µ set to µ̃ and p set to p̃t. Write E := ∩0≤j<n/mEj ,
so that Pr(E) ≥ 1 − (n/m) · (1 − c0σ)m. Let I ∈ [n]n/m be the (random) vector defined as
I = (I0, . . . , In/m−1), and let Ī ∈ [n]n−(n/m) be the vector defined as (i ∈ [n] : i 6∈ I). Since the
individual groups (z1, . . . , zm), (zm+1, . . . , z2m), . . . are mutually independent, it follows that

((zi)i∈I|E, (zi : i ∈ Ī)) ∼ p̃⊗mt , (26)

i.e., conditioned on all zi, i ∈ Ī, the distribution of zi, i ∈ I is i.i.d. according to p̃t. Let us write the
vector (zi)i∈I asw ∈ (X×{−1, 1})n/m. Note that by independence of ω̂n,t across t, the distribution
of (xt, yt) is independent of z1, . . . , zn,E, I; further, xt ∼ pt and yt ∼ qt(·|xt).

For each i ∈ [n], let ŷi ∈ R denote an independent sample from qt(ŷi|xi) conditioned on
sign(ŷi) = sign(γi). Recalling the definition of the (random) index Ij above, we have zIj =

(xIj , thr(γIj )). Recalling that (xIj , thr(γIj )) ∼ p̃t conditioned on E, (zi : i ∈ Ī) (which follows
from (26)), which in particular means that sign(γIj ) = thr(γIj ) ∈ {−1, 1}, it follows that (xIj , ŷIj )

has the same distribution as (xt, yt) (namely, pt � qt) and both are independent, conditioned on
((zi : i 6= Ij),E). In particular, conditioned on the event E, the distributions of the following
vectors in (X× R)n+1 are the same:

((xt, yt), (xIj , ŷIj ), (zi : i 6= Ij))
d
= ((xIj , ŷIj ), (xt, yt), (zi : i 6= Ij)),

where d
= denotes equality in distribution and the above notation means that the entries (zi : i 6= Ij)

are concatenated to the other entries. Since the values of γi, i ∈ [n] are independent and identically
distributed conditioned on (z1, . . . , zn), it follows that conditioned on the event E, the distributions
of the following vectors are the same:

((xt, yt), (xIj , ŷIj ), ((xi, γi) : i 6= Ij))
d
= ((xIj , ŷIj ), (xt, yt), ((xi, γi) : i 6= Ij)).
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Furthermore, note that under the event E, we have that γIj = |γIj | · thr(γIj ) = |γIj | · sign(ŷIj ) and
|γIj | ≥ 1 (as thr(γIj ) ∈ {−1, 1} under the event E). From (13), ft+1 is a ζ-approximate minimizer
(among f ∈ F) of

t∑
s=1

`(f(xs), ys) +
n∑
i=1

ηγi√
n
· f(xi)

=yt · f(xt) +
η · |γIj |√

n
· sign(ŷIj ) · f(x̂) +

∑
i 6=Ij

ηγi√
n
· f(xi) +

t−1∑
s=1

ys · f(xs).

Since η/
√
n ≥ L by assumption, it follows from Lemma 39 that E[yt · ft+1(xt) |E] ≥ E[ŷIj ·

ft+1(xIj ) |E]− 2ζ.
Further, letting (x′t,1, y

′
t,1), . . . , (x′t,n/m, y

′
t,n/m) denote i.i.d. samples from the distribution of

(xt, yt) (independent of (xt, yt)), it is immediate that for all 0 ≤ j < n/m,

E[y′t,j · ft+1(x′t,j) |E] = E[y′t · ft+1(x′t) |E].

Then it follows that

n

m
· E[y′t · ft+1(x′t)− yt · ft+1(xt)− 2ζ |E]

≤E

n/m−1∑
j=0

y′t,j · ft+1(x′t,j)−
n/m−1∑
j=0

ŷIj · ft+1(xIj ) |E


≤E

sup
f∈F

n/m−1∑
j=0

y′t,j · f(x′t,j)− ŷIj · f(xIj ) |E


≤E(x̄j ,ȳj),(x̄′j ,ȳ

′
j)∼pt�qt : 0≤j<n/m

sup
f∈F

n/m−1∑
j=0

ȳ′j · f(x̄′j)− ȳj · f(x̄j)

 (27)

≤2 · E(x̄j ,ȳj)∼pt�qt, εj∼Unif(±1) : 0≤j<n/m

sup
f∈F

n/m−1∑
j=0

εj · ȳj · f(x̄j)


≤2L · Rn/m(F). (28)

where (27) follows since, conditioned on E, (x′t,j , yt,j′), (xIj , ŷIj ), 0 ≤ j < n/m are all mutually
independent (here we are using (26) as well as the definition of the labels ŷi). Furthermore, in (28)
above, we are using the contraction inequality for Rademacher complexity.

By our choice of m = 2 log T · 1
c0σ

, we have that Pr(E) ≥ 1 − (n/m) · (1 − c0σ)m ≥
1− (n/m) · exp(−c0σm) ≥ 1− n

mT 2 ≥ 1− nσ
T 2 . Then we see that

E[y′t · ft+1(x′t)− yt · ft+1(xt)] ≤ 2L · m
n
· Rn/m(F) + 2ζ +

2Lnσ

T 2
.
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Lemma 39 Fix L ≥ 1, ζ ≥ 0. Consider random variables x, x′, x1, . . . , xn ∈ X, y, y′ ∈ [−L,L],
y1, . . . , yn ∈ R drawn according to some distribution Q, and a constant γ ≥ L. Suppose h1 ∈ F is
a function of (x, y), (x′, y′), (x1, y1), . . . , (xn, yn) satisfying

y · h1(x) + γ · h1(x′) · sign(y′) +

n∑
i=1

h1(xi) · yi ≤ min
f∈F

y · f(x) + γ · f(x′) · sign(y′) +

n∑
i=1

f(xi) · yi + ζ.

Suppose that the distribution of the (n+ 2)-tuples

((x, y), (x′, y′), (x1, y1), . . . , (xn, yn))

and
((x′, y′), (x, y), (x1, y1), . . . , (xn, yn))

are identical. Then EQ[y · h1(x)] ≥ EQ[y′ · h1(x′)]− 2ζ.

Proof Define h2 as the function h1 applied to the sequence (x′, y′), (x, y), (x1, y1), . . . , (xn, yn),
so that

y′ · h2(x′) + γ · h2(x) · sign(y) +
n∑
i=1

h2(xi) · yi ≤ min
f∈F

y′ · f(x′) + γ · f(x) · sign(y) +
n∑
i=1

f(xi) · yi.

By definition of h1, we have that

y · h1(x) +
γ

|y′|
· h1(x′) · y′ +

n∑
i=1

h1(xi) · yi

≤y · h2(x) +
γ

|y′|
· h2(x′) · y′ +

n∑
i=1

h2(xi) · yi + ζ.

By definition of h2, we have that

y′ · h2(x′) +
γ

|y|
· h2(x) · y +

n∑
i=1

h2(xi) · yi

≤y′ · h1(x′) +
γ

|y|
· h1(x) · y +

n∑
i=1

h1(xi) · yi + ζ.

Adding the two previous displays and simplifying gives

h1(x) · y · (1− γ/|y|) + h1(x′) · y′ · (γ/|y′| − 1)

≤ h2(x) · y · (1− γ/|y|) + h2(x′) · y′ · (γ/|y′| − 1) + 2ζ.

