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While EXplainable Artificial Intelligence (XAI) approaches aim to improve human-AI collaborative decision-
making by improving model transparency and mental model formations, experiential factors associated with
human users can cause challenges in ways system designers do not anticipate. In this paper, we first showcase
a user study on how anchoring bias can potentially affect mental model formations when users initially
interact with an intelligent system and the role of explanations in addressing this bias. Using a video activity
recognition tool in cooking domain, we asked participants to verify whether a set of kitchen policies are being
followed, with each policy focusing on a weakness or a strength. We controlled the order of the policies and
the presence of explanations to test our hypotheses. Our main finding shows that those who observed system
strengths early-on were more prone to automation bias and made significantly more errors due to positive
first impressions of the system, while they built a more accurate mental model of the system competencies.
On the other hand, those who encountered weaknesses earlier made significantly fewer errors since they
tended to rely more on themselves, while they also underestimated model competencies due to having a more
negative first impression of the model. Motivated by these findings and similar existing work, we formalize and
present a conceptual model of user’s past experiences that examine the relations between user’s backgrounds,
experiences, and human factors in XAI systems based on usage time. Our work presents strong findings and
implications, aiming to raise the awareness of Al designers towards biases associated with user impressions
and backgrounds.
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1 INTRODUCTION

Over the past decade, machine learning and artificial intelligence algorithms have been incorporated
in different contexts and domains to make systems more intelligent and autonomous. Unfortunately,
many of these so-called blackbox algorithms are hard to understand for the users due to the
complexity of their inner logic [78]. This lack of transparency can cause users to experience
problems due to an inappropriate mapping between their mental model of how the model works
and the reality of how it works, which can lead to other problems such as over or under-reliance
on the intelligent system [7].

To help solve these problems, researchers and practitioners have introduced eXplainable Artificial
Intelligence (XAI) models, where the systems attempt to explain their decision-making process to
the users [40]. Explanations can be anything from general information about and extracted from
the model (e.g., post-hoc explanations [34]) to annotation of the input to highlight the features
used in the decision-making process (e.g., [56]). For simplicity, in the context of this paper, we refer
to instance-level post-hoc explanations as explanations and use them to test our hypotheses and
generalize our findings.

Theoretically, explanations should help users build a better mental model of an intelligent
system [79]. However, in practice, as the models get more and more complex, it becomes harder
to explain them in a manner that is beneficial to the users—as also suggested by previous work
in psychology (e.g., [27]). One major problem is that with exploratory intelligent systems and
tools, system designers have little to no control over when users encounter inaccurate and accurate
predictions. As a result, the order of observing accurate vs. inaccurate predictions may introduce
unintended biases in a user’s mental model of the system. For example, previous research has
shown that the order of encountering wrong predictions significantly affected a user’s perception
of accuracy [44]. However, there is little understanding of the interplay between the order of
observing system weaknesses and the presence of explanations with respect to the user’s mental
model of the system.

In this study, we incorporate an explainable intelligent system (an online user interface tool
powered by an explainable deep learning model) with an exploratory task to test how the order
of observing system weaknesses and strengths can affect user’s mental model of the system, and
whether explanation presence can help improve these shaped mental models. The intelligent system
we used was a video activity recognition tool (with cooking videos) where users could query the
system to find certain actions and objects in the videos. The task was simple but exploratory:
users were provided with a set of kitchen policies, and they had to determine which of the policies
were being followed and which were not in a set of cooking videos. During the study session,
the order of the policies was manipulated to influence when participants experienced correct and
erroneous system outputs. We ran a 2x2 user study controlling both policy order and explanation
presence. Our results showed that users with positive first impressions formed a better mental
model of system strengths, though they also made more errors due to over-reliance on the model’s
answers to queries. However, users who encountered more model errors early formed negative
first impressions that ultimately lead to a limited mental model and underestimation of system
capabilities. Our results provides a novel contribution through an empirical user study aimed to
help intelligent system designers to be aware of human cognitive biases (specifically, anchoring
bias and first impressions) when using intelligent systems. The findings of this paper inspired us
to take a deeper dive into how biases that are associated with user’s backgrounds, impressions,
and experiences affect user behaviours and the outcomes of human-AI collaborations. To further
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our contribution, we categorize human-centered outcomes and factors based on usage over time
in an empirically-driven conceptual model of users’ past experiences and draw recent work from
the literature in human-centered Al to demonstrate examples from the concepts and categories in
our model. Our work presents strong findings and implications, aiming to make intelligent system
designers aware of biases associated with impression formations when designing interactive,
intelligent systems.

2 RELATED WORK
2.1 Mental Models in Explainable Al Research

Researchers in the human-computer interaction (HCI) community have been studying XAI systems
from different angles. Explainability is central to the community efforts for developing responsible
and fair Al models [48]. As evidenced in Shneiderman’s discussion on the role of Human-Centered
Artificial Intelligence (HCAI) [65], the need for clear descriptions of how an intelligent agent makes
its predictions/decisions is critical to establishing reliability, safety, and trust with such tools. With
an emphasis on interactivity, Shneiderman argues that Al systems should not only provide post-hoc
explanations—such as saliency maps or decision trees—but also design exploratory interfaces that
allow users to develop a working understanding through investigative interactions. In other words,
he argues users are capable of understanding and building better mental models of ML/AI systems
when they are allowed to explore interactive, explainable models. Explainability and its impacts
on humans behaviours have been examined through various perspectives, such as scope [2, 3],
type [32], and the target users [12, 44, 62, 76]. One of the main focuses in XAl is to improve user
understanding, by facilitating the construction of a mental model with an accurate picture of a
model’s limitations [25, 40].

User mental models of machine learning and Al algorithms can be defined as the representation
through which users understand the system [40]. In other words, mental models reflect users’
understanding of how a machine works and how their actions can affect the outcomes [4]. As
they directly influence user perceptions of intelligent systems, it is important to study user mental
models. Flawed mental models (whether inaccurate, incomplete, or based on false assumptions) lead
to a variety of other problems, such as unmet expectations, frustrations [4], over-/under-reliance,
and problems establishing and calibrating trust. With the involvement of AI/ML technologies in
various aspect of human lives, it becomes crucial to study user mental models to build a general,
scientific understanding of these concepts and what behaviours they can lead to and how they
affect usage.

Mental models have been studied in different fields for a long time. For example, psychology re-
searchers have studied how humans form mental models of the world. Human-centered Al research
can benefit and apply the findings from psychology to improve the community’s understanding of
mental models of Al systems and incorporate techniques that are beneficial to users when they form
them. For example, Hoffman et al. [22] develop and present a conceptual model of the process of
explaining and discuss the role of mental models in the XAI pipeline through the lens of psychology.

Explainability and mental models are commonly linked together. Not only because improving
user mental models is one of the main goals of explainability [40], but also because both influence
other human factors with Al applications and tools. Many researchers have studied the reflection
of mental models on user trust. For example, Holliday, Wilson, and Stumpf [25] discover that
explanations can affect how users calibrate their trust in a model based on whether they were
provided with explanations or not. They find that user perceptions of the model directly affected
their abilities to trust, and without explanations, they were unable to develop a mental model of
how the model works and therefore, gradually lost their trust as they continued working with the
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model. Kulesza et al. [? ] also studied how certain features of explanations can affect mental model
formations and trust. Based on their results, the relationship between trust and mental models of
an XAl tool vary based on the soundness and completeness of explanations. For example, with
highly sound and complete explanations, users build more solid mental models and highest trust in
explanations. However, when explanations are too detailed, users show improvements in some
aspects of the task, while their trust in explanations decrease. Examples like these warrant for
studying and exploring mental models in intelligent explainable tools.

Researchers in the HCI community focus on implementing and discussing various interactive,
visual techniques that can improve user mental models and understanding of a machine learning
system. Some of these techniques provide an instance-level explanation for a specific input (e.g., [51,
57, 63])—that is also referred to as local explanations—while others expose the model’s inner
workings without necessarily focusing on specific examples/outputs (e.g., [23, 47])—i.e., providing
global overviews (or explanations) of how a model works. More recent work has gravitated to the
use of global explanations by using ontological maps [9] or layered graphs [24] to communicate
how model parameters or input features may influence one another to facilitate more efficient
mental model construction of the global system’s performance via post-hoc explainability. These
techniques attempt to provide a general impression of how the system performs by summarizing
patterns of behavior or collating trends in system responses over the data set. On the other hand,
some methods were established in an attempt to balance the cognitive load required for local
explanations without sacrificing model-explanation fidelity. For example, Abdul et. al. [1] designed
a hybrid approach that utilizes bar charts to express the relative importance of different features and
incorporates small multiples to show how features influence regressive models for the entire dataset.
In turn, they show how their hybrid method is preferred by users and optimizes the communication
of model performance in a human review task. In different words, they showed that their proposed
approach decreases a user’s cognitive load without decreasing the accuracy.

