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Abstract: With the emergence of safe autonomous vehicles and systems, there is a demand for
creating systems that are aware of and responsive to the human. There have been decades
of work dedicated to human-in-the loop studies. However, when it comes to human-aware
systems that are responsive to the human based on learning parameters, there is a need for
the appropriate input parameters to assess learning. In this work, signal processing methods
were used to analyze game controller input signals in response to humans completing a simulated
quadrotor landing task with three levels of difficulty (easy, medium, and difficult) over 30 trials.
Data collected from twelve adults were analyzed using energy of the controller input signal; 2)
non-dimensional velocity; and 3) dominant frequency analysis. The landing trajectories were also
mapped graphically revealing three categories of learners: beginner, intermediate, and trained.
The results from the signal processing analysis procedure provided supporting evidence for these
categories. The results of this work suggests that input parameters from a game controller can
be used as a proxy for learning and can provide an additional means for enabling human aware
systems.
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1. INTRODUCTION

Automation is being implemented in numerous contexts
such as automobiles, drones, and agriculture. While many
of these will be shared by multiple users with distinct usage
patterns, the automated systems have to learn these pat-
terns and ensure that individuals are performing as they
should. Such responsiveness of the the machine to humans
enables successful integration with the environment.

In order to develop human-aware machines that are re-
sponsive to humans, capturing behavioral data is impor-
tant. Behavioral data comes in many forms including self-
report, observed actions (e.g., mouse clicks, keystrokes,
and other gestures), and other intention based responses
(Khan et al. (2008); Cepeda et al. (2019); Broota (1989)).
However, very few studies have documented to the use
of input from game controllers as a tool for capturing
behavioral data.

Game controllers have proven to be useful tools to capture
continuous behavioural data (Markey et al. (2010)). The
game controller data was found to be useful in analysing
interpersonal behaviour with higher reliability. Within a
time series, it can provide high resolution information
about the nature of fluctuations also (Sadler et al. (2009)).

The game controller data helps us to conduct cross cor-
relations, cross spectral analysis and other time series
techniques (Warner (1998)). Psychological constructs can
be measured as continuous time signals using game con-

trollers (Boker (2002)) which can be used in nonlinear
dynamics models (Maxwell and Boker (2007)).

The flow of information between brain parts related to
cognitive, sensory and motor processes are parallel and
continuous. Recording continuous responses can help us
study multiple mental activities and their transitions
states. Continuous responses provide a more realistic data
collection method also, for a wide variety of participants.
Discrete controls can cause confusion related to response-
key mapping and deviate the user from the actual objec-
tive, which lead to less useful data.

The continuous input game controller used in the ex-
periments helps the user to interact continuously with
a simulator, compared to a keyboard with discrete key-
strokes. Apart from the standard behavioural patterns,
the controller usage data provides additional information
about the trajectories and learning paths. Continuous
data from controllers can provide high resolution spatio-
temporal information about the time-evolution of cog-
nitive processes, changes of mind, error corrections and
subjective confidence.

As a preliminary study, we devised an experimental ap-
proach to quantify the learning curve of human subjects
in using a new drone simulator. We focus on the user input
data and their performance to evaluate their progress
in learning. The drone simulator uses a game controller
similar to a flight control.



2. EXPERIMENTAL METHOD
2.1 Set-up

The experiment consists of a Python based 2D drone
simulator (Figure. 1) and a game controller used in flight
simulators (Hotas Thrustmaster 4). The simulator is run
on a PC monitor with a resolution of 1920x1080p at a
refresh rate of 60Hz. The game controller is operated using
both hands. The left hand is used to control the throttle
(up-down motion) and the right hand is used to control
the roll motion. The drone does not have any pitch or yaw
motions.

SIMULATION INSTRUCTION
Input device: joystick

Position: 0.340, 0.861
Speed: 0.003, -0.000
Alttude: 0.03 deg

Input: 0.00, 0.00
Human Input: 0.00, -0.00
Time: 627 sec

Mode: Manual control

Fig. 1. The 2D drone simulator used in the study

2.2 Methodology

The experiment was conducted in normal indoor lighting.
The participants were asked to land a quadrotor on a
landing pad where the drone default starting location was
in the upper right corner of the screen. Three scenarios
(easy, medium, difficult) were presented in random order
and each scenario was run 10 times. The participants
were given 4 trials before the experiment on the easy
level. The medium and difficult levels had an obstacle
near the landing pad. Relaxing music was played for 25
seconds between the runs to bring the subject back to a
reference state. The quadrotor was programmed to have
both linear and angular momentum to make the dynamics
more realistic.

2.8 Selection of participants

A total of 15 people participated in the study. However,
the data from 3 participants had recording errors, but
the remaining 12 were used in the analysis. The Purdue
IRB approved this study. All the participants had normal
or corrected-to-normal vision. Each participant was given
4 trials before the experiment. The average age of the
participants was 26.2 years (range 21-35 years) with a
standard deviation of 5.04 years. Of the 12, 9 were men
and 3 were women. There were 2 participants without a
driver’s licence. There were 3 participants who play video
games daily, 2 who gamed weekly and the rest of the

group had minimal or no gaming experience. Most of the
participants reported that they had the highest stress level
during the first set of runs. The trust and confidence values
were recorded by the participants on a scale of -10 to 10
after each run. A post-experiment survey was conducted
to get overall feedback about the experiment.