Since (x, y) and (x′, y′) are exchangable, we have by definition of h1, h2 that for all constants
a, b ∈ R,

E[h2(x) · y · (1− γ/|y|) + h2(x′) · y′ · (γ/|y′| − 1) | |y| = a, |y′| = b]

= E[h1(x′) · y′ · (1− γ/|y′|) + h1(x) · y · (γ/|y| − 1) | |y′| = a, |y| = b].
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Combining the two above displays and rearranging gives

E[h1(x) · y · (1− γ/a) + h1(x′) · y′ · (γ/b− 1) | |y| = a, |y′| = b]

≤E[h1(x′) · y′ · (1− γ/a) + h1(x) · y · (γ/b− 1) | |y| = b, |y′| = a] + 2ζ.

Interchanging the roles of a, b, we get

E[h1(x) · y · (1− γ/b) + h1(x′) · y′ · (γ/a− 1) | |y| = b, |y′| = a]

≤E[h1(x′) · y′ · (1− γ/b) + h1(x) · y · (γ/a− 1) | |y| = a, |y′| = b] + 2ζ.

Exchangeability of (x, y) and (x′, y′) implies that Pr(|y| = a, |y′| = b) = Pr(|y| = b, |y′| = a),
and thus, by averaging the two above displays, we get

E[h1(x) · y · (2− γ/a− γ/b) | {|y|, |y′|} = {a, b}]
≤ E[h1(x′) · y′ · (2− γ/a− γ/b) | {|y|, |y′|} = {a, b}] + 2ζ.

Using that γ ≥ L ≥ max{a, b} gives that

E[h1(x) · y − h1(x′) · y′ | {|y|, |y′|} = {a, b}] ≥ −2ζ.

Taking expectation over {|y|, |y′|} gives that E[h1(x) · y − h1(x′) · y′] ≥ −2ζ, as desired.

E.3. Conclusion of Proof

We are now ready to start putting everything together. We first consider the case of binary labels.

Proposition 40 Let F ⊂ {±1}X be a binary-valued function class and suppose that we are in
the smoothed online learning setting, i.e., the conditional distribution of xt given the history is
σ-smooth with respect to some measure µ on X. Let `(ŷ, y) = −ŷy be indicator loss. For each
1 ≤ t ≤ T and any n, define for any f ∈ F,

ω̂t,n(f) =
1√
n

n∑
i=1

γif(xi)

where xi ∼ µ are independent ant γi ∼ N(0, 1) are independent standard normal random vari-
ables. Let ft ∈ F such that

Lt−1(ft) + ηω̂t,n(ft) ≤ inf
f∈F

Lt−1(f) + ηω̂t,n(f) + ζ

Then, if vc(F) ≤ d, we have for η =

√
T log(TL/σ)

σ and n = T/
√
σ that the regret satisfies:

E [Reg(ft)] . ζT +

√
Td log(T/σ)

σ
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Proof By Hoeffding’s inequality and (19) for some constant C > 0, as long as n ≥ C log 1
δ , an

i.i.d. sample x1, . . . , xn ∼ µ contains at least n/2 copies of x∗ with probability 1− δ, meaning that
inff∈F ||f ||L2(µ̂n) ≥

1
2 with probability 1− δ; let this probability 1− δ event be denoted E1.

Further, for a sufficiently large constant C > 0, by Lemma 36, with probability 1 − δ over the
sample x1, . . . , xn ∼ µ, it holds that

sup
f,f ′∈F

∣∣∣∣∣∣∣f − f ′∣∣∣∣2L2(µ)
−
∣∣∣∣f − f ′∣∣∣∣2

L2(µ̂n)

∣∣∣ ≤ ∆n := C ·

(
1

n
Gn(F) +

√
log(1/δ)

n

)
. (29)

Let this event (i.e., that (29) holds) be denoted E2.
Finally, it holds that with probability 1− δ over the sample x1, . . . , xn ∼ µ,∣∣∣∣∣E

[
sup
f∈F

ω̂n(f)

]
− 1√

n
Gn(F)

∣∣∣∣∣ ≤ C
√

log

(
1

δ

)
. (30)

Let this event (i.e., that (30) holds) be denoted E3.
The event E := E1 ∩ E2 ∩ E3 occurs with probability 1− 3δ; taking δ = 1/T , the contribution

to expected regret on the complement of E is at most 6 = O(1). Thus, it suffices to bound regret in
expectation conditioned on the event E, which is what we proceed to do.

In particular, we use Lemma 32 to decompose the regret into three terms:

E [RegT (fT )|E] ≤ ζT + 2η

(
1√
n
Gn(F) + C

√
log T

)
+ T max

t≤T
E
[
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t)
]

+ T max
t≤T

E
[
`(ft+1(x′t), y

′
t)− `(ft+1(xt), yt)

]
We can now apply Lemma 38 and Lemma 34 coupled with Lemma 36 to control ∆. In particular,
we note that as we assume that vc(F) ≤ d, we have

E

[
sup
f∈F

ω̂t,n(f)

]
.
√
d,

1√
n
Gn(F) .

√
d

Then applying Lemmata 34 and 38 we may conclude that

E

[
sup
f∈F

T∑
t=1

`(ft(xt), yt)− `(f(xt), yt)

]
. ζT + η

√
d+ T · (1 + ζ)3 log η

ση
·
√
d+

2T∆n

σ

+
T log T

σn
R σn

log T
(F) +

nσ

T
+ ζT

Now, noting that for any m ∈ N, the assumption that vc(F) ≤ d implies that

1

m
Rm(F) .

√
d

m

we get

E [RegT (ft)] . ζT + η
√
d+ T · (1 + ζ)3 log η

ση
·
√
d+

2T∆n

σ

+

√
dT log T

σn
+
nσ

T
+ ζT
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We may choose η =

√
T log(TL/σ)

σ and n = T/
√
σ to get a regret bound

E [Reg(ft)] . ζT +

√
Td log(T/σ)

σ

concluding the proof.

Note that Proposition 40 suffices to prove Theorem 9 in the case of binary values.
We now turn to the more challenging case of arbitrary labels. To understand the difficulty, note

that Lemma 38 requires that the loss be linear. If we assume that the labels yt are drawn in some
smooth manner from a distribution qt(·|xt) so that the pair (xt, yt) ∼ p̃t with p̃t being σ-smooth
with respect to a distribution µ̃ on X × [−1, 1], then we can reduce to the linear case by replacing
F : X→ [−1, 1] by ` ◦ F : X× [−1, 1]→ [−1, 1] with functions in ` ◦ F consisting of maps of the
form (x, y) 7→ `(f(x), y) for any f ∈ F. In the following result, we make use of this observation
to bound the regret in the smoothed label setting, for arbitrary loss functions.

Proposition 41 Let F be a function class mapping X → [−1, 1] and suppose we are in the
smoothed online learning setting with smooth labels, i.e., suppose that for all t, the adaptive adver-
sary chooses a distribution p̃t on X × [−1, 1], σ smooth with respect to some distribution µ̃, and
samples (xt, yt) ∼ p̃t. Let ` : [−1, 1] × [−1, 1] → [−1, 1] be a loss function that is L-Lipschitz in
the first argument. For each 1 ≤ t ≤ T and any n, let

ω̂t,m(f) =
1√
m

m∑
i=1

γif(xi) ω̂′t,n(f) =

n∑
j=1

γ′j`(f(x′j), y
′
j)

where xi ∼ µ and (x′j , y
′
j) ∼ µ̃ are independent and γi, γ′j ∼ N(0, 1) are independent standard

normal random variables. Let ft ∈ F such that

Lt−1(ft) + ηω̂t,m(ft) + ω̂t,n(f) ≤ inf
f∈F

Lt−1(f) + ηω̂t,n(f) + ω̂t,n(f) + ζ

Then,

E [RegT (ft)] .