To be able to build a solid mental model of a system, users need to be exposed to both its strengths
and weaknesses. While global interpretability can, in theory, help improve user’s understanding
of model shortcomings and capabilities, they are more challenging to generate in practice [2].
Moreover, many stakeholders do not necessarily benefit from global explanations as they would
with local explanations. Wortman Vaughan and Wallach [76] describe two user mental models,
structural and functional, and caution system designers and researchers on making a distinction
between the two. The former allows the stakeholders to understand how a system works (could be
achieved via global explanations) while the latter helps them to use the system without necessarily
understanding how the model works (could be achieved via local explanations). Which of these
mental models is sufficient for each stakeholder remains an open challenge, and might be relevant
to other factors, such as user task and their level of corresponding expertise to the task. Generally
speaking, the majority of work in the HCI, ML, and Al communities has been focused on instance-
level explanations that justify model predictions per output [2] and depend on the user’s functional
mental models. In this paper, we will also focus on local explanations, providing system responses
for individual frames and corresponding queries.

2.2 Measuring Mental Model

As interactive interfaces and data visualization techniques may be utilized to enhance user mental
models of the limitations and competencies of intelligent systems, to effectively test the effec-
tiveness of the given techniques, researchers need to measure and capture user mental models.
Previous research demonstrates that it is not easy to measure mental models due to their temporal
nature and their influence on user disposition [42]. Since their initial description in 1943 [10],
mental models are generally inferred from a variety of user study techniques, such as think-aloud
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approaches [61], interviews [37], and well-constrained survey questionnaires [20, 22]. Research on
mental models in intelligent systems shows that as users work with an intelligent system, they
develop more robust mental models, thus relying less on their dispositional trust and more so on
their experiential trust [35, 36]. In XAI communities, different people have reviewed and proposed
different techniques and measures to quantify and qualify a user’s mental model of the algorithm
(e.g., [22, 40]). Prediction tasks are one of the commonly used techniques in this field, which require
subjects to estimate model predictions and performance after they have been exposed to its out-
comes [21, 22, 62]. Given a novel sample, users are asked to predict and estimate how they think the
model will respond; with controlled choices, the unique differences between the options serve as a
proxy for what users believe about the system. In this realm, Poursabzi-Sangdeh et al. [52] found
that simpler models with fewer features enable users to predict and simulate the model predictions.
As reflected in cognitive science, when more models are required to make an inference, the more
challenging it is for individuals to understand the complexity of the problem [27]; therefore, the
emphasis is on making visualizations that summarize the autonomous system in a tractable way to
assist in the valid construction of mental models.

2.3 Cognitive Biases in XAl: First Impressions and Overconfidence

Mental models tend to be simplified heuristics used as foundations for more complicated thought;
however, assuming that they are free of fault and being affected by cognitive biases is a mistake
hinted at by HCI and Psychology researchers extensively.

In his book, Baron [6] lists and classifies more than 50 different known and discovered cognitive
biases. One of these classes is motivated bias: Humans have beliefs that are aligned with the truth
and can serve as a basis for decision-making. That is to say that humans are motivated to use
their beliefs to evaluate new information and then adjust their beliefs based on the veracity of the
information they receive, as a consequence of not wishing to be seen as incorrect. Of the biases in
this category, the present work explores the primacy effect—also studied under different names (e.g.,
anchoring bias [8, 64, 77], order bias [55], and first impressions [30, 44]).

The primacy heuristic refers to when people make assumptions about someone/something
earlier in their encounters and are anchored towards those assumptions later on. This overlaps
with the concept of confirmation bias, where people tend to collect redundant information that
aligns with an initial assumption as opposed to contrasting information that can lead to a more
complete understanding by refuting their assumption. Lighthall and Vazquez-Guillamet [33] argue
two causes for this bias: (1) [in]correct assumptions (where a person’s decision on some variable is
biased by another variable); and (2) a psychological tendency to rely on a[n incorrect] decision they
already made rather than restarting their decision-making process. With more people encountering
and using ML/AI systems each day;, it is important to study how people form first impressions of
these algorithms.

First impressions are explored in various human-centered fields, such as psychology [53], social
technology (e.g., first impressions in news [11] or social media), social sciences [5], and decision-
making [77]. First impressions are also extensively explored in Human-Robot Interaction (HRI)—
where researchers study how human’s first impressions of a robot can influence their trust in
and communication with the Al system and feelings of uneasiness like those associated with the
uncanny valley [19, 49, 50, 80]. However, in the recent explorations of human factors in explainable
intelligent systems (i.e., human-centered ML/XAI), few discuss the consequences of potent first
impressions. In this paper, we tend to showcase some example work in this domain and lay the
groundwork for future researchers to focus on unexplored challenges within this realm or propose
approaches to mitigate this bias. Myriad factors influence how first impressions of ML/AI systems
develop, from the user’s emotional and cognitive state to the physical conditions of the interaction.
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In recent work, Kim et al. [29] show and discuss that when a model makes an error can strongly
influence user reliance. They found that if users experience the errors earlier, their reliance decreases,
while experiencing errors later-on can only influence their reliance temporarily. In a prior work
(Nourani, King, and Ragan[44]), we studied how domain expertise affects users’ first impressions
of an intelligent system and how these impressions impact their trust and its evolution over time;
we found significant differences in impression formations based on domain expertise, which we
will discuss in more detail in Section ??.

Beyond the formation of first impressions, there are also concerns about the development of
rigid heuristic beliefs that lead to decision support tool neglect while constructing a mental model
of a decision aid’s performance. This abandonment of system support is sometimes referred to as
overconfidence. Siek and Arkes [66] examine how overconfidence develops in human-AlI paired
decision-making. In a series of experiments, they asked participants to predict jurors’ opinions
of assisted suicide given a handful of attributes (e.g., age, political party affiliation, and alcohol
consumption). In most conditions of their experiment, participants were provided with system
predictions from a regression model. Participants were told that the model was accurate 77% of the
time and, even though this was controlled to not always be the case, they found that participants
generally favored their own “gut feeling” over the model’s advice. This reliance on oneself over
a model shows how overconfidence can develop and they discuss how challenging it can be to
correctly redress the associated biased behaviors. Their result further emphasizes the challenge of
controlling for these unintentional biases and the caution one must take as they develop intelligent
tools and training.

Finally, as seen in Van der Waa et. al’s [75] work, additional time pressure and a delay in the
resulting consequences of human-machine paired decisions in a high-stakes simulated medical
triage scenario further emphasizes the requirement for explanations to not only be available to the
human reviewer but also supply ample time to fully comprehend and take responsibility for the AI’s
behavior. In our task, we remove the time pressure to prevent the additional demands and stress
participants may experience and also provide various explanations at once to give participants the
freedom to use the tools they find most applicable. Our work, focused on the development of a
user’s mental model in a more exploratory scenario, deviates from much of these past experiments
because we have less control over what a user observes and how they use the system. This makes
our work closer to decision-making tasks in more realistic settings.

3 EXPERIMENT

We conducted a human evaluation to understand how first impressions of intelligent systems can
influence user mental models, as well as task performance and reliance on the tool. We also sought
to learn whether explanations can help bypass the biases formed in the earlier encounters with
model predictions. In this section, we describe our experiment design in more detail.

3.1 Explainable System

3.1.1  System Context. For this study, we sought an open-ended scenario where users could explore
the system and build a mental model of how it works. With some intelligent systems, errors can be
tolerated to some extent and they may not be fatal. That is why it might seem unnecessary for the
users to build mental models of the system. However, some systems naturally require a human
agent to monitor the outcomes and predictions rather than automatically accepting failures without
worrying about the consequences. Examples of such systems, and our system of choice, include
video activity recognition systems, where a model can be trained to automatically detect activities
that take place in the videos. In real-world scenarios, activity recognition has many use-cases
and can be critical due to physical limitations and time constraints. Some examples include fire
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detection [31], airport security [74], smart hospitals [71, 82], and elderly care [28]. Since we desired
a task where users are novices and do not require any certain expertise or professional training, we
chose a cooking video scenario where the system was designed to identify cooking-related tasks in
a kitchen. In the rest of this chapter, we briefly describe the model and interface we used for the
system we designed for our experiment.