3. DATA ANALYSIS AND RESULTS

The collected data was de-identified and the participants
were categorized as beginner, intermediate and trained
users, based on their trajectory data. A smooth, short
trajectory where the drone had minimum tilt was used as
a reference or baseline trajectory by which all other trajec-
tories were compared. The participants whose trajectories
had high deviation (> 50%) from the reference/optimal
trajectory for 30 runs were considered as beginner level
users (Figure 2) and the participants whose trajectories
had less deviation (< 25%) from the reference trajec-
tory were considered as trained users (Figure 3). The
participants with trajectories in the intermediate range
(25—50% deviation) were considered as intermediate users
(Figure.4).
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Fig. 2. Trajectory data of a beginner. An optimum tra-
jectory (Easy-auto) for the simplest case is shown for
comparison in addition to the higher spatial variation
from the optimal trajectory is shown.

3.1 Game Controller data

The input data to the game controller was extracted and
analysed. The joy stick data included separate signals for
roll and thrust, sampled at 32Hz. The drone simulator was
made exclusively for the study and therefore it is a new
environment for all participants. It is expected that every
participant goes through a learning process while using
it. The duration of learning process will be different for
the three groups identified. The game controller data was
analysed using 3 methods described in as follows to check
the progress in learning:

Energy of the game controller input signal  The energy
of a signal is a measure of its capacity to do work
and this idea extends to bio sensors also. Energy of a
person’s audio signals gives a measure of work done by the
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Fig. 3. The trajectory data of a trained user shows less
spatial variations.
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Fig. 4. Trajectory data of an intermediate user.

person to produce that sound (Guido (2016)). Energy is a
useful measure as it is conserved in time-frequency domain
conversions and it has higher robustness to variations
during recording and transmission processes. (Oppenheim
et al. (2001)).

The reference trajectory used in the analysis has low
controller input. A new user has higher controller data
input at the beginning and it reduces with progress in
learning. The controller input values stabilizes later to
values comparable to the input values to the reference
trajectory.

It is assumed that the energy of the controller input signal
is proportional to the effort put forth by the user to control
the drone. Thus the energy analysis of the game controller
input signal can be used as a scalar method to compare
the efforts exhibited by the subject in different runs. The
energy associated with game controller signals was found
to decrease with improvements in learning.

The energy values for all the runs for all participants were
calculated. It shows that the controller energy was lower
for trajectories similar to the reference trajectory for all 3

levels of difficulty. One example from each category of users
was taken to demonstrate the trend in controller energy
data.

The controller energy data for each participant was non-
dimensionalized using the peak energy value (E* =
E/Enas, E* € (0,1]) from the corresponding difficulty
level for evaluating the trend.

Comparing the beginner level (Figure.5) and trained
(Figure.6) participants, it can be seen that there is a
difference in the trend of normalized energy values over
time. The energy values show mostly a steady trend in the
case of trained users whereas a decreasing trend is not seen
in the case of beginner level users.
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Fig. 5. Normalized energy (E* = E/E,.,) plots of the
game controller input signal for a beginner level user
for 3 cases - easy, medium and difficult levels. A fourth
degree polynomial fit is used to show the trend of the
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Fig. 6. Normalized energy plots of the game controller
input signal for an trained user for 3 cases - easy,
medium and difficult levels. A fourth degree polyno-
mial fit is used to show the trend of the data

Compared to beginner level and trained users, the con-
troller energy data of an intermediate user (Figure.7)
shows a decreasing trend throughout the experiment. The



reduction in controller energy data shows progress in
learning within 30 runs. A similar trend was observed for
other participants in the intermediate category. Individual
subjects appear to have a learning curve that rises from
a beginner level to trained level in less than 10 trials
(Gallistel et al. (2004)).
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Fig. 7. Normalized energy plots of the game controller
input signal for an intermediate user for 3 cases -
easy, medium and difficult levels. A fourth degree
polynomial fit is used to show the trend of the data

Non-dimensional velocity — Higher cruising speed of the
drone can be taken as another indicator for the confidence
of the user. Thus, the peak flight-velocity and variation
in flight-velocity can be used to study the progress in the
learning process.

The first and third quartiles of flight-velocity for each
participant were extracted and non-dimensionalized using
their peak value in each difficulty level (V* =V /Vj05). V*
helps to identify the relative variations within a set of runs
for each user and helps to recognize progress in learning.
Non-dimensionalization of velocity helps us to compare the
spectrum of performances of different users effectively.

The first and third quartile flight-velocities were selected
for the analysis, to get a better representation of extreme
values of flight-velocity. In an ideal-learning case, the non-
dimensionalized first and third quartiles of flight velocity
are expected to increase initially, at different scales, and
later stabilize with runs. It corresponds to a learning
process where the user learns the control and dynamics
and, then improves his performance by moving to higher
velocities.