(
L√
m
Gm(F) + LGn(F) +

√
log T

)(
2η + T

(1 + ζ)3 log η
√
ησ

)
+
L2T log T

σn
R σn

log T
(F) +

nσ

T
+ ζT (31)

In particular, if vc(F, δ) . δ−p for p < 2, we may choose η = T 2/3σ−1/3 and n = T/σ to get

E [RegT (ft)] . T
2
3σ−

1
3 log

(
T

σ

)
Proof The proof proceeds in a similar manner to that of Proposition 40 except we replace x by
(x, y), F by ` ◦ F and ` by the identity. More formally, let ` ◦ F = {(x, y) 7→ `(f(x), y)|f ∈ F}
and note that (29), (30), and inff∈F ||` ◦ f ||L2(µ̂n) ≥

1
2 all hold with probability at least 1− 4δ, just
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as in the proof of the earlier proposition. Letting δ = T−2, let E denote the event that all of these
hold, i.e., for all 1 ≤ t ≤ T ,

sup
f,f ′∈F

∣∣∣∣∣∣∣` ◦ f − ` ◦ f ′∣∣∣∣2L2(µ̂n)
−
∣∣∣∣` ◦ f − ` ◦ f ′∣∣∣∣2

L2(µ)

∣∣∣ ≤ ∆n := C

(
1

n
Gn(` ◦ F) +

√
log T

n

)
sup
f,f ′∈F

∣∣∣∣∣∣∣f − f ′∣∣∣∣2L2(µ̂m)
−
∣∣∣∣f − f ′∣∣∣∣2

L2(µ)

∣∣∣ ≤ ∆m∣∣∣∣∣E
[

sup
f∈F

ω̂t,m(f)

]
− 1√

n
Gn(F)

∣∣∣∣∣ ≤ C√log T∣∣∣∣∣E
[

sup
f∈F

ω̂t,n(f)

]
− 1√

n
Gn(` ◦ F)

∣∣∣∣∣ ≤ C√log T

inf
f∈F
||` ◦ f ||L2(µ̂n) ≥

1

2

The expected regret on the complement of E is at most 4Tδ ≤ 4 by boundedness of the loss. We
may now apply Lemma 32 to get

E [RegT (ft);E] . E

[
sup
f∈F

ω̂t,m(f);E

]
+ E

[
sup
f∈F

ω̂′t,n(f);E

]
+ T max

1≤t≤T
E
[
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t);E

]
+ T max

1≤t≤T
E
[
`(ft+1(x′t), y

′
t)− `(ft+1(xt), yt);E

]
The first two terms are bounded by the restriction to E. To control the third term, we consider a
coupling where ω̂′t,n = ω̂′t+1,n and ω̂t,m = ω̂t+1,m and note that by the independence of ω̂′t,n and
ω̂t,m, we may condition on the value of the former and let

L̃t(f) = Lt(f) + ω̂′t,n(f)

We may then apply Lemma 35 to the resulting expression and get

T max
1≤t≤T

E
[
`(ft(x

′
t), y

′
t)− `(ft+1(x′t), y

′
t);E

]
. T

(L+ 2ζ)3 log η
√
ση

E

[
sup
f∈F

ω̂t,m(f)

]
+ 4LT

√
∆m

σ

Note that this is further controlled using E to bound the expected supremum of ω̂t,m.
To take care of the last term, we consider a coupling where ω̂t,m = ω̂t+1,m but ω̂′t,n and ω̂′t+1,n

are independent. We may now condition on ω̂t,m as in the previous paragraph and apply Lemma 38
to get

T max
1≤t≤T

E
[
`(ft+1(x′t), y

′
t)− `(ft+1(xt), yt);E

]
. 4LT

log T

σn
R σn

2 log T
(` ◦ F) + ζT +

2Lnσ

T

To conclude, we apply contraction to note that for all k ∈ N,

Gm(` ◦ F) ≤ LGm(F) Rm(` ◦ F) ≤ LRm(F)
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This proves the first statement.
To prove the second statement, note that if vc(F, δ)� δ−2, then

max (Rk(F),Gk(F)) .
√
k (32)

The result then follows by a direct computation.

While Proposition 41 attains no-regret, the assumption that the labels yt are drawn in a smoothed
manner is much stronger than desired. In order to mitigate this issue, we apply a discretization
scheme.

Proposition 42 Let F be a function class mapping X → [−1, 1] and suppose that we are in the
smoothed online learning setting, where xt ∼ pt are drawn from a distribution that is σ-smooth
with respect to µ. Suppose that ` : [−1, 1]× [−1, 1]→ [−1, 1] is a loss function that is L-Lipschitz
in both arguments. Consider the following processes:

ω̂t,m(f) =
1√
n

m∑
i=1

γif(xi) ω̂′t,n(f) =

n∑
j=1

γ′j`(f(x′j), y
′
j)

where xi, x′j ∼ µ, γi ∼ N(0, 1) and y′j are uniform on [−1, 1] ∩ εZ for some fixed ε > 0. Suppose
that ft is chosen such that

Lt−1(ft) + ηω̂t,m(ft) + ω̂t,n′(ft) ≤ inf
f∈F

Lt−1(f) + ηω̂t,m(f) + ω̂t,n′(f) + ζ

Then

E [RegT (ft)] .

(
L√
m
Gm(F) + LGn(F) +

√
log T

)(
2η + T

(1 + ζ)3 log η
√
ησ

)
+
L2T log T

εσn
R εσn

log T
(F) +

εnσ

T
+ (ζ + Lε)T

Proof Let Sε = εZ ∩ [−1, 1] and, for any y ∈ [−1, 1], let yε be the projection of y into Sε. By
assumption, we have |`(·, y)− `(·, yε)| ≤ Lε. The key observation is that (xt, y

ε
t ) is (εσ/2)-smooth

with respect to µ ⊗ Unif(Sε) by the fact that |Sε| ≤ 2/ε. We may now apply Lemma 32 and note
that the first term, the magnitude of the perturbation, is unchanged. For the second term, we note
that

E
[
`(ft(xt), yt)− `(ft+1(x′t), y

′
t)
]
≤ E

[
`(ft(xt), y

ε
t )− `(ft+1(x′t), (y

′
t)
ε)
]

+ 2Lε

which is in turn controlled by Lemma 35 by the same reasoning as the analogous statement in the
proof of Proposition 41. To bound the generalization error, we note that, again by the Lipschitz
assumption,

E
[
`(ft+1(x′t), y

′
t)− `(ft+1(xt), yt)

]
≤ E

[
`(ft+1(x′t), (y

′
t)
ε)− `(ft+1(xt), y

ε
t )
]

+ 2Lε (33)
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Now, note that

Lt−1(ft+1) + `(ft+1(xt), y
ε
t ) + ηω̂t+1,n(ft+1) ≤ Lt−1(ft+1) + `(ft+1(xt), yt) + ηω̂t+1,n(ft+1) + Lε

≤ inf
f∈F

Lt−1(f) + `(f(xt), yt) + ηω̂t+1,n(f) + ζ + Lε

≤ inf
f∈F

Lt−1(f) + `(f(xt), y
ε
t ) + ηω̂t+1,n(f) + ζ + 2Lε

Noting again that (xt, y
ε
t ) is (εσ/2)-smooth with respect to µ ⊗ Unif(Sε), we apply Lemma 38,

adjusting ζ to ζ + 2Lε, to get

E
[
`(ft+1(x′t), (y

′
t)
ε)− `(ft+1(xt), y

ε
t )
]
≤ 8

log T

c0σεn
Rc0σεn/(4 log T )(F) +

nσε

T 2
+ 2ζ + 2Lε

after noting that |Sε| ≤ 2
ε . Combining this with (33) gives

E
[
`(ft+1(x′t), y

′
t)− `(ft+1(xt), yt)

]
≤ 4

log T

c0σεn
Rc0σεn/(2 log T )(F) +

2nσε

T 2
+ 2ζ + 4Lε

Plugging back in to Lemma 32 concludes the proof.