3.1.2 XAl Model. The XAl model used in this study was trained on a pre-annotated dataset of
cooking videos called the TACoS dataset [58]. Note that the development of the XAI model is not a
part of the contributions presented in this paper, as the model was only used to serve the goals of
the experiment while using a real explainable model for the system. More details on the specifics
of the model can be found in our previous work [59]. Here, we provide an overview of the model
to help readers understand the basis for the model capabilities and explanations.

In the TACoS cooking videos [58], each frame of each video had a set of labels (which we call
ground labels) that summarized the activity taking place in the video (for example, {“wash’, “carrot’,
“sink”} in frames where a carrot was being washed in the sink). The problem was formulated as a
multi-label classification problem where given each frame of the video, the model had to assign the
correct labels to it. Each label was modeled as a binary random variable where 0 and 1 indicated
that the label was off or on respectively. We implemented a two-layer architecture where the first
layer comprised a deep neural network based on GoogleNet [69] that converted each frame into a
set of noisy labels and the second layer used a dynamic version of a tractable probabilistic model
called a cutset network [54] that modeled a conditional probability distribution of the ground (true)
labels given the noisy labels from the neural network, i.e., P(G'**|E¥) where G' = {G!, .., G} is
the set of ground labels at frame ¢ and E* = {E!, ..., E},} is the set of corresponding noisy evidence
labels. The top layer was designed as an “explanation” layer in order to (1) remove the noise from
the GoogleNet labels and (2) model the temporal relationships between the ground (true) labels.
The model was trained on 30 videos with a vocabulary of 35 labels. Explanations were computed
on the final trained model by formulating them as two standard probabilistic inference queries:
posterior marginal (MAR) and top-k most probable explanation (MPE). The MAR query seeks to
estimate the probability of the true label given noisy labels obtained from GoogleNet while the
top-k MPE query seeks to find the top k most likely assignments to the true labels.

3.1.3  Main Interface. We designed an interactive video activity searching tool to allow users to
build specific queries and sort the videos from the dataset. The design of this tool was motivated
from and was built on findings from an earlier version of this tool [46] that focused on a more
controlled scenario in which participants would see a set of specific examples. By grounding the
exploration capabilities of the design, we tailored a simpler interface for a similar model where
participants were asked to review and evaluate the correctness of the model predictions to yes/no
queries before we evaluated their mental models of the XAI system. While the user experiment
led to insightful findings, it failed to capture differences with user mental models, to which we
believe a few factors contributed. Most importantly, to form mental models, users need to explore
the interface freely and on their own terms and pace (as they most likely would in the real-word
applications). These observations and findings from our prior work inspired us to opt for a new
exploratory, open-ended interface and system design with a less controlled task to provide more
opportunities for users before we try to capture their mental models. In our new tool, we define
each activity using three component types: Action, Object, and Location. Fig. 1 shows the overview
of the interface. The top of the screen has a simple query builder where users can input specific
component combinations or select a generic form (e.g., any action). After searching, the interface
would organize the videos into two lists based on whether the model found the searched activity in
each video or not. The XAI system showed thumbnails for each video to distinguish them from the
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Fig. 1. The main overview of the user interface. By clicking in the top left corner (A), a panel opens from the
left side of the screen that includes a list of policies. Here, users recorded the kitchen’s compliance with each
statement. (B) Users selected components from three drop-downs to build a query and search for it among
the videos. (C) The search sorted the thumbnails into two categories: matching and non-matching videos.
By showing a thumbnail preview of each video, their assigned unique ID, and their corresponding weekday,
users could select watch video to inspect and explore more.

other videos in the list. Each video was assigned an id number and day of the week to help users
track how the system responded.

3.1.4 Explanation Interface. By clicking on a thumbnail, a modal overlay would open where users
could watch the video and see the model explanations to examine why the video was categorized
as a match (or non-match) for the query. Fig. 2 shows the three explanation elements for each video
that aimed to assist the users in understanding why the model matched the query with the video.
Directly under the video progress-bar (Fig. 2.C) was a series of video segments that highlighted
the most relevant set of frames used by the model to answer the current query. Clicking a video
segment updated the information presented in the other two explanation elements: (1) The detected
combinations (Fig. 2.D) listed the top 3 queries that the model associated with the currently-selected
video segment and (2) the detected components (Fig. 2.E) showed the model’s confidence about the
activity components detected separately in this video segment. Note that the explanation interface
was similar to the one used in our prior work [46], showing high-fidelity, post-hoc explanations
from the XAI model.

3.2 Research Goals and Hypotheses

For this study, we were primarily motivated to understand the role of first impressions on a user’s
mental model formation. As one of the main motivations behind XAI research is to improve user
understanding and mental models of intelligent systems [18], we deemed to test whether and
how the addition of explanations can affect user mental models, given that users might have
formed initial biases in their assumptions towards the system. Therefore, we designed a policy-
verification task, where the system described in Section 3.1 was used to verify whether a set of
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° Found [cut + pepper + Any location] 23
< " ‘ e Detected Combinations

1

cut pepper cutting board

2 cut pepper plate

e 3 n/a pepper cutting board
e Detected Components
cut —— pepper ——
cuttingboard e plate (

carrot

Fig. 2. When clicking on the watch video button in the main interface, as seen in Fig. 1, participants would see
a modal to allow them to watch the video. (A) showed the selected query and whether the query is found or
not found in the video (B). If they were in the explanation presence, they were shown all the video segments
that were used to come up with the answer (found/not found) under the progress bar (C). They were able to
click on each of the available segments to see the model justification based on the relevant activities found
in the segment (D), as well as the system’s confidence score in all the components it detected within the
selected segment (E).

kitchen guidelines and policies are being followed by the people performing cooking activities. This
was a task, exploratory enough to allow users to freely test and observe various system predictions
to build a mental model of both system weaknesses and strengths. Moreover, with an open-ended
and real-world scenario, we are able to generalize our findings to other intelligent decision aids.
We designed a study where participants observed the same set of policies, while we controlled
that earlier in the usage, some observed policies that expose system weaknesses while others
observed the policies that exposed system competencies. Also, with each order, some participants
were provided explanations while others were not. By comparing these conditions, our evaluation
explored how users’ interpretation of the same system may be different based on their experience
of system performance with or without the addition of explanations. These goals and research
question are summarized in the following set of hypotheses:

e H1: Encountering model weaknesses early-on will lead to less usage and reliance compared
to encountering model strengths early.

e H2: Positive first impressions can improve user mental models while negative first impres-
sions can impair them.

e H3: Regardless of the order of encountering model weaknesses and strengths, model ex-
planations help decrease or eliminate the effect of anchoring bias on user reliance on the
system.

e H4 The addition of explanations will significantly improve user task-performance and mental
models by increasing their understanding of Al system weaknesses and competencies.

3.3 Experimental Design

After describing the intelligent system and the goals of the study, we turn our attention to the study
design details.
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3.3.1 User task. Using the XAI system described in Section 3.1, we sought an exploratory task
to allow the participants to use and experience the system and build a mental model of it. As we
were also considering a task that did not require any expertise or professional training, we used a
kitchen policy scenario, where participants were given a set of kitchen rules and policies and were
asked to determine, using the system, which of the policies were being followed by the kitchen
staff.

We generated intricate policies that generally required users to build and test multiple queries
in order to encourage further use of the intelligent system. Each policy was designed to either
expose model weaknesses (i.e., components that were misidentified or remained unidentified) or
model strengths (i.e., those components known to be consistently identified correctly). Due to this
design, we ended up with 4 policies focused on system weaknesses and 4 policies focused on system
strengths. Additionally, we used one policy as attention check, which was unique since it was not
ubiquitously followed by the kitchen staff, but would sound logical to users not watching the videos:
“Employees wash their hands immediately after entering the kitchen”. Ultimately, participants
received nine policies to interpret and were asked to determine their truthfulness in a set of thirty
cooking videos. Policies were simple statements of fact that used components available in the query
builder, like “Employees must not use pineapples more than 3 days a week” or “Carrots are only cut
on rectangular cutting boards”. Additionally, since the post-task questionnaire asked users to report
on their mental models and usage of the system, we repeated components in multiple policies to
increase memorability and to support user understanding.

The interface included a list of policies (a hidden panel on the left side of the screen until the
participants decided to open them by pressing the “Rules and Policies” on the top left corner of the
screen, as seen in Fig. 1.A), and participants indicated if each was met with yes and no buttons.