While trained users (Figure.9) were found to identify
their safe speed quickly and sustain it throughout the
experiment, the beginner level users (Figure.8) took more
time to reach stable flight-velocity and they have higher
fluctuations in their flight-velocity. The stable flight-speed
of trained users were steady and higher than other groups,
which indicates quick completion of landing task.

For the intermediate users, it can be seen that the third
quartile of their flight-velocity decreases over time, show-
ing progress in learning (Figure.10). The variation in the
first quartile of flight-velocity for intermediate users shows
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Fig. 8. Plots of the normalized 1st and 3rd quartile
velocities of a beginner user for 30 runs
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Fig. 9. Plots of the normalized 1st and 3rd quartile
velocities of an trained user for 30 runs

a similar trend with a slower rate than the third quartile
of the flight-velocity.

Dominant Frequency Analysis Dominant Frequency
Analysis is a method used to quantify change of a fluc-
tuating signal. In patients with persistent atrial fibril-
lation, a reduction in the dominant frequency of heart
beat indicates sufficient eradication of drivers of atrial
fibrillation/abnormal heartbeat (Yoshida et al. (2010)).
Dominant frequency analysis can be applied to complex
signals with varying amplitude and morphology and it is
mostly robust against noise, especially with highly regular
activation intervals (Ng et al. (2007); Ng and Goldberger
(2007); Latchamsetty and Kocheril (2009)).

The dominant frequency of the controller input signal
for each run was calculated and the trends were plotted
against the runs. It is assumed that the dominant fre-
quency of the controller input signal is a characteristic
of the gaming style. Higher values of dominant frequency
corresponds to quick controls and lower values corresponds
to slow controls.
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Fig. 10. Plots of the normalized 1st and 3rd quartile
velocities of an intermediate user for 30 runs

As expected, the overall trend shows trained users have
higher values for the dominant frequency and the beginner
level users have lower values for the dominant frequency.
The intermediate users (Figure.13) have dominant fre-
quencies with values between that of trained (Figure.12)
and beginner level users (Figure.11).
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Fig. 11. Plots of the dominant frequency of the controller
input signal for different levels of difficulty for a
beginner level user.

It can be seen that the frequency variation in the case of
beginner level users and trained level lessen over multiple
runs. These users appear to have less variation in their
gaming style. But in the case of an intermediate user, it
can be seen that the values oscillate with respect to a
mean value and the fluctuation decays with more runs.
This suggests that the intermediate users tested different
gaming styles and finally learned a successful style. Thus
the Dominant frequency analysis verifies the learning pro-
cess we have observed in the case of intermediate users and
also help us converge on the idea of using controller input
signal for quantifying learning process.
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Fig. 12. Plots of the dominant frequency of the controller
input signal for different levels of difficulty for a
trained user.
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Fig. 13. Plots of the dominant frequency of the controller
input signal for different levels of difficulty for an
intermediate user.

4. CONCLUSIONS AND FUTURE WORK

The study aims at quantifying the learning process of
users on a 2D drone simulator using controller data. The
performance data of different users were analysed to check
potential indicators to represent progress in learning over a
short period of time. The users were divided into 3 groups
namely beginner, intermediate and trained users, based
on their gaming experience. The users who were able to
master the game in 30 runs, even though they had less
gaming experience, were considered as intermediate users.

The game controller input data was extracted and the
trends in the energy of the signal were analysed. It appears
that, for an intermediate user, the energy of the controller
input signal reduces over time. The energy associated with
the game controller input is directly related to the efforts
exhibited by the user to control the drone. The difference
in energy of the game controller input signals between one
of the optimal trajectories and a user trajectory can be
taken as a measure of learning.



Comparison of game controller data between user trajec-
tories and an optimal/reference trajectory can be used
to determine the experience level of a participant. The
analysis can also be used to determine the duration of the
training required for a beginner level user for a new task.

The cruising velocity of the drone was another factor con-
sidered in the study. While trained users reached higher,
stable cruising velocities in less time, the beginner level
users had high fluctuations, the intermediate users showed
a diminishing trend, reaching a steady value towards the
end of the experiment. Identifying a safe cruising velocity
also can be considered as an indicator for learning.

The Dominant frequency analysis of the controller input
signal helped us verify the learning process by analysing
the variation in the dominant frequency of the signal
over time. The intermediate users exhibited a converging
gaming style where they started with high frequency
inputs, reduced it over many runs, reaching stable values
towards the end. Starting from a fluctuating gaming style
and reaching a stable style can be taken as a sign of
learning.

An important contribution of this work is the use of signal
processing methods on game controller data to identify
systematic behavioral results of participants. The use of
game controller input signals provides an additional means
for enabling human-aware systems. Three categories of
participants were identified as well as the group that had
maximum learning in the given time. The results of this
work suggest that controller input can be used as a proxy
for learning. Future work involves conducting additional
studies in different scenarios to validate these observations.
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