As a corollary, we have the following bounds.

Corollary 43 Suppose we are in the setting of Proposition 42 and, furthermore, vc(F, δ) . δ−p

for some p < 2. Then if η = T 2/3σ−1/3, n =
√
T/σ, and ε = T−1/3, we have

E [RegT (ft)] . T
2
3σ−

1
3 + ζT

If p ≥ 2, we may choose n = T , ε = (σT )
− 1
p+1 , and η = T

2
p to yield E [RegT (fT )] = o(T ).

Proof The first statement follows immediately from Proposition 42 and (32).
The second statement holds by direct computation and the fact that for all k,

max (Gk(F),Rk(F)) . k
1− 1

p

We see that Corollary 43 contains Theorem 10.
Finally, at the cost of a slightly worse regret bound, we may simplify the algorithm by consid-

ering a single perturbation. Note that in Corollary 43, we may tune η and n independently because
we have two distinct perturbations. In the case where the perturbations are the same, Lemma 38
tells us that η ≥

√
n. We thus have the following regret bound for the simpler algorithm:
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Corollary 44 Suppose we are in the situation of Proposition 42 and vc(F, δ) . δ−p for some
p < 2. Suppose that ft is chosen such that

Lt−1(ft) +
η√
n
ω̂′t,n(ft) ≤ inf

f∈F
Lt−1(f) +

η√
n
ω̂t,n(f) + ζ

Then if we set η = T 5/12σ−1/4, n = η2, and ε = T−3/4σ−1/4, we have

E [RegT (ft)] . T
3
4σ−

1
4 log

(
T

σ

)
+ ζT

Proof Note that Proposition 41 may be proved with a single perturbation in much the same way,
with the caveat that η ≥

√
n, and achieve the regret bound given in (31) with m = n. This proof

may then be extended by discretization in the same way as Proposition 42, again with the caveat
that η ≥

√
n. We may use (32) to control the size of the Gaussian and Rademacher complexities as

before and then tune the parameters such that η ≥
√
n. Plugging in the assumed parameters yields

the desired result.

Note that Corollary 44 suffices to prove the more general case of Theorem 9.

Appendix F. Proofs from Section 6

In this section we prove the lower bounds on oracle-efficient algorithms from Section 6. The proof
structure closely follows that from Hazan and Koren (2016), but some additional work is required
since our setup allows more powerful algorithms than Hazan and Koren (2016): in particular, the
ERM oracle allows (possibly negative) real-valued weights to be attached to each pair (xi, yi). In
Section F.1 we recall the definition of Aldous’ problem and introduce a slight variant; a known
oracle lower bound for Aldous’ problem forms the basis for our hardness results. In Section F.2
we introduce an intermediate problem, namely that of approxiating the Nash value in a two-player
zero-sum game given a value oracle and best response oracles; we then show an oracle lower bound
for this problem by reducing from Aldous’ problem. Using this result, in Section F.3, we prove
Theorem 11 and Corollary 12 using a standard reduction from finding Nash equilibria to no-regret
learning (Freund and Schapire, 1999).

F.1. Modified Aldous’ Problem

We begin by recalling the definition of Aldous’ problem and a slight variation we will use. Consider
a function φ : {0, 1}d → Z; for all such functions in this section, we assume that |φ(x)| ≤ 2O(d)

for all x ∈ {0, 1}d. A point x ∈ {0, 1}d is a local maximum if φ(x) ≥ φ(x′) for all x′ of Hamming
distance at most 1 from x. The function φ is globally consistent if it has a single local maximum
(i.e., the only local maximum is also a global maximum). Aldous’ problem is the following problem:
suppose we are given a globally consistent function φ : {0, 1}d → N with black-box oracle access
in the sense that we can query a value x ∈ {0, 1}d and the oracle will respond with the value φ(x).
The objective is to determine whether the maximum value of φ is even or odd (with a minimum
number of oracle queries). The following lower bound on the number of oracle calls needed to
solve Aldous’ problem is known:
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Theorem 45 (Aaronson (2006); Aldous (1983); Hazan and Koren (2016)) There is a constant
c > 0 so that the following holds. Fix any d ∈ N, and consider any randomized algorithm for
Aldous’ problem that makes at most c · 2d/2/d2 oracle queries in the worst case. Then there is a
globally consistent function φ : {0, 1}d → N so that the algorithm cannot determine with probabil-
ity higher than 2/3 whether the maximum value of φ over {0, 1}d is even or odd.

For our purposes we require a lower bound applying to a slightly more restricted class of func-
tions than Theorem 45, specified in Definintion 46 below.

Definition 46 We say that a function φ : {0, 1}d → Z is min-max consistent if it has both a single
local maximum and a single local minimum.

As an immediate corollary of Theorem 45 we get an exponential lower bound for local search
with min-max consistent functions:

Corollary 47 There is a constant c′ > 0 so that the following holds. Consider any randomized
algorithm for Aldous’ problem that makes at most c′ ·2d/2/d2 oracle queries in the worst case. Then
there is a min-max consistent function φ : {0, 1}d → Z so that the algorithm cannot determine with
probability higher than 2/3 whether the maximum value of φ over {0, 1}d is even or odd.

Proof Suppose to the contrary that A is a (randomized) algorithm that makes at most c′ · 2d/2/d2

oracle queries in the worst case and determines, for any min-max consistent function φ : {0, 1}d →
N, the parity of its maximum value with probability at least 2/3.

Consider a globally consistent function φ : {0, 1}d → N. We define a min-max consistent
function φ′ : {0, 1}d+1 → Z as follows: for x ∈ {0, 1}d+1,

φ′(x) =

{
φ(x1, . . . , xd) xd+1 = 0

−φ(x1, . . . , xd) xd+1 = 1.
. (34)

To see that φ′ is min-max consistent, note that any local maximum x? = (x?1, . . . , x
?
d+1) of φ′ must

satisfy x?d+1 = 0, and furthermore, the point (x?1, . . . , x
?
d) ∈ {0, 1}d must be a local maximum

of φ. Thus φ′ has a single local maximum. Similarly, for any local minimum x? of φ′, we must
have x?,d+1 = 1 and (x?,1, . . . , x?,d) is a local maximum of φ; clearly there is a unique such point
x? ∈ {0, 1}d+1.

We use A to determine the parity of the maximum value of φ using in the worst case no more
than c′2(d+1)/2/(d + 1)2 oracle queries (to φ): we run the algorithm A with the function φ′, and
for each oracle query x ∈ {0, 1}d+1, we can return the value of φ′(x) per (34) using a single oracle
query to φ. By assumption A determines the parity of the maximum value of φ′, which is the same
as the parity of the maximum value of φ, with probability at least 2/3.

Letting c be the constant of Theorem 45, as long as c′ is chosen so that c′ · 2(d+1)/2/(d+ 1)2 <
c · 2d/2/d2 for all d, we get a contradiction to Theorem 45, as desired.

F.2. Hardness of Computing Nash Equilibria with Best-Response Oracles

FixN ∈ N which is a power of 2, and define d = log2N . Throughout this section, we identify each
vertex v of the d-dimensional hypercube {0, 1}d with the integer in [N ] whose binary representation
corresponds to v. Let φ : [N ] → Z be a min-max consistent input (Definition 46) to Aldous’
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problem, with maximum value φ? = maxi∈[N ]{φ(i)}. We construct a 0-sum game with value
λ = λ(φ?), with

λ(k) =

{
−1 if k is even
1 if k is odd.

Further, for a subset V ⊂ [N ] (identified with the corresponding subset of the hypercube), let
Γ(V ) ⊂ [N ] denote the set of neighbors of V in the hypercube (including the elements of V ).