3.3.2 Conditions. To address our goals and hypotheses, we designed a 2x2 between-subjects user
study with two independent variables: (1) policy order and (2) explanation presence. Participants were
assigned one of the four conditions randomly and everyone completed the same task. We controlled
the order of observing policies so that some participants were exposed to system weaknesses first
while others were exposed to system strengths first. We also maintained that the attention check
policy would always remain in the middle of the list of policies. Ultimately, all participants observed
the same set of policies, but with varying order. In pilot testing, we observed that participants
consistently examined each policy in sequence starting from the top of the list, so we relied on
this behavior to control for the policy order factor. We also updated the system interface described
in sections 3.1.3 and 3.1.4 to match the assigned condition. We changed the video thumbnails to
show the most relevant frame for the with explanations conditions and the middle frame for the
no explanations conditions. Also, while those in the with explanations conditions observed all the
three explanation elements within the explanation interface, the participants in the no explanations
conditions were only provided with the video player (i.e., only elements (A) and (B) in Fig. 2).

3.3.3 Measures. In addition to interaction logs, we asked participants to complete four post-task
questionnaires designed to quantify and explore the limits of users’ perception of the system’s
strengths and weaknesses (i.e., their mental models), as well as usage and reliance. We selected
two types of questions for assessing mental models. The first, as shown in Fig. 3.A, asked users to
estimate the detection accuracy for eight activity components we selected that appeared in the
policies frequently. Some of these components were from model weaknesses (e.g., pineapple) and
some of them were from model strengths (e.g., carrot). Estimation of accuracy is an established
known method for estimating general user understanding of model performance and mental model
of system capability (e.g., [26, 40, 44]). With a slider, users indicated how accurately the system
detected each component (0-100%) and also marked their confidence (low or high) in their answer.
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Fig. 3. Examples of the mental model questions for the user study. (A) The user estimated the accuracy for
cucumber was 70% and had a high confidence in their estimation. (B) Frame-query estimation where the user
guessed whether the system matched each frame to the query and rated their confidence in their response.

In the second question, as seen in Fig. 3.B, the participants were given an activity query with a
set of 4 video thumbnails and were asked to predict whether the system would categorize each
thumbnail as a match or non match using their mental model of the system. They were also asked
to rate their confidence in their prediction (low or high). We provided three queries, each with four
assigned thumbnails, making a total of 12 frame-query predictions per participant. This measure
was inspired by prediction tasks which are another established method in assessing and measuring
the user’s mental model of AI/XAI systems [22, 40].

We then asked the participants to rate both usage and helpfulness for each interface element on
a 5-point Likert scale. These measures were adjusted for participants based on their explanation
condition (i.e., they were only asked about components they saw). Finally, they rated their estimation
of the model’s overall accuracy in percentage, as well as answering a few free-response questions
describing any noticeable weaknesses or feedback to the researchers.

3.4 Procedure

In a single online session, participants completed the following, as summarized visually in Fig. 4.
The research was approved by the organization’s institutional review board (IRB). All participants
took about 20 minutes to verify all the policies. After observing the study’s informed consent,
participants were asked to complete a brief demographic background questionnaire.

Participants were then introduced to their task via video tutorial that described the task as
well as how to form a query by providing an example. To help participants understand the task
better, we designed a tutorial video, introducing a hypothetical restaurant owner who asks the
participants to use the intelligent tool and verify whether the kitchen rules are being followed
by her employees by inspecting the surveillance footage from the past week. Participants were
informed that one food was prepared by one chef per video and that there were six videos per day
of the week (i.e., 30 videos in total). The tutorial then described how to use the tool and how the
task can be achieved. To avoid learning effects, the tutorial used an extra policy to demonstrate the
interface functions. We created two versions of the video for each of the with explanations and no
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Fig. 4. An overview of the study procedure. Participants were mainly asked to review a set of kitchen policies
and verify whether each of them were being followed. After finishing the main task, we measured their mental
model of the model’s strengths and weaknesses through two sets of prediction tasks (as seen in Fig. 3).

explanations conditions. We also included a summary of the tasks and important considerations on
the main page under the query building tool for users to refer to during the study.

After the tutorial, the main task had participants verify nine relevant kitchen policies listed in a
sidebar. After answering all nine policies, the participant continued to the post-study questionnaire
to evaluate their mental model and understanding of model weaknesses and strengths (more detail
provided in Section 3.3.3).

3.5 Participants

We recruited a total of 116 participants from the university graduate and undergraduate students
to complete the study online for class credit. The participants consisted of 78 males and 38 females.
After carefully investigating the responses, we removed a total of 6 participants since they did not
pass the attention check. Of the 110 remaining participants, 54 observed explanations: 28 of whom
saw strong policies first and another 26 observed the weak policies first. Of those provided no
explanations, 29 observed strong policies first while the remaining 27 initially saw weak policies.
All participants were compensated, including those who did not pass the attention check.

4 RESULTS

In this section, we present the measures of our study and provide an analysis of the results. The
findings of this paper were previously accepted and presented as a CHI 2020 extended abstract [43]
and later, an IUI 2021 conference paper [45]. The current manuscript serves as an extension of
our prior work, in which we provide a conceptual model of user past experiences in the lieu of
the results from our previous findings and other relevant work. Thus, we draw conclusions from
these findings to discuss the conceptual model user’s past experiences. To learn more about the
conceptual model, please refer to Section ??.

Before performing data analysis, two steps were taken to avoid certain problems caused by
performing an online study. To ensure the quality of participant responses without having a
researcher present during the study sessions, we added an attention check policy and removed all
of whom did not pass the test. Additionally, to account for some participants taking breaks during
the task, we adjusted the task completion time by not counting any period of inactivity longer than
five minutes. For each of our measures, we used a two-way factorial ANOVA for the main effect
and Tukey HSD post-hoc testing for significant interaction effects, when applicable.

4.1 User-task Performance

First, to test our hypothesis about user-task performance, we tested both task time and task error
to test. Task time is defined as the amount of active time spent on the policy review task. Task error
was measured as the proportion of policies that the participant answered incorrectly. No significant
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effect was found for explanation presence. However, participants in the weak first conditions had
significantly less error in their answers to the policy questions than participants in the strong
first conditions, with F(1,106) = 6.55, p < 0.05, }712, = 0.058. No evidence of an interaction effect
between explanation presence and policy order was observed. Additionally, no significant effects were
observed on task time. Participants in the with explanations conditions made significantly fewer
queries per policy compared to participants in the no explanations conditions, with F(1,110) = 4.30,
p < 0.05, 1712, = 0.045. Fig. 6.a shows the distribution of the task-error results across the conditions.

4.2 Component Accuracy

After completing the policy-review task, participants were asked to estimate the model’s detection
accuracy (percentage) for several components as described in Section 3.3.3. An example question
for this measure is shown in Fig. 3.A. We selected these components so that five corresponded
to system weaknesses (low model accuracy) and four to system strengths (high model accuracy).
We compared the participants’ perceived accuracy of each component with the system’s actual
accuracy for that component. Since our task and interface primarily had participants focusing on
the matches returned by the system, we selected the system’s positive predictive value of each
component as the metric for system accuracy. Additionally, we only considered system performance
on the videos that were used in the task.

For analysis purposes, we used the average error in percentage for both weaknesses and strengths
for each participant separately, i.e., two metrics per participant. A similar approach was used for
the confidence scores. The reason for this decision was to be able to compare the user’s mental
model of both system weaknesses and strengths and understand how each independent variable
affected this understanding. We will discuss each of the two separately below:

Weakness Detection: For components that corresponded to system weaknesses, the statistical
tests did not indicate significant differences across the conditions for neither the accuracy nor
confidence.

Strength Detection: For components that corresponded to system strengths, participants who
observed weaknesses first significantly underestimated the model’s detection accuracy compared
to those who saw strengths first, with F(1,106) = 6.24, p < 0.05, 77;, = 0.056. Additionally,
participants who observed weaknesses early-on were significantly less confident about their
estimations compared to those who saw strengths early, with F(1, 106) = 3.94, p < 0.05, 1712, = 0.036.
We did not observe any significant effect based on explanation presence on the user’s strength-
components’ accuracy estimation or the confidence in their estimations. Fig. 5.a and 5.b show
participant responses and their confidence across the conditions, respectively.