Given the function φ, we construct the following game matrix Gφ ∈ {−1, 1}N×N :

∀i, j ∈ [N ], Gφij =


λ(φ(i)) if i, j are local maxima of φ
−1 if φ(i) ≥ φ(j) (and the first case does not apply)
1 otherwise.

(35)

We let k? := maxi∈[N ]{φ(i)} denote the (unique) global maximum of φ. As an intermediate
problem between Aldous’ problem and the problem of oracle-efficient online (smoothed) learning,
we consider the problem of approximating the Nash equilibrium value in the two-player zero-sum
game induced by the matrix G, given access to the following 3 oracles:

• The value oracle Val(i, j) returns Gφij for i, j ∈ [N ].

• The best response oracle BR1(q), for q ∈ RN , returns

BR1(q) =

{
argmini∈Γ(supp(q)){e>i Gφq} k? 6∈ supp(q)

argmini∈[N ]{e>i Gφq} otherwise.
(36)

• The best response oracle BR2(p), for p ∈ Rn, returns

BR2(p) =

{
arg maxj∈Γ(supp(p)){p>Gφej} k? 6∈ supp(p)

arg maxj∈[N ]{p>Gφej} otherwise.

We define computation given access to the above oracles Val,BR1,BR2 in an analogous way as
to how computation was defined with respect to the ERM oracle in Section 2.3: p is represented as a
list of atoms {(i, pi) : pi > 0} and q is represented as a list of atoms {(j, qj) : qj > 0}, and changing
a single atom on either list takes unit time. Further, calling any of the oracles Val,BR1,BR2 takes
unit time. Next we show that given the oracles Val,BR1,BR2, computing the approximate Nash
equilibrium value of an N ×N game G cannot be done in o(

√
N) time (up to logarithmic factors).

To begin, we establish some basic properties of the game Gφ constructed in (35).

Lemma 48 For any globally consistent function φ, the minimax value of Gφ is λ.

Proof Let k? = arg maxi∈[N ]{φ(i)} denote the global maximum of φ. We show that the pure
strategy profile (k?, k?) is a Nash equilibrium of the game Gφ. The payoff with this profile is
λ(φ(k?)) = λ. For any i ∈ [N ], the strategy profile (i, k?) generates a payoff of either λ (in the
case i = k?) or 1 ≥ λ since for all i 6= k?, φ(i) < φ(k?). Thus there is no useful deviation for
player 1. Similar, for any j ∈ [N ], the strategy profile (k?, j) generates a payoff of either λ (in
the case that j = k?) or of −1 ≤ λ since for all j 6= k?, φ(j) < φ(k?). Thus (k?, k?) is a Nash
equilibrium, meaning that its value is the value of the game.
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Lemma 49 Fix any min-max consistent function φ : [N ]→ Z. The oracles Val and BR1,BR2 are
correct value and best-response oracles for the game Gφ, in that:

Val(i, j) = Gφij , BR1(q) = argmin
i∈[N ]

{e>i Gφq}, BR2(p) = arg max
j∈[N ]

{p>Gφej}.

Proof The oracle Val is clearly valid as a value oracle for the game Gφ since Val(i, j) = Gφij for all
i, j ∈ [N ] by definition. Furthermore, the best response oracles BR1(q), BR2(p) are clearly valid
for Gφ in the case that k? ∈ supp(q) or k? ∈ supp(p), respectively. We next verify that they are
valid in the remaining case.

We begin by considering the best response oracle BR2: fix some input p ∈ RN with k? 6∈
supp(p), let j = BR2(p) denote the output of the oracle defined above, and set v = maxj∈[N ] p

>Gφej
to be the value of player 2’s best response to p. Choose some j? ∈ [N ] so that p>Gφej? = v. Since
k? 6∈ supp(p), we have, for all j ∈ [N ],

p>Gφej =
∑

i∈supp(p):φ(i)<φ(j)

pi −
∑

i∈supp(p):φ(i)≥φ(j)

pi. (37)

We consider the following cases regarding the value of φ(j?):

1. φ(j?) = φ(i) for some i ∈ supp(p). Then since p>Gφej only depends on j through φ(j) (as
is evident from (37), it follows that v = p>Gφej? = p>Gφei ≤ p>Gφej , as desired.

2. φ(j?) > maxi∈supp(p){φ(i)}. Since k? 6∈ supp(p), and φ is min-max consistent, there is
some j′ ∈ Γ(supp(p)) so that φ(j′) > maxi∈supp(p){φ(i)}. It is evident from (37) that
p>Gφej′ = p>Gφej? = v, which implies, by definition of j and since j′ ∈ Γ(supp(p)), that
p>Gφej ≥ p>Gφej? , as desired.

3. Suppose the previous two cases do not hold. Choose j′ ∈ supp(p) with φ(j′) as small as
possible so that φ(j′) ≥ φ(j?). It is again evident from (37) that p>Gφej? = p>Gφej′ ≤
p>Gφej , as desired.

We next consider the best response oracle BR1: fix some input q ∈ RN with k? 6∈ supp(q),
let i = BR2(q) denote the output of the oracle defined above, and set v = mini∈[N ] e

>
i G

φq to
be the value of player 1’s best response to q. Choose some i? ∈ [N ] so that e>i?G

φq = v. Since
k? 6∈ supp(q), we have, for all i ∈ [N ],

e>i G
φq =

∑
j∈supp(q):φ(j)>φ(i)

qj −
∑

j∈supp(q):φ(j)≤φ(i)

qj . (38)

We consider the following cases regarding the value of φ(i?):

1. φ(i?) = φ(j) for some j ∈ supp(q). Then since e>i G
φq only depends on i through φ(i) (as

is evident from (38)), it follows that v = e>i?G
φq = e>j G

φq ≥ e>i Gφq, as desired.

2. φ(i?) < minj∈supp(q){φ(j)}. It cannot be the case that k? ∈ supp(q) since then we would
have φ(i?) < φ(k?). Therefore, since φ is min-max consistent, there is some i′ ∈ Γ(supp(q))
so that φ(i′) < minj∈supp(q){φ(j)}. It follows that e>i?G

φq ≤ e>i′G
φq = e>i?G

φq = v, as
desired.
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3. Suppose the previous two cases do not hold. Choose i′ ∈ supp(q) with φ(i′) as large as
possible so that φ(i′) ≤ φ(i?). It is again evident from (38) that e>i?G

φq = e>i′G
φq ≥ e>i Gφq,

as desired.

Lemma 50 There is a constant c0 > 0 so that the following holds. Fix anyN ∈ N. Any randomized
algorithm A for approximating the equilibrium of N ×N {−1, 1}-valued zero-sum games with the
oracles BR1,BR2,Val cannot guarantee with probability greater than 2/3 that the algorithm A’s
output value is at most 1/4 from the game’s true value in time c0 ·

√
N/ log3N .

Proof Fix any N ∈ N. At the cost of a constant factor (and by a standard padding argument)
we may assume that N is a power of 2. Let A be an algorithm as in the theorem statement, and
suppose for the purpose of contradiction that with probability greater than 2/3, for any N × N ,
{−1, 1}-valued zero-sum game, A’s output value is at most 1/4 away from the game’s value and A

runs in time c0 ·
√
N/ log3N for some constant c0 > 0.

We use the algorithm A to derive a contradiction to Corollary 47. Accordingly, let φ : [N ]→ Z
be a min-max consistent function to which we can make black-box value queries. Consider the
N ×N {−1, 1}-valued game Gφ defined in (35). We run algorithm A on the game Gφ, simulating
the oracles Val,BR1,BR2 as follows:

• The value oracle Val(i, j) can be simulated using at most log(N) + 1 queries to φ (namely,
to φ(i) and φ(j), as well as, in the case that i = j, to all neighbors of i to check whether it is
a local maximum).

• Fix some q ∈ RN , and set mq := | supp(q)|; the best response oracle BR1(q) may be
simulated as follows:

1. Query the value of φ(j) for all j ∈ Γ(supp(q)); this requires mq · (log(N) + 1) oracle
queries to φ.

2. By comparing, for each j ∈ supp(q), the value of φ(j) to the value of φ(j′) for each
neighbor j′ of j (all of which were queried in the previous step), we may check if
k? ∈ supp(q).

3. If k? ∈ supp(q), then output the parity of φ(k?) and terminate the algorithm early.

4. Otherwise, if k? 6∈ supp(q), then using the queried values of φ(j), j ∈ Γ(supp(q)), we
may compute BR1(q) per (36) – here we use that argmini∈Γ(supp(q)){e>i Gφq} may be
computed entirely from the values of φ(j) for j ∈ Γ(supp(q)).

• For p ∈ RN and mp := | supp(p)|, the best response oracle BR2(p) may be simualted
analogously to above, using at most mp · (log(N) + 1) oracle queries to φ.

If none of the calls to BR1,BR2 terminates early, then given the output v̂ ∈ R of the algorithm A,
we simply output the sign of v̂.

Write φ? = maxj∈[N ]{φ(j)}. We claim that the resulting algorithm described above outputs
with probability at least 2/3, −1 if φ? is even and 1 if φ? is odd. To see this, we argue as follows:
with probability 2/3 over the randomness of the algorithm A, one of the following must occur:
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• Some call to either BR1,BR2 causes the algorithm to terminate early, in which case it is clear
that the algorithm correctly outputs the parity of the maximum value of φ.

• The output of the algorithm A is within 1/4 of the value of the game Gφ, which we denote
by λ ∈ {−1, 1}. By Lemma 48, λ is equal to −1 if φ? is even and 1 if φ? is odd. Thus, the
output of the algorithm A is −1 if φ? is even and 1 if φ? is odd.

Having verified correctness (with probability at least 2/3) of the algorithm above to find the par-
ity of φ?, we proceed to analyze its oracle cost. The algorithm A is assumed to take time c0 ·√
N/ log3(N), for some sufficiently small constant c0. Let us denote the number of oracle calls A

makes to Val by ωVal; further, denote the total time consumed by all oracle calls A makes to BR2(p)
(including the oracle calls themselves and the time spent writing the input atoms (i, pi)) by ωBR2 ;
define ωBR1 similarly for the oracle BR1. By the definition of our oracle model above, it holds that
ωVal + ωBR1 + ωBR2 ≤ c0 ·

√
N/ log3(N).

Since each call by A to Val makes at most log(N) + 1 oracle queries to φ, the total number of
oracle calls to φ as a result of calls to the Val oracle by A is bounded above by (log(N) + 1) · ωVal.
Similarly, since we can store the result of oracle calls to φ for previously used atoms (i, pi) or (j, qj)
(in step 1 above), the total number of oracle calls to φ as a result of calls to the BR2 oracle by A is
bounded above by (log(N) + 1) · ωBR2 . Using similar reasoning for calls to BR1, we get that the
total number of oracle calls to φ in our algorithm above is at most

(log(N) + 1) ·
(
ωVal + ωBR1 + ωBR2

)
≤ (log(N) + 1) · c0

√
N/ log3(N) < c′ ·

√
N/ log2(N),

where c′ is the constant of Corollary 47 (as long as the constant c0 is chosen sufficiently small).
This is a contradiction to the conclusion of Corollary 47, thus completing the proof of Lemma 50.

F.3. Hardness of oracle-efficient proper no-regret learning

In this section we use the oracle lower bounds for finding Nash equilibria in two-player zero-sum
games to derive oracle lower bounds for no-regret online learning against a σ-smooth adversary.

In particular, we first prove Theorem 11, stated below with precise logarithmic factors. The
proof is a standard reduction from finding Nash equilibria in two-player zero-sum games to no-
regret learning (Freund and Schapire, 1999), but we provide the details for completeness:

Theorem 11 (Restated, precise) For some constant c > 0, we have the following: fix any T ∈ N
and σ ∈ (0, 1]. In the ERM oracle model, any randomized algorithm cannot guarantee expected
regret smaller than T

200 against a σ-smooth online adversary and any F with |F| ≤ 1/σ over T

rounds in total time smaller than c · 1/
√
σ

log3 1/σ
; further, this result holds even for binary-valued classes.

Proof [Theorem 11] Fix T, σ as in the theorem statement; at the cost of a constant factor we may
assume that 1/σ is an integer. Suppose A is an algorithm which guarantees expected regret smaller
than T

200 against all σ-smooth adversaries in time ≤ c · 1/
√
σ

log3 1/σ
. By Markov’s inequality, for any

σ-smooth adversary, the regret of A is bounded above by T
20 with probability at least 9/10.

Set N := 1/σ, and consider any N × N {−1, 1}-valued zero-sum game, represented by a
game matrix G ∈ {−1, 1}N×N , with entries Gf1,f2 , f1, f2 ∈ [N ]; as a matter of convention we
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suppose that the min-player chooses the first coordinate f1 and the max-player chooses the second
coordinate f2. Now consider the following procedure for approximating the Nash equilibrium value
of G (we will show below how to implement the below using the oracles Val,BR1,BR2 introduced
in the previous section):

1. Initialize instances A1,A2 of the algorithm A given the time horizon T ; for A1 the function
class is {f2 7→ Gf1,f2 : f1 ∈ [N ]}, and for A2 the function class is {f1 7→ Gf1,f2 : f2 ∈ [N ]}.
The loss functions of the algorithms are given as follows:

• The loss function of A1 is `(ŷ, y) = ŷ; thus A1 incurs loss of Gf1,f2 for predicting f1

when it observes f2.

• The loss function of A2 is `(ŷ, y) = −ŷ; thus A2 incurs loss of −Gf1,f2 for predicting
f2 when it observes f1.

2. For t = 1, 2, . . . , T :

(a) Let the algorithms A1,A2 produce (random) decisions f1,t, f2,t ∈ [N ], respectively.

(b) Update A1 with the context f2,t.

(c) Update A2 with the context f1,t.

3. Define mixed strategies f̄i,T := 1
T

∑T
t=1 fi,t for i = 1, 2.

4. Output the value v̂ := f̄>1,TGf̄2,T = 1
T 2 ·

∑T
t,s=1Gf1,t,f2,s .

Note that we do not need to specify the labels yt for either algorithm A1,A2 above, since their loss
functions do not depend on the true labels yt. By the union bound, with probability at least 4/5,
the regret of both A1,A2 is bounded above by T/20; in particular, with probability at least 4/5 we
have:

T∑
t=1

Gf1,t,f2,t − min
f1∈[N ]

T∑
t=1

Gf1,f2,t ≤
T

20
, max

f2∈[N ]

T∑
t=1

Gf1,t,f2 −
T∑
t=1

Gf1,t,f2,t ≤
T

20
.

Adding the two preceding equations, we obtain

max
f2∈[N ]

f̄>1,TGef2 − min
f1∈[N ]

e>f1Gf̄2,T ≤
1

10
, (39)

where ef , f ∈ [N ] denotes the unit vector corresponding to f . Set ε := 1/10. Letting (f?1 , f
?
2 )

denote a Nash equilibrium of G and v? := (f?1 )>Gf?2 denotes the value of G, we have

v? − ε ≤ f̄>T Gf?2 − ε ≤ max
f2∈[N ]

f̄>1,TGef2 − ε
(39)
≤ min

f1∈[N ]
e>f1Gf̄2,T ≤ f̄>1,TGf̄2,T

≤ max
f2∈[N ]

f̄>1,TGef2
(39)
≤ min

f1∈[N ]
e>f1Gf̄2,T + ε ≤ (f?1 )>Gf̄2,T + ε ≤ v? + ε.