4.3 Frame-Query Prediction

Additionally, we asked participants to predict what output the system would have on a given
frame-query pair, as observed in Section 3.3.3. An example of this prediction question can be
seen in Fig. 3.B. We did not observe any significant differences among the conditions for the
prediction accuracy. The mean prediction accuracy was M = 0.599 with a standard deviation
of SD = 0.127 for participants with explanations and M = 0.601 with a standard deviation of
SD = 0.148 for participants without explanations. This shows that users’ estimations were barely
better than guessing. However, a significant effect was observed on the confidence participants
had in their responses. Participants with explanations were significantly more confident in their
predictions than those without explanations, with F(1,106) = 4.12,p < 0.05, 1712, = 0.035. There
was also a significant interaction effect between explanation presence and policy order with
F(1,106) = 5.20,p < 0.05, 1712) = 0.047. A Tukey multiple comparison test showed the following
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Fig. 5. Mental model metrics. (a) Participants’ error of estimation for component accuracy (below 0 is
underestimation). (b) Percentage of components for which participants rated as being confident in their
estimation. (c) Percentage of frame-query pairs for which participants felt confident in their predictions. The
last two plots are based on strength-detection (as described in Section 4.2)

significant interactions: Among the participants with no explanations, those who observed strong
policies first were significantly more confident than their counterparts (p < 0.05). Participants with
system explanations and strong policies first were more confident than those with no explanations
and weak policies first (p < 0.05). Finally, of the participants who observed policies reflecting
weaknesses early on, those who had system explanations were significantly more confident than
those without explanations (p < 0.01). No difference in these effects was observed by splitting the
frame-query pairs into those corresponding to system strengths and system weaknesses as we did
with component accuracy. Fig. 5.c shows the confidence of the participant’s responses among the
conditions.

4.4 Explanation Usage and Helpfulness

After finishing the mental model questions, we asked the participants to report their usage of
different interface components and how helpful they found them during their interaction period.
Particularly, we were interested in the responses from those in the with explanations conditions about
the provided system explanations; i.e., video segments (Fig. 2C), detected combinations (Fig. 2D),
and detected components (Fig. 2E). Both usage and helpfulness were measured through a 5-point
Likert scale. To run a more accurate analysis based on these three explanation types and policy order,
we defined explanation type as a new independent variable for the analysis, and then performed
a two-way independent ANOVA on explanation usage and explanation helpfulness. The results
show participants who encountered weaknesses first reported a significantly lower rate of usage
of system explanations than participants who encountered strengths first, with F(1, 156) = 4.76,
p < 0.05, 1712, = 0.030. Additionally, we found that regardless of policy order, participants strongly
preferred the video segments (Fig. 2C) in terms of both helpfulness and self-reported usage, with
F(2,156) =9.77, p < 0.001, ryf, = 0.111 for explanation helpfulness and F(2, 156) = 16.70, p < 0.001,
qlzj = 0.176 for self-reported explanation usage. We also analyzed user behavior—captured through
interaction logs—to understand the usefulness of explanations by measuring how many queries
participants performed on average for each policy. Participants who had system explanations
completed the policy review task with significantly fewer queries per policy than participants
who did not have system explanations, with F(1,106) = 4.94,p < 0.05, r]f, = 0.045. No effect of
policy order was observed for the number of queries made. Fig. 6 shows the self-reported usage
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Fig. 6. Reliance and Usage metrics. (a) Participant error on the policy task (Percentage). (b) Responses to the
question "How much did you use this element?". (c) Responses to the question "How helpful did you find this
element?". The last two were measured on a 5-point Likert scale, with higher values indicating a higher rating
of helpfulness and usage.

and helpfulness of the different explanation types and the number of queries performed based on
condition.

5 DISCUSSION

Our results demonstrate significant effects of first impressions on mental model formation, user
reliance, and usage of the intelligent systems. In this section, we discuss the general indications of our
results as well as their limitations and provide implications for system designers and opportunities
for future work.

5.1 Interpretation of the Results

Participants in the strong first conditions had significantly more user-task error compared to those in
weak first conditions. While this might seem counter-intuitive, it can be explained when compared
to the findings from usage and helpfulness, as those who encountered system strengths earlier
used explanations significantly more and found them to be significantly more helpful in the task
compared to those who encountered weaknesses early. This indicates that observing strengths first
can cause users to rely on the system more than they should (i.e., automation bias), while seeing
weaknesses in the beginning can prevent this problem.

On the other hand, users in the weak first condition had problems forming their mental models of
the system competencies and strengths. They significantly underestimated the system capabilities
while also having less confidence in their estimations. These users are skeptical of system strengths
but not confident in their skepticism because the weaknesses they observed earlier obscured their
judgment of the system capabilities. This causes them to rely more on themselves rather than the
model, leading to more confusion when shaping their mental model.

Participants in the with explanations conditions made fewer queries on average to answer each
policy than those in the no explanations conditions, while task performance was similar regardless
of the presence of explanations. One interpretation of this result is that the presence of explanations
allowed users to achieve the same level of accuracy in fewer queries, thus they had increased task
efficiency in terms of how many questions they needed to ask before being able to make their
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decision. However, this is only a hypothesis and due to the open-ended nature of this aspect of the
study more research is necessary to help verify this effect.

We designed the frame-query prediction task to measure the user’s granular mental model
based on the specifics of the system. Though we did not observe any significant effects on the
user’s prediction, we did observe significant effects for the user’s confidence in their prediction.
Participants were more confident about their mental models when explanations were present.
However, given that the mean for their original predictions were consistently around 50% in all
the conditions (which is similar to guessing), we can conclude that these relatively high reported
confidence scores are overconfidence. Our interaction effects show that without explanations, users
in the strong first condition were more confident about their mental model, which we suspect is
due to their automation bias, as discussed before. However, we observe that with explanations,
users—regardless of their policy order—were more confident about their estimations compared to
without explanation condition in weak first order. This might indicate that users can experience
overconfidence in their mental model either when explanations are present or when strengths are
observed earlier. However, we observed this overconfidence and overreliance through multiple
tests for strong first order, showing that the order effect plays a more important role on a user’s
mental model than explanation presence (this can be supported by our results related to user-task
error: users in weak first condition made fewer errors regardless of their explanation condition).
This suggests that explanations alone cannot solve the strong bias created by first impressions.

Overall, these results suggest that unlike the general belief that model explanations can increase
user understanding, they might not necessarily be beneficial. Explanations might cause a miscon-
ception in the users that they understand how the model works when, in fact, they do not. As shown
by previous research in psychology, overconfidence (in this case, in the form of overprecision)
can have serious consequences [14, 41]. Similarly, previous research suggests overreliance can
cause several problems [7, 62], and our results provide a clear example of users making more
errors due to automation bias. First impressions have strong influences on human’s minds towards
information [72], and as shown by our results, they can be strong against automated systems as well.
We would encourage future research into mitigating such biases, as they can have lasting effects
on users’ minds. More intensive and meaningful user studies are needed with realistic systems—as
other researchers (e.g., [2, 12, 38, 39]) have also argued—to expose such biases and find techniques
to (1) make users aware of their biases, (2) prevent users from forming new biases, and (3) help
users rectify their own misconceptions and inaccuracies in mental models.

5.2 Design Implications for Intelligent System

With more complex and exploratory systems, the role of instructions and guided training becomes
more inevitable; that is, allowing the users to use the system without interventions might affect
how their mental models are shaped. With more critical tasks, it might be beneficial for the
system to guide the formation of the mental model early-on to help users develop a more accurate
foundational understanding of the system before actually using it in practice to make important
decisions. Through this initial training phase, designers can control what kind of predictions users
observe and in what order they are observing them. These decisions are task-dependent and can
be made based on the priorities in that system. For instance, if sacrificing human-task accuracy
(due to errors made from automation bias) to encourage the formation of more accurate mental
models is acceptable, the introduction might focus more on showing system strengths earlier in
the usage. Designers might also choose to sacrifice the mental model formation since they want to
limit the number of mistakes made by the users, and thus, they can focus on highlighting more
errors earlier in the usage. However, most designers might strive for the best of both worlds: limit
the user mistakes by avoiding automation bias while allowing users to maintain an appropriate
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mental model of the system. Based on our findings, users who observed strengths earlier made
more errors but formed a better mental model of the system strengths. Considering this finding,
in the initial training, designers can guide users’ early observations toward model strengths but
also intervene and show errors occasionally to balance users’ attention with errors as well. When
errors are shown, designers can focus more on explaining why they happen. This can be done by
altering explanation type, scope, and focus and differentiating it from the explanations provided
for the correct predictions. Note that this is only possible in guided training as designers know
what instances are correct and which are wrong.