Thus we have |v̂ − v?| ≤ ε = 1/10, meaning that the above procedure determines the game G’s
value up to error 1/10.

We next analyze the time complexity of the above procedure, which involves showing how to
implement it efficiently using the oracles BR1,BR2,Val:
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• Each time A1 makes an ERM oracle call of the form argminf1∈[N ]

∑m
i=1wi · `i(Gf1,f2,i , yi),

we do the following: we may assume without loss of generality that all f2,i are distinct. Now
write `i,1 := `i(1, yi), `i,−1 := `i(−1, yi). This ERM call may be simulated by the oracle
call BR1(q), where qf2,i = wi · `i,1−`i,−1

2 for all i ∈ [m], and qf2 = 0 for all other f2.

• Each time A2 makes an ERM oracle call of the form argminf2∈[N ]

∑m
i=1wi · `i(Gf1,i,f2),

we define `i,1, `i,−1 as above and simulate it using the oracle call BR2(p) where pf1,i =

wi · `i,−1−`i,1
2 for all i ∈ [m] and pf1 = 0 for all other f2.

• It only remains to show how the estimation of v̂ in step 4 can be implemented efficiently: for
any f1, f2 ∈ [N ], the value Gf1,f2 can be queried with a single oracle call as Val(f1, f2), so v̂
may trivially be computed in time O(T 2). We may in fact obtain a stronger bound as follows:
fix δ > 0 and a sufficiently large constant C > 0, and for 1 ≤ j ≤ C log(1/δ) sample
i.i.d. pairs (i1j , i

2
j ) uniformly from [T ] × [T ], and output v̂′ := 1

C log 1/δ

∑C log 1/δ
j=1 Gf

1,i1
j
,f

2,i2
j

tuples, for a total of O(C log 1/δ) time (including the oracle calls to Val). By the Chernoff
bound, we have that |v̂′− v̂| ≤ 1/100 with probability 1−δ, as long as C is sufficiently large.

As long as δ in the third bullet above satisfies δ ≤ 4/5 − 2/3, we have established that there is an
algorithm that with probability 2/3 estimates the value v? of G up to accuracy of 1/9. Furthermore,
it is straightforward to see that implementing the oracle calls to BR1,BR2,Val as described above
only lead to a constant factor blowup in the total time. It is also evident that since the space of
contexts for both A1,A2 is [N ], arbitrary adaptive adversaries (in particular, the adversaries faced
by A1,A2 above) are 1/N -smooth with respect to the uniform distribution on [N ]. Thus, by the
assumed time complexity upper bound of A, we have that the algorithm to estimate v? runs in time
c′ ·

√
N

log3(N)
for some constant c′, which can be made arbitrarily small by choosing c to be arbitrarily

small. This contradicts Lemma 50.

Now we prove Corollary 12 (restated below with precise logarithmic factors), which is a straight-
forward consequence of Theorem 11:

Corollary 12 (Restated, precise) Fix any α ≥ 1, ε < 1/200, σ ∈ (0, 1], and d ≥ log 1/σ. Any
algorithm whose total time in the ERM oracle model over T rounds is bounded as Tα requires that
T ≥ Ω

(
max

{
d
ε2
, σ
−1/(2α)

log3 1/σ

})
to achieve regret εT for classes F of VC dimension at most d against

a σ-smooth adversary.
Furthermore, any algorithm which achieves regret εT for classes of VC dimension at most d

against a σ-smooth adversary must have computation time at least Ω
(

max
{
d
ε2
, σ−1/2

log3 1/σ

})
.

Proof [Corollary 12] Fix any ε < 1/200, σ ∈ (0, 1], and d ≥ log 1/σ, as in the statement of the
corollary. We begin by proving the first statement of the lemma. We consider the following cases:

Case 1. d/ε2 > σ−
1
2α / log3 1/σ. For any fixed distribution Q on X × {−1, 1}, consider the

i.i.d. adversary which chooses (xt, yt) according to Q for each t. An online-to-batch reduction
(Cesa-Bianchi et al., 2004; Shalev-Shwartz et al., 2011) establishes that if an online algorithm can
achieve expected regret at most εT , then there is an offline algorithm that achieves expected error
at most ε given T samples from Q. But Vapnik and Chervonenkis (1974) shows that for any binary
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function class F with vc(F) = d, no algorithm using only c · d/ε2 samples (for a sufficiently small
constant c) can achieve expected error at most ε for all distributionsQ whose X-marginal is uniform
on a shattered set of F of size d. Taking µ to be such a uniform marginal, we see that there is no
online algorithm (regardless of oracle efficiency) that achieves regret ≤ εT against any 1-smooth
adversary with respect to µ if T < c · d/ε2.

Case 2. d/ε2 ≤ σ−
1
2α / log3 1/σ. Consider any algorithm in the ERM oracle model, A, whose

total computation time over T rounds is bounded above by Tα, and suppose that for some value
of T , A achieves regret at most εT against a σ-smooth adversary for any class of VC dimension at
most d. Since any class F with |F| ≤ 1/σ must have vc(F) ≤ log 1/σ ≤ d, and since ε < 1/200,
by Theorem 11, we must have that Tα ≥ Ω

(
1/
√
σ

log3 1/σ

)
. Thus T ≥ Ω

(
σ−1/(2α)

log3 1/σ

)
, as desired.

The second statement of the corollary follows from the above casework by noting that, in Case
1, the computation time is at least the number of rounds T ≥ Ω(d/ε2), and in Case 2, we get
immediately from Theorem 11 that the computation time is Ω(σ−1/2/ log3 1/σ).

F.4. Lower bound on oracle calls for approximate ERM oracle

One limitation of the lower bounds of Theorem 11 and Corollary 12 is that they only lower bound the
total computation time in the ERM oracle model and thus, for instance, do not rule out an algorithm
which makes a single ERM oracle call with a large number of points (xi, yi). In this section we
amend this issue, showing a lower bound on the number of ERM oracle calls that any proper online
learning algorithm obtaining sublinear regret must make. To obtain this result, we have to slightly
weaken the oracle, namely by working with the approximate ERM oracle model (i.e., where we
have ζ > 0 in Definition 2).

First, we need a slight variant of Lemma 50, which establishes a lower bound on the number of
oracle calls (which in general is less than computation time), but under the additional assumption
that all oracle calls to BR1,BR2 are made with small-support vectors.

Lemma 51 There is a constant c0 ∈ (0, 1) so that the following holds. Fix N,S ∈ N. Any
randomized algorithm A for approximating the equilibrium of N × N {−1, 1}-valued zero-sum
games with the oracles Val,BR1,BR2 cannot guarantee with probability greater than 2/3 that A’s
output value is at most 1/4 from the game’s true value with fewer than 1

S · c0 ·
√
N/ log3N oracle

calls, assuming that each oracle call to BR1,BR2 is made on a vector of support at most S.

Proof The proof exactly mirrors that of Lemma 50, with the exception of the analysis of how the
oracles BR1,BR2 are simulated using oracle calls to the min-max consistent function φ : [N ] →
Z. In particular, for any q ∈ RN , BR1(q) and BR2(p) may each be simulated using at most
S · (log(N) + 1) oracle calls to φ assuming that q, p have at most S nonzero values.

Thus, if γ ≤ 1
S c0

√
N/ log3N denotes the total number of oracle calls to Val,BR1,BR2, then

the total number of oracle calls to φ is at most

S · (log(N) + 1) · γ ≤ S · (log(N) + 1) · 1

S
· c0

√
N/ log3N < c′ ·

√
N/ log2(N),

where c′ is the constant of Corollary 47 (as long as c0 is chosen sufficiently small). This gives the
desired contradiction to Corollary 47.

Given Lemma 51 we may prove in a manner analogously to Theorem 11 a lower bound on the
number of oracle calls for any no-regret algorithm in the approximate ERM oracle model:
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Theorem 52 For some constant c > 0 we have the following: fix any T ∈ N, σ, ζ ∈ (0, 1]. In
the ζ-approximate ERM oracle model, any randomized algorithm cannot guarantee expected regret
smaller than T

200 against a σ-smooth online adversary and any F with |F| ≤ 1/σ over T rounds in

using fewer than cζ2 · 1/
√
σ

log4 1/σ
oracle calls; further, this result holds even for binary-valued classes.

Proof We use the notation from the proof of Theorem 11. The proof exactly follows that of
Theorem 11, except for how the ERM oracle calls are simulated. To describe this difference, recall
the definition of N = 1/σ to denote the size of the given game G, set δ = 1

100N2 , and write
S := C log 1/δ

ζ2
. Then the ζ-approximate ERM oracles are simulated as follows:

• To make an ERM oracle call of the form

argmin
f1∈[N ]

m∑
i=1

wi · `i(Gf1,f2,i , yi), (40)

we do the following:

1. Draw S i.i.d. samples i1, . . . , iS from the distribution over [m] whose mass at i is pro-
poritional to |wi|.

2. Use the procedure as in the proof of Theorem 11 to make the ERM oracle call

argmin
f1∈[N ]

S∑
j=1

sign(wij ) · `ij (Gf1,f2,ij , yij ). (41)

Notice that this will lead to an oracle call BR1(q) for some distribution q of support size
at most S.

• We perform the same sampling procedure for an ERM oracle call of the form argminf2∈[N ]

∑m
i=1wi·

`i(Gf1,i,f2 , yi), which leads to an oracle call BR2(p) for some distribution p of support size
at most S.

We claim that each such oracle call of the above form, with probability at least 1−N ·δ, satisfies the
requirement of ζ-approximate ERM oracle. To establish this, we simply note that by the Chernoff
bound and union bound, with probability 1 −N · δ, we have, for each oracle call of the form (40),
for W :=

∑m
i=1 |wi|,

sup
f1∈[N ]

∣∣∣∣∣∣
m∑
i=1

wi
W
· `i(Gf1,f2,i , yi)−

1

S

S∑
j=1

sign(wij ) · `ij (Gf1,f2,ij , yij )

∣∣∣∣∣∣ ≤ ζ,
which implies that the result of (41) returns some f̂1 which is ζW within the minimum of (40). A
similar argument applies to the ERM oracle calls taking a minimum over f2 ∈ [N ].

Since the total number of oracle calls of each of the algorithms A1,A2 in the proof of Theorem
11 is at most c · 1/σ

log4 1/σ
≤ N , we have that with probability 1− 2N2δ, all oracle calls simulated as

above are actually ζ-approximate ERM oracle calls. By the assumption of the theorem statement, it
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follows that with probability at least 2/3 we can approximate the value of G up to accuracy of 1/4.
Further, the number of oracle calls made to Val,BR1,BR2 is at most

cζ2 · 1/
√
σ

log4 1/σ
≤ 1

S
· c0

√
N

log3N
,

where c0 is the constant of Lemma 51 (as long as c is sufficiently small), and each to BR1,BR2

is with a vector that has support size at most S. But this contradicts the statement of Lemma 51,
completing the proof.

Finally, as a corollary of Theorem 52, we have the following analogue of Corollary 12, which
shows a regret lower bound for any algorithm which makes polynomially many oracle queries to an
oracle whose accuracy is an inverse polynomial. Notice that the upper bound of Theorem 10 obtains
a regret bound under a ζ-approximate oracle that is the same as that under an exact oracle (up to a
constant factor), as long as ζ < o

(
1

T 2 log T

)
; thus the assumption of 1/Tα-approximate oracle (for

α constant) in the below corollary seems very reasonable.

Corollary 53 Fix any α ≥ 1, ε < 1/200, σ ∈ (0, 1], and d ≥ log 1/σ. Any algorithm mak-
ing at most Tα oracle calls over T rounds to a 1/Tα-approximate oracle requires that T ≥
Ω̃
(

max
{
d
ε2
, σ−

1
6α

})
to achieve regret εT for classes F of VC dimension d against a σ-smooth

adversary.

Proof The proof is identical to that of Corollary 12 for d
ε2
> σ−1/(6α)

log4 1/σ
.

For d
ε2
≤ σ−1/(6α)

log4 1/σ
, we note that any algorithm making Tα oracle calls to a 1/Tα-approximate

ERM oracle over T rounds, which achieves regret at most εT against a σ-smooth adversary must,

by Theorem 52, have Tα ≥ Ω
(
T−2α · 1/

√
σ

log4 1/σ

)
, i.e., T ≥ Ω

(
σ−

1
6α

log4 1/σ

)
.

Appendix G. Proof of Theorem 13

We first prove a basic lemma about how smoothness behaves with product distributions.

Lemma 54 Suppose that p is σ-smooth with respect to µ on X and for any x ∈ X, p′x = p′(·|x)
is σ′-smooth with respect to µ′ on X′. Then q(x, a) = p(x)p′(a|x) is σσ′-smooth with respect to
µ⊗ µ′.

Proof Let A ⊂ X and A′ ⊂ X′ be measurable. Then

q(A×A′) = Ex∼p
[
p′(A′|x)χx∈A

]
≤
(

1

σ′
µ′(A′)

)
p(A) ≤ 1

σσ′
µ(A)⊗ µ(A′)

The result follows.

Note that any distribution on [K] is 1
K -smooth with respect to Unif([K]). Thus, by Lemma 54,

independent of how at is chosen, we may assume that (xt, at) is sampled from a distribution that is
σ
K -smooth with respect to µ⊗ Unif([K]). Define the random quantity

RegSq(T ) =

T∑
t=1

(ŷt − `t(at))2 − inf
f∈F

T∑
t=1

(f(xt, at)− `t(at))2
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Then, by (Foster and Rakhlin, 2020, Theorem 1), with probability at least 1 − δ over the random-
ization over actions, if we run SquareCB with parameter γ, we have

RegCB(T ) ≤ γ

2
RegSq(T ) + 4γ log

(
2

δ

)
+

2KT

γ
+

√
2T log

(
2

δ

)
Setting δ = 1

T and noting that the regret is always at most T , we have

E [RegCB(T )] ≤ γ

2
E
[
RegSq(T )

]
+ 4γ log(2T ) +

2KT

γ
+
√

2T log (2T ) + 1 (42)

If we set ŷt to be the prediction given by the relaxation-based algorithm from (4), setting k =
3K
σ log T then we know that

E
[
RegSq(T )

]
≤ 7LK log T

σ
RT (F)

can be achieved with O
(
T

3
2 log T

)
calls to the ERM oracle. Letting

γ = 12 log(T )

√
Tσ

LRT (F)

concludes the proof after noting that we may take L = 2 for the square loss in the range [0, 1].
If we instead use the FTPL algorithm of Theorem 10, then vc(F, α) . α−p implies

E
[
RegSq(T )

]
≤ Õ

(T√K√
σ

)max
(

1− 1
3(p−1)

, 2
3

)
Plugging into (42) and minimizing over γ yields a regret of

E [RegCB(T )] ≤ Õ
(
T

max
(

1− 1
6(p−1)

, 5
6

)
K

max
(

3
4
− 1

12(p−1)
, 2
3

)
σ−

1
4

)
Note that for any p <∞, this is o(T ) and so the result holds.
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