Theoretically, a higher-level explanation could help users scaffold more accurate mental models
by first introducing how the system works before using the instance-level explanations. Previous
research suggests that global visualization and explanations can help users form a more appropriate
perception of how the model works [40]. Allowing users to explore and understand how the
model works on a higher level might help users form a mental model before encountering the
intelligent system for the first time. Future research needs to test the extent of information sufficient
for global visualizations for mental model formation, and whether this approach is effective for
avoiding ordering and anchoring biases when using instance-level models. Finally, designers need
to consider the effect of first impressions when designing explainable interfaces and be aware that
the sole addition of explanations cannot circumvent bias formation. Comparing various types of
explanations against one another (e.g., why and how explanations [2, 12, 32]) to understand which
method works better against certain biases, or incorporating multiple explanation scopes within one
interface might allow users to decide what they want to explore to understand the model decisions
better. For example, with an analytical tool, a user can look for different types of information and
explanations from the model when encountering errors to improve their understanding of the
model.

5.3 Limitations and Opportunities for Future Work

In this research, we studied how ordering biases can affect a user’s mental model and reliance
formation in intelligent systems and what role explanations play with such biases. Our study
presents novel findings that highlight the importance of users’ first impressions on their formed
mental model of the intelligent system. The results demonstrate that when encountering system
strengths earlier in the usage, users built a better mental model of the system strengths as they used
the system explanations more frequently. But, positive first impressions can lead to automation
bias and more errors as the user is overconfident in not only the model’s strengths but also
the weaknesses of the system; and they generally over-rely on the system. In contrast, when
encountering system weaknesses early-on, users tend to rely more on themselves and make fewer
errors; likely because they develop a mental model that is skeptical of the system strengths due to
their negative first impressions.

In this study, we focused on a machine learning technique that produces high-level explanations
with a novice-friendly explanation interface (e.g., instead of using probabilities, we showed visual
bars). While we believe our results can generalize for various real-world systems incorporating this
class of explanations, these results might not generalize for low-level, more technical explanations.
Future research needs to test and compare ordering bias with these explanations as well. Further,
since our system employed instance-level and local explanations, additional research is needed to
assess whether these results hold for higher-level, global intelligent systems.

Due to the nature of the design for our query-building tool, when users searched for an activity,
we divided the video into two categories of matched and not matched based on whether the system
detected the activity within each video. The detection is of course not always correct, i.e., a system
might categorize a video as a match when the activity did not take place in the video (false positive
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error) or categorize a video as a mismatch while the activity is in fact taking place in the video
(false negative error). For most of the activities, the number of matched videos was smaller than the
number of not matched videos, and thus, users needed to explore and view fewer videos to detect
false positives. Since it was easier to determine false positives, we expect that the participants
would fail to catch lots of false negative errors, i.e., the videos that the system failed to match
for the query. As a result, some system weaknesses were harder to identify, potentially leading
to improper mental models of system weaknesses. We suspect that this is the reason the study
could not find evidence of differences between the conditions based on a user’s mental model of
the model’s weaknesses. Future research may benefit from refined evaluations focusing on both
error types to test user’s mental model formation for both strengths and weaknesses.

6 CONCEPTUAL MODEL OF USERS’ PAST EXPERIENCES

The goal in the presented study was to investigate how anchoring bias can impact mental model
formations with XAI systems. While anchoring bias is an important bias to explore, different
types of experiences can introduce anchoring effects. Even still, anchoring bias is only one of the
many possible types of biases. Whether conscious or unconscious, human biases initiate from
the complicated human brain, where memories, past experiences, social pressures, and heuristics
exist [60]. Users’ backgrounds and past experiences affect how they see and experience the world
and form and are affected by cognitive and societal biases. The findings of this paper, in lieu of
other prior work, motivated us to dive deeper to investigate how people’s collaborative efforts
with intelligent tools can be affected by their past experiences. With people coming from different
backgrounds, types of expertise, and social circles, it is crucial to understand how such differences
can affect usage behaviours and user perceptions of the systems. To better understand possible
implications for usage effects and design choices, we formalized and developed a conceptual model
of users’ past experiences along with associated factors and outcomes that might influence user
behaviours.

In this section, we present a candidate conceptual model and explain how different categories
apply to user interaction processes. We reference existing literature as examples of points for each
of the categories. We will first describe the model as a whole, and will further go deeper in the
details in each category.

6.1 Model

Here, we present the conceptual model of users’ past experiences. A summarized overview of
the model is seen in Figure 7. In this model, we explore how user’s past experiences affect their
behaviours with an intelligent system. As seen in Figure 7, we categorize the concepts based on the
timeline of usage. At a high-level, we divide the time to long-term past experiences and current usage.
The long-term past experiences include user backgrounds and experiences in the past, prior to using
the system, while the current usage stage indicates the period since they started interacting with
the tool. As people continue using the system, their recent perceptions and experiences with the
tool influences their upcoming interactions and usage. Thus, current usage consists of short-term
past and present phases.

For each of these categories, we include two types of elements: 1) factors and 2) outcomes. The
factors refer to the those human behaviours that influence user choices, interactions, and decisions,
ultimately leading to certain behavioral outcomes. Despite being referred to as outcomes, they are
not easily observed nor can they easily be measured; in fact, their existence can easily be overlooked
by system engineers and designers due to their abstract nature, provoking unpredictable usage
behaviours. Specifically in our model, with current usage, outcomes from present interactions can
become or contribute to the factors in short-term past. Changes in the factors in short-term past may
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Fig. 7. An overview of the conceptual model of users’ past experiences in hte context of human-Al collab-
orations. The model works based on time, where each box represents time of experience: long-term past
experiences, short-term past experiences, and present usage. Each of the boxes includes a set of factors that
influence user actions that lead to certain outcomes. The dark purple arrows (from left to right) demonstrate
how the past experiences affect those taking place more recently. As the time goes by (i.e., present turning to
past), the state of each of the factors update based on more recent interactions. This constant back and forth
between present, short- and long-term pasts is denoted by light purple arrows (from right to left).

alter the corresponding outcomes, and once again, the outcomes from short-term past are become
the factors in the present interactions. As such, this “iterative” cycle of usage continues (flowing
with the nature of time, with future turning to now, and present becoming short-term past and later,
long-term past, and the shadows of the past affecting the present actions and behaviours), shaping
the entirety of human-AI collaborations. This iterative process is denoted in the model with the
purple arrows inside the current usage box. Similarly, individual past experiences and backgrounds
can affect how each user perceives and utilizes Al applications. Some of these experiences and
exposures to Al technology changes, the more they use such applications. These so-called “current
usages” become part of the longer-term past experiences and exposures over time, with the past
constantly changing and shaping the person’s usage behaviours. This iterative back-and-forth is
also denoted by arrows between the dotted categories (i.e., long-term past and current usage).

We continue this section by diving deeper into the main concepts of our conceptual model,
referencing to a non-exhaustive list of related work in the human-centered Al and XAI research
field. The summarized overview of these papers with respect to these concepts can be found in
Table 1.

6.1.1 Long-Term Past Experiences. This category includes prior experiences, events, and cir-
cumstances that influence how users perceive and interact with Al systems (As summarized in
Figure 7). The factors in this category not only causes certain behaviours during current usage, but
also leads to formation of cognitive and social biases (consciously or unconsciously), not easily
altered. Here, we discuss these background factors based on whether they were derived from
personal or communal roots.
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Personal factors originate from personal differences. A key distinctions is rooted in users’ level
of knowledge. While there are many ways to factor in the differences based on knowledge (such
as level of education), in the XAI community, users are most commonly compared based on their
level of domain expertise and familiarly with AI/ML, and in fact, many prior work has focused on
studying usage behaviours based on such differences in prior expertise. For example, in an earlier
work [44], we looked into how domain experts and novices show different trends in trust calibration
and their perceptions of an explainable algorithm. Our results demonstrate that domain expertise
is directly associated with impression formation, which could be positive or negative depending on
when users face model errors during interactions. Szymanski et al. [70] look into how different
levels of users’ expertise cause them to form different understandings of explanations. They found
that users show different preference patterns for textual and visual explanations depending on
their level of expertise. Similarly in another recent example, Ehsan et al. [16] explored how user
background knowledge of Al influences their perceptions of different types of explanations, and
they also found people show different behaviours towards explanation type based on their expertise
in AL All these mentioned studies, alongside many more not mentioned here, provide supporting
evidence for and highlight the importance of keeping expertise and background knowledge into
account when designing intelligent systems.

In the current literature, comparisons between levels of background knowledge is done in a
binary fashion, where people were measured based on whether they have certain expertise or not;
i.e., novices vs. the so-called experts. However, it is important to study and explore background
knowledge as an spectrum and in relation with one another. For instance, the interplay between
domain expertise and Al expertise could ultimately lead to certain usage behaviour. Another open
question is quantifying (or measuring) expertise. A majority of papers that examine expertise as
a factor rely on people’s self-reported perceived expertise [16, 46] or the researchers’ qualitative
assessment of whether someone is an expert on a case-by-case basis [46, 70]. Such approaches
propose many limitations to the scientific findings. For example, due to the Dunning-Kruger
effect [13], experts might underestimate their expertise while novices may be too confident with
their knowledge. Broadly speaking, people’s assessment of their expertise is highly subjective and
people’s definitions differ when they are asked to assign ordinal numbers to their level of past
knowledge. It is, thus, crucial to find more objective, standardized techniques to measure and report
expertise, which presents an opportunity for future potential work.

The other personal factor from the past that we will discuss here is the memory of the past
experiences and usage of intelligent systems. Aside from a mental model specifically formed for a
certain Al system and how it works, people may form a broader mental model of Al technology.
This mental model can be affected by personal usage experiences in the past, and whether the
past encounters of Al systems lead to positive impressions of Al technology and world as a whole.
However, such generalized mental models are also prune to be influenced by communal events,
experiences, and circumstances. This means past experiences of others in the community can
shape how people within the community perceive Al systems. For instance, hearing about negative
outcomes of Al from others in social media may negatively affect people’s perceptions of AL
Such societal factors may come from demographic social experiences—i.e., people from different
demographic backgrounds might discern Al differently—while they may also be due to social
biases (such as confirmation bias). An interesting example in this category is seen in the work
by Ehsan et al [15]. They introduce a task scenario that provides examples of past decisions from
prior teammates in addition to the Al predictions and explanations to facilitate users’ decision-
making. They describe this concept through a framework of Social Transparency, and discuss how
presenting such historical decision-making information can shepherd positive reinforcements such
as improved trust calibration and decision-making.
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Overall, there still exist more open questions and future work opportunities with the communal
than personal past experiences. Firstly, we still lack proper understanding of how explanations can
be designed for and to benefit from communal/shared past experiences in ways that are beneficial
to the users. More over, it is yet to be studied how societal and mutual understandings of intelligent
systems influences current usage. While there have been prior efforts in studying decision-making
provenance and historical usage summary of the same system, the implications of how others’
usage and perceptions of Al technology may affect one’s usage and perception of Al applications
is yet to be studied. This is still an open, yet important question that needs to be answered; after
all, humans are social beings and their collective past experiences and perceptions can affect them
both individually and as a group. These are complicated scenarios that cannot be conveniently
controlled through a few user studies; but our incremental understanding of communal and social
impacts of Al through smaller problems can help with answering broader questions.

As seen in Figure 7, while long-term past plays a significant role on how users perceive XAI
systems, current usage, including the buffered past usage (or the short-term past that includes
the past interactions with the tool during the current usage session) and the present interactions,
determines one’s perceptions and behaviours with the system. Specifically, regardless of a person’s
background and past experiences, an intelligent system has a chance to prove itself and its worth
to the end-user during each usage session. It is during this time that the user decides whether to
trust the model or not. It is then that they shape their mental models based on the predictions
(recommendations) and explanations. How the model actually behaves and how the explanations
are designed and included can consistently change the user’s attitude towards the model. In the
upcoming subsections, we will discuss the implications of current usage through an examination
of short-term past and present.

6.1.2 Current Usage. When a user initially interacts with an XAI system, they only bring along
those attributes associated with long-term past, as well as its outcomes (i.e., their biases). Some
of the biases are linked with early-on usage of intelligent systems and can potentially determine
the outcomes of the human-AlI collaborations. For instance, as we observed from the results of
this paper [45] and our past work [44], first impressions of the XAI system affects mental model
formations, confidence, reliance, and trust calibration.

Another example of early-on bias is availability heuristic, which refers to the user’s tendency
to recall the information received early-on more predominantly than the information presented
later-on. While such bias does not necessarily affect the user in the initial usage stage, it can be a
more prominent factor as the user continues exploring and interacting with the system. In our past
work [26], we found that people tend to gradually lose trust in the outcomes of a model when they
were asked to provide correction feedback to model errors as early as when they started using the
model. While this might seem counter-intuitive, one way of justifying it is by cognitive biases of
this nature. First and foremost, we believe when people are asked to provide feedback to the model,
in their mind, fixing errors might be more salient than simply observing and agreeing with the
model outputs. This is an apparent example of availability bias. Moreover, as seen in our work [45],
first impressions of an intelligent system can anchor users’ mental model formations. So, when they
are negatively anchored towards the model (i.e., by seeing model errors and having to correct them
early-on), they form flawed mental models of the system. Such examples present significant issues
as human-in-the-loop systems heavily rely on people’s providing accurate feedback. While end
users desire the ability to control the behavior of systems they rely on [68] and such feedback can
successfully be used to incrementally update the model over time [17, 81], if it results in negatively
biased mental models of the systems, then they may not be able to provide optimal feedback.
Therefore it is vital for the Al system designers to be aware of the potential cognitive biases that
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may occur from including humans in the loop and consider ways to prevent their users from
maintaining their initial impressions of the system, even after it has improved beyond its initial
limitations.

When exploring the interplay between explainability, feedback, and human behaviours when
using human-in-the-loop systems, other interesting challenges may arise. For instance, Smith-
Renner et al. [67] studied whether model transparency can improve users’ understanding of the
model and their tendency to fix these problems, and whether asking people to provide feedback
enhances their perceptions of the model and its improvements. While their user studied presented
thought-provoking findings, here, we will focus on one of them. They observed that users expected
the models to improve over time, even when they were not asked to provide feedback. Upon further
investigations, they found that users tend to believe that ML models “get better as they function”.
Though their study did not investigate why this happens, they believe such misconceptions can be a
result of prior experiences or general misunderstandings, supporting our argument that long-term
past (either personal or communal) affect people’s perception of intelligent systems.

Present usage results in numerous outcomes that are either measurable/observable behaviours
(such as task accuracy, speed, interaction behaviours, and level of agreement with the model) or
abstract, perceptual outcomes like trust and mental models. It is important to note that the abstract
outcomes are those that are direct results of the current interaction; i.e., the most recent fragment
of information that can contribute to forming mental models as opposed the complete mental
model. Outcomes like trust and mental models require iterative reasoning and interactivity. They
can improve or deteriorate with time and usage, and based on the other outcomes. That is why we
describe an in-between stage, i.e., short-term past, that reflects the most completed version of these
abstract outcomes, which we will discuss shortly.

As mental models are formed and users continue interacting with the system, the best, most
current version of the user’s mental model becomes a new factor that was not initially present
upon the initial usage period. How users perceive the model functionality and reliability, forms
expectations of the potential outcomes, and understand model weaknesses and strengths become
important in the outcomes of the human-AlI collaborations. Mental models can determine when
users lean toward trusting the model and when not; when they agree with the system and when
not; and how many errors they make in their collaborative task. A user’s most recent mental model
can also affect how their mental model is shaped and changed with current and future usages.
While mental models have been studied intensively in other fields, such as psychology and HCI,
there are still many potential opportunities to study them in the lieu of AI/XAI applications. For
instance, how do users calibrate their mental models over time? What factors can influence how
mental models are calibrated? Are there certain biases that can lead mental models to be calibrated
towards certain perceptions? When might explanations reinforce existing biases and when might
they reduce misunderstandings? There are so many open questions on how mental models are
shaped and can shape people’s perceptions of intelligent systems, that warrant future work in this
field. We hope to have inspired future work to focus on addressing some of these challenges.

6.1.3 Short-Term Past Experiences. As users continue their session with an intelligent system,
they start building a rapport with the tool. With more interactivity comes a better ability to
understand and calibrate their trust and reliance through continued experiences. A user’s mental
models start shaping as they form their expectations and impressions of the system. Some of these
impressions might be accurate while others may be flawed. It can take iterations of user interaction
and machine feedback for users to solidify their mental model of any given system. The user
needs opportunities to observe errors and mistakes from the system, make their own mistakes
and see how the model reacts, and see what the model is capable of. The gradual development
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of the human-AI relationship can lead to beneficial or harmful outcomes. Much of the human-AI
relationship may be formed subconsciously and reflect in the current usage behaviours. Here, we
focus on two of these important outcomes: trust and reliance.

Based on observations of Al performance, users decide when to trust the model and when not to.
When considered over time, users calibrate their trust to adapt to the system’s most recent behavior.
However, several factors may lead to mistrust in this process. Users may trust some outcomes that
are incorrect or not trustworthy, or they may distrust correct output. This difficulty in effectively
calibrating trust may be consequential, compounding with the effects of long-term past experiences
to the quality and status of the formed mental models. A critical consideration here is the presence
of cognitive and societal biases. In our proposed conceptual model, we highlight the importance of
awareness for both factors and outcomes of past experiences related to the formation of biases and
perspectives of technology. Naturally, human biases can lead to certain assumptions and conclusions
in the background of their mind. When forming mental models, biases play a significant part in how
perceptions, expectations, and understandings are being formed. A clear example is the findings
of this paper (i.e., Nourani et al. [45]), which demonstrates how anchoring heuristic can strongly
influence mental model formation, the positiveness of which relates to that of the formed first
impression. From a different angle, users can form biases as a result of their interactions with the
model over time. Depending on the application and the task, these biases can potentially be of many
natures, such as biases towards the future outcomes of the model (e.g., inattentional blindness,
availability, hindsight, and anchoring bias), perceptions of Al and ML algorithms and technology
(e.g., automation bias and expectation bias), or other people’s demographic representations within
the tool (societal biases). Such biases can ultimately affect current usage or even reside permanently
in one’s subconscious.

With improved understanding of the model intentions in different scenarios and knowing when
to trust the machine outcomes, users can then decide when to rely on the model outcomes. Based
on their trust, users not only decide whether to rely on the model or not, but also when to do so.
Knowing this is not necessarily an instinct that comes easily. Rather, users need to see the model
outcomes and evaluate other values that may not be easily measured directly. For instance, in
scenarios with different stakeholders involved, the satisfaction of each of these stakeholders can
motivate the system user to rely more on the outcomes. The user’s trust, mental model of the
system, and the level of reliance on the system are intrinsically intertwined.

Even though most of our discussion so far was based on first-time usage and interaction with
the system in a single session, the points we made still apply to when users return to the system
in a new session after having used it before. In such scenarios, the prior interactions with the
model are stored in the users’ mind; granted, it even becomes the case that these experiences
contribute to long-term past experiences. However, when the users returns to start a new session,
they have already formed perceptions of the system during the past usage. In our conceptual model,
the prior experiences and perceptions of the system are shown to current present usage from
the Long-Term Past category and Recent Mental Model as a factor in the Present category (i.e., in
Figure 7). Nonetheless, we should emphasize that the user will likely have a less clear vision about
the system in mind. This is the nature of the human brain: memories start fading with time. As such,
upon starting a new session, the user will pick back their mental model from the past exposure to
the system, but their perceptions might differ slightly from then due to the passage of time, which
has similar implications for other usage factors, like trust and reliance.This passage of time has
similar implications for other usage factors, like trust and reliance. Studying usage over time and
over different sessions can be quite challenging; however, it is critical to understand how human
usage factors calibrate over the course of time and with multiple usage sessions. In a recent attempt
to study how first impressions affect users in the beginning of every usage session in a long period

ACM Trans. Interact. Intell. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:24 Nourani et al.

Table 1. Summary of topics from the papers discussed and presented as examples in Section 6. The topics in
each column are inspired by the findings of this paper and our candid conceptual model of user’s experiential
biases. We carefully examined each paper to check whether each topics were heavily discussed and/or directly
measured in a given paper. For the biases, we first examined whether any specific bias terms were discussed
in the paper or not. In the latter case, we analyzed if the paper pays tribute to a certain bias that is not
explicitly mentioned. For instance, Smith-Renner et al. [67] describe user’s expectations of the Al model,
which resonates with confirmation bias. While this table showcases a non-exhaustive list of recent papers to
support our arguments regarding our conceptual model, by referring to this list, we can identify some open
challenges that can be incremental to the findings of these papers. For instance, how does explainability help
with user trust with human-in-the-loop systems? Is it capable of mitigating users’ formed availability biases?

Paper Mental Models Trust Explainability Expertise Cognitive /Societal Biases

Nourani et al. [44] X v v v Anchoring Bias; Automation Bias;

Ehsan et al. [16] X v v v Automation Bias; Overconfidence;
Szymanski et al. [70] X X v v Confirmation Bias;

Ehsan et al. [15] X v v 4 Societal Biases;

Tolmeijer et al. [73] X v X X Anchoring Bias; Reliance;

Nourani et al. [45] 4 X v X Anchoring; Overconfidence; Automation Bias;
Smith-Renner et al. [67] X 4 v X Confirmation Bias;

Honeycutt et al. [26] X v X X Availability Bias;

of time, Tolmeijer et al. [73] conduct a set of user studies that spanned across 6 days and consisting
of three sessions. Their main goal was to understand how first impressions affect trust calibration
over multiple sessions. This study was complementary to our prior work [44], where we found that
within one session, positive first impressions of the Al model leads to higher trust and users’ ability
to calibrate their trust accordingly, while negative first impressions lead people to lose their trust
and ability to adapt it over time. Tolmejer et al. change the accuracy of the model in each session so
that each session represented either accurate or inaccurate predictions. Their results indicate that
first impressions matter not just internally, but also externally across sessions, specifically when
the system was often wrong (i.e., only one accurate session). Furthermore, this work demonstrates
another example of how understanding model problems (i.e., user mental models of weaknesses)
can impact users’ trust calibration. However, given that their study was held over a longer period
of time, it can further confirm the generalizability of our findings for more systems that are used
over in real-world. One major difference with our prior work [44] and the work by Tolmeijer et
al. [73] is that the former utilized high-fidelity explanations while the latter did not. Hence, it is yet
to be explored how these findings hold with longer term usage when explanations are present, and
how do explanations impact users and their first impressions when they are used over time. This is
only one example open question in this area, while the study of changes and usage over time still
remains an neglected area of focus, presenting opportunities for future work.

6.2 Takeaways and Future Work

We presented and discussed our conceptual model of users’ past experiences in the context of
human-AlI collaborations that is mainly relying on user’s prior / present experiences and impressions.
We hope this organization sheds light to the current gaps and open challenges in state-of-the-art
research in human-centered Al and highlights the importance of paying attention to user’s prior
backgrounds, experiences, and expectations. Studying human behaviours based on the timeline of
usage and experiences can aid Al application designers to build systems and tools more responsibly
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and better thought-through. Such systems should take advantage of user differences and utilize
approaches to adapt the Al technology and its outcomes to user needs and variety of behaviours.
We use references from recent papers in human-centered Al community as example scientific
attempts to study the concepts we present in our framework. These papers are summarized by main
topics in Table 1. While we hope our candid model can be beneficial at its current state, our future
plan is to continue improving it over time by performing an extensive analysis of the literature to
refine the categories and organization of the topics.

7 CONCLUSIONS

In this work, we empirically explore how human subjects calibrate their trust in a policy review
task with support from an XAI tool. People who saw positive system behavior early on exhibited
behaviors of blind overreliance on the system output. That is, when one believes the system to
perform well, they are likely to believe that the system performs well in all situations and miss
the frequent mistakes. Yet, when explanations are available, this cavalier attitude is tempered and
more accurate mental models develop. On the other hand, for people who saw the system perform
poorly early on, the addition of explanations did little to counteract their sour impression. This
is a testament to the relative weight users place on their initial experiential trust as opposed to
the evidence afforded over later trials. First impressions are important in XAI systems because
human biases are prevalent. This early dismissal can lead to the neglect of decision support aids
and ultimately a fairly fuzzy mental model of how the system performs. In this work, we show how
poor object detection and system failures early on directly lead to underreliance and skepticism
in future queries. While there was no significant difference in task completion time, people who
saw the system perform poorly at first were more careful because they found the system’s edge
cases early on. Without clear evidence of the system’s competencies, users abandoned the support
provided and attempted to complete the task independent of the tool. We see that even the addition
of explanation components did not help users re-calibrate their expectations or encourage them to
trust the model even when it performed well. To the system designers, we recommend considering
ways to balance the display of system strengths and weaknesses when users begin working with
or training on intelligent tools. Our work reiterates the need to investigate additional ways to
re-assess and adjust biased mental models to calibrate user expectations, build a more complete
understanding of the tool’s capabilities, and maintain the appropriate level of trust in system output.

As the culmination of our previous explorations into the human factors associated with explana-
tory systems, we conclude our paper by presenting an empirically-driven conceptual model of
user’s experiential biases, where we categorize human behaviours and impressions based on user
experiences and backgrounds based on their time in usage. To support our discussions and our
categorization, we sought after and present example related work from the human-centered Al
research. We believe our organization can scaffold future design considerations for bias mitigation,
prompt future research directions, and showcase methodologies from HCI/XAI that might measure
these effects.